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Summary
When comparing sensitivities and specificities from multiple diagnostic tests, particularly in
biomedical research, the different test kits under study are applied to groups of subjects with the same
disease status for a disease or medical condition under consideration. Although this process gives
rise to clustered or correlated test outcomes, the associated inference issues are well recognized and
have been widely discussed in the literature. In mental health and psychosocial research, sensitivity
and specificity have also been widely used to study the reliability of instrument for diagnosing mental
health and psychiatric conditions and assessing certain behavioral patterns. However, unlike
biomedical applications, outcomes are often obtained under varying reference standards or different
diagnostic criteria, precluding the application of existing methods for comparing multiple diagnostic
tests to such a research setting. In this paper, we develop a new approach to address these problems
(including that of missing data) by extending recent work on inference using inverse probability
weighted estimates. The approach is illustrated with data from two studies in sexual abuse and health
research as well as a limited simulation study, with the latter used to study the performance of the
proposed procedure.
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1 Introduction
Diagnostic tests are widely used in biomedical research to detect certain medical conditions or
diseases in populations of interest. The accuracy of a diagnostic test is defined by comparing
the test result to the true condition or disease status of the subject tested. The most commonly
used measures in evaluating the accuracy of diagnostic test are test sensitivity and specificity.
In biomedical research, such measures are used to evaluate and compare the quality of different
test kits that are designed to detect a common disease of interest such as HIV (e.g. Cross et al.
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1992; Johnson and Gastwirth, 1991; Kowalski et al. 2001; Taylor et al. 1990; Tu et al. 1992;
1995). In most studies, different diagnostic tests are applied to a group of diseased or non-
diseased subjects for such evaluations (Ahn, 1997, Kowalski et al. 2001; Lee and Dubin,
1994; Mendoza-Blanco et al. 1996; Yasemin, 2005). Since the multiple outcomes from the
different tests are based on the same individual, they form clustered or correlated responses.
Inferences for such correlated multivariate binary responses have been discussed in the
literature (Ahn, 1997, Genc et al. 2005; Kowalski et al. 2001; Lee and Dubin, 1994; Mendoza-
Blanco et al. 1996; Taylor et al. 1990; Yasemin, 2005).

In addition to biomedical applications, sensitivity and specificity have also been widely used
in mental health and psychosocial research to study the reliability of instruments for diagnosing
mental health and psychiatric conditions and for measuring behavioral patterns and past health-
related histories. In such applications, the need to evaluate and compare different instruments
arises. However, unlike biomedical applications, these multiple instruments may involve
varying reference standards or diagnostic criteria, precluding the application of existing
methods for comparing multiple diagnostic tests to such a research setting. For example, in
sexual abuse research, identifying whether others have knowledge of a patient’s childhood
sexual abuse history is important from both a methodological and clinical perspective (Gamble
et al., in press; Lipschitz et al., 1999; Talbot et al. 2004). In such studies, an important issue is
reliability of the information about the proband’s sexual abuse history provided by a family
member or informant. Research shows that subjects and informants have highly concordant
reports about severe childhood sexual abuse, but not about less severe or more infrequent sexual
abuse experiences (Gamble et al., 2006). Because the subject’s response (reference standard)
about her/his abuse experience varies depending on how sexual abuse is defined (i.e., more
severe or less severe), inference procedures developed for biomedical applications with a static
or single reference standard no longer apply.

In this paper, we describe a new approach to address the inference problems inherent in formal
comparison of the sensitivity (specificity) estimates derived based on multiple diagnostic
criteria such as severity of sexual abuse. In particular, we discuss how to address the impact
of missing data by extending recent work on inference using inverse probability weighted
estimates. We illustrate the methodology with both real and simulated study data.

2 Models for Comparing Multiple Sensitivities and Specificities
In this section, we first briefly review the statistical issues that arise when comparing multiple
diagnostic tests in biomedical applications. We then discuss how the issues are different when
comparing multiple sensitivities and specificities defined by different diagnostic criteria and
develop new approaches to address them.

2.1 Multiple Tests under a Common Reference Standard
In most applications in biomedical research, different diagnostic tests are applied to a group
of subjects with the same disease status. For example, to compare sensitivities, the tests under
study are applied to a group of subjects with the disease. Likewise, to compare specificities,
different tests are administered to a group of disease-free subjects.

Consider m diagnostic tests. Let D (Dc) denote the disease (non-disease) status and 
denote the positive (negative) test by the kth test kit (1 ≤ k ≤ m). In most biomedical studies,
each test kit is applied to a sample of diseased (non-diseased) subjects to derive data for
estimating and comparing sensitivities (specificities) across the test kits. We focus on
sensitivity, since the consideration for specificity is similar.
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Let yki be a binary variable denoting the outcome of the kth test kit when applied to the ith
subject from the diseased group, with the value 1 (0) denoting a positive (negative) test
outcome. For each test kit, sensitivity is defined as the probability of a positive test given the
disease

(1)

With test data from the diseased group, ϕk is readily estimated by:

, where rk is the number of positive tests by the kth kit. Now let

By applying (1) and the estimate for each test kit to θ, we obtain an estimate of the sensitivity

vector: . The asymptotic distribution of θ̂ is readily obtained by invoking the central
limit theorem (CLT)

(2)

where →d denotes convergence in distribution (e.g., Kowalski and Tu, Chap. 1, 2007). By
applying CLT and Slutsky’s theorem (e.g., Kowalski and Tu, Chap. 1, 2007), we obtain a

consistent estimate of the asymptotic variance Σθ, .

For any (smooth) function g (θ) of θ (i.e., g (θ) has continuous first-order derivatives), by the
Delta method (e.g., Kowalski and Tu, Chap. 1, 2007), the statistic g (θ̂) has the following
distribution:

(3)

where  denotes the derivative of g (θ) with respect to θ and  the transpose of

. By estimating Σg(θ) using a consistent estimate such as , we
can use (3) to make inference about g (θ). For example, many hypotheses of practical interest
concerning θ can be expressed in terms of a linear contrast:

(4)

where K is some l × m full rank matrix with known constants (l ≤ m). By setting g(θ) = Kθ and
applying (3), we can immediate obtain the asymptotic distribution of Kθ ̂ for testing (4). In

particular, under H0, the quadratic statistic, , has an asymptotic
central χ2 distribution with l degrees of freedom. For example, the null of no difference across
three test kits, i.e., H0 : ϕ1 = ϕ2 = ϕ3, can be expressed as a linear contrast with
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. It follows that  has an asymptotic central χ2

distribution with 2 degrees of freedom.

In addition to test sensitivity (specificity), the positive (PPV) and negative (NPV) predictive
values are also widely used in biomedical and epidemiologic studies to indicate the degree of
accuracy when ascertaining disease status based on test outcomes (Fleiss et al. 2003; Tu et al.
1992). PPV (NPV) is the probability of disease (non-disease) given a positive (negative) test.
As both PPV and NPV are a function of disease prevalence (in addition to sensitivity and
specificity), their values reflect not only the test kit accuracy, but also the disease prevalence
as well. In most biomedical applications, PPV (NPV) is not directly estimated from data, as
samples selected for evaluating sensitivity (specificity) typically contain diseased (disease-
free) subjects rather than a random sample from a population of interest (Tu et al. 1992; Tu et
al. 1994; Fleiss et al. 2003). This likely explains the paucity of literature on inference for PPV
(NPV). In contrast, samples selected for evaluating diagnostic tests in behavioral and
psychosocial research are often random samples (or can be interpreted as such) from the study
population of interest and as a result, it is of interest to estimate PPV (NPV).

Now, consider comparing multiple PPVs based on test outcomes from a random sample
consisting of both diseased and disease-free subjects. Let nk denote the number of positive tests
and rk the number of diseased subjects among those who test positive by the kth test kit (1 ≤

k ≤ m). Then,  is a consistent estimate of PPV for the kth test kit, , with
the following asymptotic distribution:

(5)

The above can be used for inference about each individual ωk. To compare PPVs across the
different test kits, we need the joint asymptotic distribution of the vector statistic, ω ̂ = (ω̂1,…,
ω ̂m)⊤. Although similar in form, this joint distribution requires quite different considerations
from those for sensitivity. Interestingly, these are exactly the same problems that arise when
comparing multiple sensitivities (specificities) with varying diagnostic criteria, which we
discuss next.

2.2 Multiple Tests with Different Diagnostic Criteria
To illustrate the underlying issues, consider again the sexual abuse study in the Introduction.
Let n1 denote the number of subjects who answered yes and r1 the number of informants who
corroborated the subjects’ responses to the question whether the subject had any sexual abuse
(including severe, moderately severe, and less severe sexual abuse). By treating the subject’s

response as a gold standard, the sensitivity of informant’s response is estimated by .
Now, consider the question of whether the subject had severe sexual abuse. Let n2 denote the
number of subjects who answered yes and r2 the number of informants who concurred with
the responses. Again using the subject’s response as a gold standard, the sensitivity of the

informant’s response is estimated by . By comparing with  discussed in the
preceding section, it is seen that ψ ̂k have a varying denominator nk between the two questions
(or diagnostic criteria). As in the case of PPV, θ̂ = (ψ̂1,ψ̂2)⊤ depends not only on rk, but on
nk as well.
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To develop the joint asymptotic distribution of θ̂, let zki and yki be a binary variable denoting
the response (1 for yes and 0 for no) from the ith subject and informant pair for the k’s th
question (k = 1; 2). Then, the sensitivity of the kth question is given by

(6)

In comparison to (1), the sensitivity ψk has a more complex expression; it depends not only on
the test outcome (yki), but on the gold standard (zki) as well. By substituting the moment

estimates  in place of the respective means, we immediately obtain

the estimates .

To derive their joint asymptotic distribution, let

(7)

Then, we can express θ̂ as a function of ζ ̂

(8)

By applying CLT to ζ ̂ and the Delta method to f(ζ ̂), we obtain the asymptotic distribution of
θ̂

(9)

A consistent estimate of the asymptotic variance Σθ is given by:

(10)

We can readily extend the above development to a general setting with more than two
diagnostic criteria. Consider m diagnostic criteria and let zki (yki) be defined as above except
that k now ranges from 1 to m. Also, let wki, wi, ζk, ζ̂k,ζ, ζ̂,ψk,ψ ̂k, θ, θ ̂ and f (ζ) be defined as in
(7), but with k ranging from 1 to m. By applying (9) and (10) to θ̂, we obtain the distribution
of θ̂ and a consistent estimate of the asymptotic variance. As in Section 2.1, we can test any
linear contrast involving θ such as equal sensitivities across different diagnostic criteria based

Yu et al. Page 5

Comput Stat Data Anal. Author manuscript; available in PMC 2009 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



on the distribution of θ̂. We again use the quadratic statistic, , and
the associated χ2 distribution for inference.

By using a similar argument, we can find the joint asymptotic distribution of ω̂ for comparing
multiple PPVs as discussed in Section 2.1. Since the PPV for the kth criterion is

we readily obtain the asymptotic distribution of ω̂ and a consistent estimate of the asymptotic
variance by reversing the roles of yki and zki in the above development. The discussion for
specificity and NPV is similar.

2.3 Missing Data
Missing data are a common problem in research. In this section, we discuss the impact of
missing data and how to ensure valid inference in its presence. Again, for convenience, we
focus on test sensitivity.

Within the current context, the kth sensitivity ψk in (6) is defined by the parameter vector ζk =
(E (zki), E(ykizki))⊤. If the component zki, ykizki or both are inconsistently estimated, the resulting
estimate ψ ̂k is generally biased. To ensure valid inference, we must construct consistent
estimates of ζk.

In general, missing data may occur to zki, yki or both. For estimating E (zki), we must have non-
missing zki, while for E (ykizki), we must have both yki and zki observed. To help construct and
discuss estimates, we define a set of indicators for missing (or rather observed) data as follows

(11)

Note that in many studies, zki (or yki) are either observed or missing together for all k (1 ≤ k ≤
m). For example, in the sexual abuse study, zki (yki) were obtained based on the ith proband’s
(informant’s) response under some cut-point on severity of sexual abuse (see also Example 1
in Section 3 for more details) and the occurrence of missing data do not depend on the different
diagnostic criteria. Throughout the rest of discussion, we assume rkzi = rzi (rkyi = ryi) for all k
(1 ≤ k ≤ m).

One way to estimate ζk is to compute the sample means of E (zki) and E (ykizki) based on
available data. Using the missing data indicators, such an estimate can be expressed elegantly

as . This estimate is consistent if missing data follow the missing
completely at random (MCAR) assumption (Rubin, 1976). Since under MCAR ryi and rzi are
independent of zki and yki, it follows from the law of large numbers (LLN) and Slutsky’s
theorem that
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where →p denotes convergence in probability (e.g., Kowalski and Tu, Chap. 1, 2007).

However, when MCAR fails, i.e., if ryi, rzi or both depend on zki, yki and some covariates, ζ ̂
above is likely to be inconsistent. For example, in the sexual abuse study, if an informant
indicated that he/she did not know whether the subject had any sexual abuse, such a missing
response might reflect the fact that the informant did not know the subject well enough to have
such knowledge, giving rise to the dependence of ryi on covariates that measure the relationship
between the proband and informant. In this case, estimating E (ykizki) based simply on the
observed zki and yki may yield biased estimates.

To obtain consistent estimates in such scenarios, let

where xi is a q × 1 column vector of covariates with no missing data. Consider a revised inverse

probability weighted (IPW) estimate of ζ as follows: . (Note that for notational
brevity, we still used ζ ̂ to denote the resulting estimate.) It is readily checked that

(12)

where I2 denotes the 2 × 2 identity matrix. It then follows from (12) that

where diagk (Ak) denotes a block-diagonal matrix with Ak on the kth diagonal. Thus, the revised
estimate ζ ̂ is consistent. By CLT, we obtain the asymptotic distribution and a consistent estimate
of the asymptotic variance

(13)

As in Section 2.2, we can construct a consistent estimate of θ based on ζ ̂ as well as a consistent
estimate of the asymptotic variance of θ̂ by applying the Delta method to (13).
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If πzi and πzyi are known, ζ ̂ and Σ̂ζ are readily computed. However, in most studies, these
quantities are unknown and must be estimated. By viewing the event {rzi = 1; ryi = 1} as one
of the possible outcomes below

we can estimate πzi and πzyi by modeling the categorical outcomes ωij above using the
generalized logit model (e.g., Kowalski and Tu, Chap. 2, 2007).

Let Iij = 1 if ωij is observed and 0 if otherwise. The generalized logit model has the following
form

(14)

However, as shown in the Appendix, it is generally not possible to model pij as a function of
zi and yi in addition to xi. In other words, pij (xi, yi, zi; η) can be a function of xi only, i.e., pij
(xi; yi; zi; η) = pij (xi; η), in which case (14) reduces to

(15)

Under (15), πzyi = pi1 (xi; η) and πzi = pi1 (xi; η) + pi3 (xi; η). Thus, we can first estimate η
using the maximum likelihood procedure and then estimate pij (xi; η) by substituting such
estimates in place of η.

Note that as a special case, if the gold standard zi is observed for all subjects, inference may
be facilitated by applying the generalized linear mixed effects model (GLMM) or the
generalized estimating equations (GEE) with a logit link (e.g., Kowalski et al., 2001; Leisenring
et al. 2000). Note also that a model similar to (14) has been used to model non-ignorable (non-
MAR) missingness for bivariate binary responses under likelihood based inference (e.g., Baker
et al. 1992; Jansen et al. 2003). For many applications in psychosocial research, ignorable
missingness is often a plausible assumption. In such applications, we can use the model (15)
to either test the MCAR assumption or obtain valid inference under MAR.

3 Application
We illustrate applications of the proposed approach with data from two real studies on sexual
abuse and health research as well as from a simulated study. The simulated study allows us to
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study the performance of the procedure in small to moderate sample sizes. We set the statistical
significance at 0.05 for inference in all the examples.

3.1 Real Studies
Example 1—In many studies with vulnerable populations such as those in suicide, sexual
abuse and substance use research (Achenbach, 2005; Bernstein et al. 2003; Heisel et al.
2006; Nelson et al. 1990; Shrier et al. 2005; Turner et al. 1998), a common strategy is to use
informant sources to provide information about patients. In this example, we illustrate an
application of the methodology to this line of research using data from a study that examines
the relationship between patient and informant reports of childhood sexual abuse (Gamble et
al. in press).

The study data come from a larger investigation examining the relationship between personality
and suicidal behavior among depressed patients 50 years of age and older (Heisel et al.
2006). Among the 187 patients who completed a measure of childhood sexual abuse, 88
identified an informant source who completed a parallel version of the same measure. Sexual
abuse was assessed by the Child Trauma Questionnaire (CTQ; Bernstein et al. 1998). Although
CTQ is one of the most validated and reliable assessments of childhood sexual abuse (Bernstein
and Fink, 1998; Bernstein et al. 2003; Scher et al. 2001), the concordance between the proband
and informant reports on the CTQ had never been formally assessed, due in part to the lack of
statistical methods. We compare the reliability in informant’s report between the "Any" and
"Severe" abuse categories, obtained by following the severity cut-point guidelines listed in the
CTQ manual (Bernstein et al., 1998).

The analysis was based on the 88 subjects who identified an informant source to provide the
informant data about their sexual abuse histories. Since every proband-informant pair of this
subsample responded to the CTQ, there are no missing data. Shown in Table 1 are the
sensitivity, specificity, PPV and NPV estimates computed for each of the two sexual abuse
categories. As noted earlier in Section 2.2, it is also sensible to estimate and compare PPV and
NPV, as these indicate whether the informant’s information is reliable for assessing the
proband’s sexual abuse history, though all results should be interpreted with respect to the
subgroup of subjects who were willing to provide informant’s source. The results suggested
differential reliability in informant’s information between the two levels of sexual abuse
severity. The values in Table 1 suggest that "Severe" abuse has a higher reliability than "Any"
abuse. To formally assess statistical significance, we tested the null of no between-category
difference for each of the accuracy indices. By applying the procedures in Section 2.2, we
obtained the statistics (p-value) for testing such differences;  for sensitivity,

 for PPV and  for NPV. There was no significant difference
for specificity.

Since there was no missing data in either the reference standard or the test outcome, methods
based on the popular GLMM and GEE can be applied. For example, for inference about the
sensitivities of informant’s information for the two levels of abuse severity, ψk (k = 1 for "Any"
and 2 for "Severe"), we modeled yki as a function of zki using either GLMM or GEE as follows:

(16)
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where I{·} denotes a set indicator, Bernoulli(p) indicates a Bernoulli distribution with the
probability of success p, and i.d. stands for independently distributed (random variable). Under
either model in (16), the sensitivity ψk was given by:

We tested the null, H0 : β2+β3 = 0, to see if there was any differential sensitivity between
"Severe" and "Any" abuse.

Similar models were constructed for the other indices. For example, by using the following
GLMM and GEE,

we estimated the specificity φk for each abuse level k (k = 1;2),

and tested the null, H0 : γ2 = 0 to examine potential difference between φk.

Note that the GEE application to the current context requires the use of the working
independence correlation structure to ensure consistent estimation of model parameters (e.g.,
Pepe and Anderson, 1994). In this case, it is readily checked that the estimating equations are
readily solved to yield the same estimates as the proposed approach.

Shown in Table 1 are the estimates of the four indices based on the GLMM, obtained by the
GLIMMIX procedure in SAS (SAS Institute, 2006). The GLMM estimates are quite close to
their distribution-free counterparts except for the sensitivity estimate for the "Severe" abuse.
It seems that the normal assumption for the random effort may not be appropriate for modeling
the correlation between the informant’s responses for the two abuse categories. By using linear
contrasts, we obtained χ2 statistics, , for comparing the two abuse categories;

 for sensitivity,  for PPV and  for NPV. Again,
the difference was not significant for specificity.

Example 2—Studies on sexual health and HIV prevention rely almost exclusively on
retrospective self-report data to capture information on individuals’ associated sexual
behaviors, such as frequency of condom use. As such self-reports delve into very personal and
private aspects of an individual’s life, their accuracy is of growing concern when assessing
treatment effects in prevention studies based on behavioral modifications (Catania et al.
1995; Kauth et al. 1991; Weinhardt et al. 1998). Various methods have been proposed and
compared to improve the quality and reliability of such retrospective self-report data (Catania
et al. 1995; Coxon, 1999; Des Jarlais et al. 1999; Locke et al. 1992; Metzger et al. 2000; Turner
et al. 1998; de VincenziI, 1994; Graham et al. 2003; Jaccard and Wan, 1995; Kauth et al.
1991; Lagarde et al. 1995; Morrison-Beedy et al. 2006; Schroder et al. 2003; Weinhardt et al.
1998). In this example, we utilize the proposed approach to investigate whether reliability of
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self-report on unprotected vaginal sex (UnPVS) is associated with the amount of such sex
reported (Morrison-Beedy et al. 2006).

In this study, 160 adolescent girls monitored their behavior with a daily diary, and returned for
assessment after three months. We used the daily diary as a reference standard for assessing
accuracy of retrospective recall. Although a daily diary may not be 100% accurate, such a
contemporaneous monitoring strategy addresses some of the key limitations of retrospective
assessment, such as recall bias (Graham et al. 2003; Jaccard et al. 2002; Reading, 1983; Shrier
et al. 2005).

To help assess reliability of self-report on UnPVS, we created five categories for evidence of
UnPVS based on the % of UnPVS reported over the three month period; 5%, 10%, 30%, 40%
and 50%. For a given category defined by x%, a subject was defined by the reference standard
or test as having UnPVS over the period if she reported at least x% of UnPVS in the diary or
the retrospective report. To apply the proposed approach, let zki (yki) denote the status of UnPVS
as indicated by the daily diary (retrospective report) for the ith subject in the study based on
the kth category (1 ≤ k ≤ 5).

There was about 10% missing data from both the diary and retrospective assessment data. We
modeled the missingness according to (15) by including behavioral intention, condom use
attitude, depression, HIV knowledge, race, and incidents of protected as well as unprotected
vaginal sex at baseline (Morrison-Beedy et al. 2006) in the covariate vector xi. A backward
elimination procedure helped trim the model to only one covariate, HIV knowledge, with a
marginally significant p-value = 0.08.

Shown in Table 2 are the IPW-based estimates of the four measures of accuracy for the five
UnPVS categories. As in Example 1, PPV and NPV indicate the degree of accuracy when
retrospective reports on UnPVS are used to assess the actual practice of this unsafe sex act for
this study population as benchmarked by the daily diary. The higher sensitivity and PPV
estimates suggest that self-reports are generally quite reliable for detecting UnPVS in this study
population. All estimates seem to initially rise and then fall with a peak at 30% as the % of
UnPVS reported by the daily diary varied from 5% to 50%.

Shown in Table 3 are the p-values from testing the null of no difference across the five
categories based on the inference procedure in Section 2.3. The results indicate significant
differences for Specificity and NPV. For these two indices, Table 3 provides the p-values for
comparing the 30% category with each of the other categories. The results indicate that
specificity and NPV rise significantly as the % of UnPVS increases and then level off after
30%. Although estimates of sensitivity and PPV exhibit a similar pattern, the differences are
not significant.

3.2 A Simulation Study
We conducted a limited simulation study to examine the empirical type I error rate for testing
the null of equal sensitivities across different diagnostic criteria as well as empirical power for
the alternative hypothesis of varying sensitivities, with three reference categories and four
sample sizes–50, 100, 150 and 2000–under complete as well as missing data modeled by the
MCAR and MAR mechanisms. We simulated (zki; yki) according to the following distributions:

where Bi (p) is a Bernoulli distribution with the probability of success p and
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We set the prevalence pk = 0:65 and test specificity ψk = 0:7 (1 ≤ k ≤ 3). To create correlated
responses, we set ρk = Pr (zki = z(k+1)i = 1) = 0:55 (correlation between consecutive zki’s for k
= 1; 2). For investigating type I error rates, we generated (zki; yki) under the null of equal
sensitivity across the three diagnostic criteria, H0 : ϕ1 = ϕ2 = ϕ3 = 0:8, while for examining
power, we generated (zki; yki) from the alternative, Ha : ϕ1 = 0:8; ϕ2 = ϕ3 = 0:9.

We simulated the missing response for the MAR model with about 25% missing data according
to the generalized logit model in (15), with pij given by:

We set ηxj = 3 (2 ≤ j ≤ 4) for the dependence of missingness on the covariate xi, which was
simulated from a standard normal variate. To yield about 25% missing response, we determined
η0j by solving the following equation:

(17)

The same process was used for simulating missing response under MCAR by setting ηxj = 0
and solving for η0j in (17). Sensitivity estimates of ϕk and their asymptotic variance estimates
were obtained based on the results in (13). The empirical type I error rate (power) for testing
the null H0 (alternative Ha) was calculated according to

 where M indicates the Monte Carlo (MC)

sample size,  denotes the test statistic  in Section 2.1 from the jth MC replication
constructed based on the data simulated under H0 (Ha), and q0:95 designates the 95th percentile
of the χ2 distribution with 2 degrees of freedom.

Shown in Table 4 are the averaged estimates of sensitivity along with the averaged asymptotic
standard errors and empirical type I error rates under H0, based on 1,000 Monte Carlo (MC)
replications. Sensitivity estimates are quite close to the true parameter values, even for sample
size 50, though the empirical type I error rates are a bit upwardly biased for sample sizes ≤
100. The proposed estimates for the two missing data cases seem to perform well across all
the sample sizes relative to the complete data case.

Power estimates based on 1,000 MC replications for the alternative Ha are shown in Table 5,
together with the averaged estimates of sensitivity and asymptotic standard errors. As in Table
4, sensitivity estimates are quite good. Power estimates increased as a function of sample size,
reaching the value 1 for n = 2000. Power is not great for sample sizes ≤ 150 as binary response
is notorious for low power as compared to its continuous counterpart.

As expected, maximum power occurred for the complete data case, with the two missing data
models yielding reduced power. Between the two missing data cases, more power was achieved
under MAR. This may not be surprising since unlike MCAR, MAR attempts to augment each
ith observed response with the weight functions πzyi and πzi to "statistically recover" the missing
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data in estimating the sensitivities. The additional information provided by the observed
responses in modeling πzyi and πzi helps to increase power for the MAR model.

4 Future Research
We developed an approach for inference when comparing multiple diagnostic tests with
varying diagnostic criteria. Although relatively infrequent in biomedical applications, the need
for such comparisons arises quite often in the behavioral and social sciences. As methods for
inference about such comparisons in the presence of missing data are currently lacking, the
proposed methodology fills this important gap in the literature.

The methodologic issues considered here are quite different from ROC curves analysis.
Although different sensitivity and specificity estimates are examined in ROC analysis, these
estimates arise from varying the cut-point in dichotomizing an underlying continuous test
outcome for detecting a common diagnostic condition, rather than by different diagnostic
criteria that affect both the test outcome and the reference standard as in the current setting.

We focused on non-parametric inference to address missing data, and in particular articulated
a form of the MAR assumption within the current context and discussed inference using a class
of IPW estimates. Our approach reduces to the WGEE estimate under a single diagnostic
criterion with no missing data in the reference standard (e.g., Robins et al. 1995).

Alternatively, likelihood based or Bayesian inference may also be considered (e.g. Johnson
and Gastwirth, 1991; Mendoza-Blanco et al. 1996; Prentice, 1988; Leisenring et al. 2000;
Chaganty and Joe, 2004); the latter is especially appropriate when one wishes to incorporate
information from other prior testing data. However, such approaches are much more
complicated when modeling multiple correlated binary outcomes even under complete data.
We have opted for the nonparametric approach as it affords simpler and more intuitive
estimates.

Important weaknesses of the approach include its inability to control for covariates and to
handle missing data when the data occur differentially across the different diagnostic criteria
rather than following the same pattern (as assumed in the current development). Work is
currently underway to address these limitations.

Appendix

Appendix
We show that it is not possible to model the missingness of zi as dependent on yi and vice versa
in addition to xi under MAR. For notational brevity, we also suppress the dependence on xi.

Suppose that on the contrary such a model existed. Then, we would have:

(18)

Under MAR, the probabilities of missing response depend only on observed data. It follows
that Pr [rzi = 1; ryi = 0 | zi; yi] is a function of zi and Pr [rzi = 0; ryi = 1 | zi; yi] a function of yi
only. Denote them as f(zi) and g(yi), respectively. Then, Pr [rzi = 1; ryi = 1 | zi; yi] = 1− f(zi) −
g(yi). It follows that
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It follows from (18) that  is a function of zi only. Thus, g (yi) must be a
constant. Likewise, f (zi) must be a constant. These contradict the MAR assumption.
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Table 1
Sensitivity, specificity, PPV and NPV estimates for two categories of sexual abuse history reported by probands and
informants in Example 1 based on the proposed (GEE) and GLMM approaches.

Comparisons of Estimates by Categories of Sexual Abuse History
Proposed (GEE) / GLMM

Abuse category Sensitivity Specificity PPV NPV

Any abuse 0.51 / 0.50 0.91 / 0.92 0.84 / 0.84 0.68 / 0.68

Severe abuse 0.64 / 0.55 0.94 / 0.94 0.78 / 0.77 0.89 / 0.90
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Table 2
IPW-based estimates of sensitivity, specificity, PPV and NPV as a function of % of unprotected vaginal sex reported
by daily diary over a three month period as assessed by two methods of retrospective reporting in Example 2.

% of unprotected vaginal Sensitivity Specificity PPV NPV

sex reported

5% 0.87 0.79 0.95 0.59

10% 0.88 0.76 0.93 0.64

30% 0.89 0.96 0.98 0.80

40% 0.82 0.84 0.89 0.75

50% 0.77 0.92 0.92 0.77
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Table 3
p-values for testing the null of no difference across the five diagnostic categories and the null hypotheses for pairwise
comparisons of 30% vs. each of the other categories for the accuracy indices in Example 2.

Comparison Sensitivity Specificity PPV NPV

No diff. across five categories 0.79 <0.001 0.44 <0.01

5% vs. 30% 0.73 <0.01 0.61 <0.01

10% vs. 30% 0.86 <0.001 0.37 <0.01

40% vs. 30% 0.33 0.09 0.21 0.48

50% vs. 30% 0.24 0.70 0.56 0.77
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