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ON BIRNBAUM–SAUNDERS INFERENCE

AUDREY H.M.A. CYSNEIROS, FRANCISCO CRIBARI–NETO,
AND CARLOS A.G. ARAÚJO JR

Abstract. The Birnbaum–Saunders distribution, also known as the fatigue-life
distribution, is frequently used in reliability studies. We obtain adjustments to
the Birnbaum–Saunders profile likelihood function. The modified versions of
the likelihood function were obtained for both the shape andscale parameters,
i.e., we take the shape parameter to be of interest and the scale parameter to be of
nuisance, and then consider the situation in which the interest lies in performing
inference on the scale parameter with the shape parameter entering the model-
ing in nuisance fashion. Modified profile maximum likelihoodestimators are
obtained by maximizing the corresponding adjusted likelihood functions. We
present numerical evidence on the finite sample behavior of the different estima-
tors and associated likelihood ratio tests. The results favor the adjusted estima-
tors and tests we propose. A novel aspect of the profile likelihood adjustments
obtained in this paper is that they yield improved point estimatorsand tests.
The two profile likelihood adjustments work well when inference is made on the
shape parameter, and one of them displays superior behaviorwhen it comes to
performing hypothesis testing inference on the scale parameter. Two empirical
applications are briefly presented.

1. Introduction

Birnbaum and Saunders (1969a) derived a two-parameter distribution using a
set-up in which failure time due to fatigue under cyclic loading when failure fol-
lows from the development and growth of a dominant crack. According to Mar-
shall and Olkin (2007), the Birnbaum–Saunders distribution has appeared in sev-
eral different contexts, and various derivations of the distribution are known. Ac-
cording to them (pp. 466-467), “it was given by Fletcher (1911), and according
to Schrödinger (1915) it was obtained by Konstantinowsky (1914);” additionally,
“it was obtained by Freudental and Shinozuka (1961), but it was the derivation
of Birnbaum and Saunders (1969a) that brought the usefulness of the distribution
into clear focus.” Desmond (1985) derived the same distribution in a more general
setting; he used a biological model and relaxed several of the assumptions made
by the original authors. The relationship between the the Birnbaum–Saunders and
inverse Gaussian distributions was explored by Desmond (1986). It can shown that
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the Birnbaum–Saunders distribution is a mixture between aninverse Gaussian dis-
tribution and a generalized inverse Gaussian distribution; see Bhattacharyya and
Fries (1982).

The random variableT is said to be Birnbaum–Saunders distributed, denoted
T ∼ BS(α, β), if its density function is given by

f (t;α, β) =
1

2
√

2παβ

[(
β

t

)1/2

+

(
β

t

)3/2]
exp

[
− 1

2α2

(
t
β
+
β

t
− 2

)]
,

t, α, β > 0, whereα is the shape parameter andβ is the scale parameter. It is
noteworthy that the reciprocal property holds for the Birnbaum–Saunders distri-
bution: T−1 ∼ BS(α, β−1); see Saunders (1974). It is easy to show thatE(T) =
β
(
1+ 1

2α
2
)
, var(T) = (αβ)2

(
1+ 5

4α
2
)
, E(T−1) = β−1

(
1+ 1

2α
2
)

and var(T−1) =

α2β−2
(
1+ 5

4α
2
)
.

The Birnbaum–Saunders distribution function is

F(t;α, β) = Φ


1
α


(

t
β

)1/2

−
(
β

t

)1/2

 , 0 < t < ∞, α, β > 0,

whereΦ(·) denotes the standard normal distribution function. Note that β is the
median of the distribution:FT(β) = Φ(0) = 0.5. It was shown by Kundu, Kannan
and Balakishnan (2008) that the Birnbaum–Saunders hazard function is an upside
down function for all values of the shape and scale parameters. Hence, the dis-
tribution is useful in a number of practical situations where the hazard function
increases up to a point and then decreases. The authors have also addressed the
important issue of performing inference on the point at which the hazard function
reaches its maximum.

Oftentimes the interest lies in performing inference on a subset of the parameters
that index the model; such parameters are said to be ofinterest, and the remain-
ing ones arenuisance parameters. For instance, in Birnbaum–Saunders reliability
studies, one is typically interested in performing inference on one of the parameters
that index the model, the other parameter entering the modeling process in nuisance
fashion. In the presence of nuisance parameters, inferences are usually based on
the profile likelihood function, which is obtained by replacing, in the likelihood
function, the nuisances parameters by their correspondingmaximum likelihood
estimators for fixed values of the parameters of interest. The resulting function —
the profile likelihood function — will only depend on the parameters of interest.
It is noteworthy, however, that such a function is not a true likelihood function,
and some of the properties that hold for likelihood functions are no longer valid; in
particular, there exist score and information biases that do not vanish as the sam-
ple size increases. Several adjustments to the profile likelihood function have been
proposed; see, e.g., Barndorff–Nielsen (1983, 1994), Cox and Reid (1987, 1992),
McCullagh and Tibshirani (1990) and Stern (1997). The main idea behind these
adjustments is to add a term to the log-likelihood function prior to maximizing it,
in order to overcome the aforementioned shortcomings.
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In this paper we shall use the results in Barndorff–Nielsen (1983), Severini
(1998, 1999) and Cox and Reid (1987) to obtain adjustments tothe Birnbaum–
Saunders profile likelihood function. A novel aspect of thisapproach is that the
effect of the nuisance parameter on the inference performed on the interest pa-
rameter is greatly reduced. It is also noteworthy that likelihood ratio type tests
constructed using the adjusted profile likelihood functiontypically have superior
finite sample performance. In short, by adjusting the profilelikelihood function
and then maximizing it one can perform reliable point estimation and hypothesis
testing inference even when the sample size is small. Our results shall allow prac-
titioners to perform reliable inference when using the Birnbaum–Sanders model
in small samples. A motivation for our analysis lies in the important situation in
which one wishes to make inferences on the the median failuretime in a reliability
study. As we have seen, the median of the Birnbaum–Saunders distribution isβ,
one of the parameters that index such a distribution. Therefore, hereα is a nuisance
parameter. There are also situations where the interest lies in performing statisti-
cal inference on the shape parameterα, with β figuring as a nuisance unknown
quantity. It is thus important to develop reliable and accurate inference strategies
that are not sensitive (or, at least, less sensitive) to the parameter that enters the
modeling in nuisance fashion. This is our chief goal.

The paper unfolds as follows. Section 2 introduces adjustments to the profile
likelihood function when the interest lies in performing inference in the presence
of nuisance parameters. In Section 3, we derive adjustmentsto the Birnbaum–
Saunders profile likelihood function. The use of such adjustments delivers, as noted
above, improved estimationand testing inference in small samples. Alternative
inference strategies are presented in Section 4. Numericalresults are presented in
Sections 5 and 6, and two applications are presented in Section 7. Finally, Section
8 summarizes the main findings and lists directions for future research.

2. Profile likelihood function and adjustments

Let t1, . . . , tn be independent and identically distributed random variables with
joint density f (t; θ), whereθ ⊆ Rp is a p-vector of unknown parameters andt =
(t1, . . . , tn)⊤. In what follows, we shall partitionθ as θ = (τ⊤, φ⊤)⊤, whereτ, a
q-vector, contains the parameters of interest andφ, a (p − q)-vector, contains the
nuisance parameters.

Inference can be based on the profile likelihood function, defined asLp(τ) =
L(τ, φ̂τ), whereL(·) is the usual likelihood function and̂φτ is the restricted maxi-
mum likelihood estimator ofφ givenτ. The profile likelihood is not a true likeli-
hood, and some of the properties that hold for a genuine likelihood do not hold for
its profiled version. In particular, there exist score and information biases, both of
orderO(1).

The interest lies in testing the null hypothesisH0 : τ = τ0 againstH1 : τ , τ0,
whereτ0 is a givenq-vector of scalars. The likelihood ratio statistic obtained from
the profile likelihood function is

LR= 2
{
ℓ(̂τ, φ̂) − ℓ(τ, φ̂τ)

}
= 2

{
ℓp(̂τ) − ℓp(τ)

}
.
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Here,̂τ andφ̂ are the maximum likelihood estimators ofτ andφ, respectively,ℓ(·)
is the log-likelihood function andℓp(·) is the profile log-likelihood function. Under
the null hypothesis,LR{ χ2

q, where{ denotes convergence in distribution.
Several adjustments to the profile likelihood function havebeen proposed in the

literature; see, e.g., Severini (2000, Chapter 9), Pace andSalvan (1997, Chapter
11) and the referenced therein for details.

Barndorff–Nielsen (1983) proposed an adjusted profile likelihood function which
is invariant under reparameterizations of the form (τ, φ) → (τ, ζ(τ, φ)), whereτ is
the vector of parameters of interest,φ is the vector of nuisance parameters andζ is
a function ofτ andφ. His proposal follows from thep∗ formula, which is an ap-
proximation to the conditional density of the maximum likelihood estimator given
an ancillary statistic. The proposed adjusted profile likelihood function is

LBN(τ) =

∣∣∣∣∣∣
∂φ̂τ

∂φ̂

∣∣∣∣∣∣
−1

| jφφ(τ, φ̂τ)|−1/2Lp(τ),

where∂φ̂τ/∂φ̂ is the matrix of partial derivatives of̂φτ with respect tôφ, jφφ(τ, φ) =
−∂2ℓ/∂φ∂φ⊤ is the observed information matrix forφ whenτ is fixed andLp(τ) is
the profile likelihood function forτ.

There is an alternative expression forLBN that does not involve|∂φ̂τ/∂φ̂|; it
involves, nonetheless, a sample space derivative and requires an ancillary statistic
a such that (̂τ, φ̂, a) is minimal sufficient. It can be shown that

∂φ̂τ

∂φ̂
= jφφ(τ, φ̂τ; τ̂, φ̂, a)−1ℓ

φ;̂φ(τ, φ̂τ; τ̂, φ̂, a),

where

ℓ
φ;̂φ(τ, φ̂τ; τ̂, φ̂, a) =

∂

∂φ̂


∂ℓ(τ, φ̂τ; τ̂, φ̂, a)

∂φ

 .

Here,ℓ
φ;̂φ(τ, φ̂τ; τ̂, φ̂, a) and jφφ(τ, φ̂τ; τ̂, φ̂, a) are the log-likelihood function and the

observed information forφ, respectively. They depend on the data only through the
minimal sufficient statistic.

Some approximations to the sample space derivative of the log-likelihood func-
tion have been proposed. Severini (1998) obtained an approximation to Barndorff–
Nielsen’s adjusted profile likelihood function that requires neither a sample space
derivative nor an ancillary statistic. It is given by

ℓ̄BN(τ) = ℓp(τ) +
1
2

log | jφφ(̂τ, φ̂τ)| − log |Iφ(τ, φ̂τ; τ̂, φ̂)|,

where

Iφ(τ, φ; τ0, φ0) = E(τ0,φ0)

{
ℓφ(τ, φ)ℓφ(τ0, φ0)⊤

}
(1)

is the covariance matrix of log-likelihood derivatives andℓφ(τ, φ) = ∂ℓ/∂φ. The
approximation error is of orderO(n−1/2). The corresponding maximum likelihood
estimator shall be denoted aŝ̄τBN.
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An alternative approximation, with the same approximationerror, was proposed
by Severini (1999):

ℓ̆BN(τ) = ℓp(τ) +
1
2

log | jφφ(̂τ, φ̂τ)| − log |Ĭφ(τ, φ̂τ; τ̂, φ̂)|,

where

Ĭφ(τ, φ; τ0, φ0) =
n∑

j=1

ℓ
( j)
φ

(τ, φ)ℓ( j)
φ

(τ0, φ0)⊤, (2)

ℓ
( j)
θ

(θ) = (ℓ( j)
τ (θ), ℓ( j)

φ
(θ) being the score function for thejth observation. This ap-

proximation can be easily computed and is particularly useful in situations where
one is not able to compute expected values of log-likelihoodderivatives. The cor-
responding maximum likelihood estimator shall be denoted aŝ̆τBN.

Cox and Reid (1987) defined an adjusted profile likelihood function, where an
adjustment term is included into the likelihood function prior to maximization. It
approximates the conditional density function of the observations given the nui-
sance parameter maximum likelihood estimator and can be written as

LCR(τ) = | jφφ(τ, φ̂τ)|−1/2Lp(τ).

Taking logs we obtain

ℓCR(τ) = ℓ(τ, φ̂τ) −
1
2

log | jφφ(τ, φ̂τ)|. (3)

Note that this function is the penalized counterpart of the log-likelihood function,
the penalty term taking into account information on the nuisance parameter. The
maximizer ofℓCR(τ) shall be denoted aŝτCR. It is noteworthy that the score bias is
of orderO(n−1), but the information bias remainsO(1).

The derivation ofℓCR(τ) requires thatτ andφ be orthogonal, i.e., that the el-
ements of the score vector,∂ℓ/∂τ and∂ℓ/∂φ, be uncorrelated which implies that
iτφ = 0. Wheniτφ , 0, it is necessary to find a reparameterization of the form
(τ, λ(τ, φ)), whereτ andλ are orthogonal. It is noteworthy that such a reparame-
terization cannot always be found, except when the parameter of interest is scalar.
We also note that the Cox and Reid adjustment is not invariantunder reparameter-
izations of the form (τ, φ)→ (τ, ζ(τ, φ)), unlike Barndorff–Nielsen’s adjustment.

3. The Birnbaum–Saunders adjusted profile likelihoods

At the outset, letα be the parameter of interest andβ the nuisance parameter.
Also, let t = (t1, . . . , tn)⊤ denote a random sample of sizen from the Birnbaum–
Saunders distribution. The log-likelihood function is

ℓ(α, β) = −n log(αβ) +
n∑

i=1

log


(
β

ti

)1/2

+

(
β

ti

)3/2 −
1

2α2

n∑

i=1

(
ti
β
+
β

ti
− 2

)
.

For fixedα, the restricted maximum likelihood estimator ofβ, β̂α, is the positive
root of the following nonlinear equation:

β2 − β[2r + K(β)] + r[s+ K(β)] = 0,
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where

s=
1
n

n∑

i=1

ti , r =


1
n

n∑

i=1

t−1
i


−1

and K(β) =


1
n

n∑

i=1

(β + ti)
−1


−1

.

Note that̂βα does not have a closed-form expression, and, as a result, it must be
obtained using restricted nonlinear optimization methods; see, e.g., Nocedal and
Wright (1999, Chapter 18). (We note that the maximum likelihood estimator of
β for fixed α equals the maximum likelihood estimator ofβ, that is,β̂α = β̂.) By
replacingβ by β̂α in ℓ(α, β) we obtain the profile log-likelihood function given by

ℓp(α) = −n logα − n log β̂α +
n∑

i=1

log



β̂α

ti


1/2

+


β̂α

ti


3/2

− n

2α2


r

β̂α
+
β̂α

s
− 2

 .

The asymptotic distribution of the vector of maximum likelihood estimators of
the parameters that index the Birnbaum–Saunders distribution was obtained by
Englehardt, Bain and Wright (1981). A simpler expression for Fisher’s information
matrix was obtained by Lemonte, Cribari–Neto and Vasconcellos (2007).

In what follows, we shall obtain the adjusted profile likelihoods described in
Section 2. Note that the interest and nuisance parameters are orthogonal. The
adjusted profile log-likelihood function of Cox and Reid (1987) for α can be ex-
pressed as

ℓCR(α) = ℓp(α) − 1
2

log | jββ(α, β̂α)|,

where

jββ(α, β̂α) = −
n

β̂2
α

+
n
2


1

β̂2
α

+
2K′(̂βα)

K2(̂βα)

 +
n

α2

r

β̂3
α

and

K′(β) =
n
∑n

i=1(β + ti)−2

[∑n
i=1(β + ti)−1

]2 .

α̂CR is the adjusted profile maximum likelihood estimator ofα; it does not have
closed-form and must be obtained numerically.

The Barndorff–Nielsen (1983) adjusted profile log-likelihood function for α can
be written as

ℓBN(α) = ℓp(α) + log
| jββ(α, β̂α)|1/2

| j
β;̂β(α, β̂α)|

.
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Instead of obtaining the termj
β;̂β(α, β̂α) in ℓBN, we shall obtain̆I (α, β̂α; α̂, β̂) given

in (2) using, thus, Severini’s (1999) approximation. Aftersome algebra, we obtain

Ĭ (α, β̂α; α̂, β̂) =
n

β̂2
− 1

β̂

n∑

j=1

A j −
1
4


n∑

j=1

A2
j +

1

α2α̂2

n∑

j=1

B2
j



− 1
4



(
1

α2
+

1

α̂2

) 
n∑

j=1

A j B j −
2

β̂

n∑

j=1

B j



 ,

where

A j =


t−1/2
j β̂−1/2

+ 3̂β1/2t−3/2
j

t−1/2
j β̂1/2 + β̂3/2t−3/2

j

 and B j =


t j

β̂2
− 1

t j

 .

The adjusted profile maximum likelihood estimatorα̂BN of α cannot be expressed
in closed-form; it has to computed by numerically maximizing the associated log-
likelihood function.

The likelihood ratio test statistics obtained from the adjusted profile log-likelihood
functions given above for the test ofH0 : α = α0 againstH1 : α , α0 are

LRCR(α) = 2
{
ℓCR(α̂CR) − ℓCR(α0)

}

and

LRBN(α) = 2
{
ℓBN(α̂BN) − ℓBN(α0)

}
,

whereα̂CR andα̂BN are the values ofα that maximizeℓCR(α) andℓBN(α), respec-
tively. These test statistics are asymptotically distributed asχ2

1 under the null hy-
pothesis.

We shall now considerβ as the parameter of interest and viewα as a nuisance
parameter. For fixedβ, we write the restricted maximum likelihood estimator ofα
as

α̂β =

(
r
β
+
β

s
− 2

)1/2

.

By plugging α̂β into the log-likelihood function we obtain the following profile
log-likelihood function:

ℓp(β) = ℓ(α̂β, β) = −
n
2

log

(
r
β
+
β

s
− 2

)
− n logβ

+

n∑

i=1

log


(
β

ti

)1/2

+

(
β

ti

)3/2 .

The jαα(α, β) block of the observed information matrix evaluated at (α̂β, β) can
be written as

jαα(α̂β, β) = −2n

(
r
β
+
β

s
− 2

)−1

.
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From (3) it follows that Cox and Reid’s adjusted profile log-likelihood function for
β is

ℓCR(β) = ℓp(β) +
1
2

log
∣∣∣∣∣
r
β
+
β

s
− 2

∣∣∣∣∣ .

The estimator̂βCR, like the previous estimators, does not have closed-form.
The Barndorff–Nielsen adjusted profile log-likelihood function can be expressed

as

ℓBN(β) = ℓp(β) + log
| jαα(α̂β, β)|1/2

|ℓα;̂α(α̂β, β)|
.

We use Severini’s (1998) approximation and replaceℓα;̂α(α̂β, β), in ℓBN(β), by
I (α̂β, β; α̂, β̂) given in (1). We arrive at

I (α̂β, β; α̂, β̂) =
n̂α

α̂
3
β


β̂

β
+
β

β̂

 .

The corresponding estimator,̂βBN, does not have closed-form.
The likelihood ratio test statistics obtained from the above adjusted profile log-

likelihood functions for the test ofH0 : β = β0 againstH1 : β , β0 are

LRCR(β) = 2
{
ℓCR(̂βCR) − ℓCR(β0)

}

and

LRBN(β) = 2
{
ℓBN(̂βBN) − ℓBN(β0)

}
,

whereβ̂CR and β̂BN are the values ofβ that maximizeℓCR(β) andℓBN(β), respec-
tively. The two test statistics are asymptotically distributed asχ2

1 underH0.

4. Alternative inference strategies

Some alternative point estimators for the parameters that index the Birnbaum–
Saunders distributions have been proposed in the literature. Ng, Kundu and Bal-
akrishnan (2003) obtained modified moment estimators forα andβ. As before,

let s = t = n−1 ∑n
i=1 ti (sample arithmetic mean) andr =

(
n−1 ∑n

i=1 t−1
i

)−1
(sample

harmonic mean). The estimators can then be written as

ᾱNg =

√

s

(√
s
r
− 1

)
and β̄Ng =

√
sr.

Ng, Kundu and Balakrishnan (2003) have also proposed jackknife estimators for
α andβ. The underlying idea is to remove observationt j from the random sample
t = (t1, t2, . . . , tn)⊤, and to estimate the parameters based on the remainingn − 1
observations; this is done forj = 1, . . . , n. We shall denote the jackknife maximum
likelihood estimators as ¯αNgJMLE andβ̄NgJMLE ; the jackkinife moment estimator are
ᾱNgJMME andβ̄NgJMME .
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From and Li (2006) also proposed alternative estimators forthe two parameters
that index the Birnbaum–Saunders distribution. For instance, they proposed using

β̆F1 =

∑n
i=1 t1/2i∑n

i=1 t−1/2
i

and ᾰF1 =

√
s

β̆F1
+
β̆F1

r
− 2.

The authors have also proposed a second estimator for (α, β). Their proposal is
to estimateβ using β̆F2 = median(t1, . . . , tn) sinceβ equals the median of the
Birnbaum–Saunders distribution. The corresponding estimator forα is

ᾰF2 =

√
−2+ 2

√
1+ 5v

5
,

wherev = σ̂2/β̆F2, σ̂2 being the sample variance, i.e.,σ̂2
= (n− 1)−1 ∑n

i=1(ti − t)2.
Let t(1), . . . , t(n) denote the order statistics of the samplet1, . . . , tn. The estimator

for β is, as above, the sample median. For eacht(i), solve

F(t(i);α, β̆F2) =
i

n+ 1
, i = 1, . . . , n.

Let α̂(i), i = 1, . . . , n, denote the solutions, where

α̂(i) =
h
(

t(i)
β̆F2

)

Φ−1
(

i
n+1

) ,

with h(t) = t1/2 − t−1/2. The estimator is ˘αF3 = median(̂α(1), . . . , α̂(n)).
From and Li (2006) have also proposed yet another estimator for (α, β). Let

0 < λ < 0.5, and letn1 = nλ + 1 andn2 = n(1 − λ), to the nearest integer. The
proposed estimators are

β̆F4 =

∑n2
i=n1

t(i)
∑n2

i=n1

1√
t(i)

and ᾰF4 =

√√√√√√ ∑n2
i=n1

h2
(

t(i)
β̆F2

)

∑n2
i=n1

[
Φ−1

(
i

n+1

)] .

The authors suggest usingλ = 0.05, so that only the middle 90% of order statistics
are used.

An alternative hypothesis test was proposed by Lemonte, Cribari–Neto and Vas-
concellos (2007). They derived a Bartlett-correction factor to the likelihood ratio
statistic and obtained an approximate test whose error vanishes at a faster rate as
the sample size increases. LetLR∗ denote their test statistic. It follows that whereas
Pr(LR 6 x) = Pr(χ2

1 6 x) + O(n−1), the correction yields Pr(LR∗ 6 x) = Pr(χ2
1 6

x) + O(n−2), a clear improvement. [See Cribari–Neto and Cordeiro (1996) for a
detailed review of Bartlett corrections.] Consider the following null hypotheses:
(i) H0 : α = 0.1, (ii) H0 : α = 0.25, (iii) H0 : α = 0.5, (iv) H0 : α = 0.75, (v)
H0 : α = 1.0, (v)H0 : α = 2.0. The corresponding Bartlett-corrected test statistics
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are1

LR∗ =
LR

1+ 4.3918/n
, LR∗ =

LR
1+ 3.2537/n

, LR∗ =
LR

1+ 3.0414/n
,

LR∗ =
LR

1+ 2.5924/n
, LR∗ =

LR
1+ 2.0307/n

and LR∗ =
LR

1− 0.0445/n
.

5. Numerical evidence

We shall now present Monte Carlo simulation results on the finite sample behav-
ior of inference based on profile and adjusted profile likelihoods. All simulation
experiments entail 10,000 replications. The shape parameter assumed two values,
namelyα = 0.5, 1.0, and the scale parameter was set atβ = 1.0. The simula-
tions were performed using theOxmatrix programming language (Doornik, 2006).
Likelihood maximizations were performed using the quasi-Newton method known
as BFGS with analytical first derivatives; see Nocedal and Wright (1999) for details
on the BFGS method.

Point estimation is evaluated using the following measures: mean, bias, vari-
ance, mean squared error (MSE), relative bias (RB), asymmetry and kurtosis. Rel-
ative bias is defined as 100× (bias/true parameter value). Hypothesis testing in-
ference on the parameter of interest is described through the null rejection rates of
the profile and adjusted profile likelihood ratio tests. Power simulations were also
performed.

Table 1 contains simulation results for the case whereα is the parameter of
interest. The sample size isn = 10. Note that the estimatorŝαCR and α̂BN are
less biased than̂αp. For instance, whenα = 0.5 the relative biases of̂αp, α̂CR and
α̂BN are 7.50%, 2.16% and 2.13%, respectively. Nevertheless, bias reduction is
achieved at the expense of greater variability. It is also noteworthy that the small
sample behavior of the two adjusted profile maximum likelihood estimators are
similar. We also note that the skewness and kurtosis ofα̂p are slightly closer to
their asymptotic counterparts than those ofα̂CR and α̂BN. (When the parameter
of interest isβ, the estimatorŝβp, β̂CR and β̂BN coincide, since maximization of
of the profile likelihood function is equivalent to that ofℓCR(β) or ℓBN(β). As a
consequence, the profile and adjusted profile maximum likelihood estimators also
coincide.)

Table 2 presents the null rejection rates (%) of the different likelihood ratio tests,
i.e., the tests based on the statisticsLR, LRCR, LRBN andLR∗, for the test ofH0 :
α = α0 againstH1 : α , α0, whereα0 is a given scalar; here,α is the parameter
of interest andβ is the nuisance parameter, whose value is set atβ = 1.0. The
values set at the null hypothesis areα0 = 0.5, 1.0, 2.0 and the sample sizes are
n = 10, 25, 50. All entries are percentages. The figures in Table 2 show that
the adjusted profile likelihood ratio tests (LRCR andLRBN) outperform the usual
profile likelihood ratio test (LR). For instance, at the 10% nominal level and when
α0 = 0.5, the rejection rate of the latter was 13.57% whereas the rejection rates

1Note that the values of the Bartlett correction factor we give correct those given by the authors
for cases (i) and (ii).
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Table 1. Point estimation ofα.

α = 0.5
estimator mean bias variance MSE RB(%) asymmetry kurtosis
α̂p 0.4625 −0.0375 0.0121 0.0135 7.5074 0.2194 6.0405
α̂CR 0.4892 −0.0109 0.0136 0.0138 2.1695 0.2355 6.3629
α̂BN 0.4893 −0.0107 0.0137 0.0138 2.1385 0.2356 6.3648

α = 1.0
estimator mean bias variance MSE RB(%) asymmetry kurtosis
α̂p 0.9160 −0.0840 0.0472 0.0543 8.4020 0.3715 11.9221
α̂CR 0.9752 −0.0248 0.0548 0.0554 2.4841 0.3732 12.6356
α̂BN 0.9792 −0.0208 0.0567 0.0572 2.0834 0.3733 12.6829
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of LRCR and LRBN were 10.85% and 10.86%, respectively. The likelihood ratio
test is clearly liberal, the null hypothesis being rejectedmore often than expected.
The adjusted tests display much smaller size distortions than the likelihood ratio
test. It is also noteworthy that the finite sample behavior ofthe likelihood ratio
test deteriorates as the value of the shape parameter increases, especially when the
sample size is small; the adjusted tests remain reliable. The Bartlett-corrected test
is clearly outperformed by the adjusted profile likelihood tests whenα is large andn
is small. For example, whenα = 2.0, n = 10 and the nominal level is 5%, the null
rejection rate of the Bartlett-corrected test is 9.40% whereas the adjusted profile
likelihood tests reject the null hypothesis 5.20% (LRCR) and 4.58% (LRBN) of the
time. Note also that the tests based onLRCR andLRBN display similar small sample
behavior, especially when the value of the shape parameter is small. (Values ofα
between 0.1 and 0.5 are common in fatigue studies.)

We have also performed simulations under the alternative hypothesis. The pow-
ers of the testsLR, LRCR, LRBN andLR∗ at the 5% and 1% nominal levels were
computed for values ofα ranging from 0.12 to 0.28, the null hypothesis under test
beingH0 : α = α0. The tests were carried out using exact critical values, which
were estimated in the size simulations. This was done so thatthe different tests
have the same size, and power comparisons become meaningful. The results are
presented in Table 3 and were obtained usingn = 10,α = 0.10 andβ = 1.0. (All
entries are percentages.) We note thatLR is slightly less powerful thanLRBN and
LRCR. For example, whenα = 0.20 and at the 5% nominal level, the nonnull rejec-
tion rates of these tests were equal to 77.86%, 83.81% and 83.81%, respectively;
the nonnull rejection rate of the Bartlett-corrected test was 77.87%.

Figure 1 plots the relative quantile discrepancies of the three test statistics against
the corresponding asymptotic quantiles. Relative quantile discrepancy is defined
as the difference between exact (estimated by simulation) and asymptotic quan-
tiles divided by the latter. The closer to zero the relative quantile discrepancies, the
better the approximation of the exact null distribution of the test statistic by the lim-
iting χ2

1 distribution. It is noteworthy that the relative quantile discrepancies of the
adjusted test statistics are considerably closer to zero than those of the likelihood
ratio test statistic, which oscillate around 18%. The relative quantile discrepancies
of the two adjusted test statistics are very similar.

Figure 2 plots the relative size distortions against the corresponding nominal
levels of the tests. Relative size distortion is defined as the difference betweenp-
values (estimated by simulation) and nominal levels divided by the latter. Note
that the relative size distortion of the likelihood ratio test increases rapidly as the
nominal level of the test decreases, which does not occur forthe adjusted tests.
Note also that the relative size distortions of the two adjusted tests are very similar.

Table 4 contains the null rejection rates (again expressed as percentages) of the
three tests (LR, LRCR and LRBN) for the testH0 : β = β0. (Note that hereβ is
the parameter of interest.) Sinceβ functions as a multiplier, as explained earlier,
we have only performed simulations usingβ = 1.0; four different values ofα were
used, namely: 0.1, 0.5, 1.0 and 2.0. As in Table 2, three different sample sizes
were considered:n = 10, 25, 50. The figures in Table 4 reveal that the likelihood
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Table 2. Null rejection rates, inference onα (β = 1.0).

nominal α = 0.1 α = 0.5 α = 1.0 α = 2.0
n level LR LRCR LRBN LR∗ LR LRCR LRBN LR∗ LR LRCR LRBN LR∗ LR LRCR LRBN LR∗

10 13.44 11.00 11.00 7.24 13.57 10.85 10.86 9.03 13.97 10.65 10.78 10.6116.10 9.89 8.99 15.90
10 5 7.47 5.14 5.14 3.05 7.60 5.18 5.20 3.96 7.83 5.24 5.29 5.11 9.44 5.20 4.58 9.40

1 1.70 1.07 1.07 0.45 1.72 1.11 1.11 0.69 1.83 1.06 1.11 0.93 2.53 1.04 1.96 2.51
0.5 0.89 0.53 0.53 0.16 0.91 0.52 0.52 0.31 0.97 0.52 0.55 0.51 1.40 0.48 0.40 1.39
10 10.84 10.15 10.15 8.42 10.88 10.13 10.14 9.15 11.56 10.41 10.50 10.3011.98 10.12 10.10 11.96

25 5 5.94 5.33 5.33 4.32 5.93 5.34 5.35 4.67 6.18 5.31 5.33 5.28 6.24 5.36 5.30 6.22
1 1.43 1.18 1.18 0.83 1.46 1.15 1.15 1.02 1.46 1.04 1.04 1.04 1.54 1.07 1.06 1.54

0.5 0.82 0.57 0.57 0.43 0.82 0.59 0.59 0.48 0.61 0.50 0.52 0.43 0.82 0.59 0.54 0.81
10 10.89 10.35 10.35 9.46 10.86 10.35 10.34 9.99 10.93 10.31 10.32 10.2511.24 10.48 10.47 11.23

50 5 5.54 5.21 5.21 4.58 5.53 5.20 5.19 4.81 5.40 5.03 5.05 4.86 5.65 4.95 5.04 5.64
1 1.19 0.99 0.99 0.87 1.21 1.02 1.02 0.99 1.14 1.02 1.02 1.10 1.18 1.03 1.03 1.17

0.5 0.70 0.56 0.56 0.51 0.71 0.55 0.55 0.58 0.68 0.61 0.61 0.61 0.60 0.49 0.51 0.60
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Table 3. Nonnull rejection rates, inference onα.

nominal level: 5% nominal level: 1%
α LR LRCR LRBN LR∗ LR LRCR LRBN LR∗

0.12 8.55 13.13 13.13 8.56 2.50 4.87 4.87 2.50
0.14 24.79 34.07 34.07 24.7911.71 18.01 18.01 11.71
0.16 45.74 56.06 56.06 45.7529.37 38.16 38.16 29.37
0.18 64.78 72.63 72.63 64.5848.57 59.91 59.91 48.57
0.20 77.86 83.81 83.81 77.8765.33 72.58 72.58 65.33
0.22 86.41 89.85 89.85 86.4177.29 82.97 82.97 77.29
0.24 91.25 94.18 94.18 91.2585.55 88.88 88.88 85.55
0.26 94.91 96.73 96.73 94.9190.17 93.01 93.01 90.17
0.28 96.98 97.95 97.95 96.9893.90 95.40 95.40 93.90

ratio test is liberal, thatLRBN is conservative, and thatLRCR displays very minor
size distortions, the latter clearly outperforming the other tests. For instance, when
n = 10,α = 2.0 and at the 10% nominal level, the null rejection rates of these tests
are, respectively, 13.12%, 7.94% and 10.66%.

In Table 5 we present the empirical powers of the tests ofH0 : β = β0. The
values ofβ used ranged from 1.2 to 4.0. Again, the tests were performed using
size-corrected critical values (obtained from the size simulations) in order to force
them to have the correct size. The simulations were carried out usingn = 10,
α = 1.0 andβ = 1.0. The results suggest that the powers of the three tests are very
similar, with a slight advantage ofLR. For example, whenβ = 2.0, the nonnull
rejection rates ofLR, LRCR and LRBN at the 5% nominal level are, respectively,
58.54%, 58.05% and 57.43%.

Figure 3 plots the relative quantile discrepancies againstthe corresponding as-
ymptotic quantiles, and Figure 4 plots the relative size distortions against the cor-
responding nominal levels of the tests whenβ is the parameter of interest. Both
figures clearly show thatLRCR outperformsLR andLRBN.

6. Additional numerical evidence: comparison with alternative estimators

We shall now compare the small sample behavior of our adjusted profile max-
imum likelihood estimators ofα to those proposed by Ng, Kundu and Balakrish-
nan (2003) and From and Li (2006), which are described in Section 4. The number
of Monte Carlo replications is, as before, 10,000, the true values ofα are 0.5 and
1.0, andn = 10. The simulation results are presented in Table 6.

The figures in Table 6 show that no estimator uniformly outperforms all others
in terms of both bias and mean squared error. They also show that the adjusted
profile maximum likelihood estimators are competitive, since they are amogst the
best performing estimators in both situations (α = 0.5 andα = 1.0). Whenα =
0.5, the least biased estimator is ˘αF4 (relative bias: 0.66%) whereas when the true
parameter value is 1.0 the estimator ˘αF3 has the smallest relative bias (0.26%).
In both cases,̂αBN is the estimator with the third smallest relative bias, followed
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Table 4. Null rejection rates, inference onβ (β = 1.0).

nominal α = 0.1 α = 0.5 α = 1.0 α = 2.0
n level LR LRCR LRBN LR LRCR LRBN LR LRCR LRBN LR LRCR LRBN

10 12.31 10.30 8.52 12.33 10.25 8.26 12.37 10.18 8.01 13.12 10.66 7.94
10 5 6.61 5.35 3.95 6.62 5.30 3.85 6.75 5.18 3.65 6.95 5.27 3.65

1 1.49 1.08 0.70 1.56 1.05 0.69 1.55 1.09 0.67 1.73 1.12 0.54
0.5 0.91 0.59 0.35 0.89 0.60 0.33 0.87 0.59 0.28 0.97 0.53 0.25
10 11.10 10.38 9.67 11.19 10.33 9.60 11.15 10.37 9.52 11.27 10.52 9.53

25 5 5.83 5.30 4.86 5.91 5.38 4.76 5.87 5.33 4.75 6.14 5.49 4.77
1 1.25 1.08 0.93 1.30 1.07 0.99 1.40 1.15 0.97 1.19 1.09 0.96

0.5 0.62 0.52 0.44 0.64 0.52 0.45 0.76 0.61 0.46 0.80 0.64 0.43
10 10.71 10.43 9.96 10.64 10.35 9.92 10.72 10.24 9.74 10.87 10.38 9.87

50 5 5.32 5.05 4.85 5.36 5.17 4.88 5.54 5.17 4.90 5.39 5.07 4.79
1 1.19 1.08 1.00 1.20 1.10 0.99 1.18 1.09 0.98 1.12 1.06 0.97

0.5 0.56 0.51 0.48 0.58 0.53 0.46 0.61 0.55 0.50 0.65 0.59 0.52
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Table 5. Nonnull rejection rates, inference onβ.

nominal level: 5% nominal level: 1%
β LR LRCR LRBN LR LRCR LRBN

1.2 9.17 9.07 9.06 2.06 2.06 2.07
1.6 31.67 31.32 31.06 10.32 10.18 9.94
2.0 58.54 58.05 57.43 24.56 24.21 23.50
2.4 80.11 79.72 79.13 45.06 44.07 42.93
2.8 91.05 90.93 90.49 62.15 61.08 59.56
3.2 96.80 96.53 96.42 75.86 74.73 72.68
3.6 99.05 99.01 98.85 85.86 84.74 83.10
4.0 99.61 99.55 99.45 92.34 91.29 89.75

by α̂CR. Whenα = 0.5, for instance, the relative biases of these estimators are
nearly four times smaller than those of the jackknife estimators and nearly 3.5
times smaller than the relative bias of the modified moments estimator.

We note that the approach proposed in this paper, namely adjusting the profile
log-likelihood function prior to maximization, has a clearadvantage over the al-
ternative approaches described in Section 4: it not only improves the small sample
performance of point estimators, but also improves the finite sample behavior of as-
sociated likelihood ratio tests. That is, the correction delivers improved estimation
and testing inference in small samples.

7. Applications

We shall now perform profile and adjusted profile likelihood inference using two
real data sets. In both cases, we shall assume that observations are random draws
from the Birnbaum–Saunders distribution.

At the outset, we consider the data provided by Birnbaum–Saunders (1969b)
on the fatigue life of 6061-T6 aluminum coupons cut parallelto the direction of
rolling and oscillated at 18 cycles per second (cps). The data set consists of 101
observations with maximum stress per cycle 31,000 psi. Letα be the parameter
of interest. The profile and adjusted profile maximum likelihood estimates are
α̂ = 0.17038,α̂CR = 0.17125 and̂αBN = 0.17122. Suppose we are interested in
testingH0 : α = 0.15 againstH1 : α , 0.15. The test statistics based onℓp(α),
ℓCR(α) andℓBN(α) are, respectively, 3.5771, 3.8421 and 3.8351, with the following
correspondingp-values: 0.05858, 0.04998 and 0.05019. Since the sample size is
large (101 observations), the values of the three statistics are similar. However, the
resulting inference is not the same at the 5% nominal level, since the test based on
ℓCR(α), unlike the other two tests, yields rejection of the null hypothesis.

We shall now turn to the case whereβ is the parameter of interest. In particular,
we are interested in testingH0 : β = 125. The test statistics areLR = 9.4279,
LRCR = 9.3338 andLRBN = 9.2397, with the following correspondingp-values:
0.00214, 0.00225 and 0.00237. Unlike the previous inference, here the three tests
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Table 6. Point estimation ofα revisited.

α = 0.5
estimator mean bias variance MSE RB(%) asymmetry kurtosis
α̂p 0.4625 −0.0375 0.0121 0.0135 7.5074 1.3537 5.9906
α̂CR 0.4892 −0.0109 0.0136 0.0138 2.1695 1.4258 6.3098
α̂BN 0.4893 −0.0107 0.0137 0.0138 2.1385 1.4624 6.3117
α̃MME 0.4625 −0.0375 0.0121 0.0135 7.5077 1.3537 5.9906
ᾱNg 0.4749 −0.0251 0.0127 0.0133 5.0275 1.3874 6.1376
ᾱNgJMLE 0.4573 −0.0427 0.0133 0.0152 8.5384 1.3397 5.9301
ᾱNgJMME 0.4579 −0.0421 0.0133 0.0151 8.4255 1.3412 5.9367
ᾰF1 0.4625 −0.0375 0.0121 0.0135 7.4949 1.3539 5.9913
ᾰF2 0.4690 −0.0310 0.0166 0.0176 6.2008 1.3715 6.0678
ᾰF3 0.5065 0.0065 0.0326 0.0326 1.3004 1.4721 6.5222
ᾰF4 0.5033 0.0033 0.0220 0.0220 0.6551 1.4635 6.4825

α = 1.0
estimator mean bias variance MSE RB(%) asymmetry kurtosis
α̂p 0.9160 −0.0840 0.0472 0.0543 8.4020 2.3784 11.8471
α̂CR 0.9752 −0.0248 0.0548 0.0554 2.4841 2.4786 12.5612
α̂BN 0.9792 −0.0208 0.0567 0.0572 2.0834 2.4852 12.6085
α̃MME 0.9158 −0.0842 0.0471 0.0542 8.4173 2.3782 11.8453
ᾱNg 0.9404 −0.0596 0.0497 0.0533 5.9615 2.4207 12.1452
ᾱNgJMLE 0.9050 −0.0950 0.0523 0.0613 9.4959 2.3591 11.7120
ᾱNgJMME 0.9061 −0.0939 0.0522 0.0611 9.3931 2.3609 11.7247
ᾰF1 0.9168 −0.0832 0.0475 0.0544 8.3177 2.3799 11.8575
ᾰF2 0.8916 −0.1084 0.0763 0.0881 10.8379 2.3350 11.5450
ᾰF3 0.9974 −0.0026 0.1279 0.1279 0.2598 2.5144 12.8217
ᾰF4 1.0039 0.0039 0.0906 0.0906 0.3915 2.5247 12.8972
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yield the same conclusion: the null hypothesis is rejected at the 1% nominal level.
The (profile and adjusted profile) maximum likelihood estimate ofβ is 131.8188.

The second application we consider uses data provided by McCool (1974). The
data describe the lifetime, in hours, of 10 sustainers of a certain type. They were
used by Cohen, Whitten and Ding (1984) as an illustration of the three-parameter
Weibull distribution. The profile and adjusted profile maximum likelihood esti-
mates ofα are α̂ = 0.2825, α̂CR = 0.2989 and̂αBN = 0.2973. Consider the test
of H0 : α = 0.21 againstH1 : α , 0.21. The test statistics areLR = 2.1646,
LRCR = 2.8438 andLRBN = 2.7963, with the following correspondingp-values:
0.1412, 0.0917 and 0.0945. Therefore, the two adjusted profile likelihood ratio
tests (LRCR andLRBN) reject the null hypothesis at the 10% nominal level, unlike
the likelihood ratio test (LR). Thus, the unadjusted and adjusted tests yield different
conclusions.

Now let β be the parameter of interest. Its maximum likelihood estimate is
β̂ = 212.05. Suppose we wish to testH0 : β = 180 againstH1 : β , 180. The test
statistics areLR = 2.9417,LRCR = 2.6415 andLRBN = 2.3414; the respectivep-
values are 0.0863, 0.1041 and 0.1260. Again, the use of adjustments to the profile
likelihood function makes a difference: unlike the usual likelihood ratio test, the
adjusted likelihood tests reject the null hypothesis at the10% nominal level.

8. Concluding remarks

We considered the issue of performing inference on the parameters that index
the Birnbaum–Saunders distribution. More specifically, wehave focused on the
situation where one wishes to make inference on one of the parameters, the other
parameter being of nuisance fashion. Using the results in Cox and Reid (1987) and
in Barndorff–Nielsen (1983), we derived two adjustments that can applied to the
profile likelihood function so as to deliver improved inference. Approximations
due to Severini (1998, 1999) were used in order to obtain one of such adjustments.
Monte Carlo simulation results have shown that the adjustedestimators and tests
— i.e., estimators and tests based on the adjusted profile likelihood functions —
can deliver more accurate inference than that carried out using the usual maximum
likelihood estimator and the standard likelihood ratio test in small samples. In
particular, the adjusted estimators displayed smaller biases and the adjusted tests,
smaller size distortions. For instance, we reported Monte Carlo simulation results
in which the usual likelihood ratio test displayed null rejection rate of nearly 9.5%
at the 5% nominal level whereas the sizes of our two adjusted tests where 5.2% and
4.6%, and in which the relative bias of our two estimators were approximately four
times smaller than that of the maximum likelihood estimator. The adjusted profile
likelihood tests have also outperformed the Bartlett-corrected likelihood ratio test.
We recommend the use of the adjusted profile likelihood inference developed in
this paper to practitioners who wish to model reliability data using the Birnbaum–
Saunders model. In particular, we recommend the use of the Cox–Reid adjusted
profile likelihood function, since it yielded the most reliable (hypothesis testing)
inference when the parameter was of interest wasβ and it was competitive with the
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inference obtained using the Barndorff–Nielsen modified profile likelihood func-
tion whenα was the parameter of interest. In future research, we shall obtain
adjustments to Birnbaum–Saunders profile likelihoods under data censoring.
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Figure 1. Relative quantile discrepancy plot, inference onα.
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Figure 2. Relative size distortion plot, inference onα.
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Figure 3. Relative quantile discrepancy plot, inference onβ.
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Figure 4. Relative size distortion plot, inference onβ.
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