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ON BIRNBAUM-SAUNDERS INFERENCE

AUDREY H.M.A. CYSNEIROS, FRANCISCO CRIBARI-NETO,
AND CARLOS A.G. ARAUJO JR

AsstracT. The Birnbaum—Saunders distribution, also known as thguetlife
distribution, is frequently used in reliability studies.eVdbtain adjustments to
the Birnbaum—-Saunders profile likelihood function. The ified versions of
the likelihood function were obtained for both the shape scale parameters,
i.e., we take the shape parameter to be of interest and tleerameter to be of
nuisance, and then consider the situation in which theestdies in performing
inference on the scale parameter with the shape paramederimgnthe model-
ing in nuisance fashion. Modified profile maximum likelihoesdtimators are
obtained by maximizing the corresponding adjusted lilagih functions. We
present numerical evidence on the finite sample behavidreddifferent estima-
tors and associated likelihood ratio tests. The resultsrfthe adjusted estima-
tors and tests we propose. A novel aspect of the profile fikelil adjustments
obtained in this paper is that they yield improved pointreatorsand tests.
The two profile likelihood adjustments work well when infece is made on the
shape parameter, and one of them displays superior behakinr it comes to
performing hypothesis testing inference on the scale paternTwo empirical
applications are briefly presented.

1. INTRODUCTION

Birnbaum and Saunders (1969a) derived a two-parameteibdisbn using a
set-up in which failure time due to fatigue under cyclic lmadwhen failure fol-
lows from the development and growth of a dominant crack. ofding to Mar-
shall and Olkin (2007), the Birnbaum—Saunders distributias appeared in sev-
eral diferent contexts, and various derivations of the distrilbuaice known. Ac-
cording to them (pp. 466-467), “it was given by Fletcher (I@land according
to Schrodinger (1915) it was obtained by Konstantinowsky1@);” additionally,
“it was obtained by Freudental and Shinozuka (1961), butas whe derivation
of Birnbaum and Saunders (1969a) that brought the usefuliethe distribution
into clear focus.” Desmond (1985) derived the same digiohun a more general
setting; he used a biological model and relaxed severaleoBisumptions made
by the original authors. The relationship between the thielBium-Saunders and
inverse Gaussian distributions was explored by Desmor@B)19t can shown that
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the Birnbaum—Saunders distribution is a mixture betweemarse Gaussian dis-
tribution and a generalized inverse Gaussian distributse® Bhattacharyya and
Fries (1982).

The random variablg is said to be Birnbaum—-Saunders distributed, denoted
T ~ B8S(«a, B), if its density function is given by

] B 1 ﬁ 1/2 ﬁ 3/2 1 t ﬁ
o g oo (29

t,a,B > 0, wherea is the shape parameter agds the scale parameter. It is
noteworthy that the reciprocal property holds for the Bamim—Saunders distri-
bution: T™* ~ 8S(a,f1); see Saunders (1974). It is easy to show #@) =
B(1+302), var(T) = (@B)?(1+ 30?), E(T™Y) = p(1+ 30?) and varT?) =
%372 (1+ 30?).

The Birnbaum—Saunders distribution function is

1/2 1/2
(/%) —(’g) D O<t<oo, a,B>0,

’

Fta.f) = @[5
(04

where®(-) denotes the standard normal distribution function. Nbtg g is the
median of the distributionF+(8) = ®(0) = 0.5. It was shown by Kundu, Kannan
and Balakishnan (2008) that the Birnbaum—-Saunders haaaatidn is an upside
down function for all values of the shape and scale parametdence, the dis-
tribution is useful in a number of practical situations whéne hazard function
increases up to a point and then decreases. The authors lbavaddressed the
important issue of performing inference on the point at Wwhite hazard function
reaches its maximum.

Oftentimes the interest lies in performing inference ontssstiof the parameters
that index the model; such parameters are said to hetefest and the remain-
ing ones areuisance parameterd-or instance, in Birnbaum—-Saunders reliability
studies, one is typically interested in performing infex@on one of the parameters
that index the model, the other parameter entering the rimodetocess in nuisance
fashion. In the presence of nuisance parameters, infeseareeusually based on
the profile likelihood function, which is obtained by reglag, in the likelihood
function, the nuisances parameters by their correspongtiagimum likelihood
estimators for fixed values of the parameters of interese rélulting function —
the profile likelihood function — will only depend on the paraters of interest.
It is noteworthy, however, that such a function is not a tikelihood function,
and some of the properties that hold for likelihood funcsiamne no longer valid; in
particular, there exist score and information biases thatat vanish as the sam-
ple size increases. Several adjustments to the profiléHi@d function have been
proposed; see, e.g., BarnffeiNielsen (1983, 1994), Cox and Reid (1987, 1992),
McCullagh and Tibshirani (1990) and Stern (1997). The mdé@aibehind these
adjustments is to add a term to the log-likelihood functioiempto maximizing it,
in order to overcome the aforementioned shortcomings.
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In this paper we shall use the results in BarriddMielsen (1983), Severini
(1998, 1999) and Cox and Reid (1987) to obtain adjustmenteegdirnbaum—
Saunders profile likelihood function. A novel aspect of thigproach is that the
effect of the nuisance parameter on the inference performedheinterest pa-
rameter is greatly reduced. It is also noteworthy that iliiad ratio type tests
constructed using the adjusted profile likelihood functigpically have superior
finite sample performance. In short, by adjusting the prdiielihood function
and then maximizing it one can perform reliable point estiomaand hypothesis
testing inference even when the sample size is small. Oultseshall allow prac-
titioners to perform reliable inference when using the Bamam—-Sanders model
in small samples. A motivation for our analysis lies in theaortant situation in
which one wishes to make inferences on the the median faimeein a reliability
study. As we have seen, the median of the Birnbaum—-Saundsrdbution isg,
one of the parameters that index such a distribution. Thezeherer is a nuisance
parameter. There are also situations where the interasinliperforming statisti-
cal inference on the shape parametemwith g8 figuring as a nuisance unknown
quantity. It is thus important to develop reliable and aateiinference strategies
that are not sensitive (or, at least, less sensitive) to #narpeter that enters the
modeling in nuisance fashion. This is our chief goal.

The paper unfolds as follows. Sectibh 2 introduces adjustsnt the profile
likelihood function when the interest lies in performindarence in the presence
of nuisance parameters. In Sectidn 3, we derive adjustmerttse Birnbaum—
Saunders profile likelihood function. The use of such adjesits delivers, as noted
above, improved estimatioand testing inference in small samples. Alternative
inference strategies are presented in Se€fion 4. Numeeisalts are presented in
Section$ b andl6, and two applications are presented inoBEgLtiFinally, Section
summarizes the main findings and lists directions for futesearch.

2. PROFILE LIKELIHOOD FUNCTION AND ADJUSTMENTS

Letty,...,t, be independent and identically distributed random vaemlith
joint density f(t; 6), wheref C RP is a p-vector of unknown parameters ahd-
(t1,...,t))". In what follows, we shall partitio® asd = (r",¢")", wherer, a
g-vector, contains the parameters of interest and (p — g)-vector, contains the
nuisance parameters.

Inference can be based on the profile likelihood functioriingd asL(r) =
L(r, #;), whereL(:) is the usual likelihood function ang is the restricted maxi-
mum likelihood estimator o givent. The profile likelihood is not a true likeli-
hood, and some of the properties that hold for a genuindhiidet do not hold for
its profiled version. In particular, there exist score arfdimation biases, both of
orderO(1).

The interest lies in testing the null hypothe$ig : T = g againstH1 : 7 # 7o,
whererg is a giveng-vector of scalars. The likelihood ratio statistic obtairieom
the profile likelihood function is

LR=2{((@. ) - ((.$,)} = 2| — £p(D)].
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Here, 7 and¢ are the maximum likelihood estimatorsoénd¢, respectively/(-)
is the log-likelihood function andy(-) is the profile log-likelihood function. Under
the null hypothesis,.R ~» )(51 where~» denotes convergence in distribution.

Several adjustments to the profile likelihood function hbbgen proposed in the
literature; see, e.g., Severini (2000, Chapter 9), PaceSaivhn (1997, Chapter
11) and the referenced therein for details.

Barndoff—Nielsen (1983) proposed an adjusted profile likelihoodfiam which
is invariant under reparameterizations of the fomwj — (7, (7, ¢)), wherer is
the vector of parameters of interegtis the vector of nuisance parameters sl
a function ofr and¢. His proposal follows from thg* formula, which is an ap-
proximation to the conditional density of the maximum likelod estimator given
an ancillary statistic. The proposed adjusted profile iliadd function is

i
Len(7) = ‘ 6%

| J¢¢ (T’ ET)|_1/2 L p(T)’

wheredg, /3¢ is the matrix of partial derivatives @, with respect t@, jss(7, ¢) =
—0%t/0¢d¢™ is the observed information matrix fgrwhenr is fixed andLy(7) is
the profile likelihood function forr.

There is an alternative expression fogy that does not involvede./d¢|; it
involves, nong}heless, a sample space derivative andrescam ancillary statistic
asuch that¥, ¢, a) is minimal suficient. It can be shown that

b . o~ -
- = J¢¢(T’ ¢Tl T, ¢’ a) 1€¢’$(T9 ¢Tl T, ¢’ a)9
where
aK(T ¢T! T ¢ a)
¢¢(T $:7,6,8) = (T

Here f (T $:.7, ¢, a) and jg4(T, ¢-.7, ¢, a) are the log-likelihood function and the
observed information fap, respectively. They depend on the data only through the
minimal suficient statistic.

Some approximations to the sample space derivative of thélelihood func-
tion have been proposed. Severini (1998) obtained an aijppation to Barndaff—
Nielsen’s adjusted profile likelihood function that reqgimeither a sample space
derivative nor an ancillary statistic. It is given by

— 1
teN(T) = Cp(7) + 3 |09|J¢¢r¢r)|—|09||¢(T ;T ),

where
lo(. : 70, $0) = E(rg.p0) {Lo(T: $) (0. ¢0) "} 1)

is the covariance matrix of log-likelihood derivatives afydr, ¢) = 0t/d¢. The
approximation error is of ordeg®(n~/?). The corresponding maximum likelihood
estimator shall be denoted asy.
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An alternative approximation, with the same approximagaior, was proposed
by Severini (1999):
. 1 _ — .-
teN(7) = (p(7) + > l0g1j4 (T, ¢o)| = 109 [14(7, $; 7, P)I,
where

n
5t ¢:70.90) = > (0@, 9)E (0, 40)", 2)
j=1
P(0) = (€9(9). £ (9) being the score function for thith observation. This ap-
proximation can be easily computed and is particularly wisefsituations where
one is not able to compute expected values of log-likelihdedvatives. The cor-
responding maximum likelihood estimator shall be denotethq.

Cox and Reid (1987) defined an adjusted profile likelihooctfiom, where an
adjustment term is included into the likelihood functiomopito maximization. It
approximates the conditional density function of the obsgons given the nui-
sance parameter maximum likelihood estimator and can hewids

Ler(r) = ligs(r. ¢2) 2Lp(1).
Taking logs we obtain

(or(E) = (5,5 5 100]jgo(r. 571 ©

Note that this function is the penalized counterpart of twelikelihood function,
the penalty term taking into account information on the anc®e parameter. The
maximizer offcr(7) shall be denoted &% . It is noteworthy that the score bias is
of orderO(n™1), but the information bias remai(1).

The derivation offcr(r) requires thatr and ¢ be orthogonal, i.e., that the el-
ements of the score vectaif/dr anddl/d¢, be uncorrelated which implies that
izg = 0. Wheni,s # 0, it is necessary to find a reparameterization of the form
(7, A(t, ¢)), wherer and A are orthogonal. It is noteworthy that such a reparame-
terization cannot always be found, except when the pararoéteterest is scalar.
We also note that the Cox and Reid adjustment is not invadadér reparameter-
izations of the form+, ¢) — (7, {(7, ¢)), unlike Barndoft—Nielsen’s adjustment.

3. Tue BIRNBAUM—SAUNDERS ADJUSTED PROFILE LIKELIHOODS

At the outset, letx be the parameter of interest a@dhe nuisance parameter.
Also, lett = (t1,...,tn)" denote a random sample of simdrom the Birnbaum—
Saunders distribution. The log-likelihood function is

1/2 3/2 N
TRC T
tj tj 2a2 — B

For fixede, the restricted maximum likelihood estimator®{3,, is the positive
root of the following nonlinear equation:

B? = Bl2r + K(B)] +r[s+K(B)] =0,

{(a,B) = —nlog(aB) + Z log
i=1
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where

n n -1 n -1

i=1

Note that,?a does not have a closed-form expression, and, as a resultsit e
obtained using restricted nonlinear optimization methee®, e.g., Nocedal and
Wright (1999, Chapter 18). (We note that the maximum likediti estimator of
B for fixed @ equals the maximum likelihood estimator&fthat is,3, = 8.) By
replacings byﬁa in £(a, 8) we obtain the profile log-likelihood function given by

n —~ 12 = 32
tpla) = —nloga—nlogﬁ(ﬁzlog l(ﬁ_“] +(ﬁ_a) ‘
=

ti ti
(B,
202\, S

The asymptotic distribution of the vector of maximum likelod estimators of
the parameters that index the Birnbaum—Saunders distibutas obtained by
Englehardt, Bain and Wright (1981). A simpler expressiarFigher’s information
matrix was obtained by Lemonte, Cribari—-Neto and Vascdos€R007).

In what follows, we shall obtain the adjusted profile likeldus described in
Section[2. Note that the interest and nuisance parameterertrogonal. The
adjusted profile log-likelihood function of Cox and Reid 819 for @ can be ex-
pressed as

1
ter(@) = €p(a) - > log|jgs(a. Ba)l,

where

+nr
23
@ By

= n n(1 2K@)

o= 25+ 33 * S

and

_ nzin=1(,3+ti)_2
[zr,@+ 6]

acr is the adjusted profile maximum likelihood estimatoragfit does not have
closed-form and must be obtained numerically.

The Barndoff—Nielsen (1983) adjusted profile log-likelihood functiam & can
be written as

K'(B)

ligs(c, Ba) Y2

ten(@) = Cp(@) + log — —.
T (@ Bo)
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Instead of obtaining the tertj)5(a, 8) in £en, we shall obtair (o, B,; @, B) given
in (2) using, thus, Severini's (1999) approximation. Afseme algebra, we obtain

n ) l n )
ZAj+ﬁEBj

- —_ =~ l 1
(@B @h = =-=> A7

where

tj—l/ZE—l/Z + 3El/th—3/2 tj 1
Aj= and BjZ(r——).

-1/25 723/24-3/2 .
f //31/2+/33/2tj / B2

The adjusted profile maximum likelihood estimaigyy of @ cannot be expressed
in closed-form; it has to computed by numerically maximigthe associated log-
likelihood function.

The likelihood ratio test statistics obtained from the atid profile log-likelihood
functions given above for the test #f; : « = ag againstH; : a # ag are

LRcr(@) = 2{tcr(acr) — {cr(eo)}
and
LRen(@) = 2{¢sn(@Bn) — fBn(0)},

whereacr andagy are the values of that maximizefcr(a) andfgn(a), respec-
tively. '_I'hese test statistics are asymptotically dishémas/\gf under the null hy-
pothesis.

We shall now consides as the parameter of interest and vievas a nuisance
parameter. For fixed, we write the restricted maximum likelihood estimatorof
as

By plugginga; into the log-likelihood function we obtain the following afile
log-likelihood function:

o) = @) =~ log(5 + 2 ~2)-nlogs

+ 2l )]

The joo (e, B) block of the observed information matrix evaluatedat, ) can
be written as

-1
@) = -n( 5+ £ -2
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From (3) it follows that Cox and Reid’s adjusted profile ldkelihood function for
Bis
1 r g
gCR(ﬂ) = gp(ﬁ) + E IOg‘E + g = 2‘ .

The estimatoECR, like the previous estimators, does not have closed-form.
The Barndofft—Nielsen adjusted profile log-likelihood function can bemssed
as

ljaa(@s, B)I"/?

Coz(@p. B)

We use Severini’s (1998) approximation and replégg(as,8), in {en(B), by
[(ap,B; @, B) given in (1). We arrive at

tsn(B) = £p(B) + log

_ _—~ na(B B
I(ag,B;a,B) = —(—+;).

The corresponding estimatq?fBN, does not have closed-form.
The likelihood ratio test statistics obtained from the abadjusted profile log-
likelihood functions for the test offy : B = Bp againstH; : B # Bo are

LRer(B) = 2{tcr(Ber) — Ler(Bo))
and

LRen(B) = 2{en(Ben) - Cen(Bo))

whereECR andEBN are the values g8 that maximizefcr(B8) and£gn(8), respec-
tively. The two test statistics are asymptotically disitéd asgf underHo.

4. ALTERNATIVE INFERENCE STRATEGIES

Some alternative point estimators for the parameters tiokeixi the Birnbaum-—
Saunders distributions have been proposed in the literatNg, Kundu and Bal-
akrishnan (2003) obtained modified moment estimatorsxfandB. As before,

- _ _ -1
lets=t=n"1y", t (sample arithmetic mean) amd= (n‘l n. ti‘l) (sample
harmonic mean). The estimators can then be written as

ang = s(,/?—l) and Bng= VSr.

Ng, Kundu and Balakrishnan (2003) have also proposed jaiekkatimators for
« andp. The underlying idea is to remove observattpfrom the random sample
t = (t1,tp,....ty) ", and to estimate the parameters based on the remaining
observations; this is done fgr= 1,...,n. We shall denote the jackknife maximum
likelihood estimators asng;, = aNdBng,u.e; the jackkinife moment estimator are

INgymme andﬂNgJMME :
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From and Li (2006) also proposed alternative estimatorgi@two parameters
that index the Birnbaum—Saunders distribution. For ircstathey proposed using

1/2 -
- it . S . Br1
ﬂplznl—_ll/z and ap; = — + — — 2.
not Br1 T

The authors have also proposed a second estimatorfg).( Their proposal is
to estimateB using Br2 = median(y,...,t,) sinceB equals the median of the
Birnbaum—Saunders distribution. The corresponding edtinfora is

. -2+2V1+5v
aFp2 = \|———F—
5
wherev = 72/Bg2, 72 being the sample variance, i.82 = (n— 1)1 21 (4 - 1)2.
Lett(),...,tn denote the order statistics of the samiple. ., t,. The estimator
for g is, as above, the sample median. For dgaglsolve

. i _
F(ti); @, Br2) = = = 1,....n.

Leta(i),i = 1,...,n, denote the solutions, where

L)
n(32)
> (753)
with h(t) = t¥/? — t71/2, The estimator isF3 = medianf(1),...,a(n)).
From and Li (2006) have also proposed yet another estimatofof3). Let

0< A< 05, and letn; = n1+ 1 andn, = n(1 — A), to the nearest integer. The
proposed estimators are

@) =

My L)
Bra = —in:znl o and afg = Lo " (E;)
Zitn \ 2, [0 (7))
The authors suggest usidg= 0.05, so that only the middle 90% of order statistics
are used.

An alternative hypothesis test was proposed by Lemontea@riNeto and Vas-
concellos (2007). They derived a Bartlett-correction da¢b the likelihood ratio
statistic and obtained an approximate test whose erroslasiat a faster rate as
the sample size increases. L& denote their test statistic. It follows that whereas
PrlR< x) = Pr((\gf < X) + O(n™1), the correction yields PER* < X) = Pr(ﬁ <
X) + O(n~2), a clear improvement. [See Cribari-Neto and Cordeiro §196r a
detailed review of Bartlett corrections.] Consider thddwing null hypotheses:
() Ho: a = 0.1, (i) Ho: a = 0.25, (jiii) Ho: @ = 0.5, (iv) Ho: a = 0.75, (v)
Ho: @ = 1.0, (vV) Ho: @ = 2.0. The corresponding Bartlett-corrected test statistics
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arél
L W® e R IR
1+4.3918n 1+ 3.2537/n 1+3.0414/n
LR LR LR
= |IRR=———— and LR = ————
1+ 25924/n 1+ 2.0307/n 1-0.0445n

5. NUMERICAL EVIDENCE

We shall now present Monte Carlo simulation results on thefsample behav-
ior of inference based on profile and adjusted profile liladitis. All simulation
experiments entail 10,000 replications. The shape pamrassumed two values,
namelya = 0.5,1.0, and the scale parameter was seBat 1.0. The simula-
tions were performed using tld& matrix programming language (Doornik, 2006).
Likelihood maximizations were performed using the quasifton method known
as BFGS with analytical first derivatives; see Nocedal anait(1999) for details
on the BFGS method.

Point estimation is evaluated using the following measuresan, bias, vari-
ance, mean squared error (MSE), relative bias (RB), asymraatl kurtosis. Rel-
ative bias is defined as 100(biag/'true parameter value). Hypothesis testing in-
ference on the parameter of interest is described throughuh rejection rates of
the profile and adjusted profile likelihood ratio tests. Pogimulations were also
performed.

Table 1 contains simulation results for the case wheiie the parameter of
interest. The sample size is= 10. Note that the estimatot&gr andagy are
less biased thamp. For instance, whea = 0.5 the relative biases @, acr and
apn are 7.50%, 2.16% and 2.13%, respectively. Nevertheless, feiduction is
achieved at the expense of greater variability. It is alseworthy that the small
sample behavior of the two adjusted profile maximum likedithaestimators are
similar. We also note that the skewness and kurtosigpcére slightly closer to
their asymptotic counterparts than thosea@fq andagn. (When the parameter
of interest isB, the estlmatorgss’p, ﬁCR and,BBN coincide, since maximization of
of the profile likelihood function is equivalent to that &fr(8) or {gn(B8). As a
consequence, the profile and adjusted profile maximum Higeli estimators also
coincide.)

Table 2 presents the null rejection rates (%) of thfedént likelihood ratio tests,
i.e., the tests based on the statistié® LRcr, LRgn andLR*, for the test ofHp :

a = ag againstH, : a # ag, Whereqg is a given scalar; herey is the parameter
of interest angs is the nuisance parameter, whose value is sgt at1.0. The
values set at the null hypothesis arg = 0.5,1.0,2.0 and the sample sizes are
= 10,2550. All entries are percentages. The figures in Table 2 shatv th
the adjusted profile likelihood ratio testsRcr and LRgy) outperform the usual
profile likelihood ratio testl(R). For instance, at the 10% nominal level and when
ag = 0.5, the rejection rate of the latter was 13.57% whereas tleetiep rates

INote that the values of the Bartlett correction factor weegierrect those given by the authors
for cases (i) and (ii).



TasLe 1. Point estimation od.

a=05
estimator mean bias  variance MSE RB(%) asymmetry kurtosis
ap 0.4625 -0.0375 0.0121 0.0135 7.5074  0.2194 6.0405
@cRr 0.4892 -0.0109 0.0136 0.0138 2.1695  0.2355 6.3629
BN 0.4893 -0.0107 0.0137 0.0138 2.1385  0.2356 6.3648
a=10
estimator mean bias variance MSE RB(%) asymmetry Kkurtosis
ap 0.9160 -0.0840 0.0472 0.0543 8.4020 0.3715 11.9221
@cRr 0.9752 -0.0248 0.0548 0.0554 2.4841 0.3732 12.6356
BN 0.9792 -0.0208 0.0567 0.0572 2.0834  0.3733  12.6829

NOILNGIYLSIA SY3IANNVS—-ANYANYId FHL J0d IONIHIANI

T
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of LRcr and LRgy were 10.85% and 10.86%, respectively. The likelihood ratio
test is clearly liberal, the null hypothesis being rejeateate often than expected.
The adjusted tests display much smaller size distortioas the likelihood ratio
test. It is also noteworthy that the finite sample behaviothef likelihood ratio
test deteriorates as the value of the shape parametersestesspecially when the
sample size is small; the adjusted tests remain reliable.Bértlett-corrected test
is clearly outperformed by the adjusted profile likelihoesdts whem is large andh

is small. For example, whem = 2.0, n = 10 and the nominal level is 5%, the null
rejection rate of the Bartlett-corrected test is 9.40% wherthe adjusted profile
likelihood tests reject the null hypothesis 5.20MR¢R) and 4.58% I(Rgy) of the
time. Note also that the tests based &t r andLRgy display similar small sample
behavior, especially when the value of the shape paransetenall. (Values ol
between 0.1 and 0.5 are common in fatigue studies.)

We have also performed simulations under the alternatipetmesis. The pow-
ers of the testd R, LRcr, LRgny andLR* at the 5% and 1% nominal levels were
computed for values af ranging from 0.12 to 0.28, the null hypothesis under test
beingHp : @ = ag. The tests were carried out using exact critical valuesclwhi
were estimated in the size simulations. This was done sathkeadlfferent tests
have the same size, and power comparisons become meanimgtilresults are
presented in Table 3 and were obtained using 10, @ = 0.10 ands = 1.0. (All
entries are percentages.) We note thRts slightly less powerful thabhRgyn and
LRcr. For example, whea = 0.20 and at the 5% nominal level, the nonnull rejec-
tion rates of these tests were equal to 77.86%, 83.81% aBd®B3.respectively;
the nonnull rejection rate of the Bartlett-corrected teasw7.87%.

Figure 1 plots the relative quantile discrepancies of theglest statistics against
the corresponding asymptotic quantiles. Relative quadiiscrepancy is defined
as the diference between exact (estimated by simulation) and asyimptioan-
tiles divided by the latter. The closer to zero the relativargile discrepancies, the
better the approximation of the exact null distributiontd test statistic by the lim-
iting X% distribution. It is noteworthy that the relative quantiisaepancies of the
adjusted test statistics are considerably closer to zeno tfose of the likelihood
ratio test statistic, which oscillate around 18%. The redatjuantile discrepancies
of the two adjusted test statistics are very similar.

Figure 2 plots the relative size distortions against theesmonding nominal
levels of the tests. Relative size distortion is defined aditierence betweep-
values (estimated by simulation) and nominal levels diithg the latter. Note
that the relative size distortion of the likelihood ratistténcreases rapidly as the
nominal level of the test decreases, which does not occuthibradjusted tests.
Note also that the relative size distortions of the two aedjiisests are very similar.

Table 4 contains the null rejection rates (again expressgutirentages) of the
three testsl(R, LRcr and LRgy) for the testHy : 8 = Bo. (Note that hergs is
the parameter of interest.) Singdunctions as a multiplier, as explained earlier,
we have only performed simulations usigg 1.0; four different values ofr were
used, namely: 0.1, 0.5, 1.0 and 2.0. As in Table 2, thréerdint sample sizes
were consideredn = 10, 25,50. The figures in Table 4 reveal that the likelihood



Taste 2. Null rejection rates, inference an(g = 1.0).

nominal a=01 a=05 a=10 a=20
n level LR LRr LRey LK LR LRk LRgny LR LR LRr LRy LR LR LRk LRey LK
10 13.44 11.00 11.00 7.2413.57 10.85 10.86 9.0813.97 10.65 10.78 10.616.10 9.89 8.99 15.90
10 5 747 514 514 3.0% 760 518 520 396 7.83 524 529 511 944 520 458 9.40
1 1.70 107 107 045% 1.72 111 111 069 183 1.06 1.11 093 253 104 196 251
0.5 0.89 053 053 016 091 052 052 031 097 052 055 051 140 048 040 1.39
10 10.84 10.15 10.15 8.4210.88 10.13 10.14 9.1511.56 10.41 1050 10.3p11.98 10.12 10.10 11.96
25 5 594 533 533 432593 534 535 467 6.18 531 533 528 6.24 536 530 6.22
1 143 1.18 1.18 083 146 1.15 1.15 102 146 1.04 104 1.04 154 107 106 154
0.5 0.82 057 057 043 082 059 059 048 061 050 052 043 082 059 054 081
10 10.89 10.35 10.35 9.4610.86 10.35 10.34 9.9910.93 10.31 10.32 10.2611.24 10.48 10.47 11.23
50 5 554 521 521 458 553 520 519 481 540 503 505 486 565 495 504 5.64
1 1.19 099 099 087 1.21 102 102 099 1.14 102 102 1.100 1.18 1.03 1.03 1.17
0.5 0.70 056 056 051071 055 055 058 068 0.61 0.61 0.61 060 049 051 0.60
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TasLe 3. Nonnull rejection rates, inference an

nominal level: 5% nominal level: 1%

a LR LRr LRgy LK LR LRpr LRy LR
0.12| 8.55 13.13 13.13 8.56 250 4.87 4.87 2.50
0.14| 24.79 34.07 34.07 24.7911.71 18.01 18.01 11.71
0.16| 45.74 56.06 56.06 45.7529.37 38.16 38.16 29.37
0.18| 64.78 72.63 72.63 64.5848.57 59.91 59.91 48.57
0.20| 77.86 83.81 83.81 77.8765.33 72.58 72.58 65.33
0.22| 86.41 89.85 89.85 86.4177.29 82.97 8297 77.29
0.24|191.25 94.18 94.18 91.2585.55 88.88 88.88 85.55
0.26|94.91 96.73 96.73 94.9190.17 93.01 93.01 90.17
0.28]| 96.98 97.95 97.95 96.9893.90 95.40 95.40 93.90

ratio test is liberal, thakRgy is conservative, and th&iRcr displays very minor
size distortions, the latter clearly outperforming theeottests. For instance, when
n=10,a = 2.0 and at the 10% nominal level, the null rejection rates asehests
are, respectively, 13.12%, 7.94% and 10.66%.

In Table 5 we present the empirical powers of the test¢fpf: 3 = Bo. The
values ofg used ranged from 1.2 to 4.0. Again, the tests were perfornsewju
size-corrected critical values (obtained from the sizeutitions) in order to force
them to have the correct size. The simulations were carngdisingn = 10,

a = 1.0 andB = 1.0. The results suggest that the powers of the three testegre v
similar, with a slight advantage @fR. For example, whepg = 2.0, the nonnull
rejection rates oL.R, LRcr and LRgy at the 5% nominal level are, respectively,
58.54%, 58.05% and 57.43%.

Figure 3 plots the relative quantile discrepancies agdiestorresponding as-
ymptotic quantiles, and Figure 4 plots the relative sizéodi®ns against the cor-
responding nominal levels of the tests whgis the parameter of interest. Both
figures clearly show thdtRcr outperformsLR andLRgy.

6. ADDITIONAL NUMERICAL EVIDENCE. COMPARISON WITH ALTERNATIVE ESTIMATORS

We shall now compare the small sample behavior of our adjystefile max-
imum likelihood estimators af to those proposed by Ng, Kundu and Balakrish-
nan (2003) and From and Li (2006), which are described ini@ddt The number
of Monte Carlo replications is, as before, 10,000, the traleas ofa are 0.5 and
1.0, andn = 10. The simulation results are presented in Table 6.

The figures in Tablg]6 show that no estimator uniformly outpens all others
in terms of both bias and mean squared error. They also shawitha adjusted
profile maximum likelihood estimators are competitive csinhey are amogst the
best performing estimators in both situatioas=£ 0.5 anda = 1.0). Whena =
0.5, the least biased estimatordg, (relative bias: 0.66%) whereas when the true
parameter value is 1.0 the estimatars has the smallest relative bias (0.26%).
In both casesggy is the estimator with the third smallest relative bias,dakd



Taste 4. Null rejection rates, inference gn(g = 1.0).

nominal a=0.1 a=05 a=10 a=20
n level LR LR-r LRgn LR LR-r LRgNn LR LR-r LRgn LR LR-r LRgNn
10 12.31 10.30 8.52/12.33 10.25 8.26/12.37 10.18 8.01 13.12 10.66 7.94
10 5 6.61 535 395 6.62 530 3.85 6.75 518 3.65 6.95 5.27 3.65
1 149 108 0.70] 1.56 105 0.69] 155 1.09 0.67 1.73 1.12 054
0.5 091 059 035 089 0.60 0.33] 0.87 059 0.28 097 053 0.25
10 11.10 10.38 9.67/11.19 10.33 9.60 11.15 10.37 9.52 11.27 10.52 9.53
25 5 583 530 486/ 591 538 4.76| 5.87 533 4.75 6.14 549 477
1 1.25 1.08 093] 1.30 1.07 0.99| 140 1.15 0.97| 1.19 1.09 0.96
0.5 0.62 052 044 064 052 045 0.76 061 0.46] 0.80 0.64 043
10 10.71 10.43 9.96 10.64 10.35 9.92 10.72 10.24 9.74 10.87 10.38 9.87
50 5 532 5.05 485/ 536 517 4.88| 5,54 517 490 539 5.07 479
1 119 1.08 1.00] 1.20 110 0.99| 1.18 1.09 0.98 1.12 1.06 0.97
0.5 056 0.51 048 058 053 0.46] 0.61 055 050/ 0.65 059 0.52
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TasLe 5. Nonnull rejection rates, inference 6n

nominal level: 5% nominal level: 1%

B LR LRr LRen| LR  LRr LRgn

1.2 9.17 9.07 9.06| 2.06 2.06 2.07
1.6|31.67 31.32 31.0610.32 10.18 9.94
2.0|58.54 58.05 57.4324.56 24.21 23.50
2.4|80.11 79.72 79.1345.06 44.07 42.93
2.8/ 91.05 90.93 90.4962.15 61.08 59.56
3.2|96.80 96.53 96.4275.86 74.73 72.68
3.6/ 99.05 99.01 98.8585.86 84.74 83.10
4.0/ 99.61 99.55 99.4592.34 91.29 89.75

by acr. Whena = 0.5, for instance, the relative biases of these estimators are
nearly four times smaller than those of the jackknife estimsgaand nearly 3.5
times smaller than the relative bias of the modified momestisator.

We note that the approach proposed in this paper, namelgtadjuhe profile
log-likelihood function prior to maximization, has a clemtvantage over the al-
ternative approaches described in Sedtion 4: it not onlydvgs the small sample
performance of point estimators, but also improves thesfgaimple behavior of as-
sociated likelihood ratio tests. That is, the correctiolivdes improved estimation
andtesting inference in small samples.

7. APPLICATIONS

We shall now perform profile and adjusted profile likelihooterence using two
real data sets. In both cases, we shall assume that obsesvatie random draws
from the Birnbaum—Saunders distribution.

At the outset, we consider the data provided by Birnbaumr&ens (1969b)
on the fatigue life of 6061-T6 aluminum coupons cut paraibethe direction of
rolling and oscillated at 18 cycles per second (cps). Tha dat consists of 101
observations with maximum stress per cycle 31,000 psi.alleé the parameter
of interest. The profile and adjusted profile maximum liketil estimates are
@ = 0.17038,acr = 0.17125 andvgy = 0.17122. Suppose we are interested in
testing#p : @ = 0.15 againstH; : @ # 0.15. The test statistics based 64{(a),
{cr(a) and{gn(a) are, respectively, 3.5771, 3.8421 and 3.8351, with tHeviahg
correspondingp-values: 0.05858, 0.04998 and 0.05019. Since the samméassiz
large (101 observations), the values of the three statiatie similar. However, the
resulting inference is not the same at the 5% nominal leiredeghe test based on
{cr(@), unlike the other two tests, yields rejection of the nulpbthesis.

We shall now turn to the case whetds the parameter of interest. In particular,
we are interested in testingfy : 8 = 125. The test statistics atdR = 9.4279,
LRcr = 9.3338 andLRgy = 9.2397, with the following corresponding-values:
0.00214, 0.00225 and 0.00237. Unlike the previous infarghere the three tests



TasLE 6. Point estimation of revisited.

a=05
estimator mean bias  variance MSE RB(%) asymmetry kurtosis
ap 0.4625 -0.0375 0.0121 0.0135 7.5074 1.3537 5.9906
acRr 0.4892 -0.0109 0.0136 0.0138 2.1695 1.4258 6.3098
BN 0.4893 -0.0107 0.0137 0.0138 2.1385 1.4624 6.3117
amme  0.4625 -0.0375 0.0121 0.0135 7.5077 1.3537 5.9906
aNg 0.4749 -0.0251 0.0127 0.0133 5.0275 1.3874 6.1376
angme 0.4573 -0.0427 0.0133 0.0152 8.5384 1.3397 5.9301
anguwe 0-4579 -0.0421 0.0133 0.0151 8.4255 1.3412 5.9367
aF1 0.4625 -0.0375 0.0121 0.0135 7.4949 1.3539 5.9913
aF2 0.4690 -0.0310 0.0166 0.0176 6.2008 1.3715 6.0678
aF3 0.5065 00065 0.0326 0.0326 1.3004 1.4721 6.5222
QF4 0.5033 00033 0.0220 0.0220 0.6551 1.4635 6.4825
a=10
estimator mean bias variance MSE RB(%) asymmetry kurtosis
ap 0.9160 -0.0840 0.0472 0.0543 8.4020 2.3784  11.8471
acr 0.9752 -0.0248 0.0548 0.0554 2.4841 2.4786  12.5612
BN 0.9792 -0.0208 0.0567 0.0572 2.0834 2.4852  12.6085
amme  0.9158 -0.0842 0.0471 0.0542 8.4173 2.3782  11.8453
ang 0.9404 -0.0596 0.0497 0.0533 5.9615 2.4207  12.1452
angme 0.9050 -0.0950 0.0523 0.0613 9.4959 2.3591  11.7120
angywe 0.9061 -0.0939 0.0522 0.0611 9.3931 2.3609  11.7247
aF, 0.9168 -0.0832 0.0475 0.0544 8.3177 2.3799  11.8575
aE, 0.8916 -0.1084 0.0763 0.0881 10.8379 2.3350 11.5450
aE, 0.9974 -0.0026 0.1279 0.1279 0.2598 2.5144  12.8217
aE, 1.0039 00039 0.0906 0.0906 0.3915 2.5247  12.8972
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yield the same conclusion: the null hypothesis is rejectedeal% nominal level.
The (profile and adjusted profile) maximum likelihood estienaf 3 is 131.8188.

The second application we consider uses data provided byobldT974). The
data describe the lifetime, in hours, of 10 sustainers ofrticetype. They were
used by Cohen, Whitten and Ding (1984) as an illustratiorhefthree-parameter
Weibull distribution. The profile and adjusted profile mawim likelihood esti-
mates ofa arew = 0.2825,acr = 0.2989 andegy = 0.2973. Consider the test
of Hp : @ = 0.21 againstH; : a # 0.21. The test statistics ateR = 2.1646,
LRcr = 2.8438 andLRgy = 2.7963, with the following corresponding-values:
0.1412, 0.0917 and 0.0945. Therefore, the two adjustedigidelihood ratio
tests LRcr andLRgy) reject the null hypothesis at the 10% nominal level, unlike
the likelihood ratio testl(R). Thus, the unadjusted and adjusted tests yidfemdint
conclusions.

Now let 8 be the parameter of interest. Its maximum likelihood edtria
B = 21205. Suppose we wish to tefy : 8 = 180 againstH; : 5 # 180. The test
statistics ard.R = 2.9417,LRcr = 2.6415 andLRgN = 2.3414; the respective-
values are 0.0863, 0.1041 and 0.1260. Again, the use oftatjuss to the profile
likelihood function makes a fference: unlike the usual likelihood ratio test, the
adjusted likelihood tests reject the null hypothesis atlidh nominal level.

8. CONCLUDING REMARKS

We considered the issue of performing inference on the patemsthat index
the Birnbaum—Saunders distribution. More specifically, vage focused on the
situation where one wishes to make inference on one of thenpeters, the other
parameter being of nuisance fashion. Using the results xa@d Reid (1987) and
in Barndoff—Nielsen (1983), we derived two adjustments that can appiehe
profile likelihood function so as to deliver improved infece. Approximations
due to Severini (1998, 1999) were used in order to obtain dbsaah adjustments.
Monte Carlo simulation results have shown that the adjusitdnators and tests
— i.e., estimators and tests based on the adjusted profdkhidod functions —
can deliver more accurate inference than that carried dog dise usual maximum
likelihood estimator and the standard likelihood ratiat iessmall samples. In
particular, the adjusted estimators displayed smallesdsiand the adjusted tests,
smaller size distortions. For instance, we reported MoratgddSimulation results
in which the usual likelihood ratio test displayed null itjen rate of nearly 9.5%
at the 5% nominal level whereas the sizes of our two adjustsd tvhere 5.2% and
4.6%, and in which the relative bias of our two estimatorsensgproximately four
times smaller than that of the maximum likelihood estimaldre adjusted profile
likelihood tests have also outperformed the Bartlett-@cted likelihood ratio test.
We recommend the use of the adjusted profile likelihood érfee developed in
this paper to practitioners who wish to model reliabilittalasing the Birnbaum—
Saunders model. In particular, we recommend the use of tkveR3®d adjusted
profile likelihood function, since it yielded the most rdlia (hypothesis testing)
inference when the parameter was of interestfvasd it was competitive with the
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inference obtained using the BarnffeNielsen modified profile likelihood func-
tion whena was the parameter of interest. In future research, we shédliro
adjustments to Birnbaum—Saunders profile likelihoods uddea censoring.
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