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Abstract
Performance evaluations often aim to achieve goals such as obtaining estimates of unit-specific
means, ranks, and the distribution of unit-specific parameters. The Bayesian approach provides a
powerful way to structure models for achieving these goals. While no single estimate can be optimal
for achieving all three inferential goals, the communication and credibility of results will be enhanced
by reporting a single estimate that performs well for all three. Triple goal estimates [Shen and Louis,
1998. Triple-goal estimates in two-stage hierarchical models. J. Roy. Statist. Soc. Ser. B 60, 455–
471] have this performance and are appealing for performance evaluations. Because triple-goal
estimates rely more heavily on the entire distribution than do posterior means, they are more sensitive
to misspecification of the population distribution and we present various strategies to robustify triple-
goal estimates by using nonparametric distributions. We evaluate performance based on the
correctness and efficiency of the robustified estimates under several scenarios and compare empirical
Bayes and fully Bayesian approaches to model the population distribution. We find that when data
are quite informative, conclusions are robust to model misspecification. However, with less
information in the data, conclusions can be quite sensitive to the choice of population distribution.
Generally, use of a nonparametric distribution pays very little in efficiency when a parametric
population distribution is valid, but successfully protects against model misspecification.
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1. Introduction
Performance evaluation is an important activity in a wide variety of applications, including the
evaluation of health services providers (Goldstein and Spiegelhalter, 1996; Christiansen and
Morris, 1997; McClellan and Staiger, 1999; Landrum et al., 2000; Liu et al., 2003), the
assessment of geographic variation in disease rates (Devine and Louis, 1994; Devine et al.,
1994; Conlon and Louis, 1999), and ranking teachers and schools (Lockwood et al., 2002).
Policy motivations for these evaluations include improving outcomes and increasing
accountability among providers of services (Goldstein and Spiegelhalter, 1996). Most often,
the units being evaluated contain multiple observations (or sub-units), for which outcomes will
be measured and upon which unit performance will be assessed. The statistical goals of such
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investigations include valid and efficient estimation of unit-specific parameters (e.g., means)
and population parameters such as the average performance over the units of analysis, ranking
the units and estimating the empirical distribution function (EDF) of unit-specific parameters.
The Bayesian formalism effectively structures complicated models and goals. Bayesian
inferences always depend on the posterior distribution, and inferences should be guided by a
loss function.

The aforementioned references show how to use the posterior distribution to address
nonstandard goals such as ranking and empirical distribution estimation. However, these
inferences depend on finer details of the posterior distribution than do posterior means and
variances and are thus more sensitive to misspecification of the population distribution than
are the posterior means of unit-specific parameters and other such summaries. It is particularly
important to pay attention to the population distribution choice when inferences will pertain
to multiple, nonstandard goals. Shen and Louis (1998) developed ‘triple goal’ estimates that
perform well across three inferential goals: estimating the posterior means, ranks, and the
empirical distribution of the unit-specific parameters, but found that these estimates are
sensitive to the choice of population distribution.

In an empirical Bayes (EB) setting, the nonparametric maximum likelihood estimate (NPML;
Laird, 1978) can be used to estimate the distribution of unit-specific parameters. The NPML
is discrete with at most K mass points, where K is the number of units under analysis. Laird
and Louis (1991) and Shen and Louis (1999) show that a smoothed version of the NPML called
‘smoothing by roughening (SBR)’ yields improved estimates of the unit-specific parameters,
especially when the alternative is to misspecify the population distribution.

A fully Bayesian approach to estimating the population distribution of unit-specific parameters
is advantageous over EB, since it more completely accounts for prior uncertainty in the analysis.
Specifying a robust population distribution as part of a fully Bayesian analysis provides this
advantage along with greater flexibility in specifying realistic models under various scenarios.
Robust methods have been widely used in Bayesian analyses of varying difficulty and structure,
such as using the Dirichlet process (DP) prior (Escobar, 1994). DPs have been used in a wide
variety of analyses including multivariate data analyses (Müller et al., 1996), showing that
models assuming DP priors can be readily structured by specifying the distribution in a
straightforward manner (Escobar and West, 1995). Generalization of SBR for more
complicated settings (e.g., for multivariate data analysis) is not straightforward, as applications
of NPML and SBR have been largely restricted to univariate outcomes.

Approaches to robustifying performance evaluations in the context of a hierarchical model
include, for example, assuming that random effects follow a t-distribution of either fixed or
varying degrees of freedom (Wakefield, 1998), so that the posterior distribution produces less
shrinkage relative to a Gaussian distribution and truly outlying units can be identified. Relaxing
the parametric assumptions about the data by either using a t-distribution with few degrees of
freedom or using a fully Bayesian approach utilizing nonparametric distributions have not been
considered for triple goal estimates. In this paper, we will compare the performance of triple-
goal estimates under various models that use either an EB or fully Bayesian approach. For all
scenarios, we will focus on the two-stage, compound sampling model with a Gaussian sampling
distribution, and examine scenarios in which parametric or nonparametric distributions are
assumed for the unit-specific parameters. We will perform a Monte Carlo study to investigate
the robustness of the posterior means, ranks, and empirical distribution estimates under correct
and misspecified models. We will investigate whether the ‘robustified’ population distributions
produce both efficient and correct estimates under a variety of scenarios that will indicate the
relative informativeness and heterogeneity of the data.
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The paper is organized as follows. First, we present the model and the inferential goals upon
which we are focused in Section 2 and discuss our motivation for examining non-parametric
distributions in Section 3. We provide the details of our simulation study and its results in
Section 4. Finally, we summarize results in Section 5 and discuss future directions for this
research in Section 6.

2. Model and inferential goals
The basic two-stage, compound sampling model that we focus on in this paper is

(1)

where k = 1,…, K, K is the number of second-stage units under analysis,  is the variance of
the observed data, yk, and f(G) is the prior distribution of G. The unit-specific parameters of
interest, θk (k = 1,…, K), come from a population distribution, G. The observations, yk (k = 1,
…, K), come from a Gaussian sampling distribution that depends on the θk’s. An example of
such a scenario is when student outcomes are observed (at stage one) within schools (second-
stage units).

Our inferential goals are:

Goal 1: Produce effective estimates of the unit-specific means, the θk
Estimating the θk is the goal of most statistical analyses, with the estimation of the maximum
likelihood estimate (MLE) or the posterior mean (PM) being standard approaches. Approaches
that exploit the two-stage nature of clustered data improve estimation when the specified two-
stage model holds (Morris, 1983), which makes empirical Bayesian or fully Bayesian

approaches more attractive than simply deriving the MLE in the standard way .
With ak the estimate of θk, under squared-error loss (SEL = K−1 ∑[ak − θk]2) the posterior mean,

, is optimal.

Goal 2: Estimate the empirical distribution function (EDF) of the θk’s
The EDF of the θk’s is GK(t) = K−1 ∑ I{θk ≤ t}. Shen and Louis (1998) show that under integrated
squared-error loss (ISEL), the optimal estimate of this EDF is ḠK (t|Y) = E [GK (t; θ)|Y] =
K−1 ∑ P (θk ≤ t|Y). The optimal discrete distribution estimate with at most K mass points is

ĜK, with mass K−1 at , for j = 1,…, K.

Goal 3: Rank the θk

Let Rk be the true rank of θk: . In the absence of ties, the smallest θk has rank
1 and so on. With Tk the estimated rank of θk, the sum of SEL of the ranks (SELR) = K−1 ∑

(Tk − Rk)2. The posterior expected ranks,  are optimal under SELR.
These ranks do not necessarily need to be integers. Integer ranks are produced by ranking the
R̄k: R̂k = rank (R̄k).
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2.1. Triple-goal estimates
No single set of estimates can effectively address multiple goals (Shen and Louis, 1998;
Gelman and Price, 1999). Consider the two-stage, compound sampling model. If unit-specific
estimates are of interest, then the posterior means are the optimal estimates with respect to
SEL. If the ranks of unit-specific parameters are of interest, then the posterior ranks are optimal
with respect to SEL, whereas ranking posterior means can perform poorly (Laird and Louis,
1989; Goldstein and Spiegelhalter, 1996). If the EDF of the unit-specific parameters is of
interest for computing the fraction of parameters above a threshold, then the conditional
expected EDF of the unit-specific parameters is optimal with respect to ISEL. The EDF of the
observed data is overdispersed and that of the posterior means of the unit-specific parameters
is under-dispersed.

While no single estimate can be optimal for achieving all three of these goals, the
communication and credibility of results will be enhanced by reporting a single set of estimates
with good performance for all three goals. Shen and Louis (1998) develop ‘triple-goal’
estimates for obtaining a single estimate that optimizes performance over all three goals
simultaneously. Louis (1984) and Ghosh (1992) developed constrained Bayes estimates that
provide unit-specific estimates with an empirical distribution that has the appropriate center
and spread. The constrained Bayes approach works well for exchangeable Gaussian sampling
models but less well for others (Shen and Louis, 2000).

The triple-goal method proceeds by first minimizing a loss function for estimating GK; we shall
use ĜK, as obtained for Goal 2 above. The next step is to minimize the SELR for estimating
the ranks using R̂k of Goal 3. Thus, triple-goal estimates are also called ‘GR’ estimates, since
one first estimates G and then the ranks, R. Finally, the GR estimate of θk is obtained as

, achieving the aim of Goal 1.

3. Robustness of G
Both the EB and fully Bayesian approaches are subject to a lack of robustness when G is
misspecified. When the assumed hierarchical model is correctly specified, both EB and fully
Bayesian hierarchical models perform better than MLEs for producing unit-specific parameter
estimates. If G is misspecified, however, the overall performance may be good on average but
could be poor for outlying units. This is particularly problematic when estimating thresholds,
ranks, and tails of the underlying empirical distribution for the θk’s.

This lack of robustness naturally leads one to consider flexible, alternative specifications for
G to protect against model misspecification. One such example is to estimate G using NPML
for EB analyses. Posterior means produced by using NPML are competitive with those
assuming G is parametric under SEL, even when the assumed distributions are correct (Shen
and Louis, 1999). The NPML estimate of G is discrete and thus has too narrow a support and
is often under-dispersed, making it unappealing for estimating tail areas of G, thresholds, and
other nonstandard inferential quantities. Some of these problems are mitigated by smoothing
the NPML estimate using SBR. SBR starts with a smooth guess of G and iteratively ‘roughens’
this smooth estimate toward the NPML and has been shown to be very effective at estimating
tail areas of G and other goals (Shen and Louis, 1999).

An alternative to using SBR in an EB framework is to fit a fully Bayesian hierarchical model
and estimate G using a Dirichlet process (DP) prior. Like SBR, DP provides a compromise
between using a fully parametric G versus using the NPML (Escobar, 1994). Whether DP
behaves more like a parametric distribution or NPML will be determined by the data through
posterior updating. In particular, G is assumed to follow a DP with parameters G0 and α0, where
G0 is a prior guess (or, base measure) of the form of G and α0 is a precision parameter that
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represents how strongly one believes that G is truly of the form G0. Hyperpriors can be placed
on both G0 and α0. Larger values of α0 imply that G is expected to be more smooth and closer
toG0 than do smaller values. The resulting posterior distribution for θk is a DP mixture
(Antoniak, 1974).

4. Simulation study
4.1. Design

Performance of the posterior mean (PM) and triple-goal (GR) estimates under a known G with
respect to all inferential goals mentioned in Section 2 have been conducted by Shen and Louis
(1998) and Devine et al. (1994). In an EB context, Shen and Louis (1999) evaluate SBR for
the scenario in which the sampling distribution is Gaussian and the second-level distribution
is correctly specified as a mixture of Gaussians, and Shen and Louis (2000) evaluate SBR for
a Poisson sampling distribution under the scenarios of correctly specifying Gamma or mixture
of Gammas distributions for the θ’s. In this study, we expand the scope of these previous
evaluations by examining the efficiency and robustness of both EB and fully hierarchical
Bayesian approaches under numerous data-generating and data analysis scenarios and
comparing the EB and fully hierarchical Bayesian approaches.

For all of our simulations, we evaluate estimators under the two-stage model in Model 1. The
distribution G is assumed to be unknown and is estimated using either EB or a fully Bayes
analysis. We assume K = 100 units in all simulations. Our simulation study has 3 × 3 × 3 × 5
= 135 cells based on varying the following factors, based on several data-generating and data
analysis scenarios. We selected our simulation parameters to reflect a range of data
informativeness and heterogeneity among the units with respect to variance.

The data-generating scenarios are varied as follows:

The informativeness of the data—The  have geometric mean . Large values
indicate relatively less information in the data about the θs than do smaller values. Values of

 examined below are 0.10, 0.33 and 1.

The heterogeneity of the —Without loss of generality, the  are ordered in k. The
degree of heterogeneity of the  is measured by the ratio of the largest to smallest σ2,

. rls varies from 1 (exchangeable ) to 25 and 100.

The true population distribution of G—G will be simulated to either follow a Gaussian
distribution with mean 0 and variance 1; a T5 distribution normalized to have mean 0 and
variance 1; or a mixture 0.8N (0, 1) + 0.2N (4, 1) that is normalized to have mean 0 and variance
1.

For the data analysis scenarios, five possible modeling choices are examined for the distribution
of G. G will be estimated using SBR in EB analyses. NPML is not examined here because it
is ineffective at estimating GK and related goals (Shen and Louis, 1999). The four remaining
assumed population distributions are estimated using fully Bayesian hierarchical models, in
which G will take on one of the following forms:

Gaussian: G follows a  distribution, where
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T5: G ~ T5 , where

DP-1: G ~ Dirichlet process , where

DP-2: G ~ Dirichlet process , where

The Gamma priors on the inverse variance components, , have been widely used in
applications (e.g., BUGS software), but serious problems can result if the number of second
stage units is small and/or the variances are near zero (Gelman, 2005). The selection of our
simulation parameters circumvented these problems, which was confirmed by sensitivity
analyses (not shown) in which inferences were practically identical to those obtained under
alternative priors.

DP-1 is more favorable to a more bumpy, multimodal distribution, G, while DP-2 is more
favorable to smoother G; the prior expected number of clusters of θk’s under the DP-based
models are 5 and 70 for DP-1 and DP-2, respectively (Escobar, 1994). Computations of DP
priors require modeling θi as coming from either a base measure, G0, or from an empirical
distribution function (EDF). The relative strength of the fully parametric Bayesian versus the
EDF-based approaches under various data-generating distributions can be assessed by the ratio
of the posterior predictive probabilities placed on G0 versus the EDF. Fig. 1a shows the mean
posterior ratios of the probabilities placed on the EDF versus G0 across the various data-
generating scenarios under DP-1, while Fig. 1b shows the analogous results under DP-2. Under
DP-1, the EDF is favored much more heavily than G0 under the simulated data scenarios, with
posterior mean ratios of 30–90, while the EDF and G0 are almost equally favored under DP-2,
with posterior mean ratios around 1.

For each of the 135 scenarios, we implement 500 Monte Carlo (MC) replications of the data-
generation and data-analysis steps. For each MC replication involving an EB analysis of the
data, we estimate G using SBR, starting with an initial guess of G(0) that is uniform along the
range of the data and stop at the 30th iteration. The discrete computing algorithm (Shen and
Louis, 1999) is used to calculate G(ν), where the continuous G(0) is approximated by a discrete
distribution with 200 equally spaced grid points. For each MC replication in which a fully
Bayesian analysis is conducted, we use Markov Chain Monte Carlo (MCMC) with a burn-in
of 100 followed by 500 iterations to sample the posterior distribution of G. The sampling
algorithms employed when assuming the Gaussian and T5 populations distributions are
standard (e.g., Lindley and Smith, 1972; Verdinelli and Wasserman, 1991), as are those
employed for the DP (Escobar and West, 1995; West et al., 1994; MacEachern and Müller,
1998). All analyses conducted for this article are the product of the HHSIM package (Ridgeway
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and Paddock, 2004), which can be obtained by running: install.packages (“hhsim”, contriburl
= “http://www.i-pensieri.com/gregr/software”) at the R prompt. To further the aims of
reproducible research, the R script used to generate all tables and figures in this report is
included in the demo section of the HHSIM package.

4.2. Simulation results
We first summarize results for estimating θ and G when the data-generating and data-analytic
choices for G match in order to highlight the differences among the ML, PM, and GR estimates
for these inferential goals. We then turn our focus to the GR estimates, in particular assessing
the efficiency of obtaining GR estimates using nonparametric methods to estimate G relative
to using the parametric, true data-generated G as the data analysis G. Next, the robustness of
the various data analysis choices for G under several data-generating scenarios for obtaining
GR estimates is examined. Finally, we compare rank estimates across the scenarios examined
here.

4.2.1. Comparison of ML, PM, and GR—We report results for  or 1 and
rls = 1 or 100, since these parameter choices demonstrate the range of results of our simulation

study—performance when  and rls = 25 follows predictably from these
results. We first report results when the data-analytic and data-generating distributions agree
(Table 1). Table 1a reports the performance of ML, PM, and GR for estimating the θ’s. The
first three columns show the results for rls = 1 and the last three columns correspond to rls =
100. In the first row, G is the data-analytic and data-generating distribution used in the analysis
(which is Gaussian in this case), such that the geometric mean of the  equals 0.1. For rls
= 1, the SEL of the ML estimates was 1007, and the SEL of the PMs was 91% of the ML(SEL)
of 1007, while the SEL of the GR estimates was 96% as much as the ML(SEL). SEL under
the ML approach in the column marked ‘ML(SEL)’, followed. The PM approach always
improves upon both the ML and GR approaches, which is expected since PM is optimal under
SEL for estimating the θ’s. ML always does worse than PM and GR for estimating the θ’s. The

SEL of GR is at most 22% greater than that of the PM SEL on Table 1a. As  and
rls increase, the ML estimates become more noisy as evidenced by the increase in SEL, the
PM and GR both show increasing improvement relative to ML, and the gain in using PM over
GR increases.

Table 1b shows the ISEL performance of ML, PM, and GR for estimating G. As 
and rls increase, the ISEL of the ML estimate of G increases, the performance of PM and GR
relative to ML improves, and the gains in GR versus PM improve as well. As expected, the
GR estimates outperform PM and ML with respect to ISEL.

Fig. 2 shows the empirical distribution estimate of the θ’s for PM, ML, and GR for the scenario

of  and rls = 100 when G is both generated from a Gaussian distribution and
modeled as Gaussian. The data-generated standard Gaussian distribution appears as a bold line
in Fig. 2. Fig. 2 illustrates how the PM estimates are underdispersed and ML estimates
overdispersed for estimating the EDF, while the GR estimates obtain the correct shape and

spread. These patterns hold for other values of  and rls. While the overall shape of
all three distributions appears to be correct here, it is possible for both the shape and spread to
be incorrect in some scenarios.

4.2.2. Efficiency of nonparametric data analysis choices for G—In this section, we
focus on the efficiency of our suite of candidate population distributions for G and their effects
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on GR estimates. Table 2a summarizes the SEL when estimating θ under the correct Gaussian
distribution (denoted by an asterisk in Table 2) as well as when assuming a different data-
analytic form for G. For example, when the geometric mean of the  is 0.1 and rls = 1, the
SEL of the θ’s is 96% of the SEL of the ML estimates when the data-analytic distribution is
Gaussian, while it is 101% for DP-1, for example. As in Table 1a, the SEL of GR relative to

that of ML decreases as  and rls increase. The SELs are very similar regardless of
the data-analytic choice for G, though the Gaussian model has an SEL that is either the lowest

or tied for the lowest for each combination of  and rls. In contrast, there is much
greater variation among the ISELs of the estimated G under the various data analysis choices
for G. The Gaussian model outperforms the others in all cases in Table 2b except for DP-2, in
which DP-2 beats the Gaussian distribution only very slightly; the DP-2 is strongly centered
about a Gaussian distribution, so it is unsurprising that it would sometimes perform similarly
to the Gaussian. In most scenarios, however, the DP-2 is a bit noisier than the Gaussian, as
indicated in Table 2a,b. Overall, the Gaussian-based GR estimates of G are more efficient than
the others, with large discrepancies in efficiency for the two most flexible population
distribution choices, the DP-1 and SBR, each being at least twice as noisy as the Gaussian-
based estimate.

When the data are relatively informative , the percentiles of G are well-
estimated regardless of the method (Table 2c,d). More variation in performance occurs as

 increases; for example, GR underestimates frequencies in the tails of the distribution
(the quantile estimate is 21 versus the target of 25) when a T5 model of θ is assumed for the
data analysis, and under DP-2 GR slightly overestimates the lower tail (28% versus 25%)
(Table 2d). The percentile estimates improve for the T5 and DP-2 when rls is increased to 100,
due to the fact that more units have relatively smaller variances, , and thus make it easier to
obtain estimates based on those lower-variance cases.

Table 3 shows the same results, only for the case that the data-generating distribution is T5.
The relative stability of SEL when using GR to estimate the θks is similar to that shown in
Table 2a, and the same levels of ISEL variation for estimating G appear when T5 is the data-
analytic distribution (Table 3b). DP-2 does worse for estimating the percentiles of G when the

data-analytic distribution is T5 (Table 3c,d), particularly when , than it did when
the true distribution was Gaussian (Table 2c,d), due to the fact that the DP-2 is centered about
a Gaussian base measure. The DP-1-based estimates do not exhibit the same type of
discrepancy since it is less strongly centered a priori about a Gaussian distribution.

4.2.2.1. Robustness of G: Table 4a shows the SEL of the GR estimates for θ expressed as a
percentage of the SEL of the ML estimates when the data-generating G is a bimodal mixture
of two Gaussians. As expected, either DP-1 or SBR outperforms the others with respect to
SEL, with DP-1 slightly outperforming SBR in all but one scenario listed on Table 4a. DP-2

outperforms the Gaussian and T5 models when , but is

less competitive when . Relative to ML, all of the data analysis choices for G

outperform ML except when  and rls = 1, for which the Gaussian and T5 choices
are noisier.

There is more variation among the data analysis choices for G with respect to ISEL for
estimating G (Table 4b); this is expected, given the greater sensitivity to features of G when
estimating the distribution versus the unit-specific parameters. Though DP-1 and SBR have
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relatively lower SELs for estimating θ, their ISELs are larger than those of less-attractive
methods, including the two parametric choices of the Gaussian and the T5 when

. DP-2 has the lowest ISEL in all scenarios, with SBR having the second lowest

ISEL when  is greater than or equal to 0.33. Except when the data are relatively

quite informative , the ISEL of the nonparametric methods is
generally comparable or competitive to that of the parametric methods.

Table 5 shows the estimated percentiles of G when the data-generating distribution is a bimodal
mixture under various scenarios for the data analysis distribution. The three nonparametric

options outperformed the Gaussian and the T5 when . When

 or 1 the DP-1 and SBR outperform the others. Even though the DP-2 has
relatively low ISEL (Table 4b) for estimating G, it produces incorrect percentile estimates,
only yielding competitive estimates when the data are relatively informative

. The DP-1 percentile estimates that are better than the parametric choices

and are competitive with the SBR across all scenarios for  and rls, but the DP-1 had
greater noise in estimating G relative to SBR (Table 4b). Overall, SBR-based GR estimates

generally produced the most accurate percentiles but not uniformly; when 
the SBR percentiles were slightly off and were not clearly better than those produced by DP-1.
Both DP-1 and SBR have a bit of trouble with the percentile estimation when

, but the estimation improves when rls is increased to 100; when rls =
100 there are units that have very low variance as well as those with higher variance, and the
GR estimates for the lower-variance θs are made more precisely which improves the overall
performance. This is also evident in the scaled empirical distribution estimates. The second
and third rows of Fig. 3 differ only in that rls = 1 in the second row and rls = 25 in the third
row, and both the DP-1 and SBR-based empirical distributions better capture the true modes
in the distribution (the true distribution is denoted by a solid black line superimposed on the
empirical distributions) when rls = 25. The DP-1 exhibits an artifact in its empirical distribution
estimates in rows 2 and 3 at the center of the larger mode. The first row of Fig. 3 shows that
all of the methods are quite competitive when the data are highly informative

 but the DP-1 and SBR methods are much more competitive when

 increases. The DP-2 method is strongly biased toward favoring a Gaussian
distribution at the expense of flexibility, rendering the empirical distribution estimates
inaccurate, despite the DP-2-based GR estimates yielding lower variance estimates of G (Table
4b).

4.2.2.2. Estimating ranks: The SELRs of the rank estimates using ML, PM, and GR (or
equivalently, posterior ranks) estimates are very similar and indistinguishable, even when the
variances of the observations are heterogeneous (rls > 1), and thus are not presented here. There
was not a clear pattern of when one estimate did better than another for estimating the ranks.
Given the relative noisiness of rank estimates and the need for data to be extremely informative
in order for rankings to be useful, this is not surprising (Goldstein and Spiegelhalter, 1996).
The DP and SBR-based estimates performed slightly better than the Gaussian and T5 choices
when the population distribution was misspecified, but the difference in performance was at
most a few percentage points. Similar results for rank estimates using GR versus PM were
found by Shen and Louis (1998) when considering scenarios in which the population
distribution was correctly specified.
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5. Math achievement among high school students
We illustrate the effect of selecting a standard parametric versus nonparametric distribution,
G, on inferences based on GR estimates using a data set on math achievement among high
school students in the US. The data come from the 1982 High School and Beyond Survey, a
nationally representative survey of high school students in the US. We analyze the subset of
the data that Bryk and Raudenbush (1992) use in their textbook on hierarchical modeling and
that is available in the R package nlme under the name, ‘MathAchieve.’ The data set contains
math achievement scores on 7185 students in 160 schools. The basic structure of this data set
exemplifies that of data sets frequently used for performance evaluations, in which the
performance of units (i.e., schools) with respect to achieving outcomes measured on subjects
who belong to the units (i.e., students) is of interest. Standard analytic questions to consider
include assessing math achievement for a specific school; the distribution of school-level math
achievement; and the relative performance of schools. We illustrate how GR estimates are
affected by the various choices for G.

We computed GR estimates of the school-level parameters using a Gaussian population
distribution for θi and a DP prior for G. We modeled student-level math achievement for student
i in school j, yij, by a Gaussian distribution with mean θj and variance σ2. We then fit the
Gaussian–Gaussian model, specifying θj as Gaussian with mean μ and variance τ2 and with
the hyperparameters μ and τ−2 coming from N(0, 200) and Gamma(0.01, 0.01) distributions,
respectively. We also fit a second model in which θj was assumed to come from G with G a
DP with parameters G0 and α. G0 was N (μ, τ2), with the same hyperpriors as those used in the
Gaussian–Gaussian model; the prior distribution for α was Gamma(5, 1). By parameterizing
α in this way, the expected number of unique θj’s is 18 (Antoniak, 1974; Escobar, 1994). These
models were fit using WinBUGS software (Spiegelhalter et al., 2004; Congdon, 2001).

The GR estimates obtained under the DP and Gaussian priors were almost identical for the full
sample (Fig. 4a); clearly, the choice of prior distribution did not make a meaningful difference
when using GR estimates for unit-specific inferences. Fig. 5a shows the observed math
achievement score averages by school. The histogram is almost symmetric and approximately
Gaussian. Given that the school-level standard deviations of math achievement are roughly
similar, Fig. 5a represents a reasonable approximation to the true estimated EDF of the θjs.
Fig. 5b shows the empirical distribution of GR estimates that were derived under the Gaussian
model for θj, while Fig. 5c shows the same graph when assuming a DP prior for G. While the
EDFs depicted in Fig. 5b,c closely resemble the data shown in Fig. 5a, it can be seen in the
tails of the EDF shown in Fig. 5c that the DP follows the data more closely than does the
Gaussian-based GR estimates in Fig. 5b.

While the resulting empirical distributions and GR estimates essentially agree for these data,
this will not always be the case. Consider the subset of students who are members of the
nonminority racial group. Fig. 4b shows that there is more variation in the GR estimates
obtained under Gaussian than DP. The histogram of school-level observed math achievement
scores for nonminority students suggests that the Gaussian assumption might not be as tenable
here. The Gaussian and DP-based models yield dramatically different results (Fig. 5e,f), with
the Gaussian-based model producing a very smooth, unimodal EDF (Fig. 5e) while the DP-
based model (Fig. 5f) produces an EDF that is less smooth and conforms better to the data (Fig.
5d).

6. Discussion
When the data are quite informative, the GR estimates are quite robust to model
misspecification, as evidenced by the relatively good performance of all of the data-analytic
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and data-generating choices for G when . However, conclusions can be quite
sensitive to misspecification of the population distribution when the data are less informative.
Nonparametric distributions such as SBR and DP are highly efficient for GR estimates of the
unit-specific parameters relative to the correct, parametric alternative (Table 2a) and they are
slightly less efficient for estimating G, with the degree of lack of efficiency varies across
methods and scenarios (Table 2b). As the heterogeneity of the variances (rls) and the

 of the units increase, the relative efficiency of GR to ML increases under all
scenarios examined here. The nonparametric models succeeded in protecting against model
misspecification relative to incorrectly assuming a parametric form for G. However, caution
is required when applying DP or other Bayesian nonparametric models: Even a ‘nonparametric’
approach requires assumptions about hyperparameters that can greatly affect the posterior
distribution, which is particularly an issue when the data are relatively less informative. This
was clearly seen in the difference in performance for DP-1 and DP-2. Even SBR requires
similar choices that can be just as influential on the results—the user must specify the initial
distribution, G(0), and the number of SBR iterations to allow smoothing but not convergence.
We initially used the Shen and Louis (1999) guideline of stopping the SBR iterations after 3
ln(K) ≈ 14 iterations, but found this value to be too low to produce reasonable EDFs and thus
increased it to 30 iterations.

Overall, the data-analytic choice for G mattered relatively little when using GR for estimating
and ranking the θs, but GR estimates of the EDF and percentiles of G were very sensitive to
model departures from the true distribution. This is highlighted in our data example of Section
5, for which the DP was clearly the better choice when one suspected that the distribution of
the θ’s was not Gaussian; even when the Gaussian assumption seemed reasonable, DP-based
estimates were more adaptive to the data. We therefore recommend using flexible population
distributions for G since the nonparametric approaches protected against model
misspecification while being quite efficient when the data-generating distribution is of a
parametric form, and the additional computational demands of employing the nonparametric
models used here relative to using the standard, fully parametric model are light. Future work
on comparing fully Bayesian nonparametric, parametric, and EB approaches when the
sampling distribution is non-Gaussian remains to be done.
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Fig. 1.
Means and 95% posterior probability intervals of the ratio of posterior predictive probabilities
placed on the EDF versus G0 under (a) DP-1 and (b) DP-2, given various data-generating
scenarios, which are denoted beneath each boxplot: the true distribution (Gaussian, T5, or a

bimodal mixture),  (denoted by gm), and rls. Note: figures drawn on different scales.
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Fig. 2.
Scaled θ-EDF estimates using PM, ML, and GR when the data-analytic and data-generating

distributions, G, are Gaussian. , rls = 100.
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Fig. 3.
Scaled EDF estimates when true G is a mixture of two Gaussians. First row: gm = 0.1, rls = 1.
Second row: gm = 1, rls = 1. Third row: gm = 1, rls = 25. Each column corresponds to the
assumed model (column 1: Gaussian; column 2: T5; column 3: DP-1; column 4: DP-2; column
5: SBR).
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Fig. 4.
GR estimates derived under DP versus Gaussian models for G for (a) the full sample and (b)
the subset of majority students only.
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Fig. 5.
Empirical distribution of (a) observed school-level average math achievement scores; (b) GR
estimates derived under a Gaussian distribution for θj; (c) GR estimates derived under a
Dirichlet process model for G for the full sample. (d)–(f) are the analogous figures for the
analysis of the subset of nonminority cases.
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