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Abstract
Fitting logistic regression models is challenging when their parameters are restricted. In this article,
we first develop a quadratic lower-bound (QLB) algorithm for optimization with box or linear
inequality constraints and derive the fastest QLB algorithm corresponding to the smallest global
majorization matrix. The proposed QLB algorithm is particularly suited to problems to which EM-
type algorithms are not applicable (e.g., logistic, multinomial logistic, and Cox’s proportional hazards
models) while it retains the same EM ascent property and thus assures the monotonic convergence.
Secondly, we generalize the QLB algorithm to penalized problems in which the penalty functions
may not be totally differentiable. The proposed method thus provides an alternative algorithm for
estimation in lasso logistic regression, where the convergence of the existing lasso algorithm is not
generally ensured. Finally, by relaxing the ascent requirement, convergence speed can be further
accelerated. We introduce a pseudo-Newton method that retains the simplicity of the QLB algorithm
and the fast convergence of the Newton method. Theoretical justification and numerical examples
show that the pseudo-Newton method is up to 71 (in terms of CPU time) or 107 (in terms of number
of iterations) times faster than the fastest QLB algorithm and thus makes bootstrap variance
estimation feasible. Simulations and comparisons are performed and three real examples (Down
syndrome data, kyphosis data, and colon microarray data) are analyzed to illustrate the proposed
methods.
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1. Introduction
Logistic regression is one of the most widely used statistical tools in many areas such as
biomedicine, social sciences, economics and business (Collett, 1991; Agresti, 2002). If we
know that parameters are restricted by some constraints, then it is reasonable to expect that we
should be able to do better by incorporating such additional information than by ignoring them
(Robertson et al., 1988; Silvapulle and Sen, 2005). Fitting logistic models becomes challenging
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when some model parameters are restricted inside a convex region in the Euclidean space (e.g.,
parameter estimation for lasso regression). When maximum likelihood estimates (MLEs) of
parameters are located on the boundary of the region or the region that can be represented in
terms of a set of equality/inequality restrictions, the constrained optimization problem may
reduce to penalized problem that is closely related to the posterior mode (or maximum a
posteriori estimate) in a Bayesian framework. The situation can be further complicated if the
penalty function is not totally differentiable.

We consider the well-known lasso logistic regression which motivates the present problem of
interest. Variable selection is one of the most pervasive problems in statistical applications.
Classic methods for model/variable selection have not had much success in biomedical
application, especially in high-dimensional data analysis including gene or protein expression
data analysis, partly due to their numerical instability. A novel method that mitigates some of
this instability and has good predictive performance is the lasso regression (Tibshirani,
1996). For logistic models, the lasso regression is to find

(1.1)

where θ = (θ1, …, θq)T is a q × 1 vector of unknown parameters, ℓ(θ) is the log-likelihood
function defined in (1.4) below, and u is a tuning parameter. Although a quadratic
approximation to ℓ(θ) can lead to a simpler iteratively reweighted least squares procedure
(Tibshirani, 1996), convergence of this procedure is not generally ensured. One possible
extension of (1.1) is to formulate the so-called bridge regression (Frank and Friedman, 1993).
In this case, one would like to find

(1.2)

where γ > 0. However, solution to (1.2) was not given for any given u and γ in Frank and
Friedman (1993).

Motivated by the constrained optimization problems (1.1) and (1.2), we consider the following
logistic model with constrained parameters,

(1.3)

where yi denotes the number of subjects with positive response in ni trials and  are
independent, pi is the probability that a subject gives positive response, x(i) is the vector of
covariates, and θ is a q × 1 vector of unknown coefficients being restricted by some simple
constraints a ≤ θ ≤ b for some q × 1 constant vectors a and b (e.g., the lasso regression) or
linear inequalities of the form c ≤ Pk×q θ ≤ d for some k × 1 constant vectors c and d (see the
examples in §5.3 and §5.4). When rank(P) = q, letting µ = Pθ yields a ≤ µ ≤ b and θ = (PT

P)−1 PT µ. In other words, linear inequality constraints with a full column-rank matrix P can
be reparameterized into simple box constraints [a, b] (Khuri, 1976;Tan et al., 2003,2007).
Hence, the log-likelihood function of θ in (1.3) is

(1.4)

and the goal is to find the constrained MLE θ̂ or the penalized MLE θ̃ given by

(1.5)
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(1.6)

where J1(θ) is a penalty function and λ > 0 is a smoothing parameter for the tradeoff between
the accuracy of the model fit and smoothness. When J1(θ) is not totally differentiable, the
penalized problem (1.6) sometimes can be reformulated as

(1.7)

where J2(θ) is differentiable everywhere.

When the log-likelihood is well-behaved (e.g., well approximated by a quadratic function), a
natural algorithm for finding MLE is the Newton-Raphson (NR) or scoring methods because
they converge quadratically. For logistic model with large number of variables (e.g., genes),
both methods require tedious calculations for the Hessian or expected information matrix at
each iteration. In addition, the log-likelihood does not necessarily increase at each iteration for
NR method, which may sometimes be divergent (Cox and Oakes, 1984, p.172). Böhning and
Lindsay (1988, p.645–646) provided an example of a concave function for which the NR
method does not converge. Although EM-type algorithms (Dempster et al., 1977; Meng and
Rubin, 1993) possess the ascent property that ensures monotone convergence, they are not
applicable to logistic regression owing to the absence of a missing-data structure. Therefore,
for problems in which the missing-data structure does not exist or is not readily available, the
quadratic lower-bound (QLB) algorithm (Böhning and Lindsay, 1988) is often an alternative.
However, when the model has constrained parameters, the QLB algorithm is not applicable.
In addition, like EM-type algorithms, the QLB algorithm is usually criticized for its slow
convergence, especially for solving complicated problems or in high-dimensional data
analysis.

In this paper, we first develop a QLB algorithm that can generally be applicable to optimization
with box or linear inequality constraints. The fastest QLB corresponding to the smallest global
majorization matrix is also derived. In brief, the QLB algorithm consists of an optimization
transfer (T-step) and a constrained maximization (M-step). The T-step transfers the
optimization from the intractable log-likelihood function to a quadratic surrogate function Q
(θ|θ′) such that both functions share the same maximizer. The M-step can often be accomplished
via some built-in SPLUS functions (e.g., nnls.fit or nlregb), which is one of the advantages of
the algorithm. The QLB algorithm is especially suited to those problems (e.g., logistic,
multinomial logistic, and Cox’s model) in which EM-type algorithms are not applicable while
it retains the same EM ascent property and thus assures the monotonic convergence. Secondly,
we generalize the QLB algorithm to penalized problems in which the penalty functions may
not be totally differentiable. The proposed method therefore provides an alternative algorithm
for estimation in lasso logistic regression, where the convergence of the existing lasso algorithm
is not generally ensured. Finally, to accelerate the convergence rate, we introduce a pseudo-
Newton algorithm that does not necessarily have the ascent property but retains the simplicity
of the QLB algorithm and the fast convergence of the Newton method. We show both
theoretically and numerically that the pseudo-Newton algorithm is dramatically faster than the
fastest QLB algorithm (up to 71 times in CPU time or 107 times in numbers of iterations) and
thus makes the bootstrap variance estimation feasible. Another merit of the pseudo-Newton
method is that the Cholesky decomposition of the surrogate matrix is calculated only once
while the same matrix is required to be updated at each iteration for the Newton method.

The rest of this article is organized as follows. Section 2 develops the QLB algorithm for
optimization with box or linear inequality constraints and derives the fastest QLB algorithm.
Section 3 generalizes the QLB algorithm to penalized problems and investigates some
convergence properties. Section 4 introduces a pseudo-Newton method. We apply the fastest
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QLB and pseudo-Newton algorithm to estimate constrained parameters and to select variables
in logistic regression in Section 5 and Section 6, respectively. Simulations and comparisons
are performed and three published data sets are analyzed to illustrate the proposed methods.
We conclude with a discussion in Section 7.

2. A QLB algorithm for optimization with box or linear inequality constraints
2.1 Formulation of the algorithm

Consider the calculation of the constrained MLE as follows

(2.1)

where ℓ(θ) is a twice continuously differentiable and concave function. Let ∇ denote the
derivative operator, ∇ℓ(θ) the gradient vector and ∇2ℓ(θ) the Hessian matrix. A key assumption
for the QLB algorithm is that there exists a positive definite matrix B (denoted as B > 0) which
globally majorizes the observed information, i.e.,

(2.2)

where B does not depend on θ. Throughout this paper, a matrix B (> 0) is said to be a global
majorization (GM) matrix if B is independent of θ and satisfies the condition (2.2).
Furthermore, for two given θ and θ′ ∈ ℝq, a quadratic surrogate function is defined by

(2.3)

Proposition 1 below shows that the QLB algorithm has the same EM ascent property. This
property implies that finding (2.1) is equivalent to iteratively finding

(2.4)

provided that the initial value θ(0) ∈ [a, b]. To implement the M-step of the algorithm, we first
construct an upper triangular matrix C via the Cholesky decomposition such that B = CT C,
and define a q-vector depending on B and θ(t) (θ(t) ∈ [a, b]) as

(2.5)

(2.4) thus becomes

(2.6)

Some built-in SPLUS functions such as nnls.fit (nonnegative least squares) and nlregb
(nonlinear least squares subject to box constraints) can be utilized to calculate (2.6). Given a
concave log-likelihood ℓ(θ), the score vector ∇ℓ(θ) and the observed information matrix
−∇2ℓ(θ), the QLB algorithm consists of

T-step: To find a GM matrix B and construct an upper triangular matrix C via the Cholesky
decomposition such that B = CT C, and

M-step: To update the current estimate θ(t) via (2.6)

2.2 The ascent property
One of the appealing features of the above QLB algorithm is that it possesses the EM ascent
property. That is, the likelihood increases in each QLB iteration. We prove this ascent property
in the following proposition.
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Proposition 1—Under the assumptions (2.2) and (2.3), (i) ℓ(θ) − Q(θ|θ′) achieves its
minimum (i.e., zero) at θ = θ′ for all θ, θ′ ∈ ℝq; and (ii) the ascent property holds, i.e., an
increase in Q(θ|θ(t)) leads to an increase in ℓ(θ) for all θ, θ(t) ∈ [a, b].

Proof: Consider the Taylor expansion of the ℓ(θ) in a neighborhood of θ′, we have

for all θ, θ′ ∈ ℝq and some point θ* between θ and θ′. Assumption (2.2) guarantees

(2.7)

Thus, ℓ(θ) − Q(θ|θ′) achieves its minimum zero at θ = θ′. Since [a, b] is a convex subset of
ℝq, it follows that (2.7) holds for all θ, θ′ ∈ [a, b]. Together with the condition Q(θ(t+1)|θ(t)) ≥
Q(θ(t)|θ(t) for all θ(t), θ(t+1) ∈ [a, b], we immediately obtain

where the inequality is strict if θ(t+1) ≠ θ(t).

2.3 The fastest QLB algorithm
As the EM algorithm (Meng and Rubin, 1991), the original QLB algorithm is also a linear
iterative algorithm. Böhning and Lindsay (1988) showed that the original QLB algorithm
converges linearly with matrix rate of convergence given by

(2.8)

where A ≡ ∇2ℓ(θ ̂) + B ≥ 0. Similar to Meng (1994), we call the largest eigenvalue ρ{∇MB(θ ̂)}
of ∇MB(θ ̂) the global rate of convergence. In some literature, ρ{∇MB(θ ̂)} is also called the
spectral radius of ∇MB(θ ̂) (Fessler et al., 1993). Böhning and Lindsay (1988) also showed that
for the original QLB algorithm, the global rate of convergence ρ{∇MB(θ ̂)} ∈ [0, 1). Since the
larger the value of ρ{∇MB(θ ̂)} the slower the algorithm, we usually call the smallest eigenvalue
s{I − ∇MB(θ ̂)} = 1 − ρ{∇MB(θ ̂)} of I − ∇MB(θ ̂) the global speed of the algorithm.

Suppose that there exist two GM matrices B1 and B2 which lead to two QLB algorithms with
∇MB1(θ ̂) and ∇MB2(θ ̂), respectively. Proposition 2 below tells that if B1 majorizes B2, then
B2 is preferred.

Proposition 2—Suppose there exist two positive definite matrices B1 and B2 such that B1 ≥
B2 ≥ − ∇2ℓ(θ) for all θ ∈ ℝq. We have

That is, the QLB algorithm based on B2 converges faster than the one based on B1.
Furthermore, if B1 > B2 ≥ − ∇2ℓ(θ) for all θ ∈ ℝq, then s{I − ∇MB2 (θ′)} > s{I − ∇MB1 (θ′)}.

Proof: Our proof is similar to the proofs of Lemma 1 in Fessler et al. (1993) and Theorem 1

in Meng and van Dyk (1997). From (2.8), we have , where H ≡ − ∇2ℓ(θ ̂)
and k = 1, 2. Note that B1 ≥ B2 implies . If H > 0, then we immediately get

Therefore, the smallest eigenvalue
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satisfies:

If |H| = 0, then s{I − ∇MBk(θ ̂)} = 0. The proof for B1 > B2 ≥ H is similar.

We introduce a new notion before we derive the fastest QLB algorithm. A matrix B (> 0) is
said to be the smallest global majorization matrix if (i) B is a GM matrix; and (ii) there does
not exist a B′ > 0 such that B ≥ B′ ≥ − ∇2ℓ(θ) for all θ ∈ ℝq. First, the smallest GM matrix is
unique (i.e., if there exists a B″ > 0 such that B ≥ B″ ≥ − ∇2ℓ(θ) for all θ ∈ ℝq, then B″ = B).
Second, the smallest GM matrix is a GM, but the inverse is not true. Third, if B is the smallest
GM matrix, then there exist infinite many GM matrices that majorize B (e.g., r B ≥ B for any
r ≥ 1). Proposition 3 below indicates that the fastest QLB algorithm corresponds to the one
with the smallest GM matrix.

Proposition 3—Let B be the smallest GM matrix and r ≥ 1. The global speed of convergence
for the QLB algorithm based on the GM matrix r B is then given by

which is a monotonic decreasing function of r and its maximum is achieved at r = 1.

Proof: From (2.8), we have

Since ρ{∇MB(θ ̂)} ∈ [0,1), we obtain

The result follows immediately from the definition of the global speed of convergence.

3. Extension to penalized problems
In this section, we generalize the original QLB algorithm to the penalized problem (1.6). That
is,

(3.1)

The penalized MLE θ ̂ is the posterior mode (or maximum a posteriori estimate) in a Bayesian
framework if we treat c · e−λJ(θ) as a prior density of θ. The QLB algorithm suggests that the
θ̃ can be obtained by iteratively calculating

(3.2)

where Q is defined in (2.3). Similarly, we have the following results.
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Proposition 4

Let the sequence  be generated by (3.2). Hence, we have (i) ℓλ(θ) − Qλ(θ|θ(t)) achieves
its minimum (i.e., zero) at θ = θ(t); (ii) the ascent property holds, i.e., an increase in Qλ(θ|θ(t))
leads to an increase in ℓλ(θ) for all θ ∈ ℝq.

Proof—Since ℓλ(θ) − Qλ(θ|θ(t)) = ℓ(θ) − Q(θ|θ(t)), assertion (i) follows immediately. From
(3.2), we have Qλ(θ(t+1))|θ(t)) ≥ Qλ(θ(t)|θ(t)) for θ(t), θ(t+1) ∈ ℝq. Thus,

where the inequality is strict if θ(t+1) ≠ θ(t).

Proposition 5
If J1(θ) is twice continuously differentiable and convex, then the QLB algorithm for the
penalized problem in (3.1) converges with the matrix rate of convergence

(3.3)

and the global rate of convergence ρ{∇M(θ̃)} ≤ ρ{B−1A˜} < 1.

Proof—Let the sequence {θ(t)} be generated by the QLB algorithm in (3.2), which in fact
defines a mapping θ → M(θ) from ℝq to ℝq such that θ(t+1) = M(θ(t)) for t = 0, 1, …,+ ∞. From
(3.2), θ(t+1) can be calculated by differentiating Q(θ|θ(t)) − λJ1(θ) with respect to θ and then
setting to zero, i.e.,

(3.4)

Noting that θ = M(θ(t)), we differentiate (3.4) with respect to θ(t) instead, and obtain

At convergence (i.e., θ = θ(t) = θ̃), we have ∇M (θ̃) = [B+λ·∇2J1(θ̃)]−1(∇2ℓ(θ̃) + B), and (3.3)
follows. Since ∇2J(θ̃)≥0, by Proposition (a) in Green (1990), we have ρ{∇M(θ̃)} ≤ ρ{B−1 A˜}
< 1.

It is noteworthy that when λ = 0, we see that (3.3) reduces to (2.8). Hence, Proposition 5 implies
that the QLB algorithm for the penalized problem converges faster than the QLB algorithm
for the unpenalized problem.

When J1(θ) is not totally differentiable (see, the lasso regression (6.1) discussed later), the
penalized problem in (3.1) can sometimes be reformulated as

(3.5)

where J2(θ) is differentiable everywhere. Thus, the QLB algorithm suggests that the θ̃ in (3.5)
can be obtained by the following iteration

(3.6)

4. A pseudo-Newton method
Like EM-type algorithms, the QLB algorithm is often criticized for its slow convergence in
some applications, especially for solving complicated problems or in high-dimensional data
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analysis. In this section, we develop a pseudo-Newton method that on the one hand maintains
the simplicity of the proposed QLB algorithm and on the other hand achieves the speed of
convergence of the Newton method.

The Newton method solves (2.1) using the following iteration

(4.1)

where ξ(·, θ(t)) is defined by (2.5), and the Cholesky decomposition −∇2ℓ(θ(t)) = C(t)T C(t) has
to be calculated at each iteration. The scoring method simply replaces the observed information
by the expected information. If we replace −∇2ℓ(θ(t)) in (4.1) with a surrogate matrix ,
then a pseudo-Newton algorithm can be defined by the following iteration

(4.2)

where  is required to be calculated only once. Let  denote the unconstrained MLE
of θ in (2.1). If ; otherwise a minor modification of

. For logistic models, one may refer to (5.3). The following
proposition shows that the pseudo-Newton (4.2) converges faster than the fastest QLB
algorithm.

Proposition 6

Let B be the smallest GM matrix. (i) If , i.e.,
the pseudo-Newton algorithm converges faster than the fastest QLB algorithm based on B;

and (ii) If .

Proof—Using the condition B2 ≥ − ∇2ℓ(θ) in the proof of Proposition 2, Proposition 6 follows
immediately.

5. Application to logistic regression with constraints
5.1 The fastest QLB and the pseudo-Newton algorithms

The key to the QLB algorithm is to find a GM matrix satisfying condition (2.2). For the logistic
model (1.3), Böhning and Lindsay (1988) gave the smallest GM matrix. From (1.4), the score
and the observed information are given by

respectively, where XT = (x(1),…,x(m)), y = (y1,…,ym)T, p = (p1,…,pm)T,
(5.1)

For each i, since 0.25 ≥ pi(1 − pi), the smallest GM matrix is
(5.2)

which corresponds to the fastest QLB algorithm. On the other hand, let  denote the
unconstrained MLE of θ in (1.4),
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and . Since the conditions in
Proposition 6 are satisfied (i.e., ), setting

(5.3)

yields the pseudo-Newton algorithm in (4.2).

5.2 Standard errors
Using the aforementioned efficient algorithms for calculating θ ̂, calculating the standard errors
of θ ̂ via bootstrapping becomes computationally feasible (Efron and Tibshirani, 1993). Having
obtained the restricted MLE θ ̂ from (1.5) by the fastest QLB algorithm or the pseudo-Newton
algorithm, we can directly generate a bootstrap sample

 and compute the
corresponding bootstrap replication θ ̂*. Independently repeating this process G times, we obtain

G bootstrap replications . Therefore, the standard
error se  can be estimated by the sample standard deviation of the G replications.

5.3 Simulations and comparisons: Binomial model with simplex constraints
Liu (2000) used the EM algorithm to find the MLE of p = (p1,…,pm)T in the binomial model

(1.3) with simplex constraints , where {fij} are known and nonnegative, αj ≥ 0,

1 ≤ i ≤ m, 1 ≤ j ≤ q, and . Noticing the non-negativity assumption
on the entries {fij}, we can immediately conclude that his approach is inapplicable to, for
instance, umbrella, tree, increasing concave, sigmoid and bell-shaped orderings (see,
Robertson, et al., 1988; Schmoyer, 1984; Meyer, 1999) since some entries in the transformation
matrices for these orderings are negative.

Here, we can solve these problems by considering an equivalent optimization problem via the
transformation µi = logit (pi) = log[pi/(1 − pi)]. For example, for problems with umbrella region
S(p) = {p : p1 ≤ … ≤ ph ≥ ph+1 ≥ … ≥ pm, 0 ≤ pi ≤ 1}, finding

(5.4)

is equivalent to finding , where S(µ) = {µ : µ1 ≤
… ≤ µh ≥ µh+1 ≥ … ≥ µm, µi ∈ ℝ1}. Let µ = Xθ. It is easy to see that finding µ̂ is equivalent
to solving (1.5) with  and

(5.5)

where Δh = (δij) is a h × h matrix with δij = 1 for i ≥ j and δij = 0 for i < j. If θ̂ can be obtained

from (1.5), we have .

We compare the fastest QLB algorithm based on (5.2) and the pseudo-Newton algorithm based
on (5.3) with the existing algorithm via a simulated data set. Let m = 40 and  be given
in Table 1, where  are assumed to be restricted by the umbrella ordering with h = 25.
From (1.3), we generate independent binomial samples  and report them in Table 1. The
objective is to find p̂ in (5.4). Starting with θ(0) = (1,…,1)T, the two algorithms converged to
the maximum point p̂ which is reported in the 5-th and the 11-th column of Table 1 with the
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log-likelihood showing a steady increase to its maximum value of −69.2 (see Figure 1(a)). The
fastest QLB took 60 iterations with a CPU time of 9.969 seconds for the log-likelihood to
achieve this final value, while the pseudo-Newton algorithm took 25 iterations with a CPU
time of 3.766 seconds. The corresponding standard errors are calculated by the parametric
bootstrapping with 1,000 replications via the fastest QLB algorithm (see Table 1). Figure 1(b)
and Figure 1(c) compare the true proportions pi (the 3-rd and the 9-th column in Table 1), yi/
ni and the constrained estimates .

To check the correctness of the fastest QLB algorithm, we consider the algorithm by Dykstra
(1983). Theorem 3.1 of Barlow and Brunk (1972) showed that finding (5.4) is equivalent to
finding the weighted LSE

(5.6)

subject to the same constraints p ∈ S(p). Let p = Xθ, where θ ∈ [0,1]m and X is given by (5.5).
Hence,  and

(5.7)

where , X* = N1/2X and N is given by (5.1). Applying Dykstra algorithm
to (5.7), we obtained  with a CPU time of 4.65 seconds. Figure 1(d) shows that the
solutions from the fastest QLB and Dykstra algorithm are identical.

5.4 Example 1: Down syndrome data
The incidence of Down syndrome (DS) is highly dependent on maternal age. A large scale
study for ascertainment of DS cases in Massachusetts from 1958 to 1965 was conducted and
the data are given in Table 2 (Hook and Fabia, 1978).

Let ni, yi and pi denote the number of live births, the number of DS cases and the probability
of DS (i.e., the DS incidence) within the maternal age class i (i = 1, … , m with m = 35). Let
zi represent the average maternal age within the age class i (“i = 1” is corresponding to average
age 15.562 and “i = 35” corresponding to average age 49.41). Define µi = logit (pi) = f(zi), i =
1, … , m. Figure 2(d) plots  marked with “•” against zi (except for those cases with
zero frequency) and it suggests that f(·) may be a non-decreasing and convex curve. Following
the suggestion in Geyer (1991), we restrict µ by

and obtain µ = Xθ, where

(5.8)

and . Therefore, finding the constrained p̂ is equivalent to finding θ̂ in (1.5)
with  and X being given by (5.8).

Starting with θ(0) = (−1, 0.1,…,0.1)T, the fastest QLB took 1, 500 iterations to reach the log-
likelihood value of −104.115 with the CPU time of 262.938 seconds. On the contrary, the
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pseudo-Newton method converged to the maximum log-likelihood value −104.069 in 14
iterations with 3.703 seconds. Table 3 reports the intermediate results of the pseudo-Newton
algorithm for this problem. This example numerically justifies Proposition 6 and demonstrates
that the pseudo-Newton algorithm can be 71 or 107 times faster than the fastest QLB algorithm
in terms of CPU time or numbers of iteration at the expense of lacking the warrant of automatic
monotone convergence.

The p̂ are obtained by . The standard errors are calculated by the parametric
bootstrap with 1000 replications via the pseudo-Newton algorithm (see Table 2). Figure 2(a)–
(c) show the comparisons of log-likelihoods for the two algorithms. Two fitted curves obtained
via the two algorithms are showed in Figure 2(d).

6. Application to lasso logistic regression
We apply the fastest QLB algorithm to select significant variables in logistic regression models.
Note that the lasso solution (1.1) is a special case of (1.6) or (3.1) with non-differentiable
penalty at the origin. Since the lasso estimates and the unconstrained MLEs share signs, lasso
regression is equivalent to quadratic optimization with non-negative constraints, thus avoiding
the problem of non-differentiable penalty function. Therefore, the M-step of the fastest QLB
algorithm can be readily implemented using the built-in S-PLUS function nnls.fit (nonnegative
least squares).

6.1 The L1-penalty
Let ℓ(θ) be given by (1.4). Obviously, finding (1.1) is equivalent to finding

(6.1)

where λ > 0 is a smoothing parameter. Note that (6.1) is a special case of (3.1). The fastest
QLB algorithm can be applied to obtain  by iteratively computing

(6.2)

where ξ(B, θ(t)) and B are defined in (2.5) and (5.2), respectively.

Let  denote the unconstrained MLE of θ in the logistic model (1.4) and υ = (υ1, … , υq)T be

its sign vector (i.e.,  corresponding to positive, zero, or negative values

of ). The geometric property of the lasso solution suggests that both  share signs
(see, Efron et al. 2004, Lemma 7 and 8). This implies the lasso estimator

 Given θ(t) and from (6.2), we have
(6.3)

(6.4)

where η(B, θ(t)) = (ZT)−1[diag(υCTξ(B, θ(t)) − 0.5λ · 1] and Z can be obtained via the Cholesky
decomposition such that diag(υ)CT Cdiag(υ) = ZT Z. Since (6.4) is a quadratic optimization
problem with non-negative constraints, we can utilize the built-in S-PLUS function nnls.fit to
solve (6.4) iteratively.
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6.2 Automatic choice of the smoothing parameter via GCV
The optimal smoothing parameter  can be selected automatically via minimizing an
approximate generalized cross-validation (GCV) statistic (Craven and Wahba, 1979). For any
given λ > 0, we calculate the lasso estimate based on (6.3) and (6.4) and denote it by . The
GCV statistic is defined as

where

is the effective number of parameters, W− denotes the Moore-Penrose generalized inverse of

, N and D are defined in (5.1). We determine the optimal  by minimizing
GCV(λ) over a grid of λ values.

6.3 Example 2: Kyphosis data
This data set consists of retrospective measurements on 83 laminectomy patients (Hastie and
Tibshirani, 1990, p.282). The outcome is the status of kyphosis (1 = present, 0=absent). The
predictors include: x1 = age in months at time of the operation, x2 = number of vertebrae levels,
and x3 = starting vertebrae level. The goal is to identify risk factors for kyphosis. To explore
possible non-linear effects of the risk factors, we include three main effects and three quadratic
effects in the full model. To compare the fastest QLB algorithm with Tibshirani (1996)
algorithm, we do not include the interaction effects. Since all the covariates are continuous,
they are standardized individually in our analysis. The full logistic regression model is

The SAS proc logistic with backward stepwise selection removed the -term and yielded the
following model

(6.5)

To apply the fastest QLB algorithm in (6.3) and (6.4) to obtain the lasso solution , we first
need to calculate the unconstrained MLE. We obtain

 and its sign vector υ =
(−1, 1, 1, −1, −1, 1, -1)T. The GCV method is used to select the optimal smoothing parameter.
Figure 3(a) depicts the plot of GCV versus λ. The optimal  is given by 0.351. Using θ(0) =
υ as the initial values, the fastest QLB algorithm in (6.3) and (6.4) converged in t = 80 iteration
with the CPU time of 1.687 seconds. Figure 3(b) shows the monotone convergence of the
algorithm. The resulting lasso solution is

(6.6)

which considerably coincides with (6.5). The corresponding standard errors with 1,000
bootstrap replications are 0.5208, 0.4419, 0.3984, 0.6636, 0.6622, (−), and 0.5095,
respectively. However, the lasso estimates given by Tibshirani (1996) are

, which are different from (6.5) and (6.6). To some
extent, this is expected. First, the lasso algorithm in his paper was based on the inequality
constraint in (1.1), while our QLB algorithm is based on the penalized optimization with non-
negativity constraints. In addition, Tibshirani showed that different criteria (e.g., CV, GCV
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and Stein unbiased estimate of risk) could result in different choices of the tuning parameter
u. It is not clear which one was used in his paper.

6.4 Example 3: Colon microarray data
The data set is composed of 2000 genes in 22 normal colon tissue samples and 40 tumor colon
samples (Alon et al., 1999). The outcome is binary (1 = tumor colon, 0 = normal colon). For
s = 1, … , 2000, we fit marginal logistic models with the expression levels for the s-th gene as
a one-dimensional covariate. All genes with marginal p-values less than 0.001 are included in
the second step logistic model fittinig. Twenty five out of 2000 genes are identified to be
marginally significant at the 0.001 level. Since the sample size m = 62 is larger than q = 25,
the number of variables, we first calculate the unconstrained MLE  which is given by

Thus, we can obtain the corresponding sign vector υ = (−1, 1, … , −1)T. The GCV criterion is
used to select the optimal smoothing parameter. Figure 4 depicts the plot of GCV versus λ.
The optimal  is 0.0691 and the corresponding GCV is 0.1745. Using θ(0) = υ as the initial
values, the fastest QLB algorithm in (6.3) and (6.4) converged to the following lasso solution

That is, 23 out of the 25 genes are identified under the GCV criterion.

7. Discussion
We developed an EM-type algorithm – the QLB algorithm – for estimating bounded parameters
and selecting variables via L1-penalty in logistic regression models. The key to the application
of the QLB algorithm is to find a positive definite matrix that globally majorizes the observed
information. To our knowledge, besides the logistic model, such a matrix (i.e., the smallest
global majorization matrix) exists for both the Cox’s model (Böhning and Lindsay, 1988) and
the multinomial logistic model (Böhning, 1992; Kim et al., 2006). Thus, the QLB algorithm
can be used for constrained parameter estimation and variable selection for these models in
which EM algorithm is not applicable because of lacking a missing-data structure. We showed
that the smallest global majorization matrix corresponds to the fastest QLB algorithm.
Furthermore, we proposed a pseudo-Newton algorithm that maintains both the simplicity of
the QLB algorithm and the fast convergence of the Newton method. Our numerical examples
in §5.3 and §5.4 showed that the pseudo-Newton algorithm is dramatically faster than the
fastest QLB algorithm (up to 71 in CPU time or 107 times in numbers of iteration). It is
worthwhile to investigate the existence of such a global majorization matrix in other models
(e.g., binomial models with the complementary log-log link). However, when the dimension
q is very large, the L-BFGS-B algorithm (a limited-memory algorithm for solving large
nonlinear optimization problems subject to box constraints) of Zhu et al. (1997) may be one
alternative.

It is well known that it is often not possible to make Bayesian inference analytically for logistic
regression (Gilks, 1996) and the Gibbs sampling in conditional logistic regression does not
converge (Mehta et al., 2000, p.106–107). In contrast, the fastest QLB algorithm can be used
to obtain the posterior mode with closed-form expression at each iteration. In fact, let the log-
likelihood ℓ(θ) be given by (1.4) and Nq(0, V) be the prior density of θ. From (3.2), the posterior
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mode can be obtained iteratively by calculating θ(t+1) = arg max {Q.(θ|θ(t) − 0.5θTV−1θ} =
(B + V−1)−1[Δℓ(θ(t)) + Bθ(t)].

In this paper, we only discuss the situation of independent binary data. It is worth-while to
consider the QLB algorithm for logistic models with correlated or clustered binary data.
Furthermore, for some generalized linear models (e.g., Poisson regression for counting data),
a global majorization matrix does not exist and the QLB algorithm is not applicable. Therefore,
it would be of interest to derive a similar fast algorithm to estimate constrained parameters and
selecting variables in these generalized linear models. The SPLUS/R programs are available
upon request from the authors.
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Figure 1.
Simulated data in Table 1. (a) Plots of the log-likelihood function against the iteration t for the
pseudo-Newton algorithm based on (5.3) and the fastest QLB algorithm based on (5.2). (b)
Comparison among the true proportions pi (denoted by “…”), the unconstrained estimates yi/
ni (denoted by “•”), and the constrained estimates  (denoted by “—”) obtained via the fastest
QLB. (c) The same comparison as in (b) but with logit scale. (d) Comparison of the weighted
LSE  (denoted by “·–”) in (5.6) via Dykstra algorithm with the constrained MLE 
(denoted by “—”) in (5.4) via the fastest QLB.
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Figure 2.
The Down syndrome data in Table 2. (a)–(c) Comparison of the log-likelihoods for the fastest
QLB algorithm based on (5.2) (denoted by “…”) and the pseudo-Newton algorithm based on
(5.3) (denoted by “—”). (d) The unconstrained estimates logit (yi/ni) (denoted by “•”) of the
mother-age-specific logit of Down syndrome incidence, the MLEs  (denoted by “…”)
subject to the convex constraints via the fastest QLB algorithm, and the MLEs l
(denoted by “—”) via the pseudo-Newton algorithm.
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Figure 3.
(a) Plot of generalized cross-validation for the kyphosis data. (b) The monotone convergence
of the fastest QLB algorithm (6.3) and (6.4) for the kyphosis data.
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Figure 4.
Plot of generalized cross-validation for the colon microarray data.
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