
Iterated importance sampling in missing data

problems

Gilles Celeux

INRIA, FUTURS, Orsay, France

Jean-Michel Marin ∗

INRIA, FUTURS, Orsay, France and CEREMADE, University Paris Dauphine,
Paris, France

Christian P. Robert

CEREMADE, University Paris Dauphine and CREST, INSEE, Paris, France

Abstract

Missing variable models are typical benchmarks for new computational techniques in
that the ill-posed nature of missing variable models offer a challenging testing ground
for these techniques. This was the case for the EM algorithm and the Gibbs sampler,
and this is also true for importance sampling schemes. A population Monte Carlo
scheme taking advantage of the latent structure of the problem is proposed. The
potential of this approach and its specifics in missing data problems are illustrated
in settings of increasing difficulty, in comparison with existing approaches. The
improvement brought by a general Rao–Blackwellisation technique is also discussed.

Key words: Adaptive algorithms, Bayesian inference, latent variable models,
population Monte Carlo, Rao–Blackwellisation, stochastic volatility model

∗ Corresponding author: CEREMADE, Place du Maréchal De Lattre de Tassigny,
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1 Introduction

1.1 Missing data models

Missing data models, that is, structures such that the distribution of the data

y can be represented via a marginal density

f(y|θ) =
∫

Z
g(y, z|θ)dz ,

where z ∈ Z denotes the so-called ”missing data”, have often been at the

forefront of computational Statistics, both as a challenge to existing techniques

and as a benchmark for incoming techniques. This is for instance the case with

the EM algorithm (Dempster et al., 1977), which was purposely designed for

missing data problems although it has since then been applied in a much wider

setting. Similarly, one of the first occurrences of Gibbs sampling is to be found

in the analysis of mixture models by Tanner and Wong (1987). Besides, these

models also stand on their own as valuable tools for representing complex

phenomena and deserve appropriately efficient computational support; any

true advance in statistical computing must thus be able to increase our ability

of using and designing new and more elaborate missing data models.

Many different techniques have been proposed and tested on missing data

problems (see, e.g., Everitt, 1984, Little and Rubin, 1987, McLachlan and

Krishnan, 1997, Robert and Casella, 1999, Chap. 9) and they often take ad-

vantage of the specific features of the corresponding models, mostly through

completion devices that simulate or approximate the missing part z of the

data. This is not always the case, though, as shown for instance in Celeux

et al. (2000) where non-completed proposals are advantageously used in a ran-

dom walk Metropolis–Hastings scheme. Non-completed scenarios are however

more difficult to come with than completed scenarios that naturally mimic the
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conditional distributions of a full model suggested by the missing data model,

z|y, θ ∼ k(z|y, θ) ∝ g(y, z|θ) .

Non-completed scenarios may even be impossible to implement because of the

explosive nature of the missing part of the data (as in semi-Markov models,

see Cappé et al., 2004), while completed scenarios may get bogged down in

terms of convergence because of the large dimension of the missing data.

1.2 MCMC and importance sampling

As detailed for instance in McLachlan and Peel (2000) for mixture models

or in Robert and Casella (1999) in a more general perspective, Markov Chain

Monte Carlo (MCMC) methods have been deeply instrumental in the Bayesian

exploration of increasingly complex missing data problems, as further shown

by the explosion in the number of papers devoted to specific missing data

models since the early 1990’s. Besides the processing of mixtures, which stand

at the “easy” end of the processing spectrum (even though they offer hard

enough challenges!), these years also saw major advances in handling models

like hidden Markov models (Cappé et al., 2005), stochastic volatility models

(Jacquier et al., 1994, Chib et al., 2002) and networks of hidden Markov models

(Jordan, 2004).

Besides, this wealth of advances brought a new vision of the approaches an-

terior to the MCMC era and in particular to importance sampling. Recall

(Robert and Casella, 1999, Chap. 3) that importance sampling is based on

the simulation of θ(i)’s (i = 1, . . . ,M) from a distribution %(θ), called the im-

portance function, that is not the distribution of interest π(θ|y), by correcting

the difference via importance weights

ω(i) = π(θ(i)|y)/%(θ(i))

/∑

j

π(θ(j)|y)/%(θ(j))
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to preserve (asymptotically) unbiasedness, that is,

E
[
ω(i)h(θ(i))

]
≈

∫
h(θ)π(θ|y)dθ , (1)

where h is a given function.

1.3 Population Monte Carlo

As proposed in Cappé et al. (2004) (see also del Moral et al., 2002), the notion

of importance sampling can actually be strongly generalised to encompass

much more adaptive and local schemes than previously thought, and this

without relaxing its primary justification that is to provide a correct discrete

approximation to the distribution of interest.

As in regular MCMC settings, the missing data structure of the problem can

be exploited to produce a simple and feasible importance distribution, but

this “natural solution” does not always produce good results. Since an at-

tempt at providing a “universal” importance sampling scheme that would

achieve acceptable convergence rates in most settings is doomed to fail, given

the multiplicity of situations pertaining to missing data problems, and since

specific solutions are bound to work only in a limited vicinity of the models

they have been tested on, a logical extension to the regular importance sam-

pling framework is to learn from experience, that is, to build an importance

sampling function based on the performances of earlier importance sampling

proposals. This is the essence of the population Monte Carlo scheme of Cappé

et al. (2004): By introducing a temporal dimension in the selection of the im-

portance function, an adaptive perspective can be achieved at little cost, for

a potentially large gain in efficiency. Indeed, if iterated importance sampling

is considered, with t denoting the index of the iteration, the choice of the

importance function at iteration t can be dictated by the importance sample

produced at iteration t− 1, according to criteria that seek improved efficiency
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of the sampler. A further advance can be achieved through the realization

that importance functions need not be constant over the points in the sample,

that is, the θ(i)’s, and, in particular, that they may depend differently on the

past samples, while preserving the unbiasedness in (1). Rather than using a

constant importance function % or a sequence of importance functions %t, we

can thus propose to use importance functions qit that depend on both the

iteration t and the sample index i.

1.4 Plan

The plan of the paper is as follows: Section 2 describes a population Monte

Carlo scheme that takes advantage of the latent structure of the problem and

describes the corresponding Rao–Blackwellisation technique. Sections 3 and

4 study the behavior of this sampling algorithm on two examples: a toy ex-

ample, a censored exponential failure time and a model used in the analysis

of financial data, the stochastic volatility model. For each model, we compare

the population Monte Carlo sampling scheme with classical MCMC approxi-

mations. Section 5 concludes the paper.

2 Population Monte Carlo for missing data models

2.1 The basic scheme

If the distribution of z|y, θ, k
(
z|y, θ

(i)
t−1

)
, is known, a specific version of the

general PMC algorithm can mimic the Gibbs sampler by generating the z’s

and θ’s from their respective conditional distributions. In fact its proposal can

be the distribution that corresponds to generating z
(i)
t (that depends on both

the iteration t and the sample index i) from the conditional distribution of z
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θ
(i)
t−1, k

(
z|y, θ

(i)
t−1

)
, and θ

(i)
t from π

(
θ|y, z

(i)
t

)
. The corresponding weight is

ω
(i)
t ∝ g

(
y, z

(i)
t |θ(i)

t

)
π

(
θ

(i)
t

)/
k

(
z

(i)
t |y, θ

(i)
t−1

)
π

(
θ

(i)
t |y, z

(i)
t

)
,

where π(θ) is the prior distribution on θ. The following pseudo-code summa-

rizes these steps:

Alg. 1: Original PMC scheme for missing data models

• Step 0: Choice of
(
θ

(1)
0 , . . . , θ

(M)
0

)
;

• Step t (t = 1, . . . , T ):

a) For i = 1, . . . , M :

Generate z
(i)
t from k

(
z|y, θ

(i)
t−1

)
and θ

(i)
t from π

(
θ|y, z

(i)
t

)
;

Compute r
(i)
t = g

(
y, z

(i)
t |θ(i)

t

)
π

(
θ

(i)
t

) /
k

(
z

(i)
t |y, θ

(i)
t−1

)
π

(
θ

(i)
t |y, z

(i)
t

)

and ω
(i)
t = r

(i)
t

/ M∑

s=1

r
(s)
t ;

b) Resample the
(
θ

(i)
t

)
’s using the weights ω

(i)
t ’s.

Note that the conditional densities k(z|y, θ) and π(θ|y, z) may be known only

up to a normalizing constant, given that they appear in every weight. Note

also that the sequence of (θ
(i)
t )1≤i≤M ’s thus produced is a Markov chain. Con-

trary to the Gibbs sampler, since we are in the importance sampling setting,

it is possible to replace sampling from k(z|y, θ) and π(θ|y, z) by alternative

proposal distributions as long as the weights are modified accordingly.

After T iterations of the previous scheme, an asymptotically unbiased estima-

tor of Eπ(h(θ)) is given by the weighted average

1

T

T∑

t=1

M∑

j=1

ω
(j)
t h

(
θ

(j)
t

)
.

The variance of this estimator obviously decreases both in T and in M . Most

importantly, for each t = 1, . . . , T , as M goes to infinity and under mild
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conditions, the average
∑M

j=1 ω
(j)
t h

(
θ

(j)
t

)
converges in probability to E(θ|y)

and that a CLT holds, as shown in Douc et al. (2005). From this asymptotic

perspective, T is a learning parameter. For this particular PMC scheme with

limited adaptivity, if M is very large (typically M ≥ 100, 000), T can be taken

equal to 2 or 3. However, for moderate values of M (typically 1, 000 ≤ M ≤
10, 000), T needs to be increased to compensate for the approximation, for

instance T = 10.

While natural (as shown by its Gibbs sampler predecessor), the previous

scheme has the drawback of being exposed to degeneracy, that is, to a strong

asymmetry in the importance weights that jeopardizes the appeal of the im-

portance sampling estimate. Indeed, iterated importance sampling encounters

this difficulty even more than regular importance sampling because of the re-

peated resampling: the percentage of resampled particles can be very small

between two iterations and the probability that this occurs increases over it-

erations. The consequence of the degeneracy of the population is that the

number of surviving branches of ancestors diminishes very quickly when look-

ing at the samples over generations. If the proposals are only based on the

recently generated values, this may induce a serious bias or at least a severe

impoverishment and a correlated increase in the variance of the estimators in

the final output. As in regular importance sampling, there also is an additional

risk that the weights ω
(i)
t misbehave, because of an infinite variance. We will

see an illustration in the case of the censored exponential failure time model,

with infinite variance on the weights of (θ, z).

2.2 Extensions via Rao–Blackwellisation

An approach that partly alleviates both of the above problems is to recycle the

past simulations to estimate by importance sampling the marginal weight of
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θ, rather than using the weight of the joint vector (θ, z). This idea is very sim-

ilar to the Rao–Blackwellisation strategy used from the early days of MCMC

algorithms (Gelfand and Smith, 1990, Robert and Casella, 1999): When the

(z
(i)
t , θ

(i)
t )’s are generated as in Algorithm 2, the additional randomness due

to the simulation of the z
(i)
t ’s can be reduced by considering an importance

sampling approximation to the distribution of θ
(i)
t conditional on θ

(i)
t−1,

∫
π(θ|z, y) k(z|y, θ

(i)
t−1) dz ,

which is the marginal kernel used in the Gibbs sampler. Rather than approx-

imating this integral via costly brute force simulation, that is, by simulat-

ing a whole sample of z’s from k(z|y, θ
(i)
t−1) for every i, we can recycle the

whole set of pre-simulated z
(j)
t ’s by correcting for their sampling distribution

k
(
z

(j)
t |y, θ

(j)
t−1

)
. The corresponding importance sampling approximation of the

marginal conditional distribution is then

1

M

M∑

l=1

k
(
z

(l)
t |y, θ

(i)
t−1

)
π

(
θ

(i)
t |y, z

(l)
t

)

k
(
z

(l)
t |y, θ

(l)
t−1

) .

The weights used in the PMC take advantage of this Rao–Blackwellisation

argument twice, namely by approximating both the true marginal posterior

distribution of θ and its marginal proposal distribution:

ω
(i)
t ∝

M∑

l=1

g
(
y, z

(l)
t |θ(i)

t

)
π

(
θ

(i)
t

)

k
(
z

(l)
t |y, θ

(l)
t−1

)
/

M∑

l=1

k
(
z

(l)
t |y, θ

(i)
t−1

)
π

(
θ

(i)
t |y, z

(l)
t

)

k
(
z

(l)
t |y, θ

(l)
t−1

) =
n

(i)
t

d
(i)
t

,

where n
(i)
t and d

(i)
t thus appear as importance sampling estimates of the

marginal target and proposal at point θ
(i)
t , respectively.

The following pseudo-code summarizes this modification:

Alg. 2: Rao–Blackwellised PMC scheme for missing data models

• Step t (t = 1, . . . , T ):

a) For i = 1, . . . , M :
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Generate z
(i)
t from k

(
z|y, θ

(i)
t−1

)
and θ

(i)
t from π

(
θ|y, z

(i)
t

)
;

b) For i = 1, . . . , M :

Compute n
(i)
t =

1

M

M∑

l=1

g
(
y, z

(l)
t |θ(i)

t

)
π

(
θ

(i)
t

)

k
(
z

(l)
t |y, θ

(l)
t−1

)

Compute d
(i)
t =

1

M

M∑

l=1

k
(
z

(l)
t |y, θ

(i)
t−1

)
π

(
θ

(i)
t |y, z

(l)
t

)

k
(
z

(l)
t |y, θ

(l)
t−1

)

Compute r
(i)
t =

n
(i)
t

d
(i)
t

and ω
(i)
t = r

(i)
t

/
M∑

s=1

r
(s)
t ;

c) Resample the
(
θ

(i)
t

)
’s using weights ω

(i)
t ’s.

In this version, the latent variables are mostly instrumental in that they are

used to provide an approximation to the marginal posterior distribution of

the θ’s. This fact implies that the z’s and the θ’s can be dissociated in the

simulation and, for instance, that a larger number of z’s can be simulated to

provide more stable evaluations of these marginal posterior distributions and

of the corresponding weights. In the case of the stochastic volatility model

(Section 4), we successfully implemented this strategy, as shown by the non-

degeneracy of the samples of θ’s thus obtained. The asymptotic behavior of

the resulting PMC estimator is unchanged.

2.3 Implementation

The previous scheme supposes that both conditional distributions k(z|y, θ)

and π(θ|y, z) are known (up to constants) and it strongly resembles Gibbs

sampling in that it uses exactly the same kernel. However, as we will see in the

stochastic volatility example, the exploration of the parameter space provided

by the corresponding PMC scheme is by far superior to the performances of

the MCMC approach, simply because it provides a flow of parallel proposals

that are compared against the target distribution at each step.
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In cases where either k(z|y, θ) or π(θ|y, z) is unknown, we face the same diffi-

culty as MCMC algorithms, namely we have to select some appropriate pro-

posal distribution to replace the true conditional distribution in both the sim-

ulation and the importance weights (which thus preserves the importance

sampling validity of the algorithm). Since this is highly model dependent, we

postpone the illustration for the more realistic case of stochastic volatility

models in Section 4.

Although this has not been mentioned so far, we stress that the importance

sample obviously needs to be initialised from some proposal distribution. Just

as in MCMC setups, possibilities are numerous, if not always appropriate. A

first possibility is to use the maximum likelihood estimator θ̂ of θ as a starting

point for the first proposal, as in, for instance, Edmond et al. (2001) where the

authors propose to use π(z|y, θ̂), instead of the more variable predictive den-

sity π(z|y). A potential problem with this solution is that, typically, Bayesian

inference is most useful in small sample settings for which maximum likelihood

can provide unreliable estimates. Thus, in such cases it is doubtful that initial-

ising the sampling scheme at θ̂ is a good choice. A connected criticism is that

this choice does not take into account the intrinsic variability of θ̂ and often

results in an importance function that is too concentrated around the max-

imum likelihood estimator. Therefore we propose to initialise the algorithm

by simulating directly from the predictive distribution, which is only feasible

when the prior on θ is both proper and available in closed form. Compared

with the pluggin proposal π(z|y, θ̂), this predictive distribution on z has fatter

tails and thus better coverage of the latent variable space. Obviously, both

proposals, namely
∫

Θ
π(θ)π(z|y, θ) dθ

and π(z|y, θ̂) can be used simultaneously to initialise parts of the sample,

provided they are associated with the proper weights (including with a Rao-

Blackwell averaging).
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We also point out that both PMC structures are very straightforward imple-

mentations of the principles behind population Monte Carlo and that more

elaborate constructions can be designed, as already illustrated in Cappé et al.

(2004). In particular, these specific algorithms only use the previous sam-

ples as “stepping stones” for the new importance functions: if a value θ
(i)
t−1

is resampled several times, a corresponding number of z’s will be simulated

from k(z|y, θ
(i)
t−1). No further effort is made at analyzing the appropriateness

of the resampled set of θ’s against the target distribution. Nonetheless, the

following examples will provide enough evidence that this rudimentary adap-

tive scheme performs satisfactorily even in the more challenging case of the

stochastic volatility model. (See also Douc et al. (2005) for more advance

adaptive schemes.)

3 Censored exponential failure model

As a first illustration, consider a sample of n − r observed failure times

y1, . . . , yn−r and r right-censored data points with a constant censoring time

c > 0 from an exponential distribution Exp(θ). This is a most obvious missing

data problem, zn−r+1, . . . , zn being the unobserved failure remaining times.

We also introduce the sufficient observed and unobserved statistics

s =
n−r∑

i=1

yi and z =
n∑

i=n−r+1

zi

and use θ ∼ G(a, b) as prior, with expectation a/b and variance a/b2.

The exact posterior distribution is then a G (a + n− r, b + s + rc) distribution,

which can be used as a benchmark to evaluate the performances of our PMC

scheme. The corresponding conditional distributions are θ|y, z ∼ G(n + a, s +

rc + z + b) and z|y, θ ∼ G(r, θ), which means that the Rao–Blackwellised

version of PMC can be used (even though the exact marginal posterior of θ is

available in this toy example).
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The Rao–Blackwellised PMC scheme is evaluated on a simulated data set of

n = 20 Exp(1) rv’s, with censoring at c = .4. The prior is a weakly informative

G(.1, .1) distribution. After 30 iterations of the Rao–Blackwellised PMC algo-

rithm with only M = 200 points per sample, we obtain the results summarised

in Figure 1. The corresponding evaluation of the posterior mean of θ is

1

30

30∑

t=1

200∑

j=1

ω
(j)
t θ

(j)
t = 0.8514 (2)

for a exact value of 0.8519. In Figure 1, the third graph gives the evolution

of the Rao–Blackwellised PMC approximation to the posterior mean of θ (in

red) through iterations. For this simulated dataset, convergence to the true

value is ensured after 10 iterations of the PMC scheme. The effect of the

weights on the sample of θ’s is noticeable but not overwhelming, which means

that the importance function at the 30th iteration is well-calibrated enough

for the target distribution. As discussed above, there is a wide variety of

approaches to the selection of M and T , but it seems that the one based

on the stabilisation of the overall average is the most practical. Unless more

advanced adaptive schemes are used for the choice of the qit’s, it also appears

that the number of iterations till stabilisation is most often situated in the

vicinity of T = 10 iterations. (Additional computational effort should bear on

increasing M rather than T .)
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Fig. 1. Rao–Blackwellised PMC sample: (left) sample of θ before resampling, at

the 30th iteration; (center) weighted sample against true posterior distribution;

(right) evolution over iterations of the Rao–Blackwellised PMC approximation to

the posterior mean of θ (straight line in grey).
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While straightforward, this example is particularly interesting as a defense of

Rao–Blackwellisation. Indeed, at iteration t of the algorithm, the importance

sampling weight of
(
θ

(j)
t , z

(j)
t

)
in the original PMC algorithm is inversely pro-

portional to

(
θ

(j)
t−1

)r
exp

(
−θ

(j)
t−1z

(j)
t

) (
b +

n−r∑

i=1

yi + rc + z
(j)
t

)n+a

and thus has an infinite variance. The consequences of this infinite variance on

degeneracy are clearly shown in Figure 2: the weights are much more dispersed

than in Figure 1 and the weighted sample collapses to a few significant points.

In this case, the approximation to the posterior mean of θ is quite poor for

the same number of iterations.
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Fig. 2. Original (not Rao–Blackwellised) PMC sample (same legend as Figure 1).

Table 1 compares Gibbs estimates for 1, 000 iterations and a burn-in period of

500 (Gibbs estimates are the average over the last 500 iterations) and PMC

estimates for M = 100 and T = 10 (PMC estimates are the average over the

last five PMC iterations). Obviously for this simple model both algorithms

have a satisfactory behavior. But it is worth noting that the variability of

the PMC estimator is smaller, providing a somewhat more precise and less

variable estimate of the posterior mean.
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c Gibbs PMC

0.2 0.0022 (0.071) -0.0011 (0.058)

0.4 -0.0007 (0.038) 0.0005 (0.029)

0.6 0.0003 (0.028) 0.0001 (0.015)

Table 1

Averages of the differences between Gibbs and PMC estimates and the true posterior

mean of θ for 1, 000 simulated datasets of size n = 20 and different values of c. The

values in parentheses are the standard error estimates of these differences.

4 Stochastic volatility models

Stochastic volatility (SV) models have attracted a lot of attention in the recent

years as a way of generalising the Black-Scholes option pricing formula to allow

for heterogeneous variations in the scale of time series. These models have

gradually emerged as a useful way of modeling time-varying volatility with

significant applications, especially in Finance (see for example Taylor (1994),

Shephard (1996) and Ghysels et al. (1996) for detailed reviews) and they

are also an alternative to the Autoregressive Conditional Heteroscedasticity

(ARCH) models of Engle (1982) (see also Bollerslev et al., 1994).

A central feature of stochastic volatility models is that the variance is a latent

stochastic process. In the simplest model, the observations are independent

conditional on their variance:

yt = β exp (zt/2) εt , εt ∼ N (0, 1)

and the log-variance process is an AR(1) model zt+1 = ϕzt + σut, with ut ∼
N (0, 1) and the stationarity assumption that

z1 ∼ N
(
0, σ2/

(
1− ϕ2

))
.

The set of parameters is thus θ = (β, ϕ, σ), with the usual stationarity condi-
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tion ϕ ∈]− 1, 1[.

Bayesian inference is far from easy in this setup, because this is a missing data

model with no closed-form likelihood. Besides, compared with the previous

examples, the missing structure z is not countable and much more complex

than the censoring structure of Section 3. The only approach to the model is

therefore based on its completion by the missing data z, which unfortunately is

of the same dimension as the data. MCMC algorithms have been proposed for

this model, using different approximations and proposals in the Metropolis-

Hastings step, starting with Jacquier et al. (1994) Gamma approximation.

See, e.g., Kim et al. (1998) and Chib et al. (2002) for detailed reviews on

the MCMC aspects of the problem. Our experience with these algorithms is

however that they are not necessarily robust to all types of datasets and may

fail to converge for long series or extreme values of the parameters β and ϕ. In

particular, it appears from our experiments that MCMC algorithms are very

sensitive to the generation of the missing data and that they may well fail to

converge even when initialised at the true parameter values.

Under a noninformative prior like

π(β2, ϕ, σ2) = 1/(σβ) I]−1,1[(ϕ) ,

the posterior distributions for β2 and σ2 conditional on the completed data

are both inverse Gamma distributions with (n− 1)/2 shape parameters and

n∑

t=1

y2
t exp(−zt)/2 and

n∑

t=2

(zt − ϕzt−1)
2 /2 + z2

1(1− ϕ2)/2

as scales, respectively. The conditional distribution of ϕ, f (ϕ|y, z, σ2), is less

conventional, since it is proportional to

√
1− ϕ2 exp−

(
ϕ2

n−1∑

t=2

z2
t − 2ϕ

n∑

t=2

ztzt−1

) /
2σ2 I]−1,1[(ϕ) ,

but a standard Metropolis–Hastings proposal (Chib et al., 2002) is a truncated
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normal distribution on ]− 1, 1[ with mean and variance

n∑

t=2

ztzt−1

/n−1∑

t=2

z2
t and σ2

/n−1∑

t=2

z2
t .

The most challenging and documented part is the simulation from the con-

ditional distribution of z|y, ϕ, σ2. Most papers focus on componentwise pro-

posals: First, Shephard (1993) propose to approximate the distribution of

log (ε2
t ) by a normal distribution N (−1.27, 4.93), to account for both first

moments, and this implies the use of a Gaussian proposal for the distribu-

tion of zt|z−t, y, ϕ, σ2. An alternative is advanced in Jacquier et al. (1994),

which approximates the distribution of exp (zt) by a Gamma distribution. In-

dependently, Geweke (1994) and Shephard (1994) suggested the use of Gilks

and Wild (1992) ARS procedure for sampling from log-concave densities like

f (zt|z−t, y, ϕ, σ2). Kim et al. (1998) developed a simple accept/reject proce-

dure, bounding exp (−zt) by a function linear in zt. At last, Shephard and Pitt

(1997) used a quadratic (Taylor) expansion of exp (zt) around the mean of the

distribution of zt|z−t, ϕ, σ2 and we use their approximation for illustrating the

difference between Gibbs and PMC implementations. Following Shephard and

Pitt (1997), the proposal distribution for z1 is a normal with mean

ϕz2/σ
2 + 0.5 exp (−ϕz2) y2

1 (1 + ϕz2) /β2 − 0.5

1/σ2 + 0.5 exp (−ϕz2) y2
1/β

2

and variance

1
/ (

1/σ2 + 0.5 exp (−ϕz2) y2
1/β

2
)

.

The proposal for zt is a normal with mean

(
1 + ϕ2

)
µt/σ

2 + 0.5 exp (−µt) y2
t (1 + µt) /β2 − 0.5

(
1 + ϕ2

)
/σ2 + 0.5 exp (−µt) y2

t /β
2

and variance

1
/{(

1 + ϕ2
)
/σ2 + 0.5 exp (−µt) y2

t /β
2
}

.
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At last, the proposal for zn is a normal with mean

ϕzn−1/σ
2 + 0.5 exp (−ϕzn−1) y2

n (1 + ϕzn−1) /β2 − 0.5

1/σ2 + 0.5 exp (−ϕzn−1) y2
n/β

2

and variance

1
/ {

1/σ2 + 0.5 exp (−ϕzn−1) y2
n/β2

}
.

Note that both Liu et al. (1994) and Shephard and Pitt (1997) suggest blocking,

that is, a joint simulation of a group of consecutive zt’s, to improve the speed

of convergence of simulators. While we did not observe a consistent pattern

of improvement in our experiments, the goal here is to compare, for the above

proposal distribution, the performances of the PMC approximation algorithm

and of the classical hybrid Gibbs Metropolis–Hastings algorithm. We therefore

only use the above componentwise proposals for z.

We proceeded to a Monte Carlo numerical experiment on two type of simulated

datasets of size n = 1, 000. Each of then reflects typical problems for weekly

and daily financial data and has been replicated teen times. In the weekly

case, we chose β2 = 1, σ2 = 0.1 and ϕ = 0.9 while in the daily case β2 = 1,

σ2 = 0.01 and ϕ = 0.99. Two datasets of each type are represented in Figure

3, along with the corresponding simulated volatilities z.

For these two particular datasets, the results of the MCMC algorithm, 10, 000

iterations, are presented in Figures 4–7. Figures 4 and 6 do not exhibit any

convergence difficulty. Note however the slow mixing on β in Figure 6 (upper

left) and, to a lesser degree, on σ2 in both Figures (middle left).

Moreover, we have iterated ten times, T = 10, a Rao–Blackwellised PMC

algorithm with M = 1, 000. For the same datasets, the results are presented

in Figures 8–11. Figures 9 and 11 provide an excellent reconstitution of the

volatilities.

Tables 2 and 3 summarize the quality of the parameter estimates for both
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Fig. 3. Weekly (upper) and daily (lower) simulated datasets with n = 1, 000 obser-

vations yt (black) and volatilities zt (grey).
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Fig. 4. Weekly dataset: evolution of the MCMC samples for the three parameters

(left) and convergence of the MCMC estimators (right).

methods. These Tables provide the averages of the differences between MCMC

and PMC estimates and the parameters true posterior mean for the 10 repli-

cated datasets. The values in parentheses are the standard error estimates of

18



0 200 400 600 800 1000

−2
−1

0
1

2

Fig. 5. Weekly dataset: estimation of the stochastic volatility (in black the true

volatility and in grey the MCMC estimation based on the last 5000 iterations).
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Fig. 6. Daily dataset: same legend as Figure 4.
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Fig. 7. Daily dataset: same legend as Figure 5.
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Fig. 8. Weekly dataset: evolution over iterations of the Rao–Blackwellised PMC

approximation (left) and 10th iteration weighted PMC sample (right).
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Fig. 9. Weekly dataset: estimation of the stochastic volatility (in black the true

volatility and in grey the PMC estimation based on the 10th iteration weighted

PMC sample).

these differences. Note that the MCMC estimates are the average over the

last 5, 000 iterations and that the PMC parameter estimates are calculated

only over the last five iterations. On this small numerical experiment PMC

performs slightly better than MCMC. In particular, the standard errors of the

estimates of β2 are significantly reduced. This is not surprising: we have al-
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Fig. 10. Daily dataset: same legend as Figure 8.
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Fig. 11. Daily dataset: same legend as Figure 9.

ready observed, through Figures 4 and 6, the slow mixing of the MCMC chains

on β2. This is clearly related to relative slow mixing of the log-variances them-

selves, see Figures 5 and 7.
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Weekly MCMC PMC

β2 0.057 (0.151) 0.023 (0.091)

σ2 0.009 (0.031) 0.008 (0.027)

ϕ - 0.012 (0.023) -0.011 (0.020)

Table 2

Weekly dataset: Averages of the differences between MCMC and PMC estimates

and the parameters true posterior mean for the 10 simulated datasets. The values

in parentheses are the standard error estimates of these differences.

Daily MCMC PMC

β2 -0.069 (0.241) -0.032 (0.130)

σ2 0.011 (0.008) 0.011 (0.008)

ϕ -0.024 (0.014) -0.021 (0.012)

Table 3

Daily dataset: Averages of the differences between MCMC and PMC estimates and

the parameters true posterior mean for the 10 simulated datasets. The values in

parentheses are the standard error estimates of these differences.

5 Conclusion

This paper has shown that the population Monte Carlo scheme is a viable al-

ternative to MCMC schemes in missing data settings. Even with the standard

choice of the full conditional distributions, this method provides an accurate

representation of the distribution of interest in a few iterations. As in regular

importance sampling, the choice of the importance function is paramount, but

the iterative nature of PMC erodes the dependence on the importance func-

tion by offering a wide range of adaptive kernels that can take advantage of

the previously simulated samples. This paper has addressed the most natural

proposal kernels based on the missing data structure but, as illustrated in
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Cappé et al. (2004) and Douc et al. (2005), multiscale proposals can be added

to increase the efficiency of the method and to provide a better approximation

to the distribution of interest. In this perspective, a range of proposals can be

tested on earlier iterations to improve the approximation of the posterior dis-

tribution, even though this may require a larger number T of iterations. In the

context of this paper, however, an increase of the number of iterations is un-

likely to produce a quantitative improvement, once the algorithm has reached

the stationarity region: Indeed, if the θ
(i)
t ’s are approximately distributed from

π(θ|y) and if the proposal distribution is constant, the distribution of the

(θ
(i)
t+1, ω

(i)
t+1)’s will not change over iterations.

Concerning the computational effort between MCMC and PMC, we can make

the following remark: using the same number of overall simulations makes

sense in that the computational effort is often decided at the beginning of an

experiment. To make the number of PMC double loops equal to the number

of MCMC iterations is then meaningful. In addition, the overall CPU times

are also comparable because, while PMC requires weight normalisation and

resampling, it can be partially parallelised (for instance, in the spirit of par-

allel algorithms given by Kontoghiorghes (2000), Gatu and Kontoghiorghes

(2003) for linear models), compared with the loop used in MCMC algorithms.

The PMC Rao–Blackwell step is about between two and four times more ex-

pensive than the standard PMC. But the impact of Rao–Blackwellisation on

the quality of the PMC estimation is noticeably superior to its impact on

MCMC outputs, where Rao–Blackwellised and standard averages most often

are not distinguishable (Robert and Casella, 1999, Chap. 8) unless more ad-

vanced (and more costly) techniques are used (Casella and Robert, 1996). For

instance, in the case of the stochastic volatility model, Rao–Blackwellisation

is quintessential in stabilising the estimates, since the original PMC is prone

to produce highly variable weights and to degenerate into a single point after

resampling. Rao–Blackwellisation thus brings a welcome correction to the fun-
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damental drawback of importance sampling techniques, that is, the potential

degeneracy of infinite variance weights.

As can clearly be seen in Section 4, the population Monte Carlo approach

can benefit from earlier works on MCMC algorithms to select good proposal

distributions. It thus does not come as a breakpoint in this area of compu-

tational Statistics, but rather as a further advance that exploits dependence

on previous iterations without requiring ergodicity and the theoretical appa-

ratus of Markov chain theory. It thus brings a considerable simplification to

the development of adaptive algorithms, when compared with recent works on

adaptive MCMC methods (see, e.g., Haario et al., 1999 2001, Andrieu and

Robert, 2001). In particular, the calibration of proposal distributions against

explicit performance diagnoses introduced in Andrieu and Robert (2001) can

also be reproduced for our algorithm.
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