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Abstract
The multinomial probit model has emerged as a useful framework for modeling nominal categorical
data, but extending such models to multivariate measures presents computational challenges.
Following a Bayesian paradigm, we use a Markov chain Monte Carlo (MCMC) method to analyze
multivariate nominal measures through multivariate multinomial probit models. As with a univariate
version of the model, identification of model parameters requires restrictions on the covariance matrix
of the latent variables that are introduced to define the probit specification. To sample the covariance
matrix with restrictions within the MCMC procedure, we use a parameter-extended Metropolis-
Hastings algorithm that incorporates artificial variance parameters to transform the problem into a
set of simpler tasks including sampling an unrestricted covariance matrix. The parameter-extended
algorithm also allows for flexible prior distributions on covariance matrices. The prior specification
in the method described here generalizes earlier approaches to analyzing univariate nominal data,
and the multivariate correlation structure in the method described here generalizes the autoregressive
structure proposed in previous multiperiod multinomial probit models. Our methodology is
illustrated through a simulated example and an application to a cancer-control study aiming to achieve
early detection of breast cancer.
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1 Introduction
The past three decades have seen a great deal of research into discrete choice models, especially
in the econometrics and transportation systems literature (Hausman & Wise, 1978; Daganzo,
1980; Bierlaire, 1998). The multinomial logit (MNL) model and the multinomial probit (MNP)
model are among the most popular discrete choice models. The MNL model assumes
independence of irrelevant alternatives (IIA), which limits its use for data with correlated
categorical levels. In contrast, the MNP model provides a framework for representing
association between levels of a multinomial outcome. However, MNP models are challenging
to analyze due to the computational complexity of algorithms to fit them.
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Non-Bayesian methods for analyzing MNP models have focused on using simulated maximum
likelihood estimation and the method of simulated moments to avoid direct numerical
evaluation of the multidimensional probability integrals involved in maximum likelihood
estimation (McFadden, 1989; Geweke, Keane, & Runkle, 1994a; McFadden & Ruud, 1994;
Börsch-Supan & Hajivassiliou, 1993). These approaches have been seen to be sensitive to the
method of estimating the choice probabilities (McCulloch & Rossi, 1994).

Statistical computing innovations including Markov chain Monte Carlo (MCMC) estimation
(Tanner & Wong, 1987; Gelfand & Smith, 1990; Gilks et al., 1996; Gamerman, 1998; Carlin
& Louis, 2000; M.-H. Chen et al., 2000; Liu, 2001; Congdon, 2001; Gelman et al., 2003;
Robert & Casella, 2004) have allowed for the development of Bayesian methods for complex
models. Bayesian approaches for fitting MNP models have included Albert and Chib (1993),
McCulloch and Rossi (1994), Nobile (1998), Chib, Greenberg, and Chen (1998), Nobile
(2000), McCulloch, Polson, and Rossi (2000), Z. Chen and Kuo (2002), and Imai and van Dyk
(2005a).

Multivariate discrete choice models generalize these models to permit analysis of multivariate
categorical data. Kim, Allenby, and Rossi (2002) proposed an additive random utility model
for modeling consumer demand for more than one variety (alternative). Bhat (2005, 2006)
developed a new random utility model. These authors employed simulated maximum
likelihood estimation. Specialized multivariate discrete choice models have also been
considered. The mixed multinomial logit (MMNL) model (Hensher & Greene, 2003) extends
the MNL model to relax the IIA assumption and to allow analysis of multivariate nominal
correlated measures. Maximum simulated likelihood estimation, the method of simulated
moments, and Bayesian methods have been used for inference in the MMNL model (McFadden
& Train, 2000; Train, 2001; Sivakumar, Bhat, & Ökten, 2005; Train & Sonnier, 2005).

Extensions of MNP models to nominal data at multiple time points have also been proposed
(McCulloch & Rossi, 1994; Geweke, Keane, & Runkle, 1994b, 1997; Z. Chen & Kuo, 2002;
Ziegler, 2002; Rendtel & Kaltenborn, 2004). Computational issues in these multiperiod
multinomial probit models have confined the covariance matrix of the latent variables to have
either a low-order factor structure (Ziegler, 2002), a first-order autoregressive structure
(McCulloch & Rossi, 1994; Geweke et al., 1994b, 1997; Rendtel & Kaltenborn, 2004), or a
covariance matrix with a random scale (Z. Chen & Kuo, 2002).

In the case where no covariates are used in the model, the data can be represented as a multiway
contingency table. A traditional approach to analyzing such data is log-linear modeling
(Bishop, Fienberg, & Holland, 1975). For multi-way contingency table data, the model we
propose here has some similarities to certain types of log-linear models; distinctions relate to
relaxation of assumptions similar to IIA in MNL models.

An alternative approach for analyzing non-normal repeated measures, such as repeated
categorical data and repeated ordinal data, is to use the generalized estimating equation (GEE)
method (Liang & Zeger, 1986; Zeger & Liang, 1986; Zeger, 1987; Liang, Zeger, & Qaqish,
1992). However, the GEE method is not indicated when inference about the correlation
parameters, in addition to inference for regression parameters, is of interest.

Golob and Regan (2002) extend the MNP model for univariate nominal measure to the
multivariate MNP (MVMNP) model to analyze multivariate nominal data, using the
generalized least-squares approach proposed by Muthen (1983) for structural equation models.
To solve the parameter identification, they standardized the covariance matrix, i.e., used a
correlation matrix instead of a covariance matrix. However, this technique forces the
magnitudes of each latent variables to be equal and this may not be appropriate without any
knowledge of the latent variables.
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In this paper, we consider the MVMNP model from a Bayesian perspective. We develop an
MCMC algorithm allowing general specification for covariance matrices of the latent variables
(i.e., the utilities in choice models). Our key statistical computing innovation is to use the
parameter-extended Metropolis-Hastings (PX-MH) algorithm to sample the covariance matrix
with restrictions on the diagonal elements. The PX-MH algorithm was proposed by Zhang,
Boscardin, and Belin (2006) to sample a correlation matrix in the setting of the multivariate
probit model. It was used by Boscardin and Zhang (2004) in a mixture of continuous and ordinal
repeated measures. The Bayesian methods we propose both avoid parameter identification
problems and allow flexible prior distributions on the covariance matrix of the latent variables.

Our paper proceeds as follows. Section 2 describes the MNP and MVMNP models, including
some discussion about the model identification problem. Section 3 presents the MCMC
sampling algorithm for the MVMNP model and describes the PX-MH algorithm for sampling
the restricted covariance matrix. To illustrate our method, we use a simulated example in
Section 4 and an example involving incomplete contingency table data from a cancer-control
study in Section 5. Finally, we draw some conclusions and discuss other issues relative to
MVMNP models in Section 6.

2 Multivariate multinomial probit (MVMNP) models
To describe the MVMNP model, we start with a description and a review of estimation methods
for the MNP model.

2.1 MNP models for univariate nominal measures
Letting i = 1, 2, …, n index subjects and j = 1, 2, …, p index levels of a multinomial outcome
having p levels, we let yij = 1 if subject i has outcome j and yij = 0 otherwise, with yi = (yi1, …,
yip) representing a multinomial 1 × p vector. More compactly, we define d = (d1,…, dn)T, where
di contains the index of the chosen alternative, i.e., di = j if yij = 1. Following the notation in
economics settings where utilities underlie choices, the MNP model assumes that there is a
latent 1 × p vector ui = (ui1, …, uip) underlying each multinomial vector yi, such that the
multinomial outcome is determined by the maximum uij, as would happen if the subject chooses
the alternative with maximum utility score. That is

(1)

Although a simpler description of the latent-variable mean structure is possible, we proceed
with a formulation that allows for covariates. In this framework, the MNP model further
assumes that the vector ui follows a multivariate normal distribution with mean equal to Aiβ
and covariance matrix equal to V, where Ai is a p × k covariate matrix for subject i and β is a
k × 1 regression parameter vector. With this notation,

(2)

where δi ∼ N(0, V). The elements of Ai might reflect subject-specific covariates, in which case
all of the elements in a row of Ai would be the same, or outcome-level-specific covariates (the
classic case being the cost associated with each of the choices), in which case row elements
would differ in general.

There are two identification problems in the above MNP model specification. Based on
equation (1), we can see that the model will not be changed if a constant is added to both sides
of equation (2). This first identification problem is known as additive redundance. This
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problem is usually solved by subtracting the p-th row of equation (2) from the first (p — 1)
rows. The model becomes

(3)

where ∊i ∼ N(0,Σ) independently, zij = uij — uip,Xij = Aij — Aip, ∊ij = μij — μip and Σ =
[Ip—1,—1p—1]V[Ip—1,—1p—1]T, with Is denoting the s × s identity matrix and 1s a vector of
length s comprised of 1′s. Then the model can be described as:

(4)

We notice that the model defined by equations (3) and (4) is not substantively changed if both
sides of equation (3) are multiplied by a non-zero constant. This second identification problem
is known as multiplicative redundance. We solve this problem by restricting the first element
of Σ, σ11, to be equal 1. This strategy is also used by McCulloch et al. (2000). Thus,
accommodating both additive and multiplying redundance, we describe the fully identifiable
MNP model as follows:

(5)

where zi ∼ N(Xiβ, Σ) and σ11 = 1.

2.2 MVMNP models for repeated nominal measures
Buliding on the notation of Section 2.1, we now extend the MNP model to multivariate nominal
measures.

Suppose for each subject i, there are g nominal measures, the first with p1 levels, the next with
p2 levels, and so on up to the last with pg levels. Let di = (di1, …, dig) denote the index vector
of the alternatives the i-th subject chooses for the g measures. Assume each of these g nominal
measures follows an MNP model. Therefore, for the q-th measure, q = 1, …, g, there is a
(pq—1)-dimensional underlying utility vector ziq satisfying equation (5) with mean equal to
Xiqβ and covariance matrix equal to Σq with the upper left element {Σq}11 = 1.

We describe the MVMNP model for the g measures as follows:

where zi
T = (zi1, …, zig) with ziq = (ziq1, …, ziq(pq—1)),  and ∊i ∼ N(0,Σ) with

σqq = 1, where q = 1, (p1 + p2 - 1), (p1 + p2 + p3 - 2), …, (p1 + p2 + ⋯ + pg-1-g-1). We then
specify

for i = 1, …, n and q = 1, …, g.
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Contingency table data can be accommodated as a special case of this model by setting each
of the Xi matrices to an identity matrix of dimension g. The correlation structure of the MVMNP
model allows associations between pairs of frequencies, much as would occur with a log-linear
model with all two-way interactions. We explore this idea further in section 5.

The following section presents a Bayesian sampling algorithm for MVMNP models.

3 Bayesian sampling algorithm for MVMNP models
3.1 MCMC framework

The joint posterior density of β, Σ, and Z = (z1, …, zn) given d = (d1, …, dn) is characterized
as

(6)

where φ is the standard normal density function and 

where 1E is a indicator function equal to 1 when expression E is true and 0 when E is false.
Each Ii is thus an indicator function evaluating to 1 if the choice vector di is compatible with
the latent vector zi.

To implement our MCMC algorithms, we build on the following:
• Assuming β ∼ N(b, C) as a prior distribution for β and using standard Bayesian linear

model results, β|Σ, z, d has a multivariate normal distribution:

where  and .
• The latent variable ziqj|β, Σ, di, ziq(-j), zi(-q) has a truncated normal distribution that can

be represented:

where μiqj and Σiqj are the conditional mean and variance of ziqj given ziq(-j), zi(-q).
With missing dij, ziqj|β, Σ, diq, ziq(-j), zi(-q) has a univariate normal distribution with
mean μiqj and variance Σiqj as before, but without truncation.
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• Assuming Σ has prior density p(Σ), we have p(Σ|β, Z, d) is proportional to

. It is not easy to directly draw simulations from the posterior
distribution of the covariance matrix Σ with g diagonal elements equal to 1. In the
next section, we elaborate in detail the steps involved in drawing p(Σ|β, Z, d) using
the PX-MH algorithm.

3.2 Parameter-extended Metropolis-Hastings (PX-MH) step
We first give a brief review of the PX-MH algorithm proposed by Zhang et al. (2006). To
sample a correlation matrix, R, in a multivariate probit model, Zhang et al. sample a covariance
matrix, W, using the decomposition W = D1/2RD1/2 where D is a diagonal matrix of artificial
variance components governed by a joint prior distribution, p(R, D), for the correlation matrix
R and D. We present the PX-MH algorithm as follows.

Set initial value of (R(0), D(0)) through setting  to an initial covariance
matrix.

Then, at iteration (t + 1)

1. Generate (R*, D*) by generating  from Wishart (m, W(t)).

2. Take

where . Here, p(R, D|β, Z, Y) is the
joint posterior density of (R, D) and q(.|W(t)), the proposal density, is equal to the
product of the Jacobian term for the transformation (W → R, D) and the Wishart
density with m degrees of freedom and scale matrix equal to W(t).

In the MVMNP model, the covariance matrix Σ has g diagonal elements equal to 1. We
decompose Σ = D0RD0 where R is the correlation matrix of Σ and D0 is the diagonal standard

deviation matrix with elements  equal to 1. Then we
consider a diagonal matrix D replacing those elements of D0 equal to 1 with unknown
parameters (v1, vp1,vp1+p2-1, …, vp1+⋯+pg-1-g-1). Therefore, the matrix W = DRD is a
covariance matrix without restrictions on the diagonal elements. We use the above PX-MH
algorithm to sample W, thereby obtaining a draw of Σ. A slight distinction between sampling
Σin the MVMNP model and sampling R in the multivariate probit model is that some of the
diagonal elements of D are identified parameters in the MVMNP model, while for the
multivariate probit model, all the diagonal elements of D are artificial; this distinction does not
alter the character of the algorithm, however.

For the prior distribution of Σ, we use a PXW prior proposed by Zhang et al. (2006), with
density given by the product of the Jacobian term for the transformation (W → R, D) and the
Wishart density with m0 degrees of freedom and scale matrix equal to Λ. The scale matrix Λ
reflects the prior guess for the covariance matrix Σ with higher values of m0 representing greater
prior precision.

Including the g artificial parameters, the joint posterior density of β, R, D, Z given d is

Zhang et al. Page 6

Comput Stat Data Anal. Author manuscript; available in PMC 2009 April 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The conditional distributions for β and zi given other parameters are the same as described in
Section 3.1. Through this joint posterior density, we have p(R, D|β, Z, d) is proportional to

. As suggested above, the prior density p(R, D) can be specified by
letting the joint prior distribution of (R, D) be from the PXW (m0, Λ) family of distributions.
Therefore, one cycle of the algorithm consists of Gibbs steps to sample β and each component
of the latent variable zi, and a Metropolis-Hastings step for sampling (R, D), with Σ generated
as a byproduct of the PX-MH step.

3.3 Software implementation
We implemented our algorithm in C using the GNU scientific library (Galassi et al., 2006).
For the univariate MNP model, we compared our algorithm to algorithms proposed by
McCulloch and Rossi (1994) (MR) and Imai and van Dyk (2005a) (IvD). We implemented the
MR algorithm using the rmnpGibbs function in the bayesm package for R (Rossi, Allenby, &
McCulloch, 2006) and the IvD algorithm using the MNP R package (Imai & van Dyk,
2005b). Using a variety of data sets, including simulated examples from McCulloch and Rossi
(1994) and the detergent brand choice example included in the MNP package, we obtained
similar results to both MR and IvD. Our convergence performance was comparable to MR,
which is shown by Imai and van Dyk (2005b) to be slower than the IvD algorithm. Because
our primary interest is to provide greater modeling flexibility, based on a Bayesian framework
for multivariate nominal measures that allows prior information to be incorporated in a flexible
and intuitive manner, we do not view the slower convergence of our method relative to IvD as
a fatal flaw, but it does suggest that it is important to be careful in assessing convergence in
multivariate applications. In the following sections, we illustrate the use of our algorithm
through simulated data on multivariate nominal measures, followed by an analysis of data from
a cancer-control study.

4 Illustration using simulated data
To illustrate our MCMC algorithm for the MVMNP model, we use the following simulated
example to investigate posterior inference for unknown parameters.

We generated a data set with sample size equal to 2,000. Each subject i was assumed to have
two nominal measures for each person, yi1 and yi2, with yi1 having three categorical levels and
yi2 having four categorical levels. We use zi1 to denote the two-dimensional latent variable
corresponding to yi1 and zi2 to denote the three-dimensional latent variable corresponding to
yi2. The covariance matrix for zi1 was a 2 by 2 matrix with the correlation equal to 0.4 and
variances equal to 1 and 0.81, respectively, and the covariance matrix for zi2 was taken to be
an AR(1) correlation matrix with first-order correlations equal to 0.5 and variance vector equal
to (1, 0.81, 0.90). The correlations between elements of zi1 and zi2 were all set to 0.2. The 2 by
1 covariate matrix Xi was generated from iid uniform (-0.5,0.5), and the regression parameter
β was set to 2.0.

To perform inference using the MVMNP model, we consider two alternative prior formulations
for β and Σ. First, we take the prior distribution for β to be N(0, 100), which is very weakly
informative, and we assume Σ has a PXW (m0 = 8, I) distribution, i.e. a prior guess that the
covariance matrix is equal to the identity matrix with eight degrees of freedom. A proper prior
distribution for the five by five covariance matrix Σ requires m0 to be greater than or equal to
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6, and thus the prior distribution reflects a weakly informative belief in a scenario where the
levels of the nominal variable have no association with one another. We also examined
examined a strongly informative prior scenario with a N(0, 1) prior distribution for β and a
PXW (m0 = 100, CS(0.4)) prior distribution for Σ, where CS(0.4) indicates a compound
symmetry structure with equal correlation 0.4. The degrees-of-freedom parameter m0 in this
case reflects a strong prior belief that the covariance matrix has a CS(0.4) structure. We label
the first approach PXW_ID_Weak and the second approach PXW_CS_Strong. The
implications of these scenarios for the regression parameter β, the three variance parameters
(σ22, σ44 and σ55), and the correlations rij are displayed in Figure 1, showing that the
PXW_CS_Strong scenario gives much tighter information for all of the parameters than the
PXW_ID_Weak scenario does.

We ran the MCMC algorithm for 101,000 iterations, discarding the first 1,000 iterations as a
burn-in period for each of these two prior distribution scenarios. The posterior mean and
standard deviation for each parameter are presented in Table 1, and the marginal posterior
densities are shown in Figure 2. We see that the correlation parameters and the covariance
parameters appear to depend somewhat on the specification of prior distributions. Not
surprisingly, the posterior means of the correlations under the PXW_CS_Strong scenario are
pulled toward the assumed value of 0.4. Also, the posterior standard deviations under the
PXW_CS_Strong scenario are uniformly smaller than those under the PXW_ID_Weak
scenario. The coverage of true values appears satisfactory in both scenarios, partly because
substantial posterior uncertainty remains. It stands to reason that better prior specification may
give better estimated values, but, in general, inference appears to be fairly robust to the choice
between these two groups of priors, presumably because the sample size of 2,000 is sufficient
to dominate either prior scenario.

The convergence of the MCMC algorithm was assessed by several procedures recommended
by Cowles and Carlin (1996). We calculated Gelman and Rubin’s potential scale reduction
factor,  for five dispersed chains with the first 1,000 iterations discarded as burn-in (Gelman
& Rubin, 1992). A jumping distribution degrees-of-freedom parameter of m = 2200 gave an
acceptance rate of about 10% for the PX-MH step of the algorithm. Although this is below the
value of 23% recommended by Gelman, Roberts, and Gilks (1996), we find in practice that
higher values for m substantially increased autocorrelations. For the single regression
parameter β, ten correlation parameters rij and three variance parameters (σ22, σ44 and σ55),
the values of  were all below 1.1 after 40,000 iterations and declined consistently through
a further 60,000 iterations. The multivariate potential scale reduction factor for these 14
parameters was 1.04 after 40,000 iterations, improving to 1.02 at 100,000 iterations.

5 Application to a cancer-control study
We illustrate our method for MVMNP models using incomplete contingency table data from
a study on adherence to clinical recommendations among women diagnosed with breast
abnormalities (Mojica, Bastani, Boscardin, & Ponce, 2006). The study aimed to test the e ect
of a telephone counseling intervention to encourage clinical follow-up for diagnosis of breast
abnormalities, with telephone counselling or usual care subject to random assignment. The
data were collected on a sample of 1,671 women who presented with a breast abnormality at
two Los Angeles county hospitals (Hospitals A and B). Six months after enrollment, outcome
data were collected via medical chart reviews and a computer-assisted telephone interview.

Here we investigate the between-measure and within-measure associations across the levels
of six nominal variables: Final Diagnosis (Yes/No), Patient Language (Spanish/Other),
Ethnicity (Hispanic/Non-Hispanic), Age at Referral (3 Categories), Type of Referring Clinic
(grouped into 3 categories) and Work Situation (grouped into 4 categories). Descriptive
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information about these nominal variables is presented in Table 2, showing that there are
substantial rates of missingness for several of the measures. Of the n = 1671 subjects, only 314
had complete data on all six measures.

We used the proposed MCMC algorithm for MVMNP models including missing values and
obtained posterior means and standard deviations for the 10 × 10 correlation matrix of the
nominal variables. As discussed at the end of section 2.2, we set Xi = I10 for each subject. We
chose an independent N(0,100) prior for each regression parameter and a PXW (m0 = 18, I)
prior for the covariance matrix for the latent vector zi. We ran 401,000 iterations with 1,000
burn-in iterations, yielding a roughly 15% acceptance rate for the proposed draws in the PX-
MH step. Values of univariate potential scale reduction factors (PSRF) for all 10 regression,
45 correlation and 4 variance parameters were well below 1.10 at 200,000 iterations with the
exception of three correlation parameters (r45, r67, and r89) for which the PSRF’s were near
1.3 and a single variance parameter (σ10,10) for which the PSRF was 1.5. The multivariate scale
reduction factor for these 59 parameters was 1.3. A further 200,000 iterations reduced all scale
reduction factors below 1.1.

In Table 3, we present the posterior mean correlation matrix and variances for the latent vector
zi = (zi1, …, zi10) with corresponding posterior standard deviations. The estimated correlations
are not typically large in absolute values, with the correlation between the latent variables for
Spanish language and Hispanic ethnicity an unsurprising exception that emerges as highly
significant despite a large proportion of missing values in the patient language variables. This
finding reinforces the ability of the proposed MCMC algorithm in Section 3 to handle data
with many missing values. The negative correlations in the third row with the non-reference
Working Situation levels suggest a slight tendency for Hispanic subjects to be homemakers.
Obtaining final diagnosis is slightly more likely for older women, Working women are less
likely than unemployed women to be referred from an Emergency or Medical Walk-in clinic.
The four variance components for zi5, zi7, zi9 and zi10, had 95% credible intervals that include
1, suggesting that the latent variables underlying the multivariate nominal measures are roughly
on the same scale.

Since the data can be represented in a multi-way table, we now compare our approach to a
simple log-linear model with all main effects and two-way interactions. The log-linear
modeling was performed using the SAS Catmod procedure which only makes use of complete
cases. To contrast the two approaches, we used a reduced set of variables: Final Diagnosis
with 2 levels, Age at Referral with 3 levels, and Type of Referring Clinic with 3 levels. The
data for this 2 × 3 × 3 table have n = 1327 complete cases. For the MVMNP model, we calculated
posterior mean fitted probabilities for the 18 cells in the contingency table; the correlation of
these 18 values with the corresponding fitted probabilities from the two-way log-linear model
was 0.99. Thus, as expected, our method coincides very closely to the standard log-linear model
predictions in the situation of a large sample size and a simple model. We note for this reduced
set of variables that the MVMNP model has 17 parameters (10 correlation parameters, 2
variance parameters, and 5 mean parameters) and the two-way log-linear model has 13
parameters (5 main effects and 8 two-way interactions). Thus the latent variable structure in
the MVMNP model gives it somewhat more flexibility in this complete case setting. More
importantly, the MVMNP model is able to directly accommodate incomplete data. In the
original setting of six variables, the MVMNP model uses incomplete data on n = 1671 subjects
to fit a model with 59 parameters (45 correlation parameters, 4 variance parameters, and 10
mean parameters). In contrast, a two-way log-linear model has 50 parameters (10 main effects
and 40 two-way interactions); these 50 parameters would be poorly estimated using the n =
314 complete cases.
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6 Conclusions
In this manuscript, we proposed MVMNP models for analyzing multivariate nominal data
using the PX-MH algorithm in a Bayesian framework. We illustrated our methodology through
a simulated example and an application to incomplete contingency table data from a cancer
control study.

The MVMNP model is a general model to handle multivariate nominal data that has several
advantages over MNP models and multinomial multiperiod probit models. First, the MNP
model is a special case for univariate nominal data using the MVMNP model, whereas the
multiperiod multinomial probit model does not have this property. Second, the MVMNP model
allows general covariance structures for the latent variables, compared with the multiperiod
multinomial probit model which only allows special covariance structures, such as those with
AR(1) structures. Third, the prior distribution we used for the MVMNP models allows useful
prior information to be incorporated into the model in a flexible manner that is naturally
embedded into the sampling algorithm.

In the special case of contingency table data, the MVMNP model provides additional flexibility
over a two-way log-linear model, but is more parsimonious than a saturated model. The
MVMNP model can also directly accommodate incomplete data as well as covariates.

An inherent concern in the PX-MH algorithm for the MVMNP model is that with high-
dimensional repeated nominal measures, the PX-MH algorithm may have high autocorrelations
among the posterior draws and therefore result in slow convergence. The identified MVMNP
model necessitates a complex Metropolis-Hastings step for sampling the restricted covariance
matrix instead of a Gibbs sampler step for the unidentified version. Imai and van Dyk
(2005a) have given a similar discussion for the slow convergence induced by solving the
identification problem for the MNP model. Statistical computing strategies that offer the
prospect of more rapid convergence would be a worthy area for future research.
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Figure 1.
Prior density plots for the regression parameter (β), variance parameters (σ22, σ44, σ55), and
correlations (rij). The dotted lines are for the PXW_ID_Weak scenario, the solid lines are for
the PXW_CS_Strong scenario, and vertical lines have been drawn at the true value for each
parameter.
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Figure 2.
Posterior density plots for the regression parameter (β), variance parameters (σ22, σ44, σ55),
and correlations (rij). Dotted lines correspond to the PXW_ID_Weak scenario, and solid lines
correspond to the PXW_CS_Strong scenario. Vertical lines have been drawn at the true values
for each parameter. The plots show some sensitivity to prior specification for variance
parameters, somewhat less sensitivity in correlation parameters (with r35 a possible exception),
and little sensitivity for the regression parameter.
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Table 1
Posterior means (posterior standard deviations) for the regression parameter (β), estimable variance parameters (σ22,
σ44 and σ55) and correlation parameters (rij) under PXW_ID_Weak and PXW_CS_Strong scenarios. This table shows
that the posterior means for all parameters, except r35, are similar under these two groups of priors and the posterior
standard deviations under the PXW_CS_Strong prior are uniformly smaller than those under the PXW_ID_Weak prior.

Parameters True PXW_I_weak PXW_CS_strong

β 2.00 2.04 (0.08) 2.07 (0.07)

σ22 0.81 0.72 (0.08) 0.78 (0.08)

σ44 0.90 1.08 (0.14) 0.93 (0.09)

σ55 0.81 0.85 (0.13) 0.89 (0.09)

r12 0.40 0.39 (0.23) 0.37 (0.21)

r13 0.20 0.22 (0.23) 0.27 (0.21)

r14 0.20 0.23 (0.23) 0.30 (0.21)

r15 0.20 0.26 (0.23) 0.30 (0.21)

r23 0.20 0.20 (0.23) 0.26 (0.22)

r24 0.20 0.26 (0.23) 0.31 (0.22)

r25 0.20 0.23 (0.24) 0.27 (0.22)

r34 0.50 0.48 (0.25) 0.42 (0.22)

r35 0.25 0.12 (0.28) 0.25 (0.24)

r45 0.50 0.56 (0.23) 0.48 (0.22)
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Table 2
Description of variables used in cancer-control data analysis.

Variable Categories Percentage Missing % Latent Variables

Final
Diagnosis

Yes
No

55.1
44.9

0.0 zi;1
(reference)

Patient
Language

Spanish
Other

61.0
39.0

63.3 zi;2
(reference)

Ethnicity Hispanic
Non-Hispanic

85.0
15.0

36.2 zi;3
(reference)

Age at
Referral

< 40
40–49
≥ 50

26.3
31.5
42.2

2.8 (reference)
zi;4
zi;5

Type of
Referring
Clinic

Breast and Tumor Clinic
Emergency and Medical Walk-in

Other

35.4
22.4
42.2

18.5 zi;6
zi;7

(reference)

Working
Situation

Full-time
Part-time

Unemployed
Homemaker

18.4
20.0
23.6
38.1

36.0 zi;8
zi;9
zi;10

(reference)
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