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a b s t r a c t

Gaussian graphical models are promising tools for analysing genetic networks. In many
applications, biologists have some knowledge of the genetic network and may want to
assess the quality of their model using gene expression data. This is why one introduces a
novel procedure for testing the neighborhoods of a Gaussian graphical model. It is based on
the connection between the localMarkov property and conditional regression of aGaussian
random variable. Adapting recent results on tests for high-dimensional Gaussian linear
models, one proves that the testing procedure inherits appealing theoretical properties.
Besides, it applies and is computationally feasible in a high-dimensional setting: the
number of nodes may be much larger than the number of observations. A large part of
the study is devoted to illustrating and discussing applications to simulated data and to
biological data.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Biological processes regulating the expression of the genes lead to complex high-dimensional systems. Thus, inferring
these underlying networks recently became an issue arising in systems biology. More precisely, the challenge at hand
is to use gene expression data coming from microarray experiments to estimate or to test the network. In this regard,
mathematical tools were developed to provide a suitable framework for modelling complex dependence structures. Among
these, Gaussian graphical models (GGMs; see Lauritzen (1996) and Edwards (2000)) have gained a lot of attention and have
already been applied in several works (see Kishino and Waddell (2000), To and Horimoto (2002), Wu et al. (2003), Wille
et al. (0000), and Schäfer and Strimmer (2005)). However, the number of genes pwill typically exceed by far the number n
of the samples given by the microarray experiments. In this high-dimensional setting, estimating or assessing a GGM raises
difficult statistical and computational issues. For instance, most of the methodologies based on asymptotic statistics do not
apply any longer.
In recent years, the problem of graph estimation for massive data sets became a hot-spot in statistics. Most of the

emerging methods fall in two categories. On the one hand, some are based on multiple-testing procedures; see for instance
Schäfer and Strimmer (2005) or Wille and Bühlmann (2006). On the other hand, other methods are based on variable
selection for high-dimensional data. We mention the seminal work of Meinshausen and Bühlmann (2006), who proposed
a computationally feasible model selection algorithm using Lasso penalisation (see Tibshirani (1996)). Huang et al. (2006)
and Yuan and Lin (2007) extend this method to directly infer the graph by minimising the log-likelihood penalised by the
l1 norm.
In contrast, there are not many results about the problem of hypothesis testing in a high-dimensional setting.We believe

that this issue is significant for two reasons. First, when considering a gene regulation network, biologists often have a
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previous knowledge of the graph and may want to test whether the microarray data match with their model. Second, when
applying an estimationmethod in a high-dimensional setting, it could be useful to test the estimated graph as some of these
methods are revealed as too conservative. Admittedly, some of the previously mentioned estimation methods are based
on multiple testing. However, as they are constructed for an estimation purpose, most of them do not take into account
some previous knowledge about the graph. This is for instance the case for the approaches of Drton and Perlman (2007)
and Schäfer and Strimmer (2005). Some of the other existing procedures cannot be applied in a high-dimensional setting
(e.g. Drton and Perlman (2008)). Finally, most of them lack theoretical justifications given in a non-asymptotic way. This
is why we propose a testing procedure to assess whether some connections are missing in a graph. The procedure starts
from a minimal graph, minimal in the sense that all edges are assumed to be relevant: typically this graph is provided by
the biologists thanks to their previous knowledge. The aim of the procedure is to test whether microarray data match with
this minimal graph or whether there are missing edges. The interest of this test is first for biologists assessing the quality
of their knowledge. Second, when the test is rejected, it suggests potential connections between genes that steer biologists
towards new experimentations.
Let us make precise our objective: consider X = (X1, . . . , Xp)t , a random vector distributed as a multivariate Gaussian

N (0,Σ). Throughout this paper, we assume that the matrixΣ is non-singular. The conditional independence structure of
this distribution can be represented by an undirected graph G = (Γ , E) where Γ = {1, . . . , p} is the set of nodes and E
the set of edges. There is an edge between nodes a and b if and only if the random variables Xa and Xb are conditionally
dependent, given all remaining variables X−{a,b} = {Xi, i ∈ Γ \ {a, b}}. The random vector X is then said to be a Gaussian
graphical model with respect to the graph G. Given a node a ∈ Γ , we define its neighborhood ne(a) as the set of nodes
b ∈ Γ \ {a} such that (a, b) ∈ E. We say that X follows the local Markov property at node awith respect to the graph G if Xa
is independent from {Xi, i ∈ Γ \ (ne(a) ∪ {a})} given {Xi, i ∈ ne(a)}. Lauritzen (1996) shows that X is a Gaussian graphical
model with respect to G if and only if it follows the local Markov property at each node a ∈ Γ .
Supposewe are given an n-sample of the vector X and an undirected graphG = (Γ , E). In the present paper, we construct

procedures for testing the hypothesis ‘‘X follows the localMarkov property at the node awith respect to the graphG’’ against
the hypothesis that it does not. In the following, we refer to such a test as a test of neighborhood. We deduce procedures for
testing the hypothesis ‘‘X is a Gaussian graphical model with respect to the graph G’’ against the hypothesis that it is not.
We call such a test a test of graph. Our test of neighborhood applies and is computationally feasible in a high-dimensional
setting as long as the graph G is sparse. Besides, it inherits the appealing theoretical properties shown in a previous paper
(see Verzelen and Villers (2007)): we are able to compute non-asymptotic bounds of its power and we show its optimality
in the minimax sense.
In Section 2.1.1 we highlight the connection between tests of neighborhood and tests in Gaussian linear regression in a

random Gaussian design. Thus, we construct procedures based on tests of linear hypothesis in this regression framework
introduced in Verzelen and Villers (2007). They are feasible in a high-dimensional setting and we control exactly their
familywise error rate. Then, we exhibit non-asymptotic results on their power in Section 2.2. Finally, we apply our
procedures to simulated data in Section 3 and to real data sets in Section 4. In the sequel, we write ne(a) := ne(a) ∪ {a} for
any node a ∈ Γ .

2. Description of the testing procedures

2.1. Test of neighborhood

2.1.1. Connection with conditional Gaussian regression
In this part, we highlight the connection between the local Markov property and conditional regression of a Gaussian

random variable. We define the testing procedure precisely in the next part, following the approach introduced in Verzelen
and Villers (2007).
Let G = (Γ , E) be an undirected graph and a ∈ Γ be a node of this graph. We want to test the hypothesis ‘‘Xa is

independent from XΓ \ne(a) conditionally on Xne(a)’’ against the general alternative that it is not. This hypothesis corresponds
to the local Markov property defined in Lauritzen (1996) of X at the node a. In order to perform this test, we use a different
characterisation of conditional independence.
Let us consider the conditional distribution of Xa given all remaining variables X−a = {Xb, b ∈ Γ \ {a}}. Using standard

Gaussian properties (see for instance Lauritzen (1996) appendix C), we know that this conditional distribution is a Gaussian
distribution whose mean is a linear combination of elements in X−a and whose variance does not depend on X−a. Hence, we
can decompose Xa as

Xa =
∑
b∈Γ \a

θ abXb + εa, (1)

where θ a is a vector of coefficients in Rp−1 and εa is a zero-mean Gaussian random variable independent from X−a whose
variance equals the conditional variance of Xa given X−a, var(Xa|X−a). The vector θ a is determined by the inverse covariance
matrix K of X (see Edwards (2000)). More precisely, θ ab = −K [a, b]/K [a, a] for any b 6= a and var(Xa|X−a) = 1/K [a, a].
As a consequence, the set of non-zero coefficients of θ a corresponds to the non-zero components of the a-th row of K .
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Equivalently, there is an edgebetween thenodes a and b in the graph if the quantityK [a, b] is not zero. For any setV ⊂ Γ \{a},
θ aV denotes the sequence (θ

a
b )b∈V .

Testing the null hypothesis ‘‘Xa is independent from XΓ \ne(a) conditionally to Xne(a)’’ against the general alternative is
therefore equivalent to testing the null hypothesis H0,a: ‘‘θ aΓ \ne(a) = 0’’ against the general alternative H1,a: ‘‘θ

a
Γ \ne(a) 6= 0’’.

Consequently, the test of neighborhood amounts to goodness-of-fit tests for Gaussian regression with random Gaussian
covariates as considered in Verzelen and Villers (2007).

2.1.2. Description of the procedure
In this part, we adapt the test introduced in Verzelen and Villers (2007) to our statistical context. We are given n

observations of the vector X = (X1, . . . , Xp)t . For any a ∈ Γ , let us denote as Xa the n-vector of observations of Xa and
as X−a the set of vectors Xb where b belongs to Γ \ {a}. The joint distribution of (Xa, X−a) is uniquely defined by the vector
θ a, the covariance matrix of X−a denoted as Σ−a, and var(Xa|X−a), the conditional variance of Xa. In the sequel, Pθa refers
to the joint distribution of (Xa,X−a). For the sake of simplicity, we do not emphasise the dependence of Pθa on Σ−a and
var(Xa|X−a).
Let us first fix some level α ∈]0, 1[ and letm be a subset of Γ \ ne(a). In the sequel da and Dm denote the cardinalities of

ne(a) andm, and we define Nm as n− da − Dm. We assume that n ≥ da + 2. We define the Fisher statistic φm by

φm(Xa,X−a) :=
Nm‖Πne(a)∪mXa −Πne(a)Xa‖2n
Dm‖Xa −Πne(a)∪mXa‖2n

, (2)

where ‖.‖n is the canonical norm inRn, andΠne(a) andΠne(a)∪m respectively refer to the orthogonal projection onto the space
generated by the vectors (Xb)b∈ne(a) and to the orthogonal projection onto the space generated by the vectors (Xb)b∈ne(a)∪m.
Then, φm corresponds to the statistic of the Fisher test of the null hypothesis

H0,a : θΓ \ne(a) = 0 against the alternative
H1,a,m : θΓ \ne(a) 6= 0 and θΓ \(ne(a)∪m) = 0.

(3)

In the sequel,Πne(a)⊥ stands for the orthogonal projection along the space generated by (Xb) with b belonging to ne(a).
Let us consider a finite collectionMa of non-empty subsets of Γ \ ne(a). For allm ∈Ma, the cardinality Dm must be smaller
than n− da. We define {αm,m ∈Ma}, a suitable collection of numbers in ]0, 1[ (which possibly depend on X−a). Our testing
procedure consists in carrying out for each m ∈ Ma the Fisher test based on the statistic φm defined in Eq. (2) at level αm
and rejecting the null hypothesis H0,a if one of those tests does. More precisely, we define the test Tα as

Tα := sup
m∈Ma

{
φm(Xa,X−a)− F̄−1Dm,Nm(αm(X−a))

}
, (4)

where for any u ∈ R, F̄D,N(u) denotes the probability for a Fisher variable with D and N degrees of freedom to be larger
than u. We therefore reject the null hypothesis when Tα is positive. Themain difference between this procedure and the one
defined in Verzelen and Villers (2007) lies in the fact that we now deal with possibly random collection of models.
In order to ensure that the level Tα is less than α, the collection of weights {αm(X−a),m ∈Ma} in ]0, 1[must satisfy the

property: for all θ ∈ Rp−1 such that θΓ \ne(a) = 0, then Pθ (Tα > 0) ≤ α. We choose the collection {αm(X−a),m ∈ Ma} in
accordance with one of the two following procedures:
• P1: The αm ’s do not depend on X−a and satisfy the equality∑

m∈Ma

αm = α. (5)

• P2: For allm ∈ Ma, αm(X−a) = qX−a,α , where qX−a,α is defined conditionally to X−a as the α-quantile of the distribution
of the random variable

inf
m∈Ma

F̄Dm,Nm (φm(εa,X−a)) . (6)

Note that this last distribution does not depend on the variance of εa and thus we can work out qX−a,α using a Monte
Carlo method.

2.1.3. Comparison of Procedures P1 and P2
If the collection of models is not random, one can use either Procedure P1 or Procedure P2. In Verzelen and Villers (2007),

Section 2.2, we show that the test Tα with Procedure P1 has a size less than α, whereas the size of Tα with Procedure P2 is
exactly α. We deduce from this fact that the test Tα with procedure P2 is more powerful than the corresponding test defined
with Procedure P1 with weights αm = α/|Ma| (see Verzelen and Villers (2007), Section 2.3).
On the one hand the choice of Procedure P1 allows us to avoid the computation of the quantile qX−a,α and possibly permits

us to give a Bayesian flavour to the choice of the weights. On the other hand, Procedure P1 becomes too conservative when
the collection of modelsMa is large. This is often the case when the number p of nodes in the graph is large. That is why
we advise using Procedure P2 when considering large graphs. We compare the two Procedures in practice in Verzelen and
Villers (2007), Section 6, and in Section 3 of this paper.
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2.1.4. Collection of modelsMa

The main advantage of our procedure is that it is very flexible in the choices of the modelsm ∈Ma. If we choose suitable
collectionsMa, the test is powerful over a large class of alternatives as shown in Verzelen and Villers (2007) for non-random
collections. In this part, we propose two relevant classes of modelsM1

a andM2
a for our issue of test of neighborhood.

The collectionM1
a is defined asM1

a := {{b}, b ∈ Γ \ ne(a)} and consists in taking each node in Γ \ ne(a) in turn. In
Section 2.2, we present theoretical results for the power of Tα with collectionM1

a and Procedure P1. This collection presents
the advantage of being relatively small compared to other possible collections and the procedure obtained is consequently
computationally attractive.
We have shown in Verzelen and Villers (2007), and this will be illustrated again in Section 3, that if there are several non-

zero coefficients in θ a
Γ \ne(a), considering models of larger dimensions can improve the performance of the test. For instance,

if we are given an order on the nodes and if the vector θ a belongs to an ellipsoid relative to this order, one should choose the
collection of nested models defined by this order (see Verzelen and Villers (2007), Section 5). There is not such an order in
our context as we do not know in principle which nodes are more relevant to test. That is why we propose to use the LARS
(least angle regression) algorithm introduced by Efron et al. (2004). This model selection algorithm provides an order of
relevance of the covariates in linear regression. Besides, one of its main advantages lies in its computational attractiveness.
The collection of modelsM2

a is built as follows. We first choose an integer J which corresponds to the maximal size of the
models that we want to consider. We advise taking J smaller than n/2. Then, we apply the LARS algorithm to the response
Πne(a)⊥Xa with the set of covariatesΠne(a)⊥Xb where b ∈ Γ \ ne(a) and we obtain the sequence sLARS = (j1, . . . , jJ). Finally
we define the collectionM2

a as

M2
a := {{j1, . . . , jk} , 1 ≤ k ≤ J} .

As the collection of modelsM2
a given by the LARS algorithm now depends on the data, we need to define a new procedure

to handle random collections.
If we are given a random collection of modelsMa which only depends on

Ψ (Xa,X−a) :=
(

Πne(a)⊥Xa
‖Πne(a)⊥Xa‖n

,X−a
)
, (7)

then we shall use the test statistic (4) with weights given by the procedure P3 defined as follows:

• P3: For allm ∈Ma [Ψ (Xa,X−a)], αm(X−a) = q′X−a,α , the α-quantile of the distribution of the random variable is

inf
m∈Ma[Ψ (εa,X−a)]

F̄Dm,Nm (φm(εa,X−a)) , (8)

conditionally to X−a. As for the procedure P2, the distribution of (8) does not depend on the variance of εa and thus we
are able to compute q′X−a,α using a Monte Carlo method.

Clearly, if the collection of models is not random, Procedures P2 and P3 lead to the same weights. As with Procedure P2,
the size of Tα with Procedure P3 is exactly α. More precisely, for any θ a ∈ Rp−1 such that θ a

Γ \ne(a) = 0, we have that

Pθa (Tα|X−a) = α X−a a.s.

The result follows from the fact that q′X−a,α satisfies

Pθa

(
sup

m∈Ma[Ψ (εa,X−a)]

{
φm(εa,X−a)− F̄−1Dm,Nm

(
q′X−a,α

)}
> 0

∣∣∣∣∣X−a
)
= α,

and for any θ a ∈ Rp−1 such that θΓ \ne(a) = 0,

Πne(a)∪mXa −Πne(a)Xa = Πne(a)∪mεa −Πne(a)εa,

and

Xa −Πne(a)∪mXa = εa −Πne(a)∪mεa.

As the sequence of relevant variables given by the LARS algorithm does not depend on the norm of the response, the
collectionM2

a only depends on Ψ (Xa,X−a) and thus we are able to apply Procedure P3.
The size of these two collectionsM1

a andM2
a is smaller than the number of nodes p. Consequently, the computational

complexity of our procedure is at most linear with respect to pwhen considering the collectionM1
a and is of the same order

as the complexity of the LARS algorithm when consideringM2
a .
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2.2. Properties of the test of neighborhood with collectionM1
a

For the convenience of the reader, we recall in this part some of the theoretical results established in Verzelen and Villers
(2007). First, we give a proposition which characterises the set of vectors θ a over which the test Tα with the collectionM1

a
and weights αm = α/|M1

a | is powerful. We shall then discuss the optimality of this test.

Proposition 1. Let us assume that n satisfies

n− da − 1 ≥
[
10 log

(
p− da − 1

α

)
∨ 21 log (1/δ)

]
.

Let us set the quantity

ρ2n−da,p−da :=
C1
n− da

log
(
p− da − 1

αδ

)
, (9)

where C1 is a universal constant. For any θ a in RΓ \{a}, Pθ (Tα > 0) ≥ 1− δ if there exists b ∈ Γ \ ne(a) such that

varθa(Xa|Xne(a))− varθa(Xa|Xne(a)∪{b})
varθa(Xa|Xne(a)∪{b})

≥ ρ2n−da,p−da . (10)

This proposition is a straightforward corollary of Theorem 1 in Verzelen and Villers (2007). One interprets the quantity
appearing in (10) as follows: the quotient of conditional variancesmeasures the ratio of the quantity of information brought
by Xb for the prediction of Xa to the part of Xa not explained by Xne(a)∪{b}. In other words, the test Tα has a power larger than
δ for vectors θ a such that there exists a node b ∈ Γ \ ne(a)which improves the prediction of Xa enough.
This test is optimal in the minimax sense if we test against the alternative ‘‘θ a

Γ \ne(a) has only one non-zero component’’
and if the covariates are independent (see Verzelen and Villers (2007), Section 4.2). The condition of independence for
covariates is unrealistic in a Gaussian graphical context, but it is nevertheless relevant as the independent case is an
important benchmark from the minimax point of view (see Verzelen and Villers (2007), Section 4.2 for more details). When
the covariates are correlated we know from a simulation study (Verzelen and Villers (2007), Section 6) that using Procedure
P2 slightly improves the power of the test Tα .

2.3. Test of graph

From the test of neighborhood we define a procedure to test a graph. More precisely, we test the null hypothesis H0 that
‘‘X is a Gaussian graphical model with respect to G’’ against the alternative that it is not. Let {αa, a ∈ Γ } be a collection
of numbers in ]0, 1[. For each node a ∈ Γ , we test at level αa the neighborhood of the node a with one of the procedures
explained in Section 2.1.2. We decide to reject the null hypothesis H0 as soon as one of the test T aαa is rejected. We obtain
a test of level α of the graph G if we take {αa, a ∈ Γ } such that

∑
a∈Γ αa = α. In the sequel we choose αa = α/p for each

a ∈ Γ .
This procedure corresponds to a Bonferroni choice of the weights. As a consequence, if the number p of nodes is very

large, our test may suffer a loss of its size. This restricts us to considering tests of graph only for relatively small graphs, or
for subgraphs of a large graph. Let us recall that whenwe apply the test of neighborhood to one node, the number p of nodes
can be arbitrarily large without any loss in the size of the test, provided that we use Procedure P2 or P3.

3. Simulations

In this section we present two simulation studies. First, we study the test of graph when the number of nodes is small.
On the one hand we compare the efficiency of Procedures P1 and P2 and on the other hand we show the influence of the
percentage of edges in the graph on the power of the test. Second, we study the test of neighborhood when p is large,
illustrating the power of our procedure in a high-dimensional setting. Besides, we compare the efficiency of the tests based
on the collections of modelsM1

a andM2
a defined in Section 2.1.4.

3.1. Simulation of a GGM

3.1.1. Simulation of a graph
In our simulationsweuse twodifferentmethods to generate randomgraphs. The first one allows us to control the number

of nodes p and the percentages of edges η in the graph. It consists in choosing uniformly and independently the positions of
the η× p(p− 1)/2 edges. We use this method in the simulation experiment on the test of graph, with different values of η
to measure the influence of the percentage of edges on the test.
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However, the vertices of real-world networks are often structured in clusters, i.e. groups of proteins functionally related,
with different connectivity properties. That is why Daudin et al. (2006) proposed a model called ERMG, for Erdös–Rényi
Mixtures for Graphs, which describes the way edges connect nodes, accounting for some groups of nodes, and some
preferential connections between the groups. The ERMG model assumes that the nodes are spread into Q clusters with
probabilities {p1, . . . , pQ }. We are given a connectivity matrix C of size Q ×Q which specifies the probability of connection
between two nodes according to the clusters that they belong to. More precisely, the probability that two nodes belonging
to the clusters i and j share an edge equals C[i, j]. We use this method to generate a graph in the simulation experiment on
the test of neighborhood, with the following parameters provided by Daudin et al. (2006): p = 199 nodes, Q = 7 clusters,
the probabilities (p1, . . . , pQ ) and the connectivity matrix C equal to

(p1, . . . , pQ ) =
(
0.038 0.052 0.060 0.082 0.083 0.125 0.560

)
, (11)

C =



0.999 0.319 1e− 06 0.116 1e− 06 1e− 06 0.007
0.319 0.869 1e− 06 1e− 06 0.140 0.004 0.002
1e− 06 1e− 06 0.467 0.0155 0.005 0.014 0.004
0.116 1e− 06 0.016 0.216 1e− 06 0.017 0.005
1e− 06 0.140 0.005 1e− 06 0.229 1e− 06 0.004
1e− 06 0.004 0.014 0.017 1e− 06 0.239 0.013
0.007 0.002 0.004 0.005 0.0041 0.0129 0.0163

 . (12)

Using these parameters, the percentage of edges η in the graph equals 2.5%.

3.1.2. Simulation of the data
Given a graph, we generate random vectors whose conditional independence structure is represented by the graph.
First, we generate the partial correlation matrix Π as follows. To a graph with p nodes we associate a symmetric p × p

matrix U such that for any (i, j) ∈ {1, . . . , p}2, U[i, j] is drawn from the uniform distribution between−1 and 1 if there is an
edge between the nodes i and j and U[i, j] is set to 0 in the other case. We then compute columnwise sums of the absolute
values of the matrix U entries, and set the corresponding diagonal element equal to this sum plus a small constant. This
ensures that the resulting matrix is diagonally dominant and thus positive definite. Finally, we standardise the matrix so
that the diagonal entries all equal 1 to obtain the simulated partial correlation matrixΠ .
Second, we simulate data of size n. We generate n independent samples from the multivariate normal distribution with

mean zero, unit variance, and correlation structure associatedwith the partial correlationmatrixΠ . In the sequel, we denote
as X the n× p associated data matrix.

3.2. Simulation setup

3.2.1. Simulation study of the test of graph
We evaluate the performance of the test of graph, first with simulations on randomly generated graphs, and secondly on

a network coming from the data base KEGG.

(1) First simulation experiment: We estimate the level and the power of the test of graph with 1000 simulations. For
fixed parameters (p, η, n), we generate 1000 graphs by using the first method described in Section 3.1.1 and 1000 data
matrices as described in Section 3.1.2. Let Gs and Xs for s = 1, . . . , 1000 denote the graphs and the data matrices for the
1000 simulations. For each simulation s, we test the null hypothesis ‘‘Xs is a Gaussian graphical model with respect to
the graph Gs’’. We thus estimate the level of the test by dividing the number of simulations for which we reject the null
hypothesis by 1000. Let q be a number in ]0, 1[. For each simulation s, let Gs

−q be the graph built from the graph Gs in
which we delete randomly q p(p−1)2 η edges. For each simulation s, we test the null hypothesis ‘‘Xs is a Gaussian graphical
model with respect to the graph Gs

−q’’. We estimate the power of the test by dividing the number of simulations for
which we reject the null hypotheses by 1000.
The number of variables p is set to 15, whereas the number of observations n is taken equal to 10, 15 and 30 to study

the effect of the sample size. We examine the influence of the percentage of edges in the graph, by taking η = 0.1 and
0.15. Besides this, we show the effect of the percentage q of missing edges on the power, by presenting the results for q
equal to 10%, 40% and 100%.

(2) Second simulation experiment: This simulation is based on the cell cycle of yeast (Saccharomyces cerevisiae). This
experiment aims at showing the performance of our procedure with simulations on a real biological network.
The graph corresponding to the cell cycle of yeast is available in the database KEGG from the following website:
http://www.genome.jp/kegg/pathway/sce/sce04111.html.We focus on a part of this pathway involving 16 proteins and
18 interactions. The graph, denoted in the sequel as Gcellcycle, is shown in Fig. 1. We estimate the level and the power of
the test by simulating 1000 data matrices (Xs)s=1,...,1000 from the graph Gcellcycle as described in Section 3.1.2. We first
estimate the level of the test by testing for each simulation s the null hypothesis ‘‘Xs is a Gaussian graphical model with
respect to the graphGcellcycle’’. Then, we delete the three edges involving the protein complex SCF Cdc4 inGcellcycle in order

http://www.genome.jp/kegg/pathway/sce/sce04111.html
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Fig. 1. Gcellcycle .

to define the graph G−Cdc4cellcycle. This protein complex SCF Cdc4 participates in cell death. We estimate the power of the test
by testing for each simulation s the null hypothesis ‘‘Xs is a Gaussian graphical model with respect to the graph G−Cdc4cellcycle.
In other words we evaluate the ability of our procedure to detect the link of the protein complex SCF Cdc4 with the cell
cycle.

3.2.2. Simulation study of the test of neighborhood
We first simulate a graph G according to the ERMG model described in Section 3.1.1 with p = 199 nodes, Q = 7

clusters, and the parameters (p1, . . . , pQ ) and the matrix C defined in Eqs. (11) and (12). We then focus on a node a of this
graph, chosen such that it has several neighbors. In our simulation this node has six neighbors. Let us denote as ne(a) its
neighborhood given by the graph G. We simulate 1000 data matrices as described in Section 3.1.2, from the graph G, and
estimate the level of the test by testing the null hypothesis that the node a has no neighbor other than the set ne(a), and the
power by testing the null hypothesis that the node a has no neighbor. We present results when the sample size n is equal
to 50, 100, and 200.

3.2.3. Collections of modelsMa and collections {αm,m ∈Ma}

For each node a, we use the testing procedure defined in (4) with different collectionsMa and different choices of the
weights {αm,m ∈Ma}. Let us recall that ne(a) denotes the neighborhood of the node a under the null hypothesis and αa the
level of the test of neighborhood for the node a. For the test of graph we choose αa = α/p and for the test of neighborhood
αa equals α.
The collectionsMa: we consider the two collections defined in Section 2.1.4:

M1
a = {{b}, b ∈ Γ \ ne(a)}

and
M2
a = {{j1, . . . , jk} , 1 ≤ k ≤ J} .

where SLars [Ψ (Xa,X−a)] = {j1, j2, . . . , jJ} is the sequence given by the LARS algorithm for the prediction ofΠne(a)⊥Xa with
the set of covariatesΠne(a)⊥Xb where b ∈ Γ \ ne(a). The maximum number of steps J is taken equal to 10. We evaluate the
performance of our testing procedurewithM1

a in the simulation experiment on the test of graph, andwe compare collections
M1
a andM2

a in the simulation experiment on the test of neighborhood. Indeed, in the second simulation experiment, p and,
thus, the collectionM1

a are large. It is therefore interesting to compare their respective computational costs.
The collection {αm,m ∈Ma}: When we consider the collection of modelsM1

a we use either Procedure P1 or Procedure P2
defined in Section 2.1.2. For Procedure P1 the αm’s are taken equal to αa/|Ma|. The quantity qX−a,αa occurring in Procedure P2
is evaluated by simulation. Let Z be a standard Gaussian random vector of size n independent fromX−a. As εa is independent
from X−a, the distribution of (6) conditionally to X−a is the same as the distribution of

inf
m⊂Ma

F̄Dm,Nm
‖Πne(a)∪m(Z)−Πne(a)(Z)‖2/Dm
‖Z −Πne(a)∪m(Z)‖2/Nm

,
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Table 1
Test of graph, first simulation. η = 0.1. Estimated levels and powers. The nominal level is α = 5%. The standard deviation of these estimators equals 0.007.

Estimated levels
n TM1,P1 TM1,P2
10 0.028 0.046
15 0.035 0.061
30 0.033 0.054

Estimated powers
q = 10% q = 40% q = 100%
n TM1,P1 TM1,P2 n TM1,P1 TM1,P2 n TM1,P1 TM1,P2
10 0.73 0.75 10 0.94 0.94 10 0.99 0.99
15 0.83 0.84 15 0.97 0.98 15 1 1
30 0.95 0.95 30 1 1 30 1 1

Table 2
Test of graph, first simulation. η = 0.15. Estimated levels and powers. The nominal level is α = 5%. The standard deviation of these estimators equals
0.007.

Estimated levels
n TM1,P1 TM1,P2
10 0.031 0.050
15 0.044 0.053
30 0.041 0.058

Estimated powers
q = 10% q = 40% q = 100%
n TM1,P1 TM1,P2 n TM1,P1 TM1,P2 n TM1,P1 TM1,P2
10 0.28 0.32 10 0.70 0.72 10 0.90 0.91
15 0.44 0.46 15 0.87 0.88 15 0.99 0.99
30 0.73 0.75 30 0.99 0.99 30 1 1

conditionally toX−a. Consequently, we estimate the quantile qX−a,αa by aMonte Carlomethodwith 1000 samples.Whenwe
use the collectionM2

a we apply Procedure P3. The quantile q
′

X−a,αa is again computed by a Monte Carlo method with 1000
simulations. The difference from the simulation of qX−a,αa lies in the fact that the collection M2

a is random and depends
on εa. For each simulation, let Z be a standard Gaussian random vector of size n independent from X−a. We apply the
LARS algorithm for the prediction of Πne(a)⊥Z with the set of covariates Πne(a)⊥Xb where b ∈ Γ−a \ ne(a). We obtain the
sequence SLars [Ψ (Z,X−a)] which leads to the collection of modelsM2

a [Ψ (Z,X−a)]. The Ψ function is defined in (7). As εa
is independent from X−a, the distribution of (8) conditionally to X−a is the same as the distribution of

inf
m∈Ma[Ψ (Z,X−a)]

F̄Dm,Nm

(
‖Πne(a)∪mZ −Πne(a)Z‖2n/Dm
‖Z −Πne(a)∪mZ‖2n/Nm

)
,

conditionally to X−a and we therefore estimate the quantile q′X−a,αa . In the sequel, we write as TMia,Pj the test (4) with
collectionMi

a and Procedure Pj.

3.3. The results

In Tables 1 and 2 we present results of the first simulation experiment on the test of graph respectively for η = 0.1 and
η = 0.15. As expected, the power of the tests increases with the number of observations n. Besides, the power of the tests
increases also with the percentage of missing edges q, the tests indeed beingmore powerful when the graphs under the null
and the alternative hypotheses are more different. As expected, the tests based on Procedure P2 are more powerful than the
corresponding tests based on Procedure P1. However because p is small, the difference between the two procedures is not
really significant. Nevertheless, Procedure P1may become too conservative when p is large. As expected, its implementation
is faster: for p = 15 and n = 10 a single simulation using Procedure P1 takes approximately a tenth of a second whereas a
single simulation using Procedure P2 takes approximately 9 s. For p small, Procedure P1 is therefore a good compromise in
practice, Procedure P2 being rather recommended when considering large graphs. Let us now compare the influence of η on
the power of the test. When the percentage of edges η in the graph increases, the tests are less powerful. This is especially
significant for q = 10%. In fact, when η increases, the average number of neighbors for each node increases as well. In
practice, the test of neighborhood is less powerful for a nodewhich already has several neighbors under the null hypothesis.
Consequently, the issue of testing the graph is more difficult when η is large.
In Table 3 we give the results of the second experiment for the test of graph. The percentage of edges in the graph Gcellcycle

equals 15%, whereas the ratio of missing edges is q = 1/6 as we delete 3 edges among 18 in Gcellcycle. In fact, as q is between
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Table 3
Test of graph, second simulation experiment. Estimated levels and powers. The nominal level is α = 5%. The standard deviation of these estimators equals
0.007.

Estimated levels Estimated powers
n TM1,P1 TM1,P2 n TM1,P1 TM1,P2
10 0.040 0.055 10 0.43 0.46
20 0.046 0.063 20 0.76 0.79
30 0.040 0.058 30 0.89 0.90

Table 4
Test of neighborhood for the simulation experiment described in Section 3.2.2. Estimated levels and powers. The nominal level is α = 5%. The standard
deviation of these estimators equals 0.007.

Estimated levels Estimated powers
n TM1,P2 TM2,P3 n TM1,P2 TM2,P3
50 0.056 0.052 50 0.19 0.15
100 0.044 0.054 100 0.47 0.41
200 0.041 0.043 200 0.85 0.86

10% and 40% the powers of the tests in this setting are comparable to the results in Table 2. For n = 20 observations the test
is powerful and detects the relation between the protein complex SCFCdc4 and the cell cycle with large probability. Even
when n is smaller than p, the test detects the relation with a moderate probability.
In Table 4we give the results of the experiment on the test of neighborhood. For n = 50 and 100 the test ismore powerful

when using the collection of modelsM1
a whereas when n is larger the two procedures exhibit a comparable power. This

comes from the fact that the test with collectionM2
a is performed in two steps, first, the selection of the relevant covariates

using LARS and second, the test (4) itself. When n is small, LARSmakesmistakes and possibly selects irrelevant covariates. In
this case, the collection ofmodels is bad and the test seldom rejects.When n is large, LARS often selects the relevant variables
and the test TM2,P3 therefore takes advantage of exploiting models of several dimensions. However, its performances are
not much better than those of TM1,P2 even when n is large. Let us now compare the computational efficiency of these two
procedures. For p = 200 and n = 100 a single simulation using collectionM1

a is almost three times longer than one using
collectionM2

a . It seemsnatural to exploitmodels of several dimensions especiallywhenwe consider the test of neighborhood
for a node which has several missing neighbors. However, the LARS algorithm does not really improve the performance of
the procedure. Nevertheless, using collectionM2

a is computationally more attractive than using collectionM1
a .

4. Application to biological data

In this section, we apply the test of graph to the multivariate flow cytometry data produced by Sachs et al. (2005). These
data concern a human T cell signaling pathwaywhose deregulationmay lead to carcinogenesis. Therefore, this pathwaywas
extensively studied in the literature and a network involving 11 proteins and 16 interactions was conventionally accepted
(see Sachs et al. (2005)). See Fig. 2 for a representation of this network. The data fromSachs consist of quantitative amounts of
these 11 proteins, simultaneously measured from single cells under perturbation conditions. In the sequel, we focus on one
general perturbation (anti-CD3/CD28 + ICAM-2) that overall stimulates the cellular signaling network. For this condition
the quantities of the 11 proteins are measured in 902 cells. Let denote as D this data set constituted of p = 11 variables and
n = 902 observations. In contrast to most of postgenomic data, flow cytometry data provide a large sample of observations
that allow us to measure the influence of the sample size on the power. From this data set we infer the network using three
methods and we apply our test of graph as a tool to validate these estimations. As such an abundance of data are rarely
available in the postgenomic case, we secondly carry out a simulation study to determine the influence of the number of
observations on the test. From the empirical covariance matrix obtained with the whole data set D, we generate data of
different sample sizes and we evaluate the performance of the test with respect to the sample size.
We use the methods proposed by Drton and Perlman (2008), Wille and Bühlmann (2006), and Meinshausen and

Bühlmann (2006) to infer the network. Let us briefly describe them. The SINful approach introduced by Drton and Perlman
is a model selection algorithm based on multiple testing. For any couple of nodes they perform a test of existence of an
edge between these two nodes and select the graph by computing the simultaneous p-values of these tests. This method
assumes that the number of observations n is larger than the number of variables p. Two other methods have been recently
proposed to deal with the usual fact in genomics of p large and n small. Wille and Bühlmann (2006) estimate a lower-order
conditional independence graph instead of the concentration graph, while Meinshausen and Bühlmann (2006) estimate the
neighborhood of any node with the lasso method. We represent the three estimated graphs in Fig. 3.
Let us define the graph G∩ as the intersection of the graph estimated by these three methods and the graph with the

connections well established in the literature. This graph G∩ is represented in Fig. 4. We test with our procedure the null
hypothesis HG∩ : ‘‘the data set D follows the distribution of a Gaussian graphical model with respect to the graph G∩’’. We
use for each node a of the graph the collection of modelsM1

a defined in Section 2.1.4 and the procedure P1. As p is small,
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Fig. 2. Classic signaling network of the human T cell pathway. The connections well established in the literature are in grey and the connections cited at
least once in the literature are represented by red dotted lines. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

Fig. 3. Inferred graphs. The graphs estimated with the methods of Drton and Perlman and of Wille and Bühlmann are identical and represented in blue.
The graph estimated with the method of Meinshausen and Bühlmann is shown by a green dotted line. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 4. Graph G∩ .

Table 5
Rejection of HG∩ .

Rejection of the neighborhood of

Node Because of node(s)

Erk1/2 Akt, PKA
Akt Erk1/2
PKA Erk1/2
p38 JNK
JNK p38

the difference between Procedures P2 and P1 is indeed not significant and the implementation of P1 is faster. If we apply
our procedure at level α = 5%, we reject the null hypothesis HG∩ . In fact the p-value of the test is smaller than 10

−10. As
our procedure consists in testing the neighborhood of each node, it is interesting to look for the nodes for which the test
of neighborhood is rejected. For any of these rejected neighborhood tests, we then look for the alternatives leading to this
rejection. In Table 5 we enumerate the nodes for which the test of neighborhood is rejected and the alternatives which lead
to this decision.
As the connection PKA–Erk1/2 iswell established and the connection Erk1/2–Akt is cited at least once in the literature,we

decide to add those two edges in the graph G∩, defining thus a new graph G2 shown in Fig. 5. The test of the null hypothesis
HG2 at level α = 5%: ‘‘the data set D follows the distribution of a Gaussian graphical model with respect to the graph G2’’
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Fig. 5. Graph G2 .

Fig. 6. Graph GT .

Table 6
Sachs data. Estimated levels and powers.

Estimated levels Estimated powers
n TM1,P1 n TM1,P1
10 0.032 10 0.49
15 0.036 15 0.86
20 0.033 20 0.97

is rejected, the p-value of the test being smaller than 10−10. The reason is that the tests concerning respectively nodes p38
and JNK are rejected when we consider in the alternative respectively nodes JNK and p38.
We therefore define a new graph GT by adding the connection p38–JNK , even if this connection is not well established in

the literature. Let us note that the graph GT is the same as the network inferred by Sachs et al. (2005) with approximately
the same data set by using a Bayesian approach. We apply our test of graph and we accept the hypothesis that the data set
D is a Gaussian graphical model with respect to the graph GT at the level α = 5%. In fact, the p-value of the test equals 8%.
As n is large we use the result of the test with confidence and assume that the graph GT (Fig. 6) represents the conditional
independence structure of the data set D.
We now carry out a simulation study using this data set to determine the influence of the number of observations n on the

power of our procedure. From the empirical covariance matrix obtained with the data set D, we generate 1000 simulated
data (Xs)s=1,...,1000 of different sample sizes n whose conditional independence structure is represented by the graph GT .
First, we estimate the level of the test for different values of n by testing for each simulation that Xs is a Gaussian graphical
model with respect to the graph GT . Second, we delete the two edges involving protein PKC in GT in order to define G−T . We
estimate the power of the test for different values of n by testing for each simulation that Xs is a Gaussian graphical model
with respect to the graph G−T .
The results of the simulation study using the selected data of Sachs are presented in Table 6. We recall that the graph

involves p = 11 proteins and we take for the sample size n the values 10, 15, and 20. As expected, the power of the test
increaseswith the number of observations n. However, the number of observations does not have to be very large to obtain a
powerful test. For n = 15 observations, the test is able to recover that the protein PKC is not independent from the proteins
p38 and JNK with large probability.

5. Conclusion

In this paper, we propose a multiple-testing procedure to assess whether some connections are missing in a minimal
graph derived from experimental knowledge. Besides, when the procedure is rejected the different p-values of the tests
suggest potential connections between genes/proteins that steer biologists towards new experimentations.
Our procedure is feasible in a high-dimensional setting. Hence, we advise using it to analyse microarray data for which

the number of genes p typically exceeds the number of samples. Of course, when p becomes very large, the power of the
procedure decreases, but this is intrinsic to the statistical problem.
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