
ar
X

iv
:0

80
2.

06
22

v1
  [

st
at

.M
E

] 
 5

 F
eb

 2
00

8

DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  

Relative Density of the Random r-Factor Proximity Catch Digraph

for Testing Spatial Patterns of Segregation and Association

Elvan Ceyhan, Carey E. Priebe, & John C. Wierman

Johns Hopkins University, Baltimore

November 3, 2018

Abstract

Statistical pattern classification methods based on data-random graphs were introduced recently. In
this approach, a random directed graph is constructed from the data using the relative positions of the
data points from various classes. Different random graphs result from different definitions of the prox-
imity region associated with each data point and different graph statistics can be employed for data
reduction. The approach used in this article is based on a parameterized family of proximity maps
determining an associated family of data-random digraphs. The relative arc density of the digraph is
used as the summary statistic, providing an alternative to the domination number employed previously.
An important advantage of the relative arc density is that, properly re-scaled, it is a U -statistic, facili-
tating analytic study of its asymptotic distribution using standard U -statistic central limit theory. The
approach is illustrated with an application to the testing of spatial patterns of segregation and associa-
tion. Knowledge of the asymptotic distribution allows evaluation of the Pitman and Hodges-Lehmann
asymptotic efficacies, and selection of the proximity map parameter to optimize efficiency. Furthermore
the approach presented here also has the advantage of validity for data in any dimension.

1 Introduction

Classification and clustering have received considerable attention in the statistical literature. In recent years,
a new classification approach has been developed which is based on the relative positions of the data points
from various classes. Priebe et al. introduced the class cover catch digraphs (CCCD) in R and gave the exact
and the asymptotic distribution of the domination number of the CCCD Priebe et al. (2001). DeVinney et
al. DeVinney et al. (2002), Marchette and Priebe Marchette and Priebe (2003), Priebe et al. Priebe et al.
(2003b), Priebe et al. (2003a) applied the concept in higher dimensions and demonstrated relatively good
performance of CCCD in classification. The methods employed involve data reduction (condensing) by using
approximate minimum dominating sets as prototype sets (since finding the exact minimum dominating set
is an NP-hard problem —in particular for CCCD). Furthermore the exact and the asymptotic distribution
of the domination number of the CCCD are not analytically tractable in multiple dimensions.

Ceyhan and Priebe introduced the central similarity proximity map and r-factor proximity maps and the
associated random digraphs in Ceyhan and Priebe (2003a) and Ceyhan and Priebe (2003b), respectively. In
both cases, the space is partitioned by the Delaunay tessellation which is the Delaunay triangulation in R2.
In each triangle, a family of data-random proximity catch digraphs is constructed based on the proximity of
the points to each other. The advantages of the r-factor proximity catch digraphs are that an exact minimum
dominating set can be found in polynomial time and the asymptotic distribution of the domination number
is analytically tractable. The latter is then used to test segregation and association of points of different
classes in Ceyhan and Priebe (2003b). Segregation and assocation are two patterns that describe the spatial
relation between two or more classes. See Section 2.5 for more detail.

1

http://arxiv.org/abs/0802.0622v1


DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  

In this article, we employ a different statistic, namely the relative (arc) density, that is the proportion
of all possible arcs (directed edges) which are present in the data random digraph. This test statistic has
the advantage that, properly rescaled, it is a U -statistic. Two plain classes of alternative hypotheses, for
segregation and association, are defined in Section 2.5. The asymptotic distributions under both the null and
the alternative hypotheses are determined in Section 3 by using standard U -statistic central limit theory.
Pitman and Hodges-Lehman asymptotic efficacies are analyzed in Sections 4.3 and 4.4, respectively. This
test is related to the available tests of segregation and association in the ecology literature, such as Pielou’s
test and Ripley’s test. See discussion in Section 6 for more detail. Our approach is valid for data in any
dimension, but for simplicity of expression and visualization, will be described for two-dimensional data.

2 Preliminaries

2.1 Proximity Maps

Let (Ω,M) be a measurable space and consider a function N : Ω× 2Ω → 2Ω, where 2Ω represents the power
set of Ω. Then given Y ⊆ Ω, the proximity map NY(·) = N(·,Y) : Ω → ℘(Ω) associates with each point
x ∈ Ω a proximity region NY(x) ⊂ Ω. Typically, N is chosen to satisfy x ∈ NY(x) for all x ∈ Ω. The use of
the adjective proximity comes form thinking of the region NY(x) as representing a neighborhood of points
“close” to x. (Jaromczyk and Toussaint (1992); Toussaint (1980).)

2.2 r-Factor Proximity Maps

We now briefly define r-factor proximity maps. (See Ceyhan and Priebe Ceyhan and Priebe (2003b) for
more details). Let Ω = R2 and let Y = {y1, y2, y3} ⊂ R2 be three non-collinear points. Denote by T (Y)
the triangle —including the interior— formed by the three points (i.e. T (Y) is the convex hull of Y). For
r ∈ [1,∞], define N r

Y to be the r-factor proximity map as follows; see also Figure 1. Using line segments
from the center of mass (centroid) of T (Y) to the midpoints of its edges, we partition T (Y) into “vertex
regions” R(y1), R(y2), and R(y3). For x ∈ T (Y) \ Y, let v(x) ∈ Y be the vertex in whose region x falls,
so x ∈ R(v(x)). If x falls on the boundary of two vertex regions, we assign v(x) arbitrarily to one of the
adjacent regions. Let e(x) be the edge of T (Y) opposite v(x). Let ℓ(x) be the line parallel to e(x) through
x. Let d(v(x), ℓ(x)) be the Euclidean (perpendicular) distance from v(x) to ℓ(x). For r ∈ [1,∞), let ℓr(x)
be the line parallel to e(x) such that d(v(x), ℓr(x)) = rd(v(x), ℓ(x)) and d(ℓ(x), ℓr(x)) < d(v(x), ℓr(x)). Let
Tr(x) be the triangle similar to and with the same orientation as T (Y) having v(x) as a vertex and ℓr(x) as
the opposite edge. Then the r-factor proximity region N r

Y(x) is defined to be Tr(x)∩T (Y). Notice that r ≥ 1
implies x ∈ N r

Y(x). Note also that limr→∞ N r
Y(x) = T (Y) for all x ∈ T (Y) \ Y, so we define N∞

Y (x) = T (Y)
for all such x. For x ∈ Y, we define N r

Y(x) = {x} for all r ∈ [1,∞].

2.3 Data-Random Proximity Catch Digraphs

If Xn := {X1, X2, · · · , Xn} is a set of Ω-valued random variables, then the NY(Xi), i = 1, · · · , n, are random
sets. If the Xi are independent and identically distributed, then so are the random sets NY(Xi).

In the case of an r-factor proximity map, notice that if Xi
iid∼ F and F has a non-degenerate two-

dimensional probability density function f with support(f) ⊆ T (Y), then the special case in the construction
of N r

Y — X falls on the boundary of two vertex regions — occurs with probability zero.

The proximities of the data points to each other are used to construct a digraph. A digraph is a
directed graph; i.e. a graph with directed edges from one vertex to another based on a binary relation.
Define the data-random proximity catch digraph D with vertex set V = {X1, · · · , Xn} and arc set A by
(Xi, Xj) ∈ A ⇐⇒ Xj ∈ NY(Xi). Since this relationship is not symmetric, a digraph is needed rather than
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Figure 1: Construction of r-factor proximity region, N2
Y(x) (shaded region).

a graph. The random digraph D depends on the (joint) distribution of the Xi and on the map NY .

2.4 Relative Density

The relative arc density of a digraph D = (V ,A) of order |V| = n, denoted ρ(D), is defined as

ρ(D) =
|A|

n(n− 1)

where | · | denotes the set cardinality functional Janson et al. (2000).

Thus ρ(D) represents the ratio of the number of arcs in the digraph D to the number of arcs in the
complete symmetric digraph of order n, which is n(n − 1). For brevity of notation we use relative density

rather than relative arc density henceforth.

If X1, · · · , Xn
iid∼ F the relative density of the associated data-random proximity catch digraph D, denoted

ρ(Xn;h,NY), is a U -statistic,

ρ(Xn;h,NY) =
1

n(n− 1)

∑∑

i<j

h(Xi, Xj ;NY) (1)

where

h(Xi, Xj ;NY) = I{(Xi, Xj) ∈ A} + I{(Xj , Xi) ∈ A}
= I{Xj ∈ NY(Xi)} + I{Xi ∈ NY(Xj)}, (2)

where I(·) is the indicator function. We denote h(Xi, Xj ;NY) as hij for brevity of notation. Although the
digraph is asymmetric, hij is defined as the number of arcs in D between vertices Xi and Xj, in order to
produce a symmetric kernel with finite variance Lehmann (1988).

The random variable ρn := ρ(Xn;h,NY) depends on n and NY explicitly and on F implicitly. The
expectation E [ρn], however, is independent of n and depends on only F and NY :

0 ≤ E [ρn] =
1

2
E [h12] ≤ 1 for all n ≥ 2. (3)

3
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The variance Var [ρn] simplifies to

0 ≤ Var [ρn] =
1

2n(n− 1)
Var [h12] +

n− 2

n(n− 1)
Cov [h12, h13] ≤ 1/4. (4)

A central limit theorem for U -statistics Lehmann (1988) yields

√
n
(
ρn −E [ρn]

) L−→ N
(
0,Cov [h12, h13]

)
(5)

provided Cov [h12, h13] > 0. The asymptotic variance of ρn, Cov [h12, h13], depends on only F and NY .
Thus, we need determine only E [h12] and Cov [h12, h13] in order to obtain the normal approximation

ρn
approx∼ N

(
E [ρn],Var [ρn]

)
= N

(
E [h12]

2
,
Cov [h12, h13]

n

)
for large n. (6)

2.5 Null and Alternative Hypotheses

In a two class setting, the phenomenon known as segregation occurs when members of one class have a
tendency to repel members of the other class. For instance, it may be the case that one type of plant does
not grow well in the vicinity of another type of plant, and vice versa. This implies, in our notation, that Xi

are unlikely to be located near any elements of Y. Alternatively, association occurs when members of one
class have a tendency to attract members of the other class, as in symbiotic species, so that the Xi will tend
to cluster around the elements of Y, for example. See, for instance, Dixon (1994), Coomes et al. (1999). The
null hypothesis for spatial patterns have been a contraversial topic in ecology from the early days. Gotelli
and Graves Gotelli and Graves (1996) have collected a voluminous literature to present a comprehensive
analysis of the use and misuse of null models in ecology community. They also define and attempt to clarify
the null model concept as “a pattern-generating model that is based on randomization of ecological data or
random sampling from a known or imagined distribution. . . . The randomization is designed to produce
a pattern that would be expected in the absence of a particular ecological mechanism.” In other words, the
hypothesized null models can be viewed as“thought experiments,” which is conventially used in the physical
sciences, and these models provide a statistical baseline for the analysis of the patterns. For statistical testing
for segregation and association, the null hypothesis we consider is a type of complete spatial randomness;
that is,

H0 : Xi
iid∼ U(T (Y))

where U(T (Y)) is the uniform distribution on T (Y). If it is desired to have the sample size be a random
variable, we may consider a spatial Poisson point process on T (Y) as our null hypothesis.

We define two classes of alternatives, HS
ǫ and HA

ǫ with ǫ ∈
(
0,
√

3/3
)
, for segregation and association,

respectively. For y ∈ Y, let e(y) denote the edge of T (Y) opposite vertex y, and for x ∈ T (Y) let ℓy(x) denote
the line parallel to e(y) through x. Then define T (y, ǫ) =

{
x ∈ T (Y) : d(y, ℓy(x)) ≤ ǫ

}
. Let HS

ǫ be the model

under which Xi
iid∼ U

(
T (Y) \∪y∈YT (y, ǫ)

)
and HA

ǫ be the model under which Xi
iid∼ U

(
∪y∈YT (y,

√
3/3− ǫ)

)
.

Thus the segregation model excludes the possibility of any Xi occurring near a yj , and the association model
requires that all Xi occur near a yj . The

√
3/3 − ǫ in the definition of the association alternative is so that

ǫ = 0 yields H0 under both classes of alternatives.

Remark: These definitions of the alternatives are given for the standard equilateral triangle. The
geometry invariance result of Theorem 1 from Section 3 still holds under the alternatives, in the following
sense. If, in an arbitrary triangle, a small percentage δ ·100% where δ ∈ (0, 4/9) of the area is carved away as
forbidden from each vertex using line segments parallel to the opposite edge, then under the transformation to
the standard equilateral triangle this will result in the alternative HS√

3δ/4
. This argument is for segregation

with δ < 1/4; a similar construction is available for the other cases.
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3 Asymptotic Normality Under the Null and Alternative Hy-

potheses

First we present a “geometry invariance” result which allows us to assume T (Y) is the standard equilateral
triangle, T

(
(0, 0), (1, 0),

(
1/2,

√
3/2
))

, thereby simplifying our subsequent analysis.

Theorem 1: Let Y = {y1, y2, y3} ⊂ R2 be three non-collinear points. For i = 1, · · · , n let Xi
iid∼

F = U(T (Y)), the uniform distribution on the triangle T (Y). Then for any r ∈ [1,∞] the distribution of
ρ(Xn;h,N r

Y) is independent of Y, hence the geometry of T (Y).

Proof: A composition of translation, rotation, reflections, and scaling will transform any given trian-
gle To = T

(
y1, y2, y3

)
into the “basic” triangle Tb = T

(
(0, 0), (1, 0), (c1, c2)

)
with 0 < c1 ≤ 1/2, c2 > 0

and (1 − c1)2 + c22 ≤ 1, preserving uniformity. The transformation φe : R2 → R2 given by φe(u, v) =(
u + 1−2 c1√

3
v,

√
3

2 c2
v
)

takes Tb to the equilateral triangle Te = T
(
(0, 0), (1, 0),

(
1/2,

√
3/2
))

. Investigation of

the Jacobian shows that φe also preserves uniformity. Furthermore, the composition of φe with the rigid
motion transformations maps the boundary of the original triangle To to the boundary of the equilateral
triangle Te, the median lines of To to the median lines of Te, and lines parallel to the edges of To to lines
parallel to the edges of Te. Since the joint distribution of any collection of the hij involves only probability
content of unions and intersections of regions bounded by precisely such lines, and the probability content
of such regions is preserved since uniformity is preserved, the desired result follows. �

Based on Theorem 1 and our uniform null hypothesis, we may assume that T (Y) is the standard equi-
lateral triangle with Y =

{
(0, 0), (1, 0),

(
1/2,

√
3/2
)}

henceforth.

For our r-factor proximity map and uniform null hypothesis, the asymptotic null distribution of ρn(r) =
ρ(Xn;h,N r

Y) can be derived as a function of r. Let µ(r) := E [ρn(r)] and ν(r) := Cov [h12, h13]. Notice that
µ(r) = E [h12]/2 = P (X2 ∈ N r

Y(X1)) is the probability of an arc occurring between any pair of vertices.

3.1 Asymptotic Normality under the Null Hypothesis

By detailed geometric probability calculations, provided in Appendix 1, the mean and the asymptotic vari-
ance of the relative density of the r-factor proximity catch digraph can explicitly be computed. The central
limit theorem for U -statistics then establishes the asymptotic normality under the uniform null hypothesis.
These results are summarized in the following theorem.

Theorem 2: For r ∈ [1,∞),

√
n
(
ρn(r) − µ(r)

)
√
ν(r)

L−→ N (0, 1) (7)

where

µ(r) =





37
216r

2 for r ∈ [1, 3/2),

− 1
8r

2 + 4 − 8r−1 + 9
2r

−2 for r ∈ [3/2, 2),

1 − 3
2r

−2 for r ∈ [2,∞),

(8)

and

ν(r) = ν1(r) I(r ∈ [1, 4/3)) + ν2(r) I(r ∈ [4/3, 3/2)) + ν3(r) I(r ∈ [3/2, 2)) + ν4(r) I(r ∈ [2,∞]) (9)

5
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with

ν1(r) =
3007 r10 − 13824 r9 + 898 r8 + 77760 r7 − 117953 r6 + 48888 r5 − 24246 r4 + 60480 r3 − 38880 r2 + 3888

58320 r4
,

ν2(r) =
5467 r10 − 37800 r9 + 61912 r8 + 46588 r6 − 191520 r5 + 13608 r4 + 241920 r3 − 155520 r2 + 15552

233280 r4
,

ν3(r) = −[7 r12 − 72 r11 + 312 r10 − 5332 r8 + 15072 r7 + 13704 r6 − 139264 r5 + 273600 r4 − 242176 r3

+ 103232 r2 − 27648 r + 8640]/[960 r6],

ν4(r) =
15 r4 − 11 r2 − 48 r + 25

15 r6
.

For r = ∞, ρn(r) is degenerate.

See Appendix 1 for the proof.

Consider the form of the mean and variance functions, which are depicted in Figure 2. Note that µ(r)
is monotonically increasing in r, since the proximity region of any data point increases with r. In addition,
µ(r) → 1 as r → ∞, since the digraph becomes complete asymptotically, which explains why ρn(r) is
degenerate, i.e. ν(r) = 0, when r = ∞. Note also that µ(r) is continuous, with the value at r = 1
µ(1) = 37/216.

Regarding the asymptotic variance, note that ν(r) is continuous in r with limr→∞ ν(r) = 0 and ν(1) =
34/58320 ≈ .000583 and observe that supr≥1 ν(r) ≈ .1305 at argsupr≥1 ν(r) ≈ 2.045.
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Figure 2: Asymptotic null mean µ(r) (left) and variance ν(r) (right), from Equations (8) and (9) in Theorem
2, respectively. The vertical lines indicate the endpoints of the intervals in the piecewise definition of the
functions. Notice that the vertical axes are differently scaled.

To illustrate the limiting distribution, r = 2 yields

√
n(ρn(2) − µ(2))√

ν(2)
=

√
192n

25

(
ρn(2) − 5

8

)
L−→ N (0, 1)

or equivalently

ρn(2)
approx∼ N

(
5

8
,

25

192n

)
.

Figure 3 indicates that, for r = 2, the normal approximation is accurate even for small n (although
kurtosis may be indicated for n = 10). Figure 4 demonstrates, however, that severe skewness obtains for
small values of n, and extreme values of r. The finite sample variance in Equation 4 and skewness may be
derived analytically in much the same way as was Cov [h12, h13] for the asymptotic variance. In fact, the

6
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exact distribution of ρn(r) is, in principle, available by successively conditioning on the values of the Xi.
Alas, while the joint distribution of h12, h13 is available, the joint distribution of {hij}1≤i<j≤n, and hence the
calculation for the exact distribution of ρn(r), is extraordinarily tedious and lengthy for even small values of
n.
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Figure 3: Depicted are the distributions of ρn(2)
approx∼ N

(
5
8 ,

25
192n

)
for n = 10, 20, 100 (left to right).

Histograms are based on 1000 Monte Carlo replicates. Solid curves represent the approximating normal
densities given by Theorem 2. Again, note that the vertical axes are differently scaled.
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Figure 4: Depicted are the histograms for 10,000 Monte Carlo replicates of ρ10(1) (left) and ρ10(5) (right)
indicating severe small sample skewness for extreme values of r.

Letting Hn(r) =
∑n

i=1 h(Xi, Xn+1), the exact distribution of ρn(r) can be evaluated based on the recur-
rence

(n + 1)nρn+1(r)
d
= n(n− 1)ρn(r) + Hn(r)

by noting that the conditional random variable Hn(r)|Xn+1 is the sum of n independent and identically
distributed random variables. Alas, this calculation is also tedious for large n.

3.2 Asymptotic Normality Under the Alternatives

Asymptotic normality of relative density of the proximity catch digraphs under the alternative hypotheses of
segregation and association can be established by the same method as under the null hypothesis. Let E S

ǫ [·]
( EA

ǫ [·]) be the expectation with respect to the uniform distribution under the segregation ( association )
alternatives with ǫ ∈

(
0,
√

3/3
)
.

7
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Theorem 3: Let µS(r, ǫ) (and µA(r, ǫ)) be the mean and νS(r, ǫ) (and νA(r, ǫ)) be the covariance,
Cov [h12, h13] for r ∈ (0, 1] and ǫ ∈

(
0,
√

3/3
)

under segregation (and association). Then under HS
ǫ ,

√
n(ρn(r) − µS(r, ǫ))

L−→ N (0, νS(r, ǫ)) for the values of the pair (r, ǫ) for which νS(r, ǫ) > 0. Likewise,

under HA
ǫ ,

√
n(ρn(r) − µA(r, ǫ))

L−→ N (0, νA(r, ǫ)) for the values of the pair (r, ǫ) for which νA(r, ǫ) > 0.

Sketch of Proof: Under the alternatives, i.e. ǫ > 0 , ρn(r) is a U -statistic with the same symmetric
kernel hij as in the null case. The mean µS(r, ǫ) = E ǫ[ρn(r)] = E ǫ[h12]/2 (and µA(r, ǫ)), now a function
of both r and ǫ, is again in [0, 1]. The asymptotic variance νS(r, ǫ) = Cov ǫ[h12, h13] (and νA(r, ǫ)), also a
function of both r and ǫ, is bounded above by 1/4, as before. The explicit forms of µS(r, ǫ) and µA(r, ǫ) is
given, defined piecewise, in Appendix 2. Sample values of µS(r, ǫ), νS(r, ǫ) and µA(r, ǫ), νA(r, ǫ) are given in
Appendix 3 for segregation with ǫ =

√
3/4 and for association with ǫ =

√
3/12. Thus asymptotic normality

obtains provided νS(r, ǫ) > 0 (νA(r, ǫ) > 0); otherwise ρn(r) is degenerate. Note that under HS
ǫ ,

νS(r, ǫ) > 0 for (r, ǫ) ∈
[
1,
√

3/(2ǫ)
)
×
(
0,
√

3/4
]
∪
[
1,
√

3/ǫ− 2
)
×
(√

3/4,
√

3/3
)
,

and under HA
ǫ ,

νA(r, ǫ) > 0 for (r, ǫ) ∈ (1,∞) ×
(
0,
√

3/3
)
∪ {1} ×

(
0,
√

3/12
)
. �

Notice that for the association class of alternatives any r ∈ (1,∞) yields asymptotic normality for all
ǫ ∈

(
0,
√

3/3
)
, while for the segregation class of alternatives only r = 1 yields this universal asymptotic

normality.

4 The Test and Analysis

The relative density of the proximity catch digraph is a test statistic for the segregation/association alterna-
tive; rejecting for extreme values of ρn(r) is appropriate since under segregation we expect ρn(r) to be large,
while under association we expect ρn(r) to be small. Using the test statistic

R =

√
n(ρn(r) − µ(r))√

ν(r)
, (10)

the asymptotic critical value for the one-sided level α test against segregation is given by

zα = Φ−1(1 − α) (11)

where Φ(·) is the standard normal distribution function. Against segregation, the test rejects for R > z1−α

and against association, the test rejects for R < zα.

4.1 Consistency

Theorem 4: The test against HS
ǫ which rejects for R > z1−α and the test against HA

ǫ which rejects for
R < zα are consistent for r ∈ [1,∞) and ǫ ∈

(
0,
√

3/3
)
.

Proof: Since the variance of the asymptotically normal test statistic, under both the null and the
alternatives, converges to 0 as n → ∞ (or is degenerate), it remains to show that the mean under the null,
µ(r) = E [ρn(r)], is less than (greater than) the mean under the alternative, µS(r, ǫ) = Eǫ[ρn(r)] (µA(r, ǫ))
against segregation (association) for ǫ > 0. Whence it will follow that power converges to 1 as n → ∞.

Detailed analysis of µS(r, ǫ) and µA(r, ǫ) in Appendix 2 indicates that under segregation µS(r, ǫ) > µ(r)
for all ǫ > 0 and r ∈ [1,∞). Likewise, detailed analysis of µA(r, ǫ) in Appendix 3 indicates that under
association µA(r, ǫ) < µ(r) for all ǫ > 0 and r ∈ [1,∞). Hence the desired result follows for both alternatives.
�

In fact, the analysis of µ(r, ǫ) under the alternatives reveals more than what is required for consistency.
Under segregation, the analysis indicates that µS(r, ǫ1) < µS(r, ǫ2) for ǫ1 < ǫ2. Likewise, under association,
the analysis indicates that µA(r, ǫ1) > µA(r, ǫ2) for ǫ1 < ǫ2.

8
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4.2 Monte Carlo Power Analysis

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

0
2

4
6

8
10

 

P
S

fra
g

rep
la

cem
en

ts

k
e
r
n
e
l
d
e
n
si
ty

e
st
im

a
te

relative density

0.18 0.20 0.22 0.24 0.26

0
10

20
30

40
50

 

P
S

fra
g

rep
la

cem
en

ts

k
e
r
n
e
l
d
e
n
si
ty

e
st
im

a
te

relative density

Figure 5: Two Monte Carlo experiments against the segregation alternative HS√
3/8

. Depicted are kernel

density estimates for ρn(11/10) for n = 10 (left) and n = 100 (right) under the null (solid) and alternative
(dashed).

In Figure 5, we present a Monte Carlo investigation against the segregation alternative HS√
3/8

for r =

11/10 and n = 10, 100. With n = 10, the null and alternative probability density functions for ρ10(1.1) are

very similar, implying small power (10,000 Monte Carlo replicates yield β̂S
mc = 0.0787, which is based on the

empirical critical value). With n = 100, there is more separation between null and alternative probability

density functions; for this case, 1000 Monte Carlo replicates yield β̂S
mc = 0.77. Notice also that the probability

density functions are more skewed for n = 10, while approximate normality holds for n = 100.

For a given alternative and sample size, we may consider analyzing the power of the test — using the
asymptotic critical value— as a function of the proximity factor r. In Figure 6, we present a Monte Carlo
investigation of power against HS√

3/8
and HS√

3/4
as a function of r for n = 10. The empirical significance

level is about .05 for r = 2, 3 which have the empirical power β̂S
10(r,

√
3/8) ≈ .35, and β̂S

10(r,
√

3/4) = 1. So,
for small sample sizes, moderate values of r are more appropriate for normal approximation, as they yield
the desired significance level and the more severe the segregation, the higher the power estimate.

In Figure 7, we present a Monte Carlo investigation against the association alternative HA√
3/12

for r =

11/10 and n = 10 and 100. The analysis is same as in the analysis of the Figure 5. In Figure 8, we present a
Monte Carlo investigation of power against HA√

3/12
and HA

5
√
3/24

as a function of r for n = 10. The empirical

significance level is about .05 for r = 3/2, 2, 3, 5 which have the empirical power β̂A
10(r,

√
3/12) ≤ .35 with

maximum power at r = 2, and β̂A
10(r, 5

√
3/24) = 1 at r = 3. So, for small sample sizes, moderate values of

r are more appropriate for normal approximation, as they yield the desired significance level, and the more
severe the association, the higher the power estimate.

4.3 Pitman Asymptotic Efficacy

Pitman asymptotic efficiency (PAE) provides for an investigation of “local asymptotic power” — local around
H0. This involves the limit as n → ∞ as well as the limit as ǫ → 0. A detailed discussion of PAE can be
found in Kendall and Stuart (1979) and Eeden (1963). For segregation or association alternatives the PAE

is given by PAE(ρn(r)) =
(µ(k)(r,ǫ=0))

2

ν(r) where k is the minimum order of the derivative with respect to ǫ for

which µ(k)(r, ǫ = 0) 6= 0. That is, µ(k)(r, ǫ = 0) 6= 0 but µ(l)(r, ǫ = 0) = 0 for l = 1, 2, . . . , k − 1. Then under

9
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Figure 6: Monte Carlo power using the asymptotic critical value against segregation alternatives
HS√

3/8
(left) and HS√

3/4
(right) as a function of r, for n = 10. The circles represent the empiri-

cal significance levels while triangles represent the empirical power values. The r values plotted are
1, 11/10, 12/10, 4/3,

√
2, , 2, 3, 5, 10.
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Figure 7: Two Monte Carlo experiments against the association alternative HA√
3/12

. Depicted are kernel

density estimates for ρn(11/10) for n = 10 (left) and n = 100 (right) under the null (solid) and alternative
(dashed).
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Figure 8: Monte Carlo power using the asymptotic critical value against association alternatives
HA√

3/12
(left) and HA

5
√
3/24

(right) as a function of r, for n = 10. The r values plotted are

1, 11/10, 12/10, 4/3,
√

2, , 2, 3, 5, 10.

segregation alternative HS
ǫ and association alternative HA

ǫ , the PAE of ρn(r) is given by

PAES(r) =
(µ′′

S(r, ǫ = 0))
2

ν(r)
and PAEA(r) =

(µ′′
A(r, ǫ = 0))

2

ν(r)
,

respectively, since µ′
S(r, ǫ = 0) = µ′

A(r, ǫ = 0) = 0. Equation (9) provides the denominator; the numerator
requires µ(r, ǫ) which is provided in Appendix 2 for under both segregation and association alternatives,
where we only use the intervals of r that donot vanish as ǫ → 0.

In Figure 9, we present the PAE as a function of r for both segregation and association. Notice that
PAES(r = 1) = 160/7 ≈ 22.8571, limr→∞ PAES(r) = ∞, PAEA(r = 1) = 174240/17 ≈ 10249.4118,
limr→∞ PAEA(r) = 0, argsupr∈[1,∞) PAEA(r) ≈ 1.006 with supr∈[1,∞) PAEA(r) ≈ 10399.7726. PAEA(r)

has also a local supremum at rl ≈ 1.4356 with PAEA(rl) ≈ 3630.8932. Based on the asymptotic efficiency
analysis, we suggest, for large n and small ǫ, choosing r large for testing against segregation and choosing r
small for testing against association.

4.4 Hodges-Lehmann Asymptotic Efficacy

Hodges-Lehmann asymptotic efficiency (HLAE) of ρn(r) (see e.g. Hodges and Lehmann (1956)) under HS
ǫ

is given by

HLAES(r, ǫ) :=
(µS(r, ǫ) − µ(r))2

νS(r, ǫ)
.

HLAE for association is defined similarly. Unlike PAE, HLAE does not involve the limit as ǫ → 0. Since
this requires the mean and, especially, the asymptotic variance of ρn(r) under an alternative, we investigate
HLAE for specific values of ǫ. Figure 10 contains a graph of HLAE against segregation as a function of r for
ǫ =

√
3/8,

√
3/4, 2

√
3/7. See Appendix 3 for explicit forms of µS(r, ǫ) and νS(r, ǫ) for ǫ =

√
3/4.

From Figure 10, we see that, against HS
ǫ , HLAES(r, ǫ) appears to be an increasing function, dependent

on ǫ, of r. Let rd(ǫ) be the minimum r such that ρn(r) becomes degenerate under the alternative HS
ǫ . Then

11
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Figure 9: Pitman asymptotic efficiency against segregation (left) and association (right) as a function of r.
Notice that vertical axes are differently scaled.
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Figure 10: Hodges-Lehmann asymptotic efficiency against segregation alternative HS
ǫ as a function of r for

ǫ =
√

3/8,
√

3/4, 2
√

3/7 (left to right).

rd(
√

3/8) = 4, rd
(√

3/4
)

= 2, and rd
(
2
√

3/7
)

= 2. In fact, for ǫ ∈ (0,
√

3/4], rd(ǫ) =
√

3/(2 ǫ) and for

ǫ ∈ (
√

3/4,
√

3/3), rd(ǫ) =
√

3/ǫ − 2. Notice that limr→rd(ǫ) HLAES(r, ǫ) = ∞, which is in agreement with

PAES as ǫ → 0; since as ǫ → 0, HLAE becomes PAE and rd(ǫ) → ∞ and under H0, ρn(r) is degenerate for
r = ∞. So HLAE suggests choosing r large against segregation, but in fact choosing r too large will reduce
power since r ≥ rd(ǫ) guarantees the complete digraph under the alternative and, as r increases therefrom,
provides an ever greater probability of seeing the complete digraph under the null.

Figure 11 contains a graph of HLAE against association as a function of r for ǫ = 5
√

3/24,
√

3/12,
√

3/21.
See Appendix 3 for explicit forms of µA(r, ǫ) and νA(r, ǫ) for ǫ =

√
3/12. Notice that since ν(r, ǫ) = 0 for

ǫ ≥
√

3/12, HLAEA(r = 1, ǫ) = ∞ for ǫ ≥
√

3/12 and limr→∞ HLAEA(r, ǫ) = 0.

In Figure 11 we see that, against HA
ǫ , HLAEA(r, ǫ) has a local supremum for r sufficiently larger than 1.

Let r̃ be the value at which this local supremum is attained. Then r̃(5
√

3/24) ≈ 3.2323, r̃(
√

3/12) ≈ 1.5676,
and r̃(

√
3/21) ≈ 1.533. Note that, as ǫ gets smaller, r̃ gets smaller. Furthermore, HLAEA(r = 1,

√
3/21) < ∞

and as ǫ → 0, r̃ becomes the global supremum, and PAEA(r = 1) = 0 and argsupr≥1 PAEA(r = 1) ≈ 1.006.
So, when testing against association, HLAE suggests choosing moderate r, whereas PAE suggests choosing
small r.
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Figure 11: Hodges-Lehmann asymptotic efficiency against association alternative HA
ǫ as a function of r for

ǫ =
√

3/21,
√

3/12, 5
√

3/24 (left to right).

4.5 Asymptotic Power Function Analysis

The asymptotic power function (see e.g. Kendall and Stuart (1979)) can also be investigated as a function
of r, n, and ǫ using the asymptotic critical value and an appeal to normality. Under a specific segregation
alternative HS

ǫ , the asymptotic power function is given by

ΠS(r, n, ǫ) = 1 − Φ

(
z(1−α)

√
ν(r) +

√
n (µ(r) − µS(r, ǫ))√

νS(r, ǫ)

)
,

where z1−α = Φ−1(1 − α). Under HA
ǫ , we have

ΠA(r, n, ǫ) = Φ

(
zα
√
ν(r) +

√
n (µ(r) − µA(r, ǫ))√
νA(r, ǫ)

)
.

Analysis of Figure 12 shows that, against HS√
3/8

, a large choice of r is warranted for n = 100 but,

for smaller sample size, a more moderate r is recommended. Against HA√
3/12

, a moderate choice of r is

recommended for both n = 10 and n = 100. This is in agreement with Monte Carlo investigations.
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Figure 12: Asymptotic power function against segregation alternative HS√
3/8

as a function of r for n = 10

(first from left) and n = 100 (second) and association alternative HA√
3/12

as a function of r for n = 10 (third)

and n = 100 (fourth).
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5 Multiple Triangle Case

Suppose Y is a finite collection of points in R2 with |Y| ≥ 3. Consider the Delaunay triangulation (assumed
to exist) of Y, where Tj denotes the jth Delaunay triangle, J denotes the number of triangles, and CH(Y)

denotes the convex hull of Y. We wish to test H0 : Xi
iid∼ U(CH(Y)) against segregation and association

alternatives.

The digraph D is constructed using N r
Yj

(·) as described in Section 2.3, where for Xi ∈ Tj the three points

in Y defining the Delaunay triangle Tj are used as Yj . Let ρn(r, J) be the relative density of the digraph
based on Xn and Y which yields J Delaunay triangles, and let wj := A(Tj)/A(CH(Y)) for j = 1, . . . , J ,

where A(CH(Y)) =
∑J

j=1 A(Tj) with A(·) being the area functional. Then we obtain the following as a
corollary to Theorem 2.

Corollary 1: The asymptotic null distribution for ρn(r, J) conditional on W = {w1, . . . , wJ} for r ∈
[1,∞] is given by N (µ(r, J), ν(r, J)/n) provided that ν(r, J) > 0 with

µ(r, J) := µ(r)

J∑

j=1

w2
j , and ν(r, J) := ν(r)

J∑

j=1

w3
j + 4µ(r)2




J∑

j=1

w3
j −




J∑

j=1

w2
j




2

 , (12)

where µ(r) and ν(r) are given by equations (8) and (9), respectively.

Proof: See Appendix 4. �

By an appropriate application of Jensen’s Inequality, we see that
∑J

j=1 w
3
j ≥

(∑J
j=1 w

2
j

)2
. Therefore,

ν(r, J) = 0 iff ν(r) = 0 and
∑J

j=1 w
3
j =

(∑J
j=1 w

2
j

)2
, so asymptotic normality may hold even when ν(r) = 0.

Similarly, for the segregation (association) alternatives with 4 ǫ2/3 × 100% of the triangles around the
vertices of each triangle is forbidden (allowed), we obtain the above asymptotic distribution of ρn(r) with
µ(r) being replaced by µS(r, ǫ), ν(r) by νS(r, ǫ), µ(r, J), by µS(r, J, ǫ), and ν(r, J) by νS(r, J, ǫ). Likewise
for association.

Thus in the case of J > 1, we have a (conditional) test of H0 : Xi
iid∼ U(CH(Y)) which once again rejects

against segregation for large values of ρn(r, J) and rejects against association for small values of ρn(r, J).

Depicted in Figure 13 are the segregation (with δ = 1/16 i.e. ǫ =
√

3/8), null, and association (with
δ = 1/4 i.e. ǫ =

√
3/12) realizations (from left to right) with n = 1000, |Y| = 10, and J = 13. For the

null realization, the p-value is greater than 0.1 for all r values and both alternatives. For the segregation
realization, we obtain p < 0.0031 for 1 < r ≤ 5 and p > 0.24 for r = 1 and r ≥ 10. For the association
realization, we obtain p < 0.0135 for 1 < r ≤ 3, p = .14 for r = 1, and p > 0.25 for for r ≥ 5. Note that this
is only for one realization of Xn.
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Figure 13: Realization of segregation (left), H0 (middle), and association (right) for |Y| = 10, J = 13, and
n = 1000.
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Figure 14: Monte Carlo power using the asymptotic critical value against HS√
3/8

, as a function of r, for

n = 100 (left), n = 200 (middle), and n = 500 (right) conditional on the realization of Y in Figure 13. The
circles represent the empirical significance levels while triangles represent the empirical power values.
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Figure 15: Monte Carlo power using the asymptotic critical value against HA√
3/12

as a function of r, for

n = 100 (left), n = 200 (middle), and n = 500 (right) conditional on the realization of Y in Figure 13. The
circles represent the empirical significance levels while triangles represent the empirical power values.

We implement the above described Monte Carlo experiment 1000 times with n = 100, n = 200, and n =
500 and find the empirical significance levels α̂S(n, J) and α̂A(n, J) and the empirical powers β̂S

n (r,
√

3/8, J)

and β̂A
n (r,

√
3/12, J). These empirical estimates are presented in Table 1 and plotted in Figures 14 and 15.

Notice that the empirical significance levels are all larger than .05 for both alternatives, so this test is liberal
in rejecting H0 against both alternatives for the given realization of Y and n values. The smallest empirical
significance levels and highest empirical power estimates occur at moderate r values (r = 3/2, 2, 3) against
segregation and at smaller r values (r =

√
2, 3/2) against association. Based on this analysis, for the given

realization of Y, we suggest the use of moderate r values for segregation and slightly smaller for association.
Notice also that as n increases, the empirical power estimates gets larger for both alternatives.

The conditional test presented here is appropriate when the W are fixed, not random. An unconditional
version requires the joint distribution of the number and relative size of Delaunay triangles when Y is, for
instance, a Poisson point pattern. Alas, this joint distribution is not available Okabe et al. (2000).

5.1 Related Test Statistics in Multiple Triangle Case

For J > 1, we have derived the asymptotic distribution of ρn(r, J) = |A|/(n (n−1)). Let Aj be the number of

arcs, nj := |Xn∩Tj |, and ρnj
(r) be the arc density for triangle Tj for j = 1, . . . , J . So

∑J
j=1

nj (nj−1)
n (n−1) ρnj

(r) =

15
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r 1 11/10 6/5 4/3
√

2 3/2 2 3 5 10
n = 100, N = 1000

α̂S(n, J) 0.144 0.141 0.124 0.101 0.095 0.087 0.070 0.075 0.071 0.072

β̂S
n (r,

√
3/8, J) 0.191 0.383 0.543 0.668 0.714 0.742 0.742 0.625 0.271 0.124

α̂A(n, J) 0.118 0.111 0.089 0.081 0.065 0.062 0.067 0.064 0.068 0.071

β̂A
n (r,

√
3/12, J) 0.231 0.295 0.356 0.338 0.269 0.209 0.148 0.095 0.113 0.167

n = 200, N = 1000
α̂S(n, J) 0.095 0.092 0.087 0.077 0.073 0.076 0.072 0.071 0.074 0.073

β̂S
n (r,

√
3/8, J) 0.135 0.479 0.743 0.886 0.927 0.944 0.959 0.884 0.335 0.105

α̂A(n, J) 0.071 0.071 0.062 0.057 0.055 0.047 0.038 0.035 0.036 0.040

β̂A
n (r,

√
3/12, J) 0.182 0.317 0.610 0.886 0.952 0.985 0.972 0.386 0.143 0.068

n = 500, N = 1000
α̂S(n, J) 0.089 0.092 0.087 0.086 0.080 0.078 0.079 0.079 0.076 0.081

β̂S
n (r,

√
3/8, J) 0.145 0.810 0.981 0.997 0.999 1.000 1.000 1.000 0.604 0.130

α̂A(n, J) 0.087 0.085 0.076 0.075 0.073 0.075 0.072 0.067 0.066 0.061

β̂A
n (r,

√
3/12, J) 0.241 0.522 0.937 1.000 1.000 1.000 1.000 0.712 0.187 0.063

Table 1: The empirical significance level and empirical power values under HS√
3/8

and HA√
3/12

, N = 1000,

n = 100, and J = 13, at α = .05 for the realization of Y in Figure 13.

ρn(r, J), since
∑J

j=1
nj (nj−1)
n (n−1) ρnj

(r) =
PJ

j=1 |Aj |
n (n−1) = |A|

n (n−1) = ρn(r, J).

Let Ûn :=
∑J

j=1 w
2
j ρnj

(r) where wj = A(Tj)/A(CH(Y)). Since ρnj
(r) are asymptotically independent,

√
n(Ûn − µ(r, J)) and

√
n(ρn(r, J) − µ(r, J)) both converge in distribution to N (0, ν(r, J)).

In the denominator of ρn(r, J), we use n(n − 1) as the maximum number of arcs possible. However,
by definition, we can at most have a digraph with J complete symmetric components of order nj , for

j = 1, . . . , J . Then the maximum number possible is nt :=
∑J

j=1 nj (nj − 1). Then the (adjusted) arc

density is ρadjn,J := |A|
nt

. Then ρadjn,J(r) =
PJ

j=1 |Aj |
nt

=
∑J

j=1
nj (nj−1)

nt
ρnj

(r). Since
nj (nj−1)

nt
≥ 0 for each j,

and
∑J

j=1
nj (nj−1)

nt
= 1, ρadjn,J(r) is a mixture of ρnj

(r)’s. Then ρadjn,J(r) is asymptotically normal with mean

E [ρadjn,J(r)] = µ(r, J) and the variance of ρadjn,J (r) is

1

n


ν(r)

(
J∑

j=1

w3
j /(

J∑

j=1

w2
j )2

)
+ 4µ(r)2

(
J∑

j=1

w3
j /(

J∑

j=1

w2
j )2 − 1

)
 .

5.2 Asymptotic Efficacy Analysis for J > 1

The PAE, HLAE, and asymptotic power function analysis are given for J = 1 in Sections 4.3, 4.4, and 4.5,
respectively. For J > 1, the analysis will depend on both the number of triangles as well as the size of the
triangles. So the optimal r values with respect to these efficiency criteria for J = 1 do not necessarily hold
for J > 1, hence the analyses need to be updated, given the values of J and W .

Under segregation alternative HS
ǫ , the PAE of ρn(r, J) is given by

PAES
J (r) =

(
µ′′
S(r, J, ǫ = 0)

)2

ν(r, J)
=

(
µ′′
S(r, ǫ = 0)

∑J
j=1 w

2
j

)2

ν(r)
∑J

j=1 w
3
j + 4µS(r, ǫ = 0)2

(∑J
j=1 w

3
j −

(∑J
j=1 w

2
j

)2) .

Under association alternative HA
ǫ the PAE of ρn(r, J) is similar. In Figure 16, we present the PAE as a
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Figure 16: Pitman asymptotic efficiency against segregation (left) and association (right) as a function of r
with J = 13. Notice that vertical axes are differently scaled.
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Figure 17: Hodges-Lehmann asymptotic efficiency against segregation alternative HS
ǫ as a function of r for

ǫ =
√

3/8,
√

3/4, 2
√

3/7 (left to right) and J = 13.

function of r for both segregation and association conditional on the realization of Y in Figure 13. Notice that,
unlike J = 1 case, PAES

J (r) is bounded. Some values of note are PAES
J (ρn(1)) = .3884, limr→∞ PAES

J (r) =
8

PJ
j=1 w2

j

256

(
P

J
j=1 w3

j−
(

P

J
j=1 w2

j

)2) ≈ 139.34, argsupr∈[1,2] PAES
J (r) ≈ 1.974. As for association, PAEA

J (r = 1) =

422.9551, limr→∞ PAEA
J (r) = 0, argsupr≥1 PAEA

J (r) = 1.5 with PAEA
J (r = 1.5) ≈ 1855.9672. Based on the

asymptotic efficiency analysis, we suggest, for large n and small ǫ, choosing moderate r for testing against
segregation and association.

Under segregation, the HLAE of ρn(r, J) is given by

HLAES
J (r, ǫ) :=

(µS(r, J, ǫ) − µ(r, J))2

νS(r, J, ǫ)
=

(
µS(r, ǫ)

(∑J
j=1 w

2
j

)
− µ(r)

(∑J
j=1 w

2
j

))2

νS(r, ǫ)
∑J

j=1 w
3
j + 4µS(r, ǫ)2

(∑J
j=1 w

3
j −

(∑J
j=1 w

2
j

)2) .

Notice that HLAES
J (r, ǫ = 0) = 0 and lim→∞ HLAES

J (r, ǫ) = 0 and HLAE is bounded provided that ν(r, J) >
0.

We calculate HLAE of ρn(r, J) under HS
ǫ for ǫ =

√
3/8, ǫ =

√
3/4, and ǫ = 2

√
3/7. In Figure 17 we

present HLAES
J (r, ǫ) for these ǫ values conditional on the realization of Y in Figure 13. Note that with

ǫ =
√

3/8, HLAES
J (r = 1,

√
3/8) ≈ .0004 and argsupr∈[1,∞] HLAES

J (r,
√

3/8) ≈ 1.8928 with the supremum ≈
.0544. With ǫ =

√
3/4, HLAES

J (r = 1,
√

3/4) ≈ .0450 and argsupr∈[1,∞] HLAES
J (r,

√
3/4) ≈ 1.3746 with the

supremum ≈ .6416. With ǫ = 2
√

3/7, HLAES
J (r = 1, 2

√
3/7) ≈ .045 and argsupr∈[1,∞] HLAES

J (r, 2
√

3/7) ≈
1.3288 with the supremum ≈ .9844. Furthermore, we observe that HLAES

J (r, 2
√

3/7) > HLAES
J (r,

√
3/4) >

17
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HLAES
J (r,

√
3/8). Based on the HLAE analysis for the given Y we suggest moderate r values for moderate

segregation and small r values for severe segregation.

The explicit form of HLAEA
J (r, ǫ) is similar to HLAES

J (r, ǫ) which implies HLAEA
J (r, ǫ = 0) = 0 and

lim→∞ HLAEA
J (r, ǫ) = 0.

We calculate HLAE of ρn(r, J) under HA
ǫ for ǫ =

√
3/21, ǫ =

√
3/12, and ǫ = 5

√
3/24. In Figure 18 we

present HLAES
J (r, ǫ) for these ǫ values conditional on the realization of Y in Figure 13 Note that with ǫ =
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Figure 18: Hodges-Lehmann asymptotic efficiency against association alternative HA
ǫ as a function of r for

ǫ =
√

3/21,
√

3/12, 5
√

3/24 (left to right) and J = 13.

√
3/21, HLAEA

J (r = 1,
√

3/21) ≈ .0009 and argsupr∈[1,∞] HLAEA
J (r,

√
3/21) ≈ 1.5734 with the supremum

≈ .0157. With ǫ =
√

3/12, HLAEA
J (r = 1,

√
3/12) ≈ .0168 and argsupr∈[1,∞] HLAEA

J (r,
√

3/12) ≈ 1.6732

with the supremum ≈ .1818. With ǫ = 5
√

3/24, HLAEA
J (r = 1, 5

√
3/24) ≈ .0017 and

argsupr∈[1,∞] HLAEA
J (r, 5

√
3/24) ≈ 3.2396 with the supremum ≈ 5.7616. Furthermore, we observe that

HLAEA
J (r, 5

√
3/24) > HLAEA

J (r,
√

3/12) > HLAEA
J (r,

√
3/21). Based on the HLAE analysis for the given

Y we suggest moderate r values for moderate association and large r values for severe association.

6 Discussion and Conclusions

In this article we investigate the mathematical properties of a random digraph method for the analysis of
spatial point patterns.

The first proximity map similar to the r-factor proximity map N r
Y in literature is the spherical proximity

map NS(x) := B(x, r(x)), (see the references for CCCD in the Introduction). A slight variation of NS is the
arc-slice proximity map NAS(x) := B(x, r(x)) ∩ T (x) where T (x) is the Delaunay cell that contains x (see
Ceyhan and Priebe (2003a)). Furthermore, Ceyhan and Priebe introduced the central similarity proximity
map NCS in Ceyhan and Priebe (2003a) and N r

Y in Ceyhan and Priebe (2003b). The r-factor proximity
map, when compared to the others, has the advantages that the asymptotic distribution of the domination
number γn(N r

Y) is tractable (see Ceyhan and Priebe (2003b)), an exact minimum dominating set can be
found in polynomial time. Moreover N r

Y and NCS are geometry invariant for uniform data over triangles.
Additionally, the mean and variance of relative density ρn is not analytically tractable for NS and NAS .
While N r

Y(x), NCS(x), and NAS(x) are well defined only for x ∈ CH(Y), the convex hull of Y, NS(x) is well
defined for all x ∈ Rd. The proximity maps NS and NAS require no effort to extend to higher dimensions.

The NS (the proximity map associated with CCCD) is used in classification in the literature, but not
for testing spatial patterns between two or more classes. We develop a technique to test the patterns
of segregation or association. There are many tests available for segregation and association in ecology
literature. See Dixon (1994) for a survey on these tests and relevant references. Two of the most commonly
used tests are Pielou’s χ2 test of independence and Ripley’s test based on K(t) and L(t) functions. However,
the test we introduce here is not comparable to either of them. Our test is a conditional test — conditional on
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a realization of J (number of Delaunay triangles) and W (the set of relative areas of the Delaunay triangles)
and we require the number of triangles J is fixed and relatively small compared to n = |Xn|. Furthermore,
our method deals with a slightly different type of data than most methods to examine spatial patterns. The
sample size for one type of point (type X points) is much larger compared to the the other (type Y points).
This implies that in practice, Y could be stationary or have much longer life span than members of X . For
example, a special type of fungi might constitute X points, while the tree species around which the fungi
grow might be viewed as the Y points.

There are two major types of asymptotic structures for spatial data Lahiri (1996). In the first, any two
observations are required to be at least a fixed distance apart, hence as the number of observations increase,
the region on which the process is observed eventually becomes unbounded. This type of sampling structure
is called “increasing domain asymptotics”. In the second type, the region of interest is a fixed bounded
region and more or more points are observed in this region. Hence the minimum distance between data
points tends to zero as the sample size tends to infinity. This type of structure is called “infill asymptotics”,
due to Cressie Cressie (1991). The sampling structure for our asymptotic analysis is infill, as only the size
of the type X process tends to infinity, while the support, the convex hull of a given set of points from type
Y process, CH(Y) is a fixed bounded region.

Moreover, our statistic that can be written as a U -statistic based on the locations of type X points with
respect to type Y points. This is one advantage of the proposed method: most statistics for spatial patterns
can not be written as U -statistics. The U -statistic form avails us the asymptotic normality, once the mean
and variance is obtained by tedious detailed geometric calculations.

The null hypothesis we consider is considerably more restrictive than current approaches, which can be
used much more generally. The null hypothesis for testing segregation or association can be described in two
slightly different forms Dixon (1994):

(i) complete spatial randomness, that is, each class is distributed randomly throughout the area of interest.
It describes both the arrangement of the locations and the association between classes.

(ii) random labeling of locations, which is less restrictive than spatial randomness, in the sense that ar-
rangement of the locations can either be random or non-random.

Our conditional test is closer to the former in this regard. Pielou’s test provide insight only on the association
between classes, hence there is no assumption on the allocation of the observations, which makes it more
appropriate for testing the null hypothesis of random labeling. Ripley’s test can be used for both types of
null hypotheses, in particular, it can be used to test a type of spatial randomness against another type of
spatial randomness.

The test based on the mean domination number in Ceyhan and Priebe (2003b) is not a conditional test,
but requires both n and number of Delaunay triangles J to be large. The comparison for a large but fixed J
is possible. Furthermore, under segregation alternatives, the Pitman asymptotic efficiency is not applicable
to the mean domination number case, however, for large n and J we suggest the use of it over arc density
since for each ǫ > 0, Hodges-Lehmann asymptotic efficiency is unbounded for the mean domination number
case, while it is bounded for arc density case with J > 1. As for the association alternative, HLAE suggests
moderate r values which has finite Hodges-Lehmann asymptotic efficiency. So again, for large J and n mean
domination number is preferable. The basic advantage of ρn(r) is that, it does not require J to be large, so
for small J it is preferable.

Although the statistical analysis and the mathematical properties related to the r-factor proximity catch
digraph are done in R2, the extension to Rd with d > 2 is straightforward. See Ceyhan and Priebe
Ceyhan and Priebe (2003b) for more detail on the construction of the associated proximity region in higher
dimensions. Moreover, the geometry invariance, asymptotic normality of the U -statistic and consistency of
the tests hold for d > 2.
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Appendix 1: Derivation of µ(r) and ν(r)

In the standard equilateral triangle, let y1 = (0, 0), y2 = (1, 0), y3 =
(
1/2,

√
3/2
)
, MC be the center of

mass, Mj be the midpoints of the edges ej for j = 1, 2, 3. Then MC =
(
1/2,

√
3/6
)
, M1 =

(
3/4,

√
3/4
)
,

M2 =
(
1/4,

√
3/4
)
, M3 = (1/2, 0).

Recall that E [ρn(r)] = 1
n (n−1)

∑∑
i<j E [hij ] = 1

2E [h12] = µ(r) = P
(
Xj ∈ N r

Y(Xi)
)
.

Let Xn be a random sample of size n from U(T (Y)). For x1 = (u, v), ℓr(x1) = r v + r
√

3u−
√

3x. Next,
let N1 := ℓr(x1) ∩ e3 and N2 := ℓr(x1) ∩ e2. Then for z1 ∈ Ts := T (y1,M3,MC), N r

Y(z1) = T (y1, N1, N2)
provided that ℓr(x1) is not outside of T (Y), where

N1 =
(
r
(
y1 +

√
3x1

)√
3/3, 0

)
and N2 =

(
r
(
y1 +

√
3x1

)√
3/6,

(
y1 +

√
3 x1

)
r/2
)
.

Now we find µ(r) for r ∈ [1,∞).

First, observe that, by symmetry,

µ(r) = P
(
X2 ∈ N r

Y(X1)
)

= 6P
(
X2 ∈ N r

Y(X1), X1 ∈ Ts

)
.

Let ℓs(r, x) be the line such that r d(y1, ℓs(r, x)) = d(y1, e1) and ℓs(r, x)∩ T (Y) 6= ∅, so ℓs(r, x) =
√

3(1r − x).
Then if x1 ∈ Ts is above ℓs(r, x) then N r

Y(x1) = T (Y), otherwise, N r
Y(x1) = Tr(x1) ( T (Y).

For r ∈ [1, 3/2), ℓs(r, x) ∩ Ts = ∅, so N r
Y(x1) = Tr(x1) ( T (Y) for all x ∈ Ts. Then

P (X2 ∈ N r
Y(X1), X1 ∈ Ts) =

∫ 1/2

0

∫ x/
√
3

0

A(N r
Y(x1))

A(T (Y))2
dydx =

37

1296
r2.

where A(N r
Y(x1)) =

√
3

12 r2(y +
√

3x)2 and A(T (Y)) =
√

3/4. Hence for r ∈ [1, 3/2), µ(r) = 37
216 r

2.

For r ∈ [3/2, 2), ℓs(r, x) crosses through M3MC . Let the x coordinate of ℓs(r, x) ∩ y1MC be s1, then
s1 = 3/(4 r). See Figure 19 for the relative position of ℓs(r, x) and Ts.

Then

P (X2 ∈ N r
Y(X1), X1 ∈ Ts) =

∫ 1/2

0

∫ x/
√
3

0

A(N r
Y(x1))

A(T (Y))2
dydx

=

∫ s1

0

∫ x/
√
3

0

A(N r
Y(x1))

A(T (Y))2
dydx +

∫ 1/2

s1

∫ ℓs(r,x)

0

A(N r
Y(x1))

A(T (Y))2
dydx +

∫ 1/2

s1

∫ x/
√
3

ℓs(r,x)

1

A(T (Y))
dydx

= −−36 + r4 + 64 r − 32 r2

48 r2
.

Hence for r ∈ [3/2, 2), µ(r) = − 1
8 r

2 − 8 r−1 + 9
2 r

−2 + 4.

For r ∈ [2,∞), ℓs(r, x) crosses through y1M3. Let the x coordinate of ℓs(r, x)∩y1M3 be s2, then s2 = 1/r.
See Figure 19.

Then

P (X2 ∈ N r
Y(X1), X1 ∈ Ts) =

∫ s1

0

∫ x/
√
3

0

A(N r
Y(x1))

A(T (Y))2
dydx +

∫ s2

s1

∫ ℓs(r,x)

0

A(N r
Y(x1))

A(T (Y))2
dydx

+

∫ s2

s1

∫ x/
√
3

ℓs(r,x)

1

A(T (Y))
dydx +

∫ 1/2

s2

∫ x/
√
3

0

1

A(T (Y))
dydx =

1

12

−3 + 2 r2

r2
.
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y2 = (1, 0)e3M3s1

ℓs(r = 4, x)

ℓs(r = 1.75, x)

ℓs
(
r =

√
2, x
) y3 =

(
1/2,

√
3/2
)

e1

s2y1 = (0, 0)

MC

e2

Figure 19: The cases for relative position of ℓs(r, x) with various r values.

Hence for r ∈ [2,∞), µ(r) = 1 − 3
2 r

−2.

For r = ∞, µ(r) = 1 follows trivially.

To find Cov [h12, h13], we introduce a related concept.

Definition: Let (Ω,M) be a measurable space and consider the proximity map N : Ω × ℘(Ω) → ℘(Ω),
where ℘(·) represents the power set functional. For B ⊂ Ω, the Γ1-region, Γ1(·) = Γ1(·, N) : Ω → ℘(Ω)
associates the region Γ1(B) := {z ∈ Ω : B ⊆ N(z)} with each set B ⊂ Ω. For x ∈ Ω, we denote Γ1({x}) as
Γ1(x). Note that Γ1-region depends on proximity region N(·).

Furthermore, let Γ1(·, N r
Y) be the Γ1-region associated with N r

Y(·), let Aij be the event that {XiXj ∈
A} = {Xi ∈ N r

Y(Xj)}, then hij = I(Aij) + I(Aji). Let

P r
2N := P ({X2, X3} ⊂ N r

Y(X1)), P r
M := P (X2 ∈ N r

Y(X1), X3 ∈ Γ1(X1, N
r
Y), P r

2G := P ({X2, X3} ⊂ Γ1(X1, N
r
Y)).

Then Cov [h12, h13] = E [h12 h13] −E [h12]E [h13] where

E [h12 h13] = E [(I(A12) + I(A21)) (I(A13) + I(A31)]

= P (A12 ∩A13) + P (A12 ∩ A31) + P (A21 ∩ A13) + P (A21 ∩A31).

= P ({X2, X3} ⊂ N r
Y(X1)) + 2P (X2 ∈ N r

Y(X1), X3 ∈ Γ1(X1, N
r
Y)) + P ({X2, X3} ⊂ Γ1(X1, N

r
Y))

= P r
2N + 2P r

M + P r
2G.

So ν(r) = Cov [h12, h13] = (P r
2N + 2P r

M + P r
2G) − [2µ(r)]2.

Furthermore, for any x1 = (u, v) ∈ T (Y), Γ1(x1, N
r
Y) is a convex or nonconvex polygon. Let ξj(r, x) be

the line between x1 and the vertex yj parallel to the edge ej such that r d(yj , ξj(r, x)) = d(yj , ℓr(x1)) for j =
1, 2, 3. Then Γ1(x1, N

r
Y) ∩R(yj) is bounded by ξj(r, x) and the median lines.

For x1 = (u, v), ξ1(r, x) = −
√

3x+(v+
√

3 u)/r, ξ2(r, x) = (v+
√

3r (x−1)+
√

3(1−u))/r and ξ3(r, x) =
(
√

3(r − 1) + 2 v)/(2 r).

To find the covariance, we need to find the possible types of Γ1(x1, N
r
Y) and N r

Y(x1) for r ∈ [1,∞). First
we find the possible intersection points of ℓV (x) with ∂(T (Y)) and ∂(R(yj)) for j = 1, 2, 3. Let

G1 = ξ1(r, x)∩e3, G2 = ξ2(r, x)∩e3, G3 = ξ2(r, x)∩e1, G4 = ξ3(r, x)∩e1, G5 = ξ3(r, x)∩e2, G6 = ξ1(r, x)∩e2.

22



DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  

y2 = (1, 0)y1 = (0, 0)
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Figure 20: The prototypes of the six cases for Γ1(x1, N
r
Y) for x ∈ T (y1,M3,MCC) for r ∈ [4/3, 3/2).

Then, for example, G5 =
(

(
√
3r−

√
3+2 y)

√
3

6 r ,
√
3r−

√
3+2 y

2 r

)
. Furthermore, let

L1 = ξ1(r, x) ∩M1MC , L2 = ξ2(r, x) ∩M1MC , L3 = ξ2(r, x) ∩M2MC , L4 = ξ3(r, x) ∩M2MC , L5 =
ξ3(r, x) ∩M3MC , L6 = ξ1(r, x) ∩M3MC .

Then for example L5 =
(
− (

√
3r−3

√
3+6 y)

√
3

6 r ,
√
3r−

√
3+2 y

2 r

)
. Then Γ1(x1, N

r
Y) is a polygon whose vertices

are a subset of the yj ,MC ,Mj , j = 1, 2, 3 and Gj , Lj, j = 1, . . . , 6.

See Figure 20 for the prototypes of Γ1(x1, N
r
Y) with r ∈ [4/3, 3/2).

We partition [1,∞) with respect to the types of N r
Y(x1) and Γ1(x1, N

r
Y) into [1, 4/3), [4/3, 3/2), [3/2, 2), [2,∞).

For demonstrative purposes we pick the interval [4/3, 3/2). For r ∈ [ 43 ,
3
2 ), there are six cases regard-

ing Γ1(x1, N
r
Y) and one case for N r

Y(x1). Each case j corresponds to the region Rj in Figure 21 where
s1 = 1 − 2 r/3, s2 = 3/2 − r, s3 = 1 − r/2, s4 = 3/2 − 5 r/6, s5 = 3/2 − 3 r/4.

Let P(a1, a2, . . . , an) denote the polygon with vertices a1, a2, . . . , an, then, for x1 = (x, y) ∈ Rj , j =
1, . . . , 6, Γ1(x1, N

r
Y) are P(G1,M1,MC ,M3, G6), P(G1,M1, L2, L3,MC ,M3, G6), P(G1, G2, G3,M2,MC ,M3, G6),

P(G1,M1, L2, L3, L4, L5,M3, G6), P(G1, G2, G3,M2, L4, L5,M3, G6) and P(G1, G2, G3, G4, G5, G6), respec-
tively.

The explicit forms of Rj , j = 1, . . . , 6 are as follows:
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R2 R3

R4

R5

s4

R1

s1 s2
s3 s5

R7

Figure 21: The regions corresponding to the six cases for r ∈ [4/3, 3/2)

R1 = {(x, y) ∈ [0, s1] × [0, ℓam(x)] ∪ [s1, s2] × [q1(x), ℓam(x)]}
R2 = {(x, y) ∈ [s1, s2] × [0, q1(x)] ∪ [s2, s3] × [0, q2(x)] ∪ [s3, s4] × [q3(x), q2(x)]}
R3 = {(x, y) ∈ [s3, s4] × [0, q3(x)] ∪ [s4, 1/2] × [0, q2(x)]}
R4 = {(x, y) ∈ [s2, s4] × [q2(x), ℓam(x)] ∪ [s4, s6] × [q3(x), ℓam(x)]}
R5 = {(x, y) ∈ [s4, s6] × [q2(x), q3(x)] ∪ [s6, 1/2]× [q2(x), q4(x)]}
R6 = {(x, y) ∈ [s6, 1/2] × [q4(x), ℓam(x)]},

where ℓam(x) = x/
√

3, q1(x) = (2 r − 3)/
√

3 +
√

3x, q2(x) =
√

3 (1/2 − r/3), q3(x) =
√

3 (x − 1 + r/2), and
q4(x) =

√
3(1/2 − r/4).

Then P ({X2, X3} ⊂ N r
Y(X1)) = 781

19440 r
4. (We use the same limits of integration in µ(r) calculations

with the integrand being A(N r
Y(x1))2/A(T (Y))3.

Next, by symmetry, P ({X2, X3} ⊂ Γ1(X1, N
r
Y)) = 6P ({X2, X3} ⊂ Γ1(X1, N

r
Y), X1 ∈ T (y,M3,MC)).

Then

P ({X2, X3} ⊂ Γ1(X1, N
r
Y), X1 ∈ T (y,M3,MC)) =

6∑

j=1

P ({X2, X3} ⊂ Γ1(X1, N
r
Y), X1 ∈ Rj).

For example, for x1 ∈ R4,

P ({X2, X3} ⊂ Γ1(X1, N
r
Y), X1 ∈ R4) =

∫ s4

s2

∫ ℓam(x)

q2(x)

A(Γ1(x1, N
r
Y))2

A(T (Y))3
dydx

+

∫ s6

s4

∫ ℓam(x)

q3(x)

A(Γ1(x1, N
r
Y))2

A(T (Y))3
dydx =

9637 r4 − 89640 r3 + 288360 r2 − 362880 r + 155520

349920 r2
.

where A(Γ1(x1, N
r
Y)) =

√
3(9 r2+18−24 r+4

√
3r y−18x+6x2+14 y2+12 r x−8x

√
3y−6

√
3y)

12 r2 .

Similarly, we calculate for j = 1, 2, 3, 5, 6 and get

P ({X2, X3} ⊂ Γ1(X1, N
r
Y)) = 6

(
−47880 r5 − 38880 r2 + 25687 r6 − 1080 r4 + 60480 r3 + 3888

349920 r4

)

=
−47880 r5 − 38880 r2 + 25687 r6 − 1080 r4 + 60480 r3 + 3888

58320 r4
.
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Furthermore, P (X2 ∈ N r
Y(X1), X3 ∈ Γ1(X1, N

r
Y), X1 ∈ T (y,M3,MC)) =

∑6
j=1 P (X2 ∈ N r

Y(X1), X3 ∈
Γ1(X1, N

r
Y), X1 ∈ Rj).

For example, x1 ∈ R4, we get − 1
466560 r

2(207360 + 404640 r2 − 483840 r− 142920 r3 + 17687 r4) by using
the same integration limits as above, with the integrand being A(N r

Y(x1))A(Γ1(x1, N
r
Y))/A(T (Y))3.

Similarly, we calculate for j = 1, 2, 3, 5, 6 and get

P (X2 ∈ Nr

Y (X1), X3 ∈ Γ1(X1, N
r

Y )) = 6

 

5467

2799360
r6 −

35

2592
r5 +

37

1296
r4 −

13

648
r2 +

83

12960

!

=
5467

466560
r6 −

35

432
r5 +

37

216
r4 −

13

108
r2 +

83

2160
.

So, E [h12 h13] = [5467 r10 − 37800 r9 + 89292 r8 + 46588 r6 − 191520 r5 + 13608 r4 + 241920 r3 − 155520 r2 +

15552]/[233280 r4].

Thus, for r ∈ [4/3, 3/2), ν(r) = [5467 r10 − 37800 r9 + 61912 r8 + 46588 r6 − 191520 r5 + 13608 r4 + 241920 r3 −
155520 r2 + 15552]/[233280 r4].

Appendix 2: µ(r, ǫ) for Segregation and Association Alternatives

Derivation of µ(r, ǫ) involves detailed geometric calculations and partitioning of the space of (r, ǫ, x1) for
r ∈ [1,∞), ǫ ∈ [0,

√
3/3), and x1 ∈ Ts.

µS(r, ǫ) Under Segregation Alternatives

Under segregation, we compute µS(r, ǫ) explicitly. For ǫ ∈ [0,
√

3/8), µS(r, ǫ) =
∑7

j=1 µ1,j(r, ǫ) I(r ∈ Ij)
where

µ1,1(r, ǫ) = −
576 r2ǫ4 − 1152 ǫ4 − 37 r2 + 288 ǫ2

216 (2 ǫ+ 1)2(2 ǫ− 1)2
,

µ1,2(r, ǫ) = −[576 r4ǫ4 − 1152 r2ǫ4 + 91 r4 + 512
√
3r3ǫ+ 2592 r2ǫ2 + 1536

√
3rǫ3 + 1152 ǫ4

− 768 r3 − 2304
√
3r2ǫ− 6912 rǫ2 − 2304

√
3ǫ3 + 1728 r2 + 3456

√
3rǫ+ 5184 ǫ2

− 1728 r − 1728
√
3ǫ+ 648]/[216 r2(2 ǫ+ 1)2(2 ǫ− 1)2],

µ1,3(r, ǫ) = −[192 r4ǫ4 − 384 r2ǫ4 + 9 r4 + 864 r2ǫ2 + 512
√
3rǫ3 + 384 ǫ4 − 2304 rǫ2 − 768

√
3ǫ3

− 288 r2 + 1728 ǫ2 + 576 r − 324]/[72 r2(2 ǫ+ 1)2(2 ǫ− 1)2],

µ1,4(r, ǫ) = −[192 r4ǫ4 − 384 r2ǫ4 − 9 r4 − 96
√
3r3ǫ+ 288 r2ǫ2 − 128 ǫ4 + 144 r3 + 576

√
3r2ǫ+ 256

√
3ǫ3 − 720 r2 − 1152

√
3rǫ− 576 ǫ2 + 1152 r + 768

√
3ǫ− 612]/[72 r2(2 ǫ+ 1)2(2 ǫ− 1)2],

µ1,5(r, ǫ) = −
48 r4ǫ4 − 96 r2ǫ4 + 72 r2ǫ2 − 32 ǫ4 + 64

√
3ǫ3 − 18 r2 − 144 ǫ2 + 27

18 r2(2 ǫ + 1)2(2 ǫ− 1)2
,

µ1,6(r, ǫ) =
48 r4ǫ4 + 256 r3ǫ4 − 128

√
3r3ǫ3 + 288 r2ǫ4 − 192

√
3r2ǫ3 + 72 r2ǫ2 + 18 r2 + 48

√
3ǫ− 45

18 (2 ǫ+ 1)2(2 ǫ− 1)2r2
,

µ1,7(r, ǫ) = 1,

with the corresponding intervals I1 = [1, 3/2 −
√

3 ǫ), I2 = [3/2 −
√

3 ǫ, 3/2), I3 = [3/2, 2 − 4 ǫ/
√

3),
I4 = [2 − 4 ǫ/

√
3, 2), I5 = [2,

√
3/(2 ǫ) − 1), I6 = [

√
3/(2 ǫ) − 1,

√
3/(2 ǫ)), and I7 = [

√
3/(2 ǫ),∞).

For ǫ ∈ [
√

3/8,
√

3/6), µS(r, ǫ) =
∑7

j=1 µ2,j(r, ǫ) I(r ∈ Ij) where µ2,j(r, ǫ) = µ1,j(r, ǫ) for j = 1, 2, 4, 5, 6,

25



DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  

and for j = 3, 7,

µ2,3(r, ǫ) = −[576 r4ǫ4 − 1152 r2ǫ4 + 37 r4 + 224
√
3r3ǫ+ 864 r2ǫ2 − 384 ǫ4 − 336 r3 − 576

√
3r2ǫ

+ 768
√
3ǫ3 + 432 r2 − 1728 ǫ2 + 576

√
3ǫ− 216]/[216 r2(2 ǫ+ 1)2(2 ǫ− 1)2],

µ2,7(r, ǫ) = 1,

with the corresponding intervals I1 = [1, 3/2 −
√

3 ǫ), I2 = [3/2 −
√

3 ǫ, 2 − 4 ǫ/
√

3), I3 = [2 − 4 ǫ/
√

3, 3/2),
I4 = [3/2, 2), I5 = [2,

√
3/(2 ǫ) − 1), I6 = [

√
3/(2 ǫ) − 1,

√
3/(2 ǫ)), and I5 = [

√
3/(2 ǫ),∞).

For ǫ ∈ [
√

3/6,
√

3/4), µS(r, ǫ) =
∑6

j=1 µ3,j(r, ǫ) I(r ∈ Ij) where µ3,1(r, ǫ) = µ1,2(r, ǫ) and

µ3,2(r, ǫ) = −[576 r4ǫ4 − 1152 r2ǫ4 + 37 r4 + 224
√
3r3ǫ + 864 r2ǫ2 − 384 ǫ4 − 336 r3 − 576

√
3r2ǫ

+ 768
√
3ǫ3 + 432 r2 − 1728 ǫ2 + 576

√
3ǫ − 216]/[216 r2(2 ǫ+ 1)2(2 ǫ− 1)2],

µ3,3(r, ǫ) = [576 r2ǫ4 + 3072 rǫ4 − 1536
√
3rǫ3 + 3456 ǫ4 − 2304

√
3ǫ3 − 37 r2 − 224

√
3rǫ

+ 864 ǫ2 + 336 r + 576
√
3ǫ − 432]/[216 (2 ǫ+ 1)2(2 ǫ− 1)2],

µ3,4(r, ǫ) = [192 r4ǫ4 + 1024 r3ǫ4 − 512
√
3r3ǫ3 + 1152 r2ǫ4 − 768

√
3r2ǫ3 + 9 r4 + 96

√
3r3ǫ+ 288 r2ǫ2

− 144 r3 − 576
√
3r2ǫ+ 720 r2 + 1152

√
3rǫ− 1152 r − 576

√
3ǫ+ 540]/[72 r2(2 ǫ+ 1)2(2 ǫ− 1)2],

µ3,5(r, ǫ) =
48 r4ǫ4 + 256 r3ǫ4 − 128

√
3r3ǫ3 + 288 r2ǫ4 − 192

√
3r2ǫ3 + 72 r2ǫ2 + 18 r2 + 48

√
3ǫ− 45

18 r2(2 ǫ+ 1)2(2 ǫ− 1)2
,

µ3,6(r, ǫ) = 1,

with the corresponding intervals I1 = [1, 2−4 ǫ/
√

3), I2 = [2−4 ǫ/
√

3,
√

3/(2 ǫ)−1), I3 = [
√

3/(2 ǫ)−1, 3/2),
I4 = [3/2, 2), I5 = [2,

√
3/(2 ǫ)), and I5 = [

√
3/(2 ǫ),∞).

For ǫ ∈ [
√

3/4,
√

3/3), µS(r, ǫ) =
∑3

j=1 µ4,j(r, ǫ) I(r ∈ Ij) where

µ4,1(r, ǫ) = −
9 r2ǫ2 + 2

√
3r2ǫ+ 48 rǫ2 + r2 − 16

√
3rǫ− 90 ǫ2 − 12 r + 36

√
3ǫ

18 (3 ǫ−
√
3)2

,

µ4,2(r, ǫ) = −[9 r4ǫ4 − 4
√
3r4ǫ3 + 48 r3ǫ4 − 48

√
3r3ǫ3 − 90 r2ǫ4 + 36 r3ǫ2 + 96

√
3r2ǫ3 − 126 r2ǫ2

− 32
√
3rǫ3 − 48 ǫ4 + 36

√
3r2ǫ+ 144 rǫ2 + 96

√
3ǫ3 − 18 r2 − 72

√
3rǫ− 216 ǫ2 + 36 r

+ 72
√
3ǫ − 27]/[2 (3 ǫ −

√
3)4r2],

µ4,3(r, ǫ) = 1,

with the corresponding intervals I1 = [1, 3 − 2 ǫ/
√

3), I2 = [3 − 2 ǫ/
√

3,
√

3/ǫ− 2), and I3 = [
√

3/ǫ− 2,∞).
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µA(r, ǫ) Under Association Alternatives

Under association, we compute µA(r, ǫ) explicitly. For ǫ ∈ [0, (7
√

3 − 3
√

15)/12 ≈ .042), µA(r, ǫ) =∑6
j=1 µ1,j(r, ǫ) I(r ∈ Ij) where

µ1,1(r, ǫ) = −[3456 ǫ4r4 + 9216 ǫ4r3 − 3072
√
3ǫ3r4 − 17280 ǫ4r2 − 3072

√
3ǫ3r3 + 2304 ǫ2r4

+ 4608
√
3ǫ3r2 − 2304 ǫ2r3 + 6336 ǫ4 + 6144

√
3ǫ3r + 6912 ǫ2r2 + 512

√
3ǫ r3

− 101 r4 − 6144
√
3ǫ3 − 11520 ǫ2r − 1536

√
3ǫ r2 + 256 r3 + 5760 ǫ2 + 1536

√
3ǫ r

− 384 r2 − 512
√
3ǫ + 256 r − 64]/[24 (6 ǫ+

√
3)2(6 ǫ −

√
3)2r2],

µ1,2(r, ǫ) = −[1728 ǫ4r4 − 1536
√
3ǫ3r4 − 31104 ǫ4r2 + 1152 ǫ2r4 + 15552 ǫ4 + 10368 ǫ2r2 − 37 r4

− 20736 ǫ2r + 10368 ǫ2]/[24 (6 ǫ+
√
3)2(6 ǫ−

√
3)2r2],

µ1,3(r, ǫ) = [−2592 ǫ4r4 − 2304
√
3ǫ3r4 − 46656 ǫ4r2 + 1728 ǫ2r4 + 10656 ǫ4 − 9216

√
3ǫ3r

+ 9072 ǫ2r2 − 432
√
3ǫ r3 − 15 r4 + 12288

√
3ǫ3 − 13824 ǫ2r + 1728

√
3ǫ r2 − 216 r3

+ 4032 ǫ2 − 2304
√
3ǫ r + 432 r2 + 1024

√
3ǫ− 384 r + 128]/[36 (6 ǫ+

√
3)2(6 ǫ−

√
3)2r2],

µ1,4(r, ǫ) = −
1728 ǫ4r4 − 1536

√
3ǫ3r4 − 31104 ǫ4r2 + 1152 ǫ2r4 − 5184 ǫ4 + 2592 ǫ2r2 − 37 r4 − 3456 ǫ2

24 (6 ǫ+
√
3)2(6 ǫ −

√
3)2r2

,

µ1,5(r, ǫ) =
9 (1152 ǫ4r2 + 192 ǫ4 − 192 ǫ2r2 − r4 + 128 ǫ2 + 32 r2 − 64 r + 36)

8 (6 ǫ+
√
3)2(6 ǫ−

√
3)2r2

,

µ1,6(r, ǫ) = −
9 (r + 6)(r − 2)3

8 (6 ǫ +
√
3)2(6 ǫ−

√
3)2r2

,

with the corresponding intervals I1 =
[
1, 1+2

√
3 ǫ

1−
√
3 ǫ

)
, I2 =

[
1+2

√
3 ǫ

1−
√
3 ǫ

, 4 (1−
√
3 ǫ

3

)
, I3 =

[
4 (1−

√
3 ǫ

3 , 4 (1+2
√
3 ǫ

3

)
,

I4 =
[
4 (1+2

√
3 ǫ

3 , 3
2 (1−

√
3 ǫ)

)
, I5 =

[
3

2 (1−
√
3 ǫ)

, 2
)

and I6 = [2,∞).

For ǫ ∈ [(7
√

3 − 3
√

15)/12,
√

3/12), µA(r, ǫ) =
∑6

j=1 µ2,j(r, ǫ) I(r ∈ Ij) where µ2,j(r, ǫ) = µ1,j(r, ǫ) for
j = 1, 3, 4, 5, 6 and

µ2,2(r, ǫ) = [−3456 ǫ2r4 + 111 r4 − 5184 ǫ4r4 + 4608
√
3ǫ3r4 − 336

√
3ǫ r3 − 168 r3 − 13824 ǫ4r3

+ 4608
√
3ǫ3r3 + 3456 ǫ2r3 + 144 r2 − 6912

√
3ǫ3r2 − 3888 ǫ2r2 + 576

√
3ǫ r2

+ 25920 ǫ4r2 + 3168 ǫ4 + 2880 ǫ2 − 256
√
3ǫ− 32− 3072

√
3ǫ3]/[36 (

√
3 + 6 ǫ)2(−6 ǫ+

√
3)2r2]

with the corresponding intervals I1 =
[
1, 4 (1−

√
3 ǫ)

3

)
, I2 =

[
4 (1−

√
3 ǫ)

3 , 1+2
√
3 ǫ

1−
√
3 ǫ

)
, I3 =

[
1+2

√
3 ǫ

1−
√
3 ǫ

, 4 (1+2
√
3 ǫ

3

)
,

I4 =
[
4 (1+2

√
3 ǫ

3 , 3
2 (1−

√
3 ǫ)

)
, I5 =

[
3

2 (1−
√
3 ǫ)

, 2
)

and I6 = [2,∞).

For ǫ ∈ [
√

3/12,
√

3/3), µA(r, ǫ) =
∑3

j=1 µ3,j(r, ǫ) I(r ∈ Ij) where

µ3,1(r, ǫ) =
2 r2 − 1

6 r2
,

µ3,2(r, ǫ) = [432 ǫ4r4 + 1152 ǫ4r3 − 576
√

3ǫ3r4 + 1296 ǫ4r2 − 960
√

3ǫ3r3 + 864 ǫ2r4 − 864
√

3ǫ3r2

+ 576 ǫ2r3 − 192
√

3ǫ r4 − 360 ǫ4 + 648 ǫ2r2 + 64
√

3ǫ r3 + 48 r4 + 192
√

3ǫ3 − 144
√

3ǫ r2

− 64 r3 − 504 ǫ2 + 72 r2 + 88
√

3ǫ− 25]/[16 (3 ǫ−
√

3)4r2],

µ3,3(r, ǫ) = −−54 ǫ2r2 + 36
√

3ǫ r2 + 15 ǫ2 − 18 r2 + 2
√

3ǫ + 20

6 (−3 ǫ +
√

3)2r2
,

with the corresponding intervals I1 =
[
1, 1+2

√
3 ǫ

2 (1−
√
3 ǫ)

)
, I3 =

[
1+2

√
3 ǫ

2 (1−
√
3 ǫ)

, 3
2 (1−

√
3 ǫ)

)
, I5 =

[
3

2 (1−
√
3 ǫ)

,∞
)

.
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Appendix 3: µ(r, ǫ) and ν(r, ǫ) for Segregation and Association Al-

ternatives with Sample ǫ values

With ǫ =
√

3/4, r ∈ [1, 2), µS(r,
√

3/4) =

{
− 67

54 r
2 + 40

9 r − 3 for r ∈ [1, 3/2)
7 r4−48 r3+122 r2−128 r+48

2 r2 for r ∈ [3/2, 2)
and

νS(r,
√

3/4) =
∑5

j=1 νj(r,
√

3/4) I(Ij) where

ν1(r,
√
3/4) = −[14285 r7 − 28224 r6 − 233266 r5 + 1106688 r4 − 2021199 r3 + 1876608 r2

− 880794 r + 165888]/[3645 r],

ν2(r,
√
3/4) = −[14285 r10 − 28224 r9 − 233266 r8 + 1106688 r7 − 1234767 r6 − 3431808 r5

+ 14049126 r4 − 22228992 r3 + 18895680 r2 − 8503056 r + 1594323]/[3645 r4],

ν3(r,
√
3/4) = −[14285 r10 − 28224 r9 − 233266 r8 + 1106688 r7 − 2545713 r6 + 5903280 r5

− 13456044 r4 + 20636208 r3 − 18305190 r2 + 8503056 r − 1594323]/[3645 r4],

ν4(r,
√
3/4) = [104920 r8 − 111072 r7 + 1992132 r6 − 15844032 r5 + 50174640 r4 + 6377292

− 34012224 r + 73220760 r2 − 81881280 r3 + 1909 r10 − 27072 r9]/[14580 r4],

ν5(r,
√
3/4) = −[−1187904 r5 + 1331492 r6 + 433304 r2 + 611163 r10 − 850240 r9 − 198144 r

+ 955392 r4 − 705536 r3 − 387680 r11 + 1118472 r8 − 1308960 r7 + 175984 r12

− 46176 r13 + 5120 r14 + 56016]/[20 r4],

and the corresponding intervals are I1 = [1, 9
8 ), I2 = [9/8, 9/7), I3 = [9/7, 4/3), I4 = [4/3, 3/2), I5 =

[3/2, 2).

With ǫ =
√

3/12, µA(r,
√

3/12) =

{
6 r4−16 r3+18 r2−5

18 r2 for r ∈ [1, 2)

− 37
18 r

−2 + 1 for r ∈ [2,∞)
and νA(r,

√
3/12) =

∑3
j=1 νj(r,

√
3/12) I(Ij)

where

ν1(r,
√
3/12) = [10 r12 − 96 r11 + 240 r10 + 192 r9 − 1830 r8 + 3360 r7 − 2650 r6 + 240 r5 + 1383 r4

− 1280 r3 + 540 r2 − 144 r + 35]/[405 r6],

ν2(r,
√
3/12) = [10 r12 − 96 r11 + 240 r10 + 192 r9 − 1670 r8 + 2784 r7 − 2650 r6 + 2400 r5 − 1047 r4

− 1280 r3 + 1269 r2 − 144 r + 35]/[405 r6],

ν3(r,
√
3/12) =

537 r4 − 683 r2 − 2448 r + 1315

405 r6
.

The corresponding intervals are I1 = [1, 3/2), I2 = [3/2, 2), I3 = [2,∞).

Appendix 4: Proof of Corollary 1

In the multiple triangle case,

µ(r, J) = E [ρn(r)] =
1

n (n− 1)

∑∑

i<j

E [hij ] =
1

2
E [h12] = E [I(A12)] = P (A12) = P (X2 ∈ N r

Y(X1)).
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But, by definition of N r
Y(·), P (X2 ∈ N r

Y(X1)) = 0 if X1 and X2 are in different triangles. So by the law of
total probability

µ(r, J) := P (X2 ∈ N r
Y(X1)) =

J∑

j=1

P (X2 ∈ N r
Y(X1) | {X1, X2} ⊂ Tj)P ({X1, X2} ⊂ Tj)

=
J∑

j=1

µ(r)P ({X1, X2} ⊂ Tj) (since P (X2 ∈ N r
Y(X1) | {X1, X2} ⊂ Tj) = µ(r))

= µ(r)

J∑

j=1

(A(Tj)/A(CH(Y)))2 (since P ({X1, X2} ⊂ Tj) = (A(Tj)/A(CH(Y)))2)

Letting wj := A(Tj)/A(CH(Y)), we get µ(r, J) = µ(r) · (
∑J

j=1 w
2
j ) where µ(r) is given by equation (8).

Furthermore, the asymptotic variance is

ν(r, J) = E [h12 h13] −E [h12]E [h13]

= P ({X2, X3} ⊂ N r
Y(X1)) + 2P (X2 ∈ N r

Y(X1), X3 ∈ Γ1(X1, N
r
Y))

+P ({X2, X3} ⊂ Γ1(X1, N
r
Y)) − 4 (µ(r, J))2.

Then for J > 1, we have

P ({X2, X3} ⊂ N r
Y(X1)) =

J∑

j=1

P ({X2, X3} ⊂ N r
Y(X1) | {X1, X2, X3} ⊂ Tj)P ({X1, X2, X3} ⊂ Tj)

=

J∑

j=1

P r
2N (A(Tj)/A(CH(Y)))3 = P r

2N

( J∑

j=1

w3
j

)
.

Similarly, P (X2 ∈ N r
Y(X1), X3 ∈ Γ1(X1, N

r
Y)) = P r

M

(∑J
j=1 w

3
j

)
and P ({X2, X3} ⊂ Γ1(X1, N

r
Y)) = P r

2G

(∑J
j=1 w

3
j

)
,

hence, ν(r, J) = (P r
2N + 2P r

M + P r
2G)

(∑J
j=1 w

3
j

)
− 4 (µ(r, J))2 = ν(r)

(∑J
j=1 w

3
j

)
+ 4µ(r)2

(∑J
j=1 w

3
j −

(∑J
j=1 w

2
j

)2)
, so conditional on W , if ν(r, J) > 0 then

√
n (ρn(r) − µ(r, J))

L−→ N (0, ν(r, J)). �

29


	Introduction
	Preliminaries
	Proximity Maps
	r-Factor Proximity Maps
	Data-Random Proximity Catch Digraphs
	Relative Density
	Null and Alternative Hypotheses

	Asymptotic Normality Under the Null and Alternative Hypotheses
	Asymptotic Normality under the Null Hypothesis
	Asymptotic Normality Under the Alternatives

	The Test and Analysis
	Consistency
	Monte Carlo Power Analysis
	Pitman Asymptotic Efficacy
	Hodges-Lehmann Asymptotic Efficacy
	Asymptotic Power Function Analysis

	Multiple Triangle Case
	Related Test Statistics in Multiple Triangle Case
	Asymptotic Efficacy Analysis for J>1

	Discussion and Conclusions

