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Abstract

A new multivariate Archimedean copula estimation method is proposed in a non-
parametric setting. The method uses the so called Geometrically Designed splines
(GeD splines) to represent the cdf of a random variable Wθ, obtained through
the probability integral transform of an Archimedean copula with parameter θ.
Sufficient conditions for the GeD spline estimator to posses the properties of the
underlying theoretical cdf, K(θ, t), of Wθ, are given. The latter conditions allow
for defining a three-step estimation procedure for solving the resulting non-linear
regression problem with linear inequality constraints. In the proposed procedure,
finding the number and location of the knots and the coefficients of the uncon-
strained GeD spline estimator and solving the constraint least-squares optimisation
problem, are separated. Thus, the resulting spline estimator K̂(θ̂, t) is used to re-
cover the generator and the related Archimedean copula by solving an ordinary
differential equation. The proposed method is truly multivariate, it brings about
numerical efficiency and as a result can be applied with large volumes of data and
for dimensions d ≥ 2, as illustrated by the numerical examples presented.
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1 Introduction

Recently, considerable attention has been paid to the problem of inference
about copulas. The monographs by [3], [20] and [16] summarize to some ex-
tent the activities in this area. In broad terms, a copula function is a multi-
variate distribution function with uniform marginals. It is used as a linking
block between the joint cumulative distribution function (cdf) F (x1, . . . , xd)
of a vector of random variables X = (X1, . . . , Xd) and its marginal cdf’s
F1(X1), . . . , Fd(Xd). This probabilistic interpretation of copulas is justified by
the famous Sklar’s theorem which states that, under some mild conditions,
there exists a unique copula function C(u1, . . . , ud) such that

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) (1)

holds. For the joint density f(x1, . . . , xd) of X one easily gets from (1) that

f(x1, . . . , xd) = c(F1(x1), . . . , Fd(xd))
d∏

j=1

fj(xj),

where fj(·), j = 1, . . . , d are the marginal densities and c(·, . . . , ·) denotes the
copula density

c(u1, . . . , ud) =
∂dC(u1, . . . , ud)

∂u1 . . . ∂ud

, ui ∈ (0, 1), i = 1, . . . , d.

In general, estimation of the joint cdf F (x1, . . . , xd) in (1) involves estimation
of both the copula C and the marginals Fj(·), j = 1, . . . , d. Depending on
the degree to which the copula and the marginals are assumed to be known,
parametric or non-parametric estimation methods have been developed. In
terms of parametric inference, the Maximum Likelihood could be adopted
whenever feasible. An alternative, simpler approach, called Inference Function
for Margins (IFM), (see [16]) involves a two-step procedure where one first
estimates the parameters of the marginal distributions and then substitutes
them to maximize the likelihood of the copula. On the other hand, if, in
contrast to the copula, the marginals can not be specified parametrically,
a semiparametric approach has been suggested. This approach goes back at
least to 1995 (see [22] and [7]). In these papers, the marginals are estimated by
the empirical distribution functions. After substituting them in the formula
for the copula density, one tries to maximise the resulting rank-based log-
likelihood. The approach has gained popularity in practice under the name of
“pseudo-likelihood”. It enjoys consistency and asymptotic normality although
asymptotic efficiency is not granted in general. Quite recently, the paper [2]
showed that plug-in sieve MLE works and produces asymptotically efficient
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estimators for the parametric part. They also show that prior restrictions on
the marginal distributions can be incorporated in order to achieve efficiency
gains when constraints hold. The non-parametric estimation has also been
paid due attention. In [15] the copula density estimation has been dealt with
whereas, [21] consider estimation of both the copula and its density by using
Bernstein polynomials to smooth out the empirical copula.

A particular class of copulas, called Archimedean copulas, have recently gained
considerable popularity as a dependence modelling tool. It involves a non-
parametric component φ(·), called generator, which is a function of one vari-
able and completely describes the dependency structure of the entire d-dimensional
vector X. This brings about essential simplification with respect to the infer-
ence for Archimedean copulas. To see this, recall that the Archimedean copula
is defined as (see e.g. [20], Theorem 4.6.2)

C(u1, . . . , ud) = φ−1(φ(u1) + · · ·+ φ(ud)) (2)

where the generator function φ(·) is a continuous, strictly decreasing convex
function on (0,1) such that φ(1) = 0 and φ−1(.) is completely monotonic, i.e.

(−1)idi

dxi
φ−1(x) ≥ 0, i = 1, ..., d. (3)

If φ(0+) = ∞ the generator is strict, otherwise if φ(0+) < ∞ it is called non-
strict. Major measures of association, such as Kendall’s tau (τ) and Spear-
man’s rho (ρ), do not depend on the marginals and can be directly expressed
through the generator (see e.g. [20]). From (2), it can be seen that the genera-
tor is only determined up to a multiplicative positive constant. Thus, as seen
from (2), in order to estimate an Archimedean copula one needs to be able to
estimate the generator φ(·), based on a sample of observations on X. The solu-
tion of this estimation problem substantially depends on the parametrization
of φ(·). A summary of the existing most popular Archimedean copulas and
their generators (including the Clayton, Ali-Mikhail-Haq, Gumber, Frank and
many other families) can be found in [20] and [3]. These generators typically
give a limited description of the dependence structure between the random
variables X1, . . . , Xd, since they are characterized via one (or two) dimen-
sional parameter θ. Although estimation in this case is simpler, there is a
scope for more richly parameterized generators which allow for better flex-
ibility in modelling the copula C. An interesting approach is illustrated in
the discussion [8] where the authors demonstrate several ways to generate
bivariate Archimedean copula models via smooth transformations of exist-
ing generators. The recent paper by [23] is yet another attempt that tries to
make the generator more flexible via local interpolation of existing ”textbook”
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germs of generators. However, the latter approach still has some limitations in
its flexibility since it would in general demonstrate a bias towards the chosen
germs of generators.

In practice, one would like to be given a flexible family of generators without
too much of a bias induced in their choice. A possible general approach to
increasing the flexibility of the generator φ and hence of C, is to use spline
functions in their representation. An attempt in this direction is the paper by
[18] who uses a penalized smoothing spline to represent the function λ(·) = φ(·)

φ′(·)
and then estimates its parameters via a MCMC algorithm in a Bayesian frame-
work. The author has noticed that approximating λ(·) instead of φ(·) is more
convenient since λ(·) is uniquely determined, regardless of the multiplicative
positive constant selected in the definition of the generator. However, the pro-
posed smoothing splines involve high number (usually 20-30 according to [18])
equidistant knots and a penalty parameter, which leads to a high dimension
of the estimation space and hence to increasing complexity of the subsequent
MCMC Bayesian parameter estimation. Another drawback of this approach is
that one needs to perform thousands of simulations from the posterior distribu-
tion of the parameters and average them in order to produce a resulting model.
This can be prohibitively time consuming, especially for large data samples
and parameter dimensions. An alternative approach could be to express the
generator φ(·) directly as a spline function of a fixed degree and to consider
its coefficients and knots as unknown parameters θ. Then, the requirements
for the spline φθ(·) to be a generator would translate in some shape-preserving
constraints on its unknown parameters. In this case, it could be argued that
the resulting copula density is a parametric density and hence, the constrained
maximum-likelihood method could be applied to achieve asymptotic efficiency
when estimating the generator. In order to illustrate the corresponding details
of such a maximum-likelihood approach, let us consider the case of d = 2.
Then, (2) becomes

Cθ(u1, u2) = φ−1
θ (φθ(u1) + φθ(u2))

and we have

cθ(u1, u2) =
∂2Cθ(u1, u2)

∂u1∂u2

= −φ
′′
θ (Cθ(u1, u2))φ

′
θ(u1)φ

′
θ(u2)

φ
′
θ(Cθ(u1, u2))3

, u1, u2 ∈ [0, 1],

where the derivatives of φθ(u) are with respect to u. Given a sample of n i.i.d.
copies of the dependent uniform (0, 1) random variables (u1i, u2i) , i = 1, ..., n,
the likelihood function is
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L(θ) =
n∏

i=1

cθ(u1i, u2i) (4)

and it (or its logarithm, the log-likelihood function) has to be maximized with
respect to the parameter vector θ, under some shape-preserving constraints on
θ. Unfortunately, under this direct free-knot spline approximation approach,
the actual maximization in (4) is very difficult to implement numerically and
is computationally very expensive since this becomes a multi-extrema con-
strained, non-linear optimization problem in possibly high dimension involv-
ing inversion of the spline generator. Moreover, there is a singularity of the
φ
′
θ(·)

/
φθ(·) values at 0 and at 1. These difficulties lead to a prohibitive compu-

tational burden when the sample size n and/or the number of knots increase.
The latter case is typical if a smoothing penalty is introduced in order to
avoid oversmoothing. In addition, it must be said that although the problem
formally may seem as a parametric one, the dimension of the parameter con-
taining the spline coefficients (and possibly the knots) typically increases with
the sample size so that the spline fit is more a non-parametric than a para-
metric likelihood fit. The parameters involved in the spline-based likelihood
function do not have any statistical meaning.

The difficulties in calculating the ”parametric” spline-based ”maximum likeli-
hood” estimator of φθ(·) motivates alternative approaches to estimating Archimedean
copulas. In this paper, we propose a minimum-distance type Archimedean cop-
ula estimation method which utilizes ideas from Computer Aided Geometric
Design.

The structure of the paper is as follows. In Section 2, we introduce our new
approach to the Archimedean copula estimation problem which is based on
the application of the so called Geometrically Designed splines (see [13] and
[14]). In Section 3, some bivariate and higher dimensional numerical examples
are presented and discussed. Section 4 concludes the paper.

2 GeD spline estimation of Archimedean copulas

In this section, we formulate a new approach to the Archimedean copula es-
timation problem. It utilizes the so called Geometrically Designed Regression
Splines (abbreviated as GeD Splines or GeDS) that have first been devel-
oped by Kaishev et al. (2006 a,b) [13] and [14] for the context of uncon-
strained, variable-knot spline regression estimation. We consider the following
Archimedean copula estimation problem.

Let (X11, . . . , Xd1), . . . , (X1n, . . . , Xdn) be n ≥ 2 independent observations
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of the random vector X = (X1, . . . , Xd), with a joint distribution function
given as in (1), but assuming that its copula Cθ(u1, . . . , ud) is a parametrized
Archimedean copula, defined as in (2) with a generator φθ(.) and that Fi(xi),
i = 1, . . . , d, are some continuous marginals. We will equivalently use the
notation (U11, . . . , Ud1), . . . , (U1n, . . . , Udn) to denote the probability integral
transforms Ui = Fi(Xi), i = 1, . . . , d, of the original observations. Then, we
can consider the random variable

Wθ = Cθ(U1, . . . , Ud) = φ−1
θ (φθ(U1) + · · ·+ φθ(Ud))

with cdf K(θ, t) = P (Wθ ≤ t).

A simple argument which appears in [10] shows that if we define

Wj,n =
1

n

n∑

i=1

1(U1i ≤ U1j, . . . , Udi ≤ Udj)

=
1

n

n∑

i=1

d∏

l=1

1(F−1
l (Uli) ≤ F−1

l (Ulj))

=
1

n

n∑

i=1

d∏

l=1

1(Xli ≤ Xlj), j = 1, . . . , n,

where 1(·) is the indicator function of the event (·), then Wj,n can be con-
sidered pseudo-observations of the random variable Wθ. In what follows, we
will demonstrate that the proposed GeD spline estimator of Cθ(u1, . . . , ud),
depends solely on the pseudo-observations Wj,n j = 1, . . . , n. On the other
hand, as shown above Wj,n, j = 1, . . . , n are directly expressed in terms of
the observations (X1j, . . . , Xdj), j = 1, . . . , n and only depend on their rela-
tive order, i.e. on their ranks. Therefore, knowledge of the marginals is not
required for the development of the proposed GeD spline Archimedean copula
estimation procedure.

The empirical version of the cdf, K(θ, t), of Wθ is then defined as

Kn(t) =
1

n

n∑

j=1

1(Wn,(j) ≤ t),

where Wn,(j), j = 1, . . . , n, are the ordered values of Wj,n, j = 1, . . . , n. Let
us point out that due to the discretisation effect in the definition of Wj,n, j =
1, . . . , n, some of the resulting Wn,(j) values will coincide. It should also be
noted that the pseudo-observations are dependent and hence can not be viewed

6



as a random sample from K(θ, t). Despite this, the function Kn(t) indeed
happens to be a consistent estimator of K(θ, t) (see [1]). The empirical process

Kn(t) =
√

n{Kn(t)−K(θ, t)},

called the Kendall’s Process, has been explored in the two-dimensional case
(d = 2), by [10]. In the general case (d ≥ 2), under some mild conditions,
Kn(t) has been shown by [1] to converge to a zero mean Gaussian process
with a certain covariance function. These authors have also established the
following useful representation

K(θ, t) = t +
d−1∑

i=1

(−1)i{φθ(t)}i

i!

di

dxi
φ−1

θ (x)|x=φθ(t), (5)

where it is assumed that

{φθ(t)}i

i!

di

dxi
φ−1

θ (x)|x=φθ(t) → 0 as t → 0+ for all i = 1, ..., d− 1. (6)

The following properties of the cdf K(θ, t) follow from the properties of φθ(.)
(see also [20], Chapter 4):

1) K(θ, 0) = 0, K(θ, 1) = 1
2) K(θ, t) > t, t ∈ (0, 1)
3) K ′(θ, t) > 0, t ∈ (0, 1)

Let us note that the inequality in 2), which holds for any d ≥ 2, follows
from (5), noting that, for d ≥ 2, each term in the summation is positive by
the requirement (3) and therefore, K(θ, t) − t > 0, t ∈ (0, 1). This important
inequality seems not to have been recorded in the literature for the case d > 2.
Obviously, we also have that 0 < t < K(θ, t)d=2 ≤ K(θ, t)d=3 ≤ . . . which
suggests that K(θ, t) becomes more ’rectangular’ as the dimension d increases.

2.1 Estimating the cdf K(θ, t)

Our approach to estimating the Archimedean copula Cθ(u1, . . . , ud) is to ap-
proximate K(θ, t) with a spline function, Kα(t; tk,m) of order m (degree m−1),
defined on the set of 2m + k knots

tk,m = {0, . . . , 0 < tm+1 < · · · < tm+k < 1, . . . , 1}
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i.e., to assume that K(θ, t) admits the representation

Kα(t; tk,m) = α′Nm(t) =
p∑

i=1

αiNi,m(t), t ∈ [0, 1]

where α = (α1, . . . , αp)
′ is a vector of unknown coefficients and Nm(t) =

(N1,m(t), . . . , Np,m(t))′ are p = m + k B-splines of order m on the set of knots
tk,m. The extended vector of unknown parameters θ, includes the coefficients
α, the number of internal knots, k, and their locations tm+1, . . . , tm+k, i.e.,
θ = (α1, . . . , αp, k, tm+1, . . . , tm+k). Then, based on the empirical cdf Kn(t),
we define the estimator of θ as a minimum distance estimator, i.e., one that
minimizes the distance between Kn(t) and Kα(t; tk,m), for a suitably chosen
distance measure. In this paper, we chose to minimise the weighted L2-distance
between Kn(.) and Kα(., tk,m) :

∫ 1

0
n{Kn(t)−Kα(t, tk,m)}2dKn(t), (7)

under the constraints imposed on the spline estimator, Kα(t; tk,m), by the
properties 1)-3) of K(θ, t). Thus, it is not difficult to see that the requirements
1)-3) with respect to Kα(t; tk,m) translate into constraints on the unknown pa-
rameters θ. This is made more precise by the following Lemma, which gives
(sufficient only) conditions for the spline Kα(t; tk,m) to reproduce the proper-
ties 1)-3) possessed by the underlying cdf K(θ, t).

Lemma 2.1 The spline Kα(t; tk,m) satisfies Properties 1)-3) if the following
constraints hold:

1) α1 = 0 < α2 < α3 < · · · < αp = 1
2) αi > ξi, i = 2, . . . , p− 1,

where ξi = ti+1+···+ti+m−1

m−1
, i = 2, . . . , p− 1, α1 = ξ1 = 0, αp = ξp = 1 are

the so called Greville abscissae, defined on the set of knots tk,m.

Proof It is not difficult to see that the first part of Property 1), i.e. Kα(0; tk,m) =∑p
i=1 αiNi,m(0) = 0 holds since α1 = 0, the B-splines N2,m(t), . . . , Nm,m(t) de-

fined on tk,m, vanish at t = 0 and the remaining B-splines Nm+1,m(t) = · · · =
Np,m(t) = 0 by definition (see [4], Chapters 9,10). Similarly, Kα(1; tk,m) = 1
follows noting that Nm+k−1,m(1) = · · · = Nk+1,m(1) = 0, Np,m(1) = 1 and
αp = 1. Property 2) follows noting that αi > ξi, i = 2, . . . , p− 1 imply

Kα(t; tk,m) =
p∑

i=1

αiNi,m(t) >
p∑

i=1

ξiNi,m(t) = t,
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where in the last equality we have used the identity

p∑

i=1

ξiNi,m(t) = t

referred to as the linear precision property of B-splines.

Finally, Property 3) holds, since up to a multiplicative positive constant,

∆αi =





(αi − αi−1)/(ti+m−1 − ti) if ti < ti+m−1

∆αi−1 if ti = ti+m−1

,

i = 2, . . . , p are the coefficients of the derivative of the spline Kα(t; tk,m), which
itself is a spline of order m−1 and ∆αi > 0 means that K ′

α(t; tk,m) > 0, t > 0
holds. 2

The problem of estimating an Archimedean copula can now be formulated as
consisting of two subproblems. The first one is to find a minimum L2−distance
spline estimator K̂(θ̂, t) of K(θ, t), following (7). The second one is, by using
K̂(θ̂, t), to estimate the generator φθ(.) and its related Archimedean copula
Cθ(u1, . . . , ud). The first of these two problems can now be specified as follows.
Given the pseudo-observations Wj,n, j = 1, . . . , n, find

min
θ

n∑

j=1

{Kn(Wn,(j))−
p∑

i=1

αiNi,m(Wn,(j))}2 (8)

subject to the constraints

0 = α1 < α2 < · · · < αp = 1 (9)

αi > ξi, i = 2, . . . , p− 1, (10)

0 < tm+1 < · · · < tm+k < 1, (11)

where ξi are the Greville abscissae. We note that (8) is just an equivalent way
of writing (7).

The constraints (9) and (10) are a consequence of Lemma 2.1. The constraints
(11) are obvious.

Let us note that, in general, (8) is a non-linear least-squares optimization
problem and (9), (10) and (11) are linear inequality constraints on the pa-
rameter vector θ. It is known that even unconstrained free-knot least-squares
splines are virtually impossible to find (see e.g. [4]). For a detailed account
on the related difficulties we refer to [19]. The constraints (9), (10) and (11),
make the minimization in (8) even more problematic.
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2.2 The GeD spline Archimedean copula estimation procedure

In order to overcome the difficulties mentioned above, we propose the following
three-step Archimedean copula estimation procedure. The first two steps deal
with solving the constrained minimization problem (8). In the third step, the
generator and its related Archimedean copula are estimated.

Step 1) Ignoring constraints (9) and (10), find a set of knots t∗k,m and spline

coefficients α∗, such that K̂α∗
(
t; t∗k,m

)
is a variable-knot least square GeD spline

estimate of Kn(t), t ∈ [0, 1], i.e K̂α∗
(
t; t∗k,m

)
is a (sub)optimal solution to (8).

Step 2) If α∗ does not satisfy the constraints (9) and (10), then for the fixed
optimal knots t∗k,m, from step 1, re-solve (8) with respect to α subject to (9)

and (10) to obtain the constrained (sub)optimal solution, K̂α̂

(
t; t∗k,m

)
of (8).

Otherwise, K̂α∗
(
t; t∗k,m

)
coincides with K̂α̂

(
t; t∗k,m

)
and one proceeds with step

3.

Step 3) Substitute the estimated cdf, K̂α̂

(
t; t∗k,m

)
, from step 2, for K(θ, t) in

the expression (5), due to [1] and solve the ordinary differential equation (5) in

order to express the estimator of the generator, φ̂θ̂(t), in terms of K̂α̂

(
t; t∗k,m

)
.

Then, using the definition (2) obtain an estimate of the Archimedean copula
Ĉθ̂(u1, . . . , ud).

In order to construct the GeD spline estimator K̂α∗
(
t; t∗k,m

)
of step 1, the

method developed by Kaishev et al. (2006 a, b) [13] and [14] for the uncon-
strained regression context can be used. An essential ingredient of this method
is the very close relationship between a spline regression function and its so
called control polygon, with vertices whose y-coordinates are the regression
coefficients and the x-coordinates are the Greville abscissae. The method in-
volves a two-stage procedure. In the first stage, a variable-knot, least-squares

linear spline fit to the data set
{
Kn(Wn,(j)),Wn,(j)

}n

j=1
is constructed. This fit

is viewed as the initial position of the control polygon of a smoother higher
order (m > 2) spline curve. In the second stage, the optimal set of knots

t∗k,m of this higher order (m > 2) smooth spline curve, K̂α

(
t; t∗k,m

)
is found,

so that it preserves the shape of the initial control polygon and then this

curve is fitted to the data,
{
Kn(Wn,(j)), Wn,(j)

}n

j=1
to adjust its position (i.e.,

to find α∗) in the unconstrained LS sense. In this way, it is ensured that the

m-th order smooth LS fit K̂α∗
(
t; t∗k,m

)
follows the shape of the initial con-

trol polygon, and hence the shape of the data. This procedure simultaneously
produces quadratic, cubic, or higher order splines and the LS fit with the min-
imum residual sum of squares is chosen as the final fit which recovers best the
underlying unknown cdf K(θ, t). The two stages of this approach have been
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given a formal interpretation as certain optimization problems with respect
to the variables k, tk,m, α and m (see [13]). Hence, the approach produces a
solution which does not necessarily coincide with the globally optimal uncon-
straint solution to (8), under the free-knot non-linear optimization approach.
As illustrated by the numerical examples presented in Kaishev et al. (2006 a,
b) [13] and [14], it produces LS spline fits which are characterized by a small
number of non-coalescent knots and very low mean square errors. Thus, the
unconstrained GeD spline regression fits are shown to be nearly optimal and
to enjoy some very good large sample properties, such as asymptotic normal-
ity. The latter allow for the construction of asymptotic confidence intervals
illustrated in [13].

Step 1 of the GeD spline Archimedean copula estimation procedure proposed
above has similar remarkable numerical efficiency (even for very large sample
size n) typical for the GeD spline regression method. As illustrated in Section
4, due to the intrinsic shape preserving properties of the unconstrained GeD
spline fit, K̂α∗

(
t; t∗k,m

)
, from step 1), in most cases, especially for large data

samples (n ≥ 500), directly meets the constraints (9), (10) and (11) and step
2 can be omitted. In general, as the optimal number of knots k and their lo-
cations t∗k,m found in step 1 are assumed fixed, step 2 is a linear least squares
problem with respect to the α-as, involving only the simple linear constraints
(9) and (10), and as a result it is not numerically expensive. The implemen-
tation of step 3 is somewhat more involved, since it requires the solution with
respect to φθ(t) of the ordinary differential equations (5). However, as illus-
trated in Section 4, it is again extremely numerically efficient and takes a few
seconds on a standard PC. The two-dimensional (d = 2) and multidimensional
cases (d > 2) have been given separate treatment, which we provide in the
next section.

2.3 Recovering the generator and its related copula

In the two-dimensional Archimedean copula case, d = 2, (5) simplifies to

K(θ, t) = t− φθ(t)

φ
′
θ(t)

,

and step 3 of the Archimedean copula GeD spline estimation procedure yields
directly the following estimator of the generator

φ̂θ̂(t) = exp
(∫ t

0

1

s− K̂α̂(s; t∗k,m)
ds

)
. (12)

11



The Archimedean copula estimator, Ĉθ̂(u1, u2) is then easily obtained using
the Mathematica built-in function FindRoot in order to invert the estimated
generator φ̂θ̂(t), following definition (2).

In the general, multivariate case (d > 2) we consider first the three-dimensional
Archimedean copula estimation, d = 3. In this case, following step 3 and
applying the change of variables ηθ(t) = t− φθ(t)

φ
′
θ
(t)

, equation (5) can be rewritten

as the first order differential equation

K̂α̂

(
t; t∗k,m

)
= ηθ(t)− 1

2
(t− ηθ(t))η

′
θ(t), (13)

with initial condition ηθ(0+) = 0. In the case d = 4, following step 3, equation
(5) can be rewritten in terms of ηθ(t) as

K̂α̂

(
t; t∗k,m

)
= ηθ(t)− 1

2
(t− ηθ(t))η

′
θ(t)+

1

6
(t− ηθ(t))

2η
′′
θ (t)− 1

6
(t− ηθ(t))η

′
θ(t)

(
1 + η

′
θ(t)

)
,

(14)

with initial conditions ηθ(0+) = 0, η
′
θ(0+) = 0. It should be noted that con-

dition (6) is essential in order to remove the singularity in the point t = 0.
Despite the deceivingly simple form of equation (13), which is transformed by
the substitution t − ηθ(t) = ζ(t) into an Abel’s equation of the second kind,
it seems impossible to solve it analytically and obtain an explicit expression
for φ̂θ̂(t). Equation (14) is even more difficult to solve analytically. However,
numerical solutions of both (13) and (14) are easily obtained with the Mathe-
matica system, applying the NDSolve built-in function. There are no principle
difficulties to put through this approach, even for dimensions d > 4, but we
abstain from doing this here. The corresponding solution η̂θ̂(t) can be used to
obtain the estimator for the generator

φ̂θ̂(t) = exp(
∫ t

0

1

s− η̂θ̂(s)
ds). (15)

The Archimedean copula estimator can then be obtained as

Ĉθ̂(u1, . . . , ud) = φ̂−1

θ̂
(φ̂θ̂(u1) + · · ·+ φ̂θ̂(ud)), (16)

whereby, for the inversion of φ̂θ̂(·) we use the Mathematica built-in func-
tion FindRoot, which is a reliable one-dimensional root-finder. The three-step
Archimedean copula estimation procedure described above has been imple-
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mented in Mathematica 6.0 and its numerical performance is illustrated in
Section 4.

Let us note that our GeD spline Archimedean copula estimation procedure
yields an estimator for the Kendall’s tau for any set of d ≥ 2 random variables.
When d = 2, this is the classical definition of Kendall’s tau. For d > 2, this
definition is extended in [17] to the generalised Kendall’s tau as

τd =
2d

∫ 1
0 (1−K(θ, t))dt− 1

2d−1 − 1

(compare also [11] and note the typographical error in [1], p. 198). Since
estimating Kendall’s tau is an important problem in its own right, we give
below an explicit expression for the resulting GeD estimator.

Proposition 2.2 The GeD-spline estimator K̂α̂(t; t∗k,m) implies an estimator
of Kendall’s tau by

τ̂d =
2d(1− 1

m

∑p
i=1 α̂i(t

∗
i+m − t∗i ))− 1

2d−1 − 1
, d ≥ 2. (17)

Proof It suffices to notice that

∫ 1

0
(1− K̂(θ̂, t))dt = 1−

p∑

i=1

α̂i

∫ 1

0
Ni,m(t)dt = 1−

p∑

i=1

α̂i
t∗i+m − t∗i

m
.

3 Numerical results

In this section, we illustrate the numerical performance of the Archimedean
copula estimation procedure developed in Section 2 on several examples.

3.1 The two-dimensional case (d = 2)

We start with an example, considered by [18], in which n = 100 data points
{Kn(Wn,(j)),Wn,(j)}100

j=1 are simulated from two-dimensional Frank copula with
Kendall’s τ = 0.3 (parameter of the generator θ = 2.92 (see [20])).

Applying the proposed three-step GeD spline Archimedean copula estimation
procedure, on step 1 we obtain the quadratic GeD spline estimate K̂α∗

(
t; t∗2,3

)
,

with α∗ = (0.0286, 0.5473, 0.8464, 1.0080, 1.0041) and knots t∗2,3 = {0, 0, 0,
0.4619, 0.7240, 1, 1, 1 }, presented in the left panel of Fig. 1. Step 2 of the

13



Fig. 1. Simulated data points, n = 100, from a two-dimensional Frank copula, the
true underlying cdf K (dashed line), the unconstrained GeDS estimate K̂α∗

(
t; t∗2,3

)

(continuous line in the left panel) and the constrained GeDS estimate K̂α̂

(
t; t∗2,3

)
(continuous line in the right panel). The stepwise function represents Kn(t).
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procedure yields K̂α̂

(
t; t∗2,3

)
with α̂ =(0, 0.5671, 0.8404, 0.9999,1), given in the

right panel of Fig. 1. As can be seen on this example with n = 100 data points,
α∗ and α̂ for the unconstrained and the constrained spline approximations, are
very close. This effect becomes more pronounced for larger data sets as will
be illustrated in Fig. 6. Another advantage of the resulting quadratic GeDS
approximation K̂α̂

(
t; t∗2,3

)
, is the small number of internal knots, k = 2, and

B-spline coefficients, p = 5, compared to 20 equidistant internal knots, 24 B-
spline coefficients and a penalty parameter estimated by [18] via a complex
procedure involving thousands time consuming iterations. The presented GeD
spline approximation K̂α̂

(
t; t∗2,3

)
is obtained for 0.78 seconds on a standard

PC (Pentium IV, 1.6Ghz, 512 RAM).

In the left panel of Fig. 2, we illustrate the true and estimated Frank copula
generator, obtained on step 3 of the proposed Archimedean copula GeD spline
estimation procedure, using (12). Contour plots of the true Frank copula and
its estimated version, resulting from step 3, are presented in the right panel
of Fig. 2. The contour plots of the estimated copula, Ĉθ̂(u1, u2), are obtained,
applying the FindRoot Mathematica built-in function to invert the estimated
generator, φ̂θ̂(t). As can be seen from Fig. 2, both the generator and the
copula are recovered with a good accuracy with a very few parameters, dimθ =
5 + 1 + 2 = 8. Note that the actual dimension of θ, reflecting the number of
free parameters, is 6, since the first and the last B-spline coefficients are fixed
to 0 and 1 respectively.

We have also compared the performance of our GeD method with other com-
peting procedures. Direct comparison has been done with the non-parametric
estimation method (NP) of Genest and Rivest [10] which has also been used by
Lambert [18] as a benchmark for comparison with his method. As a result we
are able to also compare indirectly with Lambert’s Bayesian spline smoothing
method. As in Lambert [18], data was simulated for both Frank and Clayton
copulas with d = 2, τ = 0.3 (θ = 2.92 and θ = 0.86, respectively ([20])). For
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Fig. 2. Left panel: The true Frank copula generator with Kendall’s τ = 0.3 (dashed
line) and its GeD spline estimate (continuous line); Right panel: Contour plots of
the true Frank copula (dashed line) and the estimated copula (continuous line).
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each of 100 simulation runs, we calculated the distance measure

1

card(g)

∑
v∈g

|ϕ(v)− ϕ̃(v)| (18)

where ϕ denotes the true generator and ϕ̃ corresponds to either the NP esti-
mate or the GeD estimate. In both cases, g denotes the set of values at which
Kn(t) jumps. It can be seen from the boxplots presented in Fig. 3 that the
GeD spline estimator outperforms the NP estimator. We have also indirectly
compared our method with that of Lambert [18]. In Fig. 2 of [18] (see section 5
therein) the author has presented box plot comparisons of his method against
the nonparametric method of Genest and Rivest, based on the distance (18)
in terms of the function, λ, instead of ϕ. Let us note that the definition of this
measure in section 5 and Fig. 2 of [18] is wrong and ϕ should be replaced by λ,
as communicated to us by the author. Comparison of our Fig. 4 with the box
plots presented in Fig. 2 of [18] indicates that the GeD spline estimator per-
forms at least as well as the Bayesian spline smoothing estimator of Lambert
in terms of accuracy. It should be noted, however, that in terms of computa-
tional efficiency and time, our procedure significantly outperforms that of [18].
The small differences in the results for the common benchmark NP estimator
could be attributed to the different random number generators used by us
in Mathematica and by Lambert in R. It is also interesting to observe that
the average number of knots allocated automatically by our procedure in the
100 simulation runs, is equal to five (i.e. p = 8 B-spline coefficients) for both
the Frank and Clayton copula. This also compares quite favourably to the
20 equidistant knots on (0,1) (i.e. 24 regression coefficients plus a smoothing
parameter), used by [18].

Our second example aims at illustrating the performance of the procedure
for reasonably small, n = 50, and large, n = 500, data samples. Data points
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Fig. 3. Simulated data: boxplots of 1
card(g)

∑
v∈g |ϕ(v)− ϕ̃(v)| for the Frank and for

the Clayton copulas. The labels in the abscissa indicate which estimate ϕ̃(v) was
used: 1: GeD spline estimate. 2: NP estimate by Genest and Rivest.
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Fig. 4. Simulated data: boxplots of 1
card(g)

∑
v∈g |λ(v)− λ̃(v)| for the Frank and for

the Clayton copulas. The labels in the abscissa indicate which estimate λ̃(v) was
used: 1: GeD spline estimate. 2: NP estimate by Genest and Rivest.
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are simulated from a two-dimensional Clayton copula with Kendall’s τ = 0.3
(parameter of the generator θ = 0.86). Based on n = 50 data points, in step

1 we obtain the quadratic GeD spline estimate K̂α∗
(
t; t∗1,3

)
with one internal

knot, t∗4 = 0.5194 and α∗ =(0.0324, 0.5503, 1.0235, 1.0051). The constrained

GeD spline estimate K̂α̂

(
t; t∗1,3

)
obtained in step 2 has B-spline coefficients

α̂ = (0, 0.5762, 0.9999, 1). As can be seen, even with n = 50 data points, α∗

and α̂ for the unconstrained and the constrained spline approximations, are
still reasonably close. The resulting GeD spline approximation K̂α̂

(
t; t∗1,3

)
is

obtained for 0.31 seconds.

In the left panel of Fig. 5, the true and estimated Clayton copula generator
in the case of n = 50 data points are presented. Contour plots of the true
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Fig. 5. Left panel: The true Clayton copula generator with Kendall’s τ = 0.3 (dashed
line) and its GeD spline estimate (continuous line); Right panel: Contour plots of
the true Clayton copula (dashed line) and the estimated copula (continuous line).
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Clayton copula and its estimated version, resulting from step 3, are given in
the right panel of Fig. 5. Here again both the generator and the copula are
recovered with a very good accuracy and only 4 free parameters (α2, α3, k,
t4).

For the case of n = 500, the estimated unconstrained cdf K̂α∗
(
t; t∗3,3

)
has

α∗ =(0, 0.2744, 0.6306, 0.8257, 0.9999,1) and t∗3,3 = { 0, 0, 0, 0.2727, 0.4538,

0.6925, 1, 1, 1 }. In this case, K̂α∗
(
t; t∗3,3

)
is obtained for 2.50 seconds and it

coincides with the constrained cdf K̂α̂

(
t; t∗3,3

)
. The corresponding true Clayton

copula generator is estimated by φ̂θ̂(t) with higher accuracy, compared to the
case n = 50. Substituting α̂ and t∗3,3 in (17) delivers an estimate of Kendall’s
tau τ̂2 = 0.31 in this example.

3.2 The multivariate case (d > 2)

Our multivariate examples illustrate the performance of the method for di-
mension d > 2. In particular, we consider here the cases d = 3 and d = 4.
In order to highlight the numerical efficiency of the proposed methodology we
have used samples of size n = 2000 which were simulated from a three- and
four-dimensional Clayton copula with Kendall’s τ = 0.3.

In the case d = 3, the quadratic constrained GeD spline estimate K̂α̂

(
t; t∗3,3

)

with three internal knots, t∗3,3 = { 0, 0, 0, 0.2084, 0.3564, 0.5827, 1, 1, 1} and
B-spline coefficients α̂ = (0, 0.3155, 0.6663, 0.8888, 0.9999, 1), is presented in

the left panel of Fig. 6. Using the spline estimate, K̂α̂

(
t; t∗3,3

)
, the differential

equation (13) is solved and its solution, η̂θ̂(t), is used to estimate the underlying
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Fig. 6. Left panel: simulated data points, n = 2000, from a three-dimensional Clay-
ton copula, the true underlying cdf K (dashed line), the constrained GeDS estimate
K̂α̂

(
t; t∗3,3

)
(continuous line).The stepwise function represents Kn(t). Right panel:

The true Clayton copula generator (dashed line) and its GeD spline estimate (con-
tinuous line).
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Fig. 7. Left panel: simulated data points, n = 2000, from a four-dimensional Clay-
ton copula, the true underlying cdf K (dashed line), the constrained GeDS estimate
K̂α̂

(
t; t∗3,3

)
(continuous line).The stepwise function represents Kn(t). Right panel:

The true Clayton copula generator (dashed line) and its GeD spline estimate (con-
tinuous line).
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generator, following (15). The true and estimated Clayton copula generator
are presented in the right panel of Fig. 6. As can be seen, the true underlying
generator is almost perfectly recovered. It has to be noted that the GeD spline
approximation K̂α̂

(
t; t∗3,3

)
is obtained for 10.61 seconds and solving (13) takes

0.05 seconds. The estimate of Kendall’s tau using (17) is τ̂3 = 0.32.

For the case of d = 4 and n = 2000, the graph of the estimated quadratic con-
strained cdf K̂α̂

(
t; t∗4,3

)
, where α̂ = (0, 0.3351, 0.698, 0.8652, 0.9559, 0.9999, 1)

and t∗4,3 = {0, 0, 0, 0.1598, 0.290, 0.4193, 0.5558, 1, 1, 1}, is plotted in the left

panel of Fig. 7. The spline estimate K̂α̂

(
t; t∗4,3

)
is obtained for 13.20 seconds

and the corresponding solution of the differential equation (14) is obtained in
0.06 seconds. In the right panel of Fig. 7, the corresponding true and estimated
Clayton copula generators are presented. As can be seen, the estimate φ̂θ̂(t),
can not be visually distinguished from the true underlying Clayton copula
generator. The estimate of Kendall’s tau using (17) is τ̂4 = 0.29.
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Analysing the presented examples, it has to be noted that with the increase
of the dimension, d, the shape of the cdf K(θ, t) becomes more rectangu-
lar and therefore, more knots are needed in order to approximate it using
splines. The constraints (9) and (10) come into play when the number of
data points is relatively small, as seen from Fig. 1. In addition, in the two-
dimensional case, d = 2, for small data samples, n ≤ 200, one may attempt
to solve the optimization problem (8) subject to the constraints (9), (10) and
(11) directly using a non-linear optimization procedure in order to find the
globally optimal spline estimate of K(θ, t). For example, using the NMini-
mize built-in Mathematica function, in the case of n = 50 data points simu-
lated from a two-dimensional Clayton copula, the globally optimal constrained
solution to (8) is found in 24.54 seconds and α̂opt = (0, 0.4008, 0.9999, 1),
topt
4 = 0.3479, RSS∗opt = 0.1511. This optimal solution does not differ signifi-

cantly from the the quadratic GeD spline estimate α̂ = (0, 0.5762, 0.9999, 1),
t∗4 = 0.5194, RSS = 0.1552, obtained in 0.31 seconds using the proposed three-
step GeD spline Archimedean copula estimation method. The two spline esti-
mates, K̂α̂opt

(
t; t1,3opt

)
and K̂α̂

(
t; t∗1,3

)
, and their coresponding generators are

hard to distinguish from one another. However, the globally optimal solution
to (8) is obtained at a much higher computational cost.

In the case of n = 100 data points simulated from a two-dimensional Frank
copula, the globally optimal constrained solution to (8) is found in 65.34 sec-
onds, compared to 0.78 seconds using the proposed GeD spline Archimedean
copula estimation method and the two estimates are again very close. The
direct approach of solving (8) becomes infeasible for d > 2, i.e. when higher
number of internal knots is required, and for large data samples, e.g. n ≥ 500.

4 Comments and conclusions

The proposed method of estimating multivariate Archimedean copulas has
been demonstrated to efficiently recover the underlying generator even for di-
mensions d > 2. To the the best of our knowledge this multivariate feature of
the proposed procedure is unique and opens the scope for truly multivariate
applications of Archimedean copulas in a variety of practical areas. Its ex-
tremely good numerical efficiency makes the method applicable for estimating
dependence based on large volumes of data combined with high dimensions.

In principle, it should be possible to construct a new goodness-of-fit test
of the null hypothesis H0 : C(u1, . . . , ud) belongs to a particular family of
Archimedean copulas (e.g. Frank, Clayton), based on Kolmogorov-Smirnov or
Cramér-von Mises type statistics, using the GeD spline estimator K̂(θ̂, t) or
Ĉθ̂(u1, . . . , ud). These new goodness-of-fit tests can be viewed as alternatives
to the existing methods based on Kn, such as that of [12]. Further details of
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how this can be done are outside the scope of this paper and are subject of
an ongoing investigation.
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