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Abstract
Medical laboratory data are often censored, due to limitations of the measuring technology. For
pharmacokinetics measurements and dilution-based assays, for example, there is a lower
quantification limit, which depends on the type of assay used. The concentration of HIV particles in
the plasma is subject to both lower and upper quantification limit. Linear and nonlinear mixed effects
models, which are often used in these types of medical applications, need to be able to deal with such
data issues. In this paper we discuss a hybrid Monte Carlo and numerical integration EM algorithm
for computing the maximum likelihood estimates for linear and non-linear mixed models with
censored data. Our implementation uses an efficient block-sampling scheme, automated monitoring
of convergence, and dimension reduction based on the QR decomposition. For clusters with up to
two censored observations numerical integration is used instead of Monte Carlo simulation. These
improvements lead to a several-fold reduction in computation time. We illustrate the algorithm using
data from an HIV/AIDS trial. The Monte Carlo EM is evaluated and compared with existing methods
via a simulation study.
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1 Introduction
When analyzing medical data, the statistician is often confronted with censored observations.
For laboratory data, these may be due to limitations of the measuring technology. In
pharmacokinetics the concentration of drug in plasma is subject to a limit of quantification
below which the measurement is not reliable, or even possible. Similarly, the HIV-1 viral load,
which is currently the primary marker of HIV infection, has a lower and a upper quantification
limit, which depend on the type of assay used. The viral load of patients receiving anti-retroviral
treatment will typically decline and stay for a longer period of time below the lower limit of
quantification.
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Since in biomedical applications the observations are often non-linear and longitudinal, non-
linear mixed effects models (NLME) are a popular modelling tool for these data. In practice,
the censoring problem is ignored, or dealt with in an ad-hoc way. In this paper we use some
novel EM computational techniques in order to adjust for censored responses in NLME
estimation. The E-step uses numerical integration, for clusters with up to two censored
observations, or Monte Carlo integration for clusters with more than two censored
observations. As such our algorithm is a hybrid between Monte Carlo EM (MCEM) and a
“classical” EM using numeric integration. We call it a hybrid EM (HEM). In this algorithm
the data augmentation scheme involves both the random effects and the censored observations.
An alternative computational method is multiple imputation (Rubin, 1996; Fitzgerald et al.,
2002, MI). While HEM has the potential of more precise estimation of the MLE for censored
data, MI enjoys straightforward implementation using existing NLME software, such as the
nlme suite for R/S-plus (Pinheiro and Bates, 2000), or PROC NLMIXED in SAS (Wolfinger,
1999). We compare the two methods and show here that both methods are superior to ad-hoc
approaches, such as using the censoring limits as observed values. The end user has the ultimate
choice in the trade-off between precision and ease of implementation. This choice has been
heavily influenced by the absence of ready-to-use software for NLME with censored response,
although Hughes (1999) also made available software for linear mixed-effects models (LME)
with censored response. For those choosing HEM we provide a versatile, self-monitoring and
computationally efficient program implemented in R. The improvements with respect to the
“state of the art” include: automatic monitoring of convergence based on an approximate
likelihood objective function; automatic choice of Monte Carlo sample size; block-sampling
of the censored data and random effects; efficient computation using dimension reduction using
QR decomposition; incorporating the linearization step in the EM loop. In addition, we applied
the same improvements to an algorithm for LME with censored response.

We illustrate the general methodology developed here to the analysis of an AIDS clinical trial.
In ACTG 315 study (Lederman et al., 1998) the viral dynamics are nonlinear, and later viral
load observations are often below the limit of quantification of the assay (left-censored). A
second situation (analysis not presented) regards modelling the setpoint HIV-1 RNA levels of
untreated individuals with acute HIV infection from the Acute Infection and Early Disease
Research (AIEDRP) study. Here observations taken in the acute stage of infection are often
above the limit of quantification of the assay (right-censored).

The likelihood of NLME models with completely observed response is untractable, and the
MLE is not available in closed form. Briefly stated, NLME are solved by iteratively linearizing
the mean function using a Taylor expansion, followed by a linear-mixed-effects step (Laird
and Ware, 1982; Lindstrom and Bates, 1990). Several linearization methods have been
proposed: Sheiner and Beal (1980); Lindstrom and Bates (1990); Wolfinger (1993); Kiuchi et
al. (1995); Pinheiro and Bates (1995). In each case the resulting solution is an approximate
MLE. Pinheiro and Bates (1995) concluded based on a comparative study that the method of
Lindstrom and Bates (1990) using iterative linearization around the current estimates for the
parameter and random effects estimates performs well. For a detailed account of the NLME
see the recent monographes of Davidian and Giltinan (1995), Vonesh and Chinchilli (1997),
and Pinheiro and Bates (2000). The issue of censored response for a LME was considered by
Hughes (1999), who used a Monte Carlo EM algorithm extending the methods of Laird and
Ware (1982). For NLME our work builds on Fitzgerald (2000). Wu (2002, 2004) has extended
the work of Hughes (1999) to LME and NLME which also accommodate error in variables.
Beal (2001) discusses practical issues related to left-censored observations in pharmacokinetics
and compares several methods for dealing with them in fixed-effects modeling.
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2 Monte Carlo EM for Linear Mixed Effects models with Censored Response
After briefly summarizing Hughes' Monte Carlo EM algorithm for LME, we describe our
computationally efficient implementation, including a simple and general framework for
automatic selection of Monte Carlo sample size and monitoring convergence of the HEM. This
forms the basis for the algorithm for NLME with censored response, presented in the next
section.

2.1 Hughes' algorithm
Hughes (1999) proposed a MCEM algorithm for LME with censored data. Consider the Laird-
Ware linear mixed-effects model

(1)

i = 1, …, m with bi and ei = (ei1, …, eini)
⊤ given by

(2)

independent of each other. D is a positive definite matrix depending on a vector of parameters
γ. Write σ2D = Ψ and note that . In the settings which interest us here
the response yij is not fully observed for all i, j. Let the observed data for the ith subject be
(Qi, Ci), where Qi represents the vector of uncensored readings or censoring level, and Ci the
vector of censoring indicators:

(3)

We will assume for simplicity of description that the data are left-censored. The extensions to
arbitrary (left, right, or interval) censoring are immediate.

Hughes (1999) modified the Laird and Ware (1982) EM equations to incorporate censoring.

At the M-step, these equations are: ;

; , where êi = yi − Xi β ̂ − Zi b̂i, ,
and

(4)

The expectations are taken at the current parameter value θ; β ̂ is updated using as missing data
{yij : Cij = 1}, but not bi; whereas σ ̂2, Ψ̂ are updated with {yij : Cij = 1} and bi as missing data.
Strictly speaking, this is not an EM but rather a SAGE algorithm (Meng and van Dyk, 1997).

The conditional expectations in Hughes' equations are functions of E(yi|Qi, Ci, θ) and Var(yi|
Ci, Qi, θ). These are computed at the E-step by simulating yi from the marginal distribution of
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yi, p(yi|Ci, Qi, θ), which is truncated multivariate normal, using a Gibbs sampler. Upon
convergence bi is estimated by the empirical Bayes estimator E(b̂i|Qi, Ci). The variance of the
MLE θ ̂, estimated at convergence, is adjusted for the censored information using Louis' formula
(Orchard and Woodbury, 1972; Louis, 1982). The variance of the fixed effects in the
approximate MLE is given (Hughes, 1999) by

(5)

2.2 The proposed Hybrid EM: E-step
The EM implementation we propose for the LME with censored data differs from Hughes' in
several respects, in both E- and M-steps.

At the E-step, we treat differently clusters i with 0, 1, or two censored observations from those
with 3 or more censored observations. In the first case, the conditional mean and variance of
censored data are calculated in closed form, without the use of Gibbs sampling, using formulae
for bivariate truncated normal (Maddala, 1996) and the mvtnorm package in R (Genz, 1992).
These are then used in the M-step formulas, discussed below.

For clusters with 3 or more censored observations we use Monte Carlo simulation. Instead of
sampling yi from its marginal distribution as Hughes (1999), we sample (yi, bi) using a block
Gibbs sampler, as follows:

1. Sample yi ∼ p(yi|bi, Ci, Qi, θ). Conditional on bi, yi is a vector of independent
observations, whose distributions are truncated normal, each with untruncated
variance σ2 and untruncated mean , on the interval {yij ≤ Qij} (xij and zij are
the jth rows of Xi and Zi, respectively).

2. Sample bi ∼ p(bi|yi, Qi, Ci, θ) = p(bi|yi, θ). The target distribution is multivariate

normal with mean b̂i as in (4) and variance . Note that the
entire vector yi is used for simulating bi, not only the censored components.

While this additional data augmentation in the Gibbs sampler has potentially slower mixing
for the sampled yi's, it greatly simplifies computations. Hughes' Gibbs sampler requires an
update of the mean and variance of the fully conditional distribution of each sampled yij. This
involves costly matrix multiplication and inversion. More importantly, there are advantages in
sampling yi in block: the vector sampler in R is ten times faster than the univariate sampler for
the independent components of the same vector, as it uses the fast implementations of the R
vector functions pnorm(log.p=T) and qnorm(log.p=T).

The variance of bi and the matrices used in computing the mean of bi are of dimension q × q
(dimension of bi), and can be computed once at the beginning of the entire Gibbs sampler.
They are also used in the M-step of the algorithm, so they induce no additional computational
cost.

Using different E-step schemes for different clusters is possible because the clusters are
independent. The hybrid EM method improves computation time in two ways: firstly, the
computation of the E-step is faster than the MCEM version; secondly, since there is no Monte
Carlo error it improves the convergence of the EM and therefore converges in fewer steps than
the standard MCEM.
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2.3 The proposed hybrid EM: M-step
For the LME with fully-observed data, Bates and Pinheiro (1997) and Schafer (1998) show
that σ2 can be updated at the M-step based on the marginal likelihood, which leads to faster
convergence of the EM algorithm, following the observation of Lindstrom and Bates (1990).
Using this idea in the context of censored data, we update β, σ2 with {yij : Cij = 1} as missing
data, and Ψ using {yij : Cij = 1} and bi as missing data. Using the “pseudo-data” notation (see,
e.g. Pinheiro and Bates, 2000, p.63) we decompose D−1 = Δ⊤Δ and write:

,

(6)

Then, the M-step updates are:

(7)

(8)

(9)

where , , , and E
(yi), Var(yi) are the mean and variance conditional on {Ci, Qi ; i = 1 … m}, taken at the current
parameter value θ = (β, σ2, D). The computations use dimension reduction based on QR
decomposition, as described in Bates and Pinheiro (1997) and Pinheiro and Bates (2000).

In (9) we assumed that Ψ is unstructured. When Ψ is assumed diagonal, the updated Ψ is a
diagonal matrix with same diagonal elements as the right hand side in (9).

2.4 Automatic monitoring of convergence
For clusters with three or more censored observations the proposed HEM behaves like a
MCEM. Choosing the Monte Carlo (MC) sample size and monitoring MCEM convergence
are important issues which haven't received yet a satisfactory resolution. Chan and Ledolter
(1995) show that the likelihood sequence of the EM stabilizes to an approximate AR(1) process,
with variance inversely proportional to the MC sample size G. Booth and Hobert (1999) suggest
choosing G by comparing the MC error with the asymptotic error of the MLE. This requires
expensive computations of variance matrices, or second order derivatives, at each step of the
algorithm. Vaida and Meng (2005) use a gradual increase of G to ensure a “smooth” transition
of the MCEM to the new stationary distribution for large G. They take the final estimate of the
MLE by averaging the samples run in the “plateau” stage of the MCEM. Here we propose a
simple general approach to MCEM convergence.
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The objective function for monitoring EM convergence is the log-likelihood, which is
monotonously increasing to its MLE value. However, in many applications this is not easy to
compute. Alternatively, convergence can be decided when the change in parameters is “small
enough”. It is not clear what metric to use to combine the parameters when determining the
change; the log-likelihood is a natural choice. We are interested here in an objective function
that is one-dimensional, easy to compute, and which does not add to the computational burden.
For LME with censored data we use the form of the log-likelihood for the corresponding LME,
computed as a function of the parameters alone (e.g. Pinheiro and Bates, 2000, formula (2.13)).
In our case the sequence of values of the objective function (called by abuse of language “log-
likelihood”) still follows an approximate AR(1) process upon convergence.

The MLE solution given by MCEM is approximate, up to the MC error. In our experience, the
MC error of the log-likelihood is dominating by far the error due to non-convergence of the
EM. Instead of engaging in a losing race of making MCEM look like a “bona fide” EM by
using extremely large values of G, we decided to embrace this “character flaw” of MCEM and
work with, rather than against, its variability. We propose to declare convergence when the
empirical standard deviation of the MCEM objective function, at stationarity, has a
predetermined, small value, s*. The value of G can be adjusted “on the fly” to achieve this
goal. Thus, the algorithm has several stages, as follows.

In the burn-in stage the parameter converges to the vicinity of the MLE. For this we use a small
MCMC sample size G1, e.g., G1 = 100. Call li the log-likelihood at step i. We end the burn-in
stage when li+1 < li, i.e. when the log-likelihood starts to jump up-and-down. This usually takes
a small number of steps. In the second stage we evaluate the standard error of li. Keeping G =
G1 we run the algorithm for I2 steps, e.g., I2 = 10, and compute the standard deviation of the
log-likelihood in this stage, using the AR(1) assumption. We compare this standard deviation,
sl2, with the tolerance of MC standard deviation, s*. The approximate MC sample size needed
to achieve s* is G* = (sl2/s*)2G1. Next, we start the transition stage between G = G1 and G =
G*. The increase in G needs to be smooth so that the EM doesn't spend too much computation
time far away from the MLE. We increase G such that the decrease in sl is linear. After each
increase G is kept fixed until li shows a change in direction, then G is increased again, and so
forth, until reaching G*. This ensures running the algorithm in a state of “quasi-stationarity”.
Finally, in the plateau stage run the algorithm for a number of steps I4, e.g., I4 = 10, at G =
G*. At this point we can either stop the algorithm, or evaluate sl4 based on the last I4 steps and
if , again increase G accordingly and run it for I5 steps. The parameter estimates are those
from the last step. A multiple stage MCEM including burn-in, transition and plateau stages
was discussed by Vaida and Meng (2005), but without automatic monitoring. The notion of
burn-in is borrowed from the MCMC literature (see, e.g., Gilks et al., 1996).

This algorithm balances the monotonicity of the EM with the variability of MCMC. During
the transition period we assume that the incremental difference due to EM is larger than the
MCMC error as long as the log-likelihood sequence is monotone. When the sequence is no
longer monotone the MCMC sample size can be increased. We recommend this as a general
strategy for monitoring MCEM convergence.

3 Nonlinear mixed effects models with censored response
We apply now the ideas and algorithm designed for LME to NLME with censored response.
Extending the notation of previous section, consider the general NLME model:

(10)
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The conditional mean of yij, f(β, bi) = f(β, bi, xij) is a non-linear function of the fixed parameter
β and of the random effect vector bi; xij is a vector of covariates, and bi and eij are given by
(2). For example, f(β, bi) may be given by (14), with bi = βi − β, and xij = tij. The marginal

likelihood for the NLME,  is in general not in
closed form. Most algorithms for computing the MLE (β ̂, σ ̂2, γ ̂) and empirical Bayes estimators
(predictors) for the random effects b̂i, rely on iteratively linearizing the conditional mean
function and solving the resulting LME model. Our algorithm for NLME with censored
response deal with the censored data within the LME step.

For NLME with complete response, if the current estimates for (β, bi) are , the
linearization step yields the LME

(11)

i = 1, …, m, where

(12)

, , yi is the ni-vector dependent variable for the ith subject, fi, ei are respectively
the corresponding mean function and error ni-vectors, and the starred terms are computed at

. The MLE for the LME model (11) yields updated estimates of (β, σ2, γ) and bi, and the
algorithm is iterated to convergence (Wolfinger, 1993). The LME step may be solved using a
Newton-Raphson algorithm (Lindstrom and Bates, 1990;Pinheiro and Bates, 2000) or EM-
type algorithms (Laird and Ware, 1982).

Lindstrom and Bates (1990) precede the linearization step by a penalized non-linear least
squares (PNLS) step: for given variance matrix D, β ̂ and b̂i are updated by minimizing the
objective function

(13)

The PNLS leads to the same solution as the iterative-LME algorithm without the PNLS step,
possibly faster in some cases (Bates and Pinheiro, 1997).

Assume now that the response yij is not fully available, but rather the censoring value and
indicator, (Qij, Cij) are observed, as in (3). We apply the EM algorithm for LME with censored
response, but with each EM iteration preceded by a linearization step. More specifically, the
algorithm goes as follows:

1. Linearization step. Compute wi, , , based on current parameter estimates θ*, as
in (11). In this calculation use the censoring limits Qij instead of yij. This generates a
LME with censored response (wij, Cij).
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2. E-step. Same as the simulation E-step from section 2.2. Compute the expectations
numerically, or simulate the fully observed response of the linearization step LME
and the random effects using a block Gibbs sampler.

3. M-step. Update the parameter values as in section 2.3, using (7)–(9).

The algorithm is iterated to convergence. The starting values are provided by an NLME where
the censored data are replaced with ad-hoc values, e.g. the truncation limit, or half the truncation
limit (Wu and Ding, 1999). Upon convergence bi is estimated by b̂i from (7). The variance of
the MLE θ ̂ is estimated at convergence, based on the linearized model. Pinheiro and Bates
(2000) and Bates and Watts (1988) discuss the accuracy of this approximation for NLME. As
for LME, the variance is adjusted for the censored information using Louis' formula. The
variance of the fixed effects in the approximate MLE is given (Hughes, 1999) by (5). This is
computed upon convergence, using a hybrid approach similar to the E-step of the EM
algorithm.

Note that we incorporated the linearization step as part of the EM algorithm. The NLME
algorithm in section 3.1 suggests that each linearization step be followed by the computation
of the full MLE of the linearized model, which is what Fitzgerald (2000) and Wu (2002) did.
The algorithm we present here is equivalent to a single EM iteration for the linearized model.
Both versions lead to the same MLE solution, since both the linearization step and the EM step
need to converge in order for the whole algorithm to converge. The choice of how many EM
steps to use between linearization steps is driven by computational efficiency. In our
experience, the sampling E-step is much more time consuming than the linearization step, and
thus a re-linearization for each EM iteration is warranted.

The choice of Monte Carlo sample size and monitoring the convergence of the MCEM are
detailed in section 2.4. The objective function, following Lindstrom and Bates (1990), is the
log-likelihood of the linearized LME, as a function of the parameters, see also equation (2.13)
in Pinheiro and Bates (2000). There is, however, one specific difference for the NLME. Because
of the linearization step, even if the E-step had no Monte Carlo error at all, the log-likelihood
sequence would not necessarily be increasing, rather it may have occasional “turns”, or even
converge decreasingly towards the MLE limit. For this reason we need a different mechanism
to identify the end of the burn-in stage. Such a mechanism is provided by the MC standard
deviation of the log-likelihood process. We compute this standard deviation sl1 based on a
batch of, say, 10 successive steps, using an AR(1) approximation. If sl1 is decreasing over two
successive batches this indicates that the process is not stationary yet, and the burn-in is not
over. When, due to the random error in the Monte Carlo step, sl1 is increasing over two
successive values, this indicates stationarity and we can proceed to the transition stage. The
target MC sample size is based on the final value of sl1 from burn-in.

4 An AIDS Study
In this application we reanalyze the HIV viral load data from clinical trial ACTG 315 Lederman
et al. (1998). The HIV viral load is the primary measure of HIV infection. Commercially
available assays have lower limits of accurate quantification of between 40 and 400 copies/
mL of plasma. The observations below this quantification limit (QL) are censored at this value.
Wu and Ding (1999) used a non-linear mixed effects models (NLME) in a statistical analysis
of HIV-1 viral decay data after initiation of ARV. This model was used in subsequent
publications, including Wu (2004) who also considered measurement error in the CD4
covariate process. The bi-exponential model of Wu and Ding (1999) was rooted in the
mathematical model for HIV proposed by Perelson et al. (1996). The model is
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(14)

where yij is the log10 HIV-1 RNA viral load for the ith subject at time tij. The subject-specific
random effects and the error terms satisfy (2) with βi = β + bi = (ln P1i, ln P2i, δi, λi)⊤, β = (ln
P1, ln P2, δ, λ)⊤. The parameters δ and λ are two viral elimination rates of the two components,
corresponding in theory to two different pools of HIV infected cells. It is assumed that δ ≫
λ. The first component dominates the viral dynamics, lasting roughly for the first two weeks
of ARV treatment, and the second component controls the second phase, of more shallow viral
decay, lasting roughly between weeks 2 and 12 of treatment. The data are from the first 12
weeks of follow-up of HIV clinical trial ACTG 315 (see Lederman et al., 1998, for details).
In this paper we are only concerned with modelling the viral decay phase, prior to viral rebound.
Observations following viral rebound (a 1 log10 increase over the nadir value) were not
included. See Fitzgerald et al. (2002) for an analysis including the viral rebound. For the
observations below the limit of quantification of the NASBA assay of 100 copies/mL, yij is
left-censored at log10 100. Since the censoring value is constant (type 1 censoring), the
censoring is independent of the complete data. Wu and Ding dealt with the censored data in
an ad-hoc manner, by replacing it with half the QL value (HQL). The data set for our analysis
is slightly different than the one used by Wu and Ding (1999), who kept only the first censored
value for each subject in the analysis. Measurements were taken at days 0, 2, 7, 10, and weeks
2, 3, 4, 8, 12. (Figure 1). The data consist of 381 observations on 47 subjects. Nineteen subjects
had at least one censored observation (11 had one, 4 had two and 4 had 3 or more censored
observations).

The results of this analysis are presented in Table 1. The coefficient estimates are similar for
HEM and HQL. The turnover rate for the second component, λ, whose estimation is based
mostly on the later follow-up observations is most affected by censoring. The HEM leads to
an elimination rate λ larger than HQL (difference approximatively two standard deviations).
The standard errors of the estimates are artificially smaller for HQL. In order to highlight the
influence of censoring on parameter estimates we conducted a second analysis of ACTG 315,
using a censoring limit of 500 copies/mL (in HQL the censored data are replaced by 250 copies/
mL). Overall, 9, 12 and 12 subjects had respectively one, two and more than two HIV RNA
values censored at 500 copies/mL. The results of this analysis are included in Table 2, and the
findings are similar to those in Table 1, with a more clear difference in the estimation of λ.
Comparing λ between Table 1 and Table 2, the higher QL for censoring leads to lower values
of λ. Heuristically, these values are biased downward, since more information for estimating
λ is lost to censoring. The bias is larger for HQL. The higher standard deviation for λ for HEM
compared to HQL reflects the adjustment for the uncertainty due to censoring.

Figure 2 displays fitted curves for four subjects, using HEM and HQL algorithms, based on
QL of 500 copies/mL. The plots illustrate that the estimated decline in the second phase is
steeper for HEM. As noted by Wu and Ding (1999), δ and λ represent the population-level
elimination (turnover) rates for the two CD4 cell components (e.g., productively infected cells
and long-lived and/or latently infected cells respectively), and are important in understanding
the pathogenesis of HIV-1 infection. They correspond to half-lives of ln(2)/δ and ln(2)/λ
respectively. For ACTG 315 data, the second CD4 cell component has an estimated half-life
of 22.1 days (95% CI 17.3–30.3 days) using HEM, and 27.0 days (95% CI 22.1–34.7 days)
using HQL. The program took 102 seconds on a Pentium M processor at 1.70 GHz. We used
R version 1.9.0.

Vaida et al. Page 9

Comput Stat Data Anal. Author manuscript; available in PMC 2009 July 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



5 Hybrid EM versus Multiple Imputation: a simulation study
We compared the behavior and performance of the HEM with a Multiple Imputation method
(Fitzgerald et al., 2002) and the HQL algorithm via statistical simulation. Since the MLE for
complete data NLME is only approximated, and potentially biased (Demidenko, 1997), we
also include the complete data results (NLME), in order to separate the effect of censoring
from the effect of the NLME approximation and finite sample bias. We used a simplified two-
component exponential model (14). Noting that P0i = P1i + P2i is the expected baseline viral
load for subject i (i.e. at t = 0), we write P1i = (1 + eτ)−1P0i, P2i = eτ(1 + eτ)−1P0i, and assume
that the random effects are

and the fixed effects are β = (ln P0, τ, δ, λ). Note that the first component elimination rate δ is
common to all subjects, δi = δ. The errors are independent eij ∼ N(0, σ2). Fully observed data
were obtained, which were subsequently censored at 100 copies/ml for the censored-data
methods.

The simulation results are based on 500 simulated data sets. Parameter values β were chosen
similar to the results of section 4 and of Wu and Ding (1999), but with a larger value of λ in
order to avoid convergence problems: β = (11.6, −3.6, 2.8 weeks−1, 0.35 weeks−1), σ2 = 0.07,
The matrix D had elements D11 = 2.25, D12 = D21 = 0.147, D22 = 0.02. Each data set had 50
subjects, with 8 observations per subject and a follow-up of 12 weeks. Sixteen % of all
observations and 38% of the observations after at least three weeks of follow-up were censored.
At the estimation stage, the MI results are based on N = 5 imputations, with K = 50 iterations
each. HQL used NLME with censored data replaced by 50 copies/mL. (An alternative approach
to HQL would be to only replace the first censored observation by 50 copies/mL and discard
the rest.) The simulation study was done in SAS.

The four methods were compared based on relative bias E(θ ̂−θ)/|θ|, coverage probability for
confidence intervals Pr(θ ∈ Î), and relative root-mean-squared error E1/2[(θ ̂ − θ)/θ]2. (The
parameter of interest θ is estimated by θ ̂ and the confidence interval Î.) Table 3 presents the
average fixed effects estimates and their simulation-based variance. Table 4 contains the
relative bias and relative root mean squared error of the four methods, and Table 5 — the
coverage probabilities. Finally, Table 6 contains the average estimates and relative bias for the
variance components D and σ2.

As expected, among the three methods dealing with censored data HEM performed best,
followed by MI, while HQL gave generally poor results. The poorest performance in terms of
both relative bias and coverage was obtained for λ, since the second turnover rate is most
affected by censoring. There was a 37% bias in estimates using HQL; this bias fell to 4% for
MI, and to less than 1% for HEM. The HEM estimate of λ had very good coverage, 93% for
the 95% confidence interval, whereas MI had a coverage of 88%, and HQL had 0% coverage.
Both MI and HEM algorithms account for censoring in the variance of the parameter estimates.
HEM inflated estimates of the variance of ln P0, δ, λ and τ by 0%, 5%, 50% and 14%
respectively. Alternatively, for each component of β we can compute the relative loss of
information due to censoring, 1 − Var(θ ̂NLME)/Var(θ ̂HEM). For the four parameters, this is
respectively 0%, 5%, 33%, and 12%. Note that one third of the information for estimating λ is
lost due to censoring at QL = 100 copies/mL. Figure 3 presents the kernel density estimates
for λ based on the simulations, and illustrates the bias and underestimation of variance for the
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HQL estimates, the excellent performance of HEM and the very good results of MI. Similar
results for the first turnover rate δ are presented in Figure 4.

Regarding the covariance parameters Dij and σ2 in Table 6, NLME had minimal bias; HQL
performed poorly for all estimates. MI and HEM performed well for D11, with a relative bias
no greater than 1%. The three methods based on censored data underestimated D22, with a bias
of −6.5% for HEM, −21% for MI and −61% for HQL. The true correlation between random
effects was 0.70. The average correlation for NLME, HQL, MI, and HEM was 0.70, −0.13,
0.73 and 0.66 respectively. The large underestimation of the variability in the λi random effect
and of the correlation of the random effects when using HQL is expected, because this
algorithm sets all censored values to a constant and so underestimates the heterogeneity in the
decay rate. This underlines once again the need for appropriate adjustment for censoring.

6 Discussion
In this paper we have developed a hybrid EM algorithm for NLME models with censored
response, and have compared its performance to multiple imputation and ad-hoc methods. The
analyses have shown that even for relatively low levels of censoring the inference for certain
model parameters may be severely biased if censoring is ignored. Multiple imputation may be
implemented with existing NLME software and yields good working precision. However, it
requires programming effort and statistical sophistication on the part of the user. The proposed
HEM works in general situations with minimal user input and provides best precision and ease
of use, at an affordable computation cost.

Demidenko (1997) found in a particular NLME case that the Lindstrom and Bates (1990)
NLME approximation was asymptotically biased if the number of observations per subject
nij is bounded. However, for our simulated NLME data examples, with moderate samples nij
= 8, m = 50, the bias was negligible. This is in agreement with earlier results of Pinheiro and
Bates (1995). Pinheiro and Bates (1995) also comment that the estimates of fixed effects and
the estimates of covariance parameters appeared independent. Unlike the situation for linear
mixed effects (Pinheiro, 1994), this independence has not been proven. Our simulation results
suggest that this independence could still hold for NLME. However, for censored response
NLME we found a significant correlation between estimates of fixed effects and covariance
parameters. The correlation between the estimate of the fixed effect λ and the estimated
variance of the random effect λi on the simulated data was −0.44 and −0.25 for HEM and MI
algorithms respectively, versus −0.005 for NLME.

Currently our program computes the MLE for independent errors and for unstructured or
diagonal random effects variance Ψ. While these are the most common situations, extensions
are possible following the methodology presented here. These include, as in Pinheiro and Bates
(2000), several levels of grouping; more complex structures for the diagonal matrix; or errors
with serial or spatial correlation errors.

While we treated the censored observations as missing data, an alternative approach would be
to maximize directly the censored data likelihood. Yet another approach is a Bayesian analysis
using Markov chain Monte Carlo (Gilks et al., 1996; Wakefield, 1996; Schafer, 1998), where
the parameter estimates are based on samples from the posterior distribution.

The self-monitoring method for our algorithm offers a general stopping and monitoring rule
which can be used in any MCEM setting. We note that the hybrid approach, using numerical
integration at the E-step for clusters with one or two censored observations is speeding up the
algorithm considerably. In our experience we found that Monte Carlo simulation is a necessary
evil rather than an ideal solution to this problem. The good news is that through efficient
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implementation of the M-step and sampling of the E-step our software provides solutions with
good precision in real time.
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Figure 1.
ACTG 315 data: log10 HIV-1 RNA for the first 12 weeks for 24 subjects. Observed responses
(∘) are shown along with censored readings (•); Lower QL = 100 copies/mL.
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Figure 2.
ACTG 315 data: HIV-1 RNA response and estimated subject-specific response for four
subjects, based on QL = 500 copies/mL (dotted line). The two fitting methods are HEM (dashed
line), and HQL (solid line).

Vaida et al. Page 15

Comput Stat Data Anal. Author manuscript; available in PMC 2009 July 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Simulation study: estimates of the fixed effect λ, using NLME (—), HEM (– · –), MI (– –),
and HQL (- -). Vertical line represents the true value.
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Figure 4.
Simulation study: estimates of the fixed effect β, using NLME (—), HEM (– · –), MI (– –),
and HQL (- -). Vertical line represents the true value.
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Table 1
ACTG 315 results, QL = 100 copies/mL. HEM: NLME for censored data using HEM. HQL: NLME, censored data
replaced by 50 copies/mL.

HEM HQL

Estimate SE Estimate SE

δ (weeks−1) 2.392 0.108 2.375 0.104

λ (weeks−1) 0.2444 0.0306 0.2148 0.0253

ln P1 11.55 0.24 11.55 0.23

ln P2 7.783 0.265 7.685 0.259

σ 0.2570 0.2604
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Table 2
ACTG 315 results, QL = 500 copies/mL. HEM: NLME for censored data using HEM. HQL: NLME, censored data
replaced by 250 copies/mL.

HEM HQL

Estimate SE Estimate SE

δ (weeks−1) 2.344 0.103 2.666 0.099

λ (weeks−1) 0.1990 0.0321 0.1327 0.0202

ln P1 11.55 0.23 11.52 0.23

ln P2 7.627 0.281 7.434 0.236

σ 0.2505 0.2494
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Table 3
Estimated fixed effects from the simulation study (mean, standard deviation).

ln P0 δ λ τ

True value 11.60 2.80 0.35 -3.50

HQL 11.52 (0.23) 2.58 (0.15) 0.22 (0.02) -3.89 (0.14)

MI 11.59 (0.23) 2.78 (0.16) 0.33 (0.03) -3.55 (0.14)

HEM 11.60 (0.23) 2.81 (0.16) 0.35 (0.03) -3.51 (0.14)

NLME 11.59 (0.23) 2.80 (0.16) 0.35 (0.02) -3.51 (0.13)
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Table 4
Relative bias (%) and relative root mean square error (in parentheses, %), for fixed effects estimates from the simulation
study.

ln P0 δ λ τ

HQL -0.73 (2.2) -7.87 (9.5) -37.3 (37.7) -11.1 (11.8)

MI -0.08 (2.0) -0.75 (5.9) -4.51 (9.0) -1.41 (4.2)

HEM 0.01 (2.0) 0.32 (5.9) -0.28 (8.8) -0.01 (4.0)

NLME -0.05 (2.0) -0.25 (5.8) -0.40 (6.8) 0.24 (3.7)
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Table 5
Coverage probabilities for 95% confidence intervals on the fixed effects from the simulation study.

ln P0 δ λ τ

HQL 0.95 0.62 0.00 0.21

MI 0.96 0.93 0.88 0.95

HEM 0.96 0.94 0.93 0.94

NLME 0.96 0.94 0.94 0.95
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Table 6
Estimated Covariance parameters and relative bias (%, in parentheses) from the simulation study.

D11 D22 D12 σ2

True values 2.25 0.020 0.147 0.070

HQL 2.65 (18) 0.001 (-61) -0.019 (-113) 0.075 (7.5)

MI 2.26 (0.6) 0.015 (-22) 0.135 (-8.5) 0.068 (-2.4)

HEM 2.23 (-1.0) 0.021 (-6.5) 0.141 (-4.2) 0.068 (-3.3)

NLME 2.24 (-0.4) 0.020 (-0.3) 0.147 (0.3) 0.070 (-0.6)
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