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Abstract. Detection of malicious software (malware) usingchiae learning

methods has been explored extensively to enalielésction of new released
malware. The performance of these classifiers digpeon the induction

algorithms being used. In order to benefit from tiplé different classifiers,

and exploit their strengths we suggest using arerebke method that will

combine the results of the individual classifier®ione final result to achieve
overall higher detection accuracy. In this paperewaluate several combining
methods using five different base inducers (C4.5iddat Tree, Naive Bayes,
KNN, VFI and OneR) on five malware datasets. Thenngmal is to find the

best combining method for the task of detectingicimls files in terms of

accuracy, AUC and execution time.
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1 Introduction

Modern computer and communication infrastructueelaghly susceptible to various
types of attacks. A common way of launching thestacks is using malware
(malicious software) such as worm, virus, Trojanspyware [Kienzle et al., 2003;
Heidrai, 2004]. A spreading malicious software ntigienerate great damage to
private users, commercial companies and governméutsingle malware in a
computer, which is a part of a computer networkn casult in the loss, or
unauthorized utilization or modification, of largenounts of data and cause users to
guestion the reliability of all of the informatia@m the network.

Detection of known malware is commonly performed anti-virus tools. These
tools detect the known malware using signature aiete methods [White, 1999;
Dikinson, 2005]. When a new malware is released, ghti-virus vendors need to
catch an instance of the new malware, analyzeaegte a new signature and update
their clients. During the period between the apaeeg of a new unknown malware
and the update of the signature-base of the ants\dlients, millions of computers
are vulnerable to the new malware. Therefore, aljhosignature-based detection
methods eventually yield high detection rate, tloaypnot cope with new, unseen
before, malware [White, 1998]. High-speed commuiocachannels enable malware



to propagate and infect hosts quickly and so ésisential to detect and eliminate new
(unknown) spreading malware at early stages oattaek.

Recent studies have proposed methods for detestalizious executables using
Machine Learning (ML) techniques [Kabiri et al.,@&). Given a training set of
malicious and benign executables binary code, ssifler is trained to identify and
classify unknown malicious executables as beingamais. Some of the methods are
inspired by text categorization techniques, in Whiords are analogous to sequences
in the binary code. Malicious and benign files srpresented by a vector of features,
extracted from the PE-header and the binary coddeoexecutable. These files are
used to train a classifier. During the detectioraggh based on the generalization
capability of the classifier, an unknown file cam tlassified as malicious or benign.
Some of the studies applying machine learning nukstlom content-based features are
mentioned below.

In [Schultz et al., 2001], ML techniques were apglifor detection of unknown
malicious code based on binary code content. Thiifferent feature extraction
methods are used: program header, printable stfiegisires and byte Sequences
features, on which they applied four classifiengin&ture-based method (anti-virus),
Ripper — a rule based learner, Naive Bayes andi Malive Bayes. The experiments
conducted using 4,301 programs in Win32 PE forlB&801 malicious programs and
1000 benign programs) and the results show thaMallmethods outperform the
signature-based classifier.

The study in [Abou-Assaleh et al., 2004] usegram features extracted from the
binary code of the file. The most frequenh-grams of each class in the training set
are chosen and represent the profile of the clgsew instance is associated to a
class with the closest profile using KNN algorithihe experiment conducted on a
small set of 65 malicious and benign files achie98&o accuracy. Caia et al. (2007)
and Moskovitch et al. (2008) have compared diffefeature selection methods for
building a single classifier.

Kolter and Maloof (2006) extractatgrams from the executables. Most relevant
n-gram attributes were chosen using Info-Grain ratid the data-sets were evaluated
using several inducers: IBK, Naive Bayes, Suppodctdr Machines (SVMs),
Decision Trees, Boosted Naive Bayes, Boosted S\@vid, Boosted Decision Trees
algorithms. Since costs of misclassification emmog usually unknown, the methods
were evaluated using receiver operating charatterigROC) analysis. When
classifying new instances into two optional clasBesnign' and 'Malicious', Boosted
decision trees outperformed other methods with @@ ainder the ROC curve of
0.996. When classifying new instances into mubiissl (such as Virus, Backdoor
etc.), the area under the ROC curve reaches aageref 0.9.

By its nature, the measured performance (e.g.,racgl of a machine learning
classifier is influenced by two main factors: (g tinducer algorithm that is used to
generate the classifier (e.g., Artificial NeuraltiNerk, Decision Tree, Naive Bayes);
and (2) the type of features that are used to septethe instances. Thus, various
types of classifiers have different “inductive l@as When generating multiple
classifiers using different inducers and variouastdees (that are extracted from the
same set of instances) each classifier will perfdifferently. It might be the case that
a certain classifier will specialized in classifyimstances into a sub-set of classes
(for example, a classifier that classifies an exaule file as benign or Worm with



high accuracy but with low accuracy when classifyinto other malicious classes
such as Trojan and Virus).

The outcome of this observation is that one shag&multiple different classifiers
that will classify a new instance predicting italrelass (like a group of experts) and
then combining all the results, using an intelliggpmbination method, into one final
result. Hopefully, this “super-classifier” will goerform each of the individual
classifiers and classify new instances with higheturacy by learning the strength
and weakness of each classifier.

In this paper we introduce three main contributi¢f$ we show that multi-inducer
ensembles are capable to detect malwares; (2) welirce an innovative combining
method, called Troika [Menahem, 2008] which extertacking and show it
superiority in the malware detection tasks; andw@8)present empirical results from
an extensive real world study of various malwargsgidifferent types of features.

The rest of the paper is organized as follows eletisn 2 we describe related work
in the field of ensemble application in the segudbmain. Section 3 presents the
experimental setup and in section 4 we preseng\hRiation results. Conclusions and
future work are discussed in section 5.

2 Related Work

In this section we present studies in which ensembéthods are used to aid in
malicious code detection and in intrusion detectitvie also describe the six
ensemble methods used in our experiments.

2.1 Malware Detection Using Ensemble Methods

The main idea of an ensemble methodology is to ¢oend set of classifiers in order
to obtain a better composite global classifier. éfnisle methodology imitates our
second nature to seek several opinions before maig crucial decision. We weigh
the individual opinions, and combine them to reactinal decision. Recent studies
evaluated the improvement in performance (in teofaccuracy, false positive rate
and area under the ROC graph) when using ensentgeitams to combine the

individual classifiers.

Several researchers examined the applicabilitynsEmble methods in detecting
malicious code. Zhang et. al., (2007) classifiew nealicious code based angram
features extracted from binary code of the filerskin-gram based features are
extracted and the bestgrams are chosen by applying the Information-Gaature
selection method. Then, probabilistic neural nekw@@NN) is used to construct
several classifiers for detection. Finally, the iwmflual decisions of the PNN
classifiers are combined by using the Dempster<3tthEory to create the combining
rules. The method was evaluated on a set of makciexecutables that were
downloaded from the website VX Heavens (http://wwanetlux.org) and clean
programs gathered from a Windows 2000 server machiotal of 423 benign
programs and 450 malicious executable files (150udés, 150 Trojans and 150
Worms) all in Windows PE format. The results showeiter ROC curve for the



ensemble of PNNs when compared to the individuat B&IN of each of the three
malware classes.

Ensemble of classifiers was evaluated on intrusietection tasks as well.
Mukkamalaa et al., (2005) used the Majority Votsahema to ensemble the results
of multiple classifiers trained to detected intams within network traffic. The
performance of the ensemble results were compavethé performance of the
individual classifiers: SVM, MARS and three typdsAdNs (RP, SCG and OSS) and
it was evaluated using DARPA data-set which is wred as an IDS evaluation
benchmark. The classifiers were trained to deteahal traffic as well as four classes
of attacks (probing, DOS, user to root and remoteser). It is shown that the simple
majority voting schema improves the accuracy ofdéeection.

The ensemble approach in [Kelly et al., 2006] wealwated using two anomaly
network intrusion detection systems, LERAD [Mahon2903] and PAYL [Wang
and Stolfo, 2004]. LERAD's normal behavior is cosgd of rule sets of expected
(normal) user behavior, and PAYL uses byte distitims derived from normal
packets. Based on the classification of the twaesys as produced on a training-set,
an ensemble probability classification matrix (EPOMgenerated using conditional
probability. The method was evaluated on DARPA da&taand results show an
increase in the rate of detecting attacks and dteeiracy in determining their exact
classes.

In order to make the ensemble more effective, thereuld be some sort of
diversity between the classifiers [Kuncheva, 200B]. Multi-Inducer strategy,
diversity is obtained by using different types nflicers. Each inducer contains an
explicit or implicit bias that leads it to prefeertain generalizations over others.
Ideally, this multi-inducer strategy would alwaysrform as well as the best of its
ingredients. Even more ambitiously, there is hdya this combination of paradigms
might produce synergistic effects, leading to levet accuracy that neither atomic
approach by itself would be able to achieve.

In this study we compare several methods for comgitvarious classifiers in
order to understand which of these methods (if &gt improves the detection
accuracy.

2.2 Methods for Combining Ensemble’s Members

In the Majority Voting combining scheme [Kittler et al., 1998], a classifion of
an unlabeled instance is performed according toctass that obtains the highest
number of votes (the most frequent vote). This metis also known as the plurality
vote (PV) or the basic ensemble method (BEM). HEmproach has frequently been
used as a combining method for comparing to newlpp@sed methods.
Mathematically it can be written as:

1
class(x) = aqrmglm{Z g(yk(X),C.)J @

wherey,(X) is the classification of thi" classifier andy(y,c) is an indicator function
defined as:



ly=c (2)

g(y,c)={0y¢C

Note that in case of a probabilistic classifier trisp classificatiory,(x) is usually
obtained as follows:

Vi (x) = argmaxR,  (y = ¢ | ) 3
GOdom(y)
whereM, denotes classifiek and B, (y=c |x) denotes the probability abtaining
the valuec given an instance.
In Performance Weighting, the weight of each classifier is set proportiotalts
accuracy performance on a validation set [Opitz &havlik, 1996]:

4= U-E) (4)
- Y L@-E)

whereE; is a normalization factor which is based on th&quenance evaluation of
classifieri on a validation set.

The idea of Digtribution Summation combining method is to sum up the
conditional probability vector obtained from eaclassifier [Clark and Boswell,
1991]. The selected class is chosen accordingetditihest value in the total vector.
Mathematically, it can be written as:

Class(x) = argmaxy_ Ry, (y =G | X) ©)

¢ Odom(y) g

In the Bayesian Combination method the weight associated with each classsier
the posterior probability of the classifier givédm tiraining set [Buntine, 1990].

Class(x) =argmax > P(M, | S) (R, (y =¢ | X) (6)
¢;Odom(y)
where P(M,|S) denotes the probability that the classifid is correct given the
training setS. The estimation oP(M,|S) depends on the classifier's representation. To
estimate this value for decision trees the reaglegferred to [Buntine, 1990].
Using Bayes' rule, one can extend fki@ive Bayes idea for combining various
classifiers [John and Langley, 1995]:

. P, (y=c |X ()
Class(x) = argmaxP(y =c;) M
o; Cdom(y) 1 P(y=c)
P(y=cl)>0

Sacking is a technique whose purpose is to achieve thhekiggeneralization
accuracy [Wolpert, 1992]. By using a meta-leartt@s method tries to induce which
classifiers are reliable and which are not. Stagksusually employed to combine
models built by different inducers. The idea iscteate a meta-dataset containing a
tuple for each tuple in the original dataset. Horeunstead of using the original
input attributes, it uses the predicted classificet by the classifiers as the input
attributes. The target attribute remains as inottiginal training set. A test instance is



first classified by each of the base classifierseSe classifications are fed into a
meta-level training set from which a meta-classifeproduced.

This classifier (Meta-classifier) combines the eiént predictions into a final one.
It is recommended that the original dataset shbal@artitioned into two subsets. The
first subset is reserved to form the meta-datasetlae second subset is used to build
the base-level classifiers. Consequently the miassidier predications reflect the
true performance of base-level learning algorithi®tacking performance can be
improved by using output probabilities for everyasd label from the base-level
classifiers. It has been shown that with stacking &énsemble performs (at best)
comparably to selecting the best classifier frora #msemble by cross validation
[Dzeroski and Zenko, 2004].

Troika [Menahem, 2008] was designed to address Stackiviggms, namely, the
poor performs on multi-class problems [Seewald,3200roika's ensemble scheme is
general purpose which may be used to combine aog ¢f classifiers which were
trained on any subgroup of possible classes obhl@m’s domain. In other words, it
is possible with Troika to combine models (classd) that were trained on, and
therefore may later predict, non congruent datasetserms of instances classes.
Troika uses three layers of combining classifiéiigre 1), rather than one, as with
Stacking. The result is a better ensemble schemally with multi-class problems
where there are enough instances [Menahem, 2008Ménahem, 2008] the writer
shows that Troika, in average, is better than uiiregbest classifier selected using
cross-validation.
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Fig. 1. Troika Architecture reveals three layers of connnclassifiers; the Specialists
classifiers, combine the outputs of the base-diassi Meta classifiers combine the Specialists
classifiers outputs, and finally, the Super-classifcombine all Meta-classifiers outputs. The
Super classifiers is responsible of output Troil@adiction.

3 Evaluation Description

In this section we specify the conditions in whadhcombination methods had been
tested. Our goal was to create a ground on whicboahbination methods could be

correctly compared. First we indicate the algorgheompared. Then we describe the
training process and the datasets we had used, Wexthow the metrics we used to



measure the performance of the ensemble schemdsfirally, we display and
review the results of the experiments in details.

3.1 Base Classifiers and Combination Methods

In the experiment we had used five different indacas our base classifiers: C4.5
[Quinlan, 1993], KNN [Kibler, 1991], VFI [Guvenit1997], OneR [Holte, 1993] and
Naive-Bayes [John and Langley, 1995]. Each indbedongs to different family of
classifiers. For example, C4.5 related to Decisioees, KNN belong to Lazy
classifiers, OneR to Rules, Naive-Bayes to Bayassdiers and VFI to general. We
have chosen those five inducers because (1) tleefy@n different classifiers family,
therefore, may yield different models that everyuaidill classify differently on some
inputs. In an ensemble, the combination of the wutd several classifiers is only
useful if they disagree about some inputs [Tumer @hosh, 1996], and (2) there is a
difference in classification accuracy among theugwets; preliminary experiments on
our datasets show that C4.5 and KNN are relatiaelyurate (have better than 80%
accuracy) while OneR and Naive-Bayes are not. Phiperty may differentiate
between good ensemble and a bad one, because e gopd ensemble will mostly
use the information made by the good induces, wigifeoring most of the poor
inducers.

In this study, we compared the following combinatimethods: best classifier
(classifier which out-performs all the others, stdd using cross validation), Majority
Voting, Performance Weighting, Distribution Sumioaf Bayesian Combination,
Naive Bayes, Stacking and Troika. The examined rabfe schemes were
implemented in WEKA (Witten and Frank, 2005) in JAYyrogramming language.

3.2 Datasets

We collected a large set of 22,735 benign files 26@0 malware that were identified
as Win32 executable and DLLs. For each file thyged of features were extracted:
n-grams, Portable Executable (PE) features andtiemAlbased features as described
bellow.

We developed a tool that extrackgrams from the binary representation of a file.
The tool parsed the files using a sliding windowdarcingn-grams of varying lengths
(denoted by n). We extracted vocabularies of 16,777,216, 1,08l(35,
1,575,804,954 and 1,936,342,220, for 3-gram, 4-grdygram and 6-gram
respectively. Next, each n-gram term was repredeaming its Term Frequency (TF)
and its Inverse Document Frequency (TF-IDF). Thenfdasure is the number of its
appearances in the file, divided by the term wlith taximal appearances. IDF is the
log value of the number of files in the all reposy;, divided by the number of files
that includes the term. The TF-IDF measure is olethby multiplying TF by IDF.

In ML applications, the large number of featuresnany domains presents a huge
problem in that some features might not contrib(pessibly even harm) the
classification accuracy. Moreover, in our casenining the number of features is
crucial; however, this should be done without distimg classification accuracy.



The reason for this constraint is that, as shovavejthe vocabulary size may exceed
billions of features, far more than the processtagacity of any abundant feature
selection tool. Moreover, it is important to idéptthose terms that appear most
frequently in files in order to avoid vectors tlw@intain many zeros. Thus, we first
extracted the top features based on the DocumenuEncy (DF) measure, which is
the number of files the term was found in. We delgdhe top 0 - 5,500 features
which appear in most of the files, (those with lghDF scores) and the top 1,000 -
6,500 features. Finally, we used three methodseatufe selection: Document
Frequency, Fisher Score [Golub et al., 1999], amih@atio [Mitchell, 1997] in
order to choose the top 50, top 100, top 200 apdB@®Hn-grams, out of the 5,500
grams, to be used for the evaluation.

After performing rigorous experiments in which weakiated several inducers on
the 192 different n-gram datasets, we chose th&@@p5-grams with TF-IDF values,
top 300 6-grams with TF-IDF and top 300 6-gramshWwiF datasets providing the
best results.

Certain parts of EXE files might indicate that le fs affected by a virus. This may
be an inconsistency between different parts ofigeraumbers or internal/external
name of a file; some patterns in imported DLLs rbaytypical for a virus. To verify
our hypothesis, we statically extracted differ@&urtable Executable (PE) format
features that represented information containelimigach Win32 PE binary (EXE or
DLL). For this purpose, the tool named PE Featuxgdetor was implemented in
C++. Feature Extractor parses an EXE\DLL file adony to PE Format rules. The
information extracted by this tool is as followstél of 88 attributes):

- Information extracted from the PE Header that dbesrthe details about physical
structure of a PE binary (e.g., creation\modifizatiime, machine type, file size)

- Optional PE Header information describing the lagistructure of a PE binary
(e.g., linker version, section alignment, code sibug flags)

- Import Section: which DLLs were imported and whiftimctions from which
imported DLLs were used

- Exports Section: which functions were exportedtlig file being examined is a
DLL)

- Resource Directory: resources used by a givertdilg, dialogs, cursors)

- Version Information (e.g., internal and externainesof a file, version number)

A new method for extracting features from the bjnapde of the files was
implemented and extracted for the experiment. lis thethod (hereby Function
Detector method) we use a J48 decision tree desaif order to mark beginnings
and endings of functions resides in the binaryasgntation of the files. Using those
marks we extract function from each file and geteethe following attributes (total
of 17 attributes):

- Size of file

- File's entropy value

- Total number of detected functions

- Size of the longest function that was detected

- Size of the shortest function that was detected

- Average size of detected functions

- Standard deviation of the size of detected funstion



- Number of functions divided into fuzzy groups by iéngth in bytes (16, 24, 40,

64, 90, 128 and 256 bytes)

- Functions ratio- the proportion of number of degecfunctions from the overall
size of the file

- Code ratio- the proportion of the size (in bytes)etected functions from the
overall size of the file

Unfortunately, due to processing power and memionitdtions we could not run
our ensemble experiments on the entire datasetsvartthd to reduce the datasets in
order to complete the experiments in reasonable.tim
Therefore, for the evaluation process we had prediacnew dataset from the original
dataset by choosing randomly 33% of the instanices files) in the original datasets
and we applied the Gain Ratio feature selectiorhate{Mitchell, 1997] on the-
gram based and PE datasets.

As a result, each ensemble scheme in our experimentested upon 10 datasets.
We had 5 different datasets, and each dataset Wwadversions. First version
contained binary classification (each instanceahd&genign’ or ‘malicious’ labels) and
the second, which contained the same instanceatinfalites, had 8 classes since we
had split up the class ‘malicious’ into 7 sub-cksss'Virus’, ‘Worm’, * Flooder’,
‘Trojan’, ‘Backdoor’, ‘Constructor’ and ‘Nuker’. Téinstances that got the ‘Benign’
label in the first version had the same label®endecond version.

Table 1. Properties of the data-sets we used in our exeei.

Dataset #Classes #Instancest#Attributes
6-grams TF-2C 2 9914 31
6-grams TFIDF-2C 2 9914 31
5-grams TFIDF-2C 2 9914 31
PE-2C 2 8247 30
FD-2C 2 9914 17
6-grmas TF-8C 8 9914 31
6-grams TFIDF-8C 8 9914 31
5-grams TFIDF-8C 8 9914 31
PE-8C 2 8247 30
FD-8C 2 9914 17

3.3 The Training Process

The training process includes the training of tlasesclassifiers (the classifiers we
later combine) and may include the training of iteta-data set if required. Figure 2
shows the dataset partitioning for each ensembléhode Troika and Stacking
training sets have more partitions due to theieink-fold cross-validation training
process. Troika and Stacking train their base ifiass using same percentage of
dataset instances, which is 80% of the originahtsat (which is 72% of the entire
dataset) while the rest 20% of the training insésrare reserved for the training of the
combining classifier(s). Weighting methods, likeimg and Distribution summation,
on the other hand, use 100% of the train-set (Wisi®0% of the original dataset) for
the training of the base-classifiers.
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Fig. 2. Cross validation scheme for training and testimgeenbles methods.

In order to estimate the generalized accuracy, -&oltlOcross-validation procedure

was repeated 5 times. In each of the cross-vadidateration, the training set was

randomly partitioned into 10 disjoint instance stbs Each subset was utilized once
in a test set and nine times in a training set. $&me cross-validation folds were
implemented for all algorithms.

3.4 Measured Metrics

In order to evaluate the performance of individudhssifiers and ensemble
combination methods, we used the following commatrits: Accuracy, Area Under
the ROC curve, and Training time.

Accuracy is the rate of correct (incorrect) predictions mdy a model over a data
set. Since the mean accuracy is a random varidlée,confidence interval was
estimated by using the normal approximation of thimomial distribution.
Furthermore, the one-tailed pair¢dest with a confidence level of 95% verified
whether the differences in accuracy between adesmteemble pair were statistically
significant. In order to conclude which ensemblgqrens best over multiple datasets,
we followed the procedure proposed in [Demsar, 2006 the case of multiple
ensemble of classifiers we first used the adjuftéedman test in order to reject the



null hypothesis and then the Bonferroni-Dunn tesexamine whether a specific
ensemble performs significantly better than othmereenbles.

The ROC (Receiver Operating Characteristic) curve is aplrgroduced by
plotting the fraction of true positives (TPR = TrBesitive Rate) versus the fraction
of false positives (FPR = False Positive Rate) éorbinary classifier as its
discrimination threshold varies. The best possitdesifier would thus yield a point
in the upper left corner or coordinate (0,1) of BR@C space, representing 0% false
positives and 100% true positives. We will use #fivea Under the ROC Curve
(AUC) measure in the evaluation process. The AUQevaf the best possible
classifier will be equal to 1, which means thateaa find a discrimination threshold
under which the classifier will obtain 0% false piwes and 100% true positives. A
higher AUC value means that the ROC graph is claséne optimal threshold. ROC
analysis provides tools to select possibly optimaldels and to discard suboptimal
ones independently from (and prior to specifyingg tcost context or the class
distribution. ROC analysis is related in a direcd anatural way to cost/benefit
analysis of diagnostic decision making. Widely usied medicine, radiology,
psychology and other areas for many decades, ithe@® introduced relatively
recently in other areas such as machine learnidglata mining.

The Execution time (Training time) measure is an applicative onehads two
significances; first, and most logical, heavy timensumption is bad. We would
prefer a fast learning ensemble that will yield best accuracy or area under ROC.
Second, the longer time the training of an ensendlfes, the more CPU time it
requires, and thus, the more energy it consumeis. i§hvery important on mobile
platforms that may be using an ensemble for vanieasons.

4 Evaluation Results and Analysis

Tables 2-4, present the results obtained usingl@ciers. The 10-fold cross-validation
procedure which was repeated five times.

Table 2. Comparing the Accuracies of the ensemble algostheing C4.5, OneR, VFI, KNN
and Naive-Bayes inducers.

Dataset : Distribution Naive-Bayes Bayesian Performance . . B.C.
Voting Summation Combination Combination Weighting Stacking Troika Best B.C. Name
FD-8C 80.13+0.881.53£0.9312.42+1.45 81.71+0.75 39.72+3.73 81.27 + 182620 + 0.8179.87 £ 0.85 C4.5
FD-2C 83.12+0.8184.43+0.8178.60+1.25 84.55+0.96 81.33+0.87 85.83+188970 +0.9684.63 +1.09 C4.5
PE-8C 89.96 +1.4490.44 +1.5279.39 £1.66 90.51+1.56 88.58+1.73 90.87 +19356 +1.3891.82 + 1.46 KNN
PE-2C 93.89 +0.8384.01 £+ 0.7394.82 +0.75 94.83+0.67 87.79+1.53 95.99 + 1®BE30 + 0.6196.10 + 0.59 KNN

6gram tf-8C 81.15+0.983.35+0.8842.17+1.46 83.13+0.82 70.64+1.93 83.08 + 18642 +1.0383.48+1.03 KNN
6gram tf-2C 91.57+0.9891.19+0.9367.12+1.57 91.39+0.87 67.57+1.67 93.26 +®8131 +0.7693.26 +0.77 KNN
5gram tfidf-8C  81.39 + 0.883.90 £ 0.86 36.09 + 1.55 83.81+0.80 45.23+3.65 83.40 + (84716 +0.9684.12+0.97 KNN
5gram tfidf-2C  94.00 £ 0.78®2.13 +0.8364.28 + 1.36 93.96 +0.88 64.43+1.36 94.03 + 98610 +0.7894.08 +0.82 KNN
6gram tfidf-8C  80.48 + 0.983.29 £ 0.8959.86+ 1.38 83.11+0.91 46.64 £4.47 82.27 + 183908 + 0.9783.00 + 0.98 KNN
6gram tfidf-2C  94.24 +0.692.73 +0.8353.47 £1.97 94.63+0.65 60.54+1.93 94.53 + (D@H5 + 0.6694.53 £ 0.66 KNN
Average 87.76 +0.9288.38 £ 0.9253.47+1.3 88.16+0.89 65.25+2.29 89.25+ 089735+ 0.9 88.49 +0.92




Table 3. Comparing the Area Under the ROC curve (AUC) of thgeeble algorithms using
C4.5, OneR, VFI, KNN and Naive-Bayes inducers.

Dataset : Distribution Naive-Bayes Bayesian Performance . § B.C.
Voting Summation Combination Combination Weighting Stacking Troika Best B.C. Name
FD-8C 0.83+0.01 0.85+0.02 0.55+0.01 0.85@20. 0.79+0.02 0.86+0.01 0.86+0.01 0.79+0.02C4.5
FD-2C 0.82+0.01 0.84+0.02 0.76+0.02 0.83020. 0.81+0.02 0.86+0.02 0.86+0.02 0.8+0.02 4.5C
PE-8C 0.99+0.01 0.99+0.01 0.95+0.02 0.99040. 0.99+0.01 0.98+0.01 0.99+0.01 0.95+0.01C4.5
PE-2C 0.98+0.01 0.98+0.00 0.94+0.01 0.98190. 0.96+0.01 0.99+0.01 0.99+0.00 0.98+0.0 4.5C

6gram tf-8C 0.97+0.01 097+001 0.77+0.01 709.01 0.97+0.01 0.94+0.01 0.95+0.02 0.95(4 KNN
6gram tf-2C 0.97+0.01 097+001 0.77+0.01 7G®.01 095+0.01 0.96+0.01 0.97+0.01 0.9B C4.5
5gram tfidf-8C  0.97 £0.01 0.97+0.01 0.73+£0.010.97 +0.01 0.96+0.01 0.94+0.01 0.96 +0.01 6G:9.01 C4.5
S5gram tfidf-2C  0.97 £0.01 0.97 £0.01 0.75+0.010.97 +0.01 0.95+0.01 0.96+0.02 0.98 +0.01 5G:%.01 C4.5
6gram tfidf-8C  0.96 £0.01 0.97 £0.01 0.50+0.000.97 +0.01 0.95+0.01 0.95+0.01 0.95+0.02 4G¢9.01 C4.5
6gram tfidf-2C  0.97 £0.01 0.97+0.01 0.80£0.020.97 +0.01 0.94+0.01 0.97+0.01 0.98+0.01 5G¢:9.01 C4.5
Average 0.95+0.01 0.96+0.01 0.75+0.01 0.95@1 0.93+0.01 0.95+0.01 0.96+0.01 0.92 G40.

Table 4. Comparing the execution (training) time of the eamble algorithms using C4.5,
OneR, VFI, KNN and Naive-Bayes inducers.

Dataset ) Distribution  Naive-Bayes Bayesian Performance . .

Voting Summation _Combination  Combination Weighting Stacking Troika
FD-8C 8.3+0.2 8.3+0.2 21+0.1 24.7+0.2 24®3 278.6+1.8 4693.1 + 96.4
FD-2C 0.4+0.0 0.4+0.1 1.4+01 21.8+0.8 2207 285.4 +48.4 170.6 £ 1.5
PE-8C 56+0.7 57+0.7 1.2+01 10.6 £0.3 B4 273.3+8.6 1676.7 £ 94.1
PE-2C 0.9+0.1 09+0.1 0.2+0.0 18.8+0.2 84 160.7 + 3.8 403.9 £4.0
6gram tf-8C 0.9+0.2 09+0.2 23+0.1 26.7&0. 27.0+1.1 179.3+3.3 5136.6 + 165.0
6gram tf-2C 0.6+0.1 0.7+0.1 1.3+01 23.3&1. 23.4+22 162.9 £3.2 353.9+12.0
5gram tfidf-8C 09+0.1 0.8+0.1 24+0.1 31.84 31.3+£0.7 190.8 £16.5 5805.2 £141.2
5gram tfidf-2C 0.7+0.1 0.7+0.1 15+0.1 25.8.4 253+0.7 1752+ 1.7 409.9£5.3
6gram tfidf-8C 09+0.2 09+0.1 3.2+0.1 35.8.8 37.2+1.2 183.5+3.2 19267.7 +331.8
6gram tfidf-2C 0.6+0.1 0.6+0.1 1.6+0.1 25.0.3 26.0 0.6 162.3+£3.1 388.4+2.2
Average 2.0+0.2 2.0+0.2 1.7+0.1 24.3+0.5 .24 0.9 205.2 9.4 3830.6 + 85.3

4.1 Results Analysis - Accuracy

As can be seen from Table 2, there are some vhtyadmong the ensembles mean
predictive accuracy. We can see that two ensenfbleska and Stacking) excels best
base-classifier by cross-validation, two other emses (Distribution summation and
Bayesian combination) are close to best base-filxsBiom below and the rest three
(Voting, Naive-Bayes and Performance weighting)thetlowest results, away below
best base-classifier. A question arises: doesabésiracy variability is statistically
significant? If the answer is positive, then we ldolike to know which of the
ensembles is better than the others.

We had used the adjusted non-parametric Friednstnnerder to check the first
hypothesis, that all combination methods perforsrgame, and the results was that
the null-hypothesis could be rejected with a coarfice level of 95%. The next step,
than, is to decide which of the ensembiles, if gogrforms best. To that purpose we
used the Bonferroni-Dunn test on each pair of eb$esnBelow, in Table 5 we show
the results of the pairs test results.



Table 5. Showing the significance of the difference of #resembles' accuracies. The""
symbol indicates that the degree of accuracy ofrthes ensemble scheme was significantly
higher than the Column’s ensemble scheme at ademde level of 95%. For example, as can
be seen in the table below, Troika's accuracy ghéi than Performance-Weighting. The""
symbol, on the contrary, indicates the accuragpefrow’s ensemble scheme was significantly
lower and the &" symbol indicates no significant difference.

Ensemble Stacking Performance| Bayesian | Naive-Bayes| Distribution Voting Best Base-
Method Weighting | Combination | Combination | Summation classifier
Troika & A & A < A <
Stacking A < A < [ [
Performance Weighting < & < < <
Bayesian Combination & & A &
Naive-Bayes Combination & < <
Distribution summation S S
Voting <

In order to identify the ensemble method that msdiwith best accuracy we
summarized the result of Table 5 in yet anotheletafable 6. This time we
calculated a score to each ensemble scheme:

— #better
score %#worse +&

where #better is the number of cases where thendisewas better than other
ensemble and #worse is the number of cases wherertbemble was worse than
other ensemble.

Equation (8) ensures that the ensemble with maxirthatiter and minimum #worse
will get highest score.

(8)

Table 6. Score of each ensemble scheme ordered from mosessful at top, to worse at
bottom. For the score calculation we added a smattber £=0.001) to the denominator in
order to avoid cases of division by zero.

Ensemble Method #Worse #Better Score Rank
Troika 0 3 3001 1
Best base-classifier 0 3 3001 1
Stacking 0 2 2001 2
Bayesian Combination 0 2 2001 2
Distribution Summation 1 2 1.999 3
Voting 2 0 0.0005 4
Performance Weighting 5 0 0.0002 5
Naive-Bayes combination 5 0 0.0002 5

4.2 Results Analysis - AUC

Table 3 shows the AUC results of all examined efdesn We can see that all
ensembles except Naive-Bayes excel Best basefidadsy cross-validation. Two

ensembles (Distribution summation and Troika) du best result, which seems
significantly better than best-classifier's. Allher ensembles AUC results are in the



area of 93% to 95%. Again, we would like to chefcthe change in ensembles’ AUC
is significant and if it is, then we would like kmow who the best ensemble is.

We had used the adjusted non-parametric Friednsinnerder to check the first
hypothesis, that all ensemble AUCs are the sang tlen results was that the null-
hypothesis could be rejected with a confidence ll@fe95%. Next, we used the
Bonferroni-Dunn test on each pair of ensembles lieck which ensemble AUC
significantly is better. Below, in Table 7 we shiwe results of this pairs test results.

Table 7. Showing the significance of the difference of émsembles' AUCs. Tha" symbol
indicates that the degree of AUC of the row’s ertdenscheme was significantly higher than
the Column’s ensemble scheme at a confidence |é\@83%. he '« symbol, on the contrary,
indicates the AUC of the row’s ensemble scheme sigwficantly lower and thed" symbol
indicates no significant difference.

Ensemble Stacking Performance| Bayesian | Naive-Bayes| Distribution Voting Best Base-
Method Weighting | Combination | Combination | Summation classifier
Troika [ A <& A <& <& A
Stacking <& & A & & &
Performance Weighting < & < O &
Bayesian Combination A < < A
Naive-Bayes Combination < ] [
Distribution summation S A
Voting [

We had summarized the result of Table 7 in takile@der to check who has the best
AUC. We calculated a score of each ensemble sclising equation (8).

Table 8. Score of each ensemble scheme ordered from mosessful at top, to worse at
bottom. For the score calculation we added a smattber £=0.001) to the denominator in
order to avoid cases of division by zero.

Ensemble Method #Worse #Better Score Rank
Troika 0 3 3001 1
Bayesian Combination 0 3 3001 1
Distribution Summation 0 3 3001 1
Stacking 0 1 1001 2
Voting 0 1 1001 2
Best base-classifier 3 1 0.3333 3
Performance Weighting 3 0 0.0003 4
Naive-Bayes combination 5 0 0.0001 5
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Fig. 3. ROC graphs of all eight competitive ensemble contlinanethods. In spite of the load
in the graph above, it still can be easily seeth Thaika, in the strong line, excels its opponents
when false positive is higher than 0.1. For prodgcthis graph, we tested all ensemble
combination methods on “5-gram TFIDF-2C".

4.3 Results Analysis — Execution Time

Table 4 shows the Execution time results of themémad ensembles. We can spot
two groups of ensembles. The first group consistsloveighing ensembles (Naive-
Bayes combination, Performance Weighting, Votingstiibution Summation and
Bayesian Combination) and the common charactehisfgroup is execution time of
coupe single seconds in average. Second group smupfoom the meta-combiner
ensembles (Troika and Stacking) in which the commloaracter is execution time
(training time) of more than 1000 seconds in averadgeta-combiner ensembles
consume more time during their training phase dughé fact that they need to train
their combiner classifier, usually in a k-fold cseglidation manner. The difference
in the results of the two groups is bold and ntistteal examination is required.



4.4 Results Analysis — Summary

In Table 9 we summarize the accuracy, AUC and di@tuime scores of all
ensemble combination methods. The ranking is fram3 where ‘1’ is worse and ‘5’
is best.

Table 9. Summarizing the accuracy, AUC and execution tiamkrassigned to each of the
ensemble combination methods.

Ensemble Method Accuracy AUC Execution
Time
Troika 5 5 1
Stacking 4 4 2
Best base classifier 4 3 5
Bayesian Combination 4 5 4
Distribution Summation 3 5 4
Voting 2 4 4
Performance Weighting 1 2 4
Naive-Bayes combination 1 1 4

The table shows that Troika has best accuracy du@ Aut suffers from worse
execution time. Stacking has a disadvantage ofracguand AUC, but its execution
time is somewhat better than Troika's. ChoosingtBEsssifier using cross-validation
is not too bad option; in fact, it is a better optithan using several other ensemble
combination methods like Naive-Bayes for exampts. dccuracy and AUC are
mediocre, but it is the fastest to execute. Baye§iombination is probably the best
of its family of weighting ensembles. Its accuréewnlmost comparable to Troika, its
AUC is a top class and its execution time is veopdy Distribution Summation
accuracy is average, but it belong to group of mdes that has best AUC. Its
execution time is same as all weighting methoddingp Performance Weighting and
Naive-Bayes combination have a medium-low accurmny AUC. Their execution
time is as all other weighting methods.

4.5 Results Analysis — Dataset Class Labeling

In this experiment, we had 5 different datasetdhdad two versions. First version
contained two classes (‘Benign’ and ‘Malware’) atiok second contained eight
classes (‘Benign’, ‘Virus’, Worm’ etc.). To reminthe two versions contained the
same instances in same order. The only differenas that the instances labeled
‘Malware’ in the two-class version had been givemare specific label in the multi-
class version of the dataset. The purpose of pindusecond and multi-class version
of each dataset was to check if this conversionl wigld better ensemble
performance. It is sometimes important in the Secudomain to discriminate
between files of different malware types. For exEnjt may be important to the
security officer to know that a particular threas brganization had encounter was
Worm rather than Trojan, because the implicatiod anuntermeasures might be
completely different. Another important parametethe FPR which is very important



to reduce to minimal acceptable value. The meaofrfePR in security domain is the
proportion of benign files that were classifiechaalware (an erroneous classification)
to the total classified files.

In this part of the work we had examined the hypsth that using a multi-class
datasets will help minimizing the FPR of the testedemble. The idea was that since
there are more benign files compare to any spenifidware family files, than the
base-classifiers will be biased towards the Befiiigs which eventually will yield a
lower False-positive cases, on the account of plysproducing more False-negative.
The examined parameter is AUC of class benign.esitw our belief, AUC reflects
the successfulness of the classifier (the ensenibléiis case) better than that of
Accuracy.

The results in Table 10 show that only four ensesblenefit from the transition to
multi-class dataset — Distribution-summation, votiperformance weighting and
Troika. While the while each of the first three impements is less than 2 percent
Troika manage to improve in about 8 percents, wisahot negligible. On the other
hand, there are few ensembles that got worse; N@dyes Combination, for
example, suffers from more than 4 percent decri@aB&)C due to this transition.

Table 10. AUC of ensemble combination methods for the ‘Beh@ass. The table is divided
into two sections. In first section we present &igC results of multi-class datasets. In the
second section we present AUC results of binarysalizdasets. In the last row of the table we
summarize the improvement in FPR (False-positive) raf each ensemble when using multi-
class instead of using binary-class datasets. Mpeovement is specified in percents. Negative
improvement indicates that using multi-class ddthad worsened FPR.

Dataset Bayesian Distribution Stacking Voting Naive Bayes Performance Troika C4.5
Combination  Summation Combination Weighting

FD-8C 0.800+0.028  0.850+0.017 0.799+0.030.844+0.01  0.825+0.056 0.844+0.018  0.820+0.022 16840

PE-8C 0.990+0.007  0.990+0.007 0.975+0.008984 +0.009 0.798+0.030  0.988+0.007 0.988+0.007 0.959+0.011

6gram tf-8C 0.969+0.007  0.968+0.007 0.966+0.000965+0.007  0.779+0.021 0.965+0.008  0.968+0.00852%0.010

5gram tfidf-8C 0.971+0.002  0.970+0.005 0.966+0.002807+0.057  0.941+0.063 0.972+0.007  0.959+0.00872%0.005
6gram tfidf-8C 0.968+0.015  0.967+0.008  0.965+0.0101961+0.010  0.863+0.034 0.946+0.029  0.970+0.01249%0.016

Average 8C 0.940+0.07 0.949+0.03 0.93+0.03  0.91P40. 0.841+0.04 0.943+0.03 0.941+0.04  0.904+0.03
FD-2C 0.843+0.017 0.795+0.025 0.837+0.01%1829+0.018  0.823%0.074 0.809+0.018  0.644+0.07214%6.017
PE-2C 0.983+0.005 0.983+0.007 0.977+0.0@8795+0.064  0.942+0.067 0.984+0.009 0.967+0.01283%0.005
6gram tf-2C 0.971+0.008 0.960+0.009 0.969+0.008966+0.010  0.955+0.055 0.963+0.012  0.808+0.0585@:0.010

5gram tfidf-2C 0.971+0.012  0.971+0.007 0.967+0.0D1965+0.007  0.829+0.062 0.949+0.014  0.974+0.00741%0.046
6gram tfidf-2C 0.967+0.012  0.953+0.042 0.969+0.016959+0.015  0.836+0.051 0.939+0.016  0.972+0.00952%0.016
Average 2C 0.947+0.01 0.932+0.02  0.944+0.01  0.90820  0.877+0.06 0.929+0.01  0.873+0.03  0.928+0.02

%improvement

using 8C -0.752% 1.783% -1.026% 1.006% -4.100% 1.535% 7.779% -2.594%

5 Conclusions and Future Vérk

In this paper we had examined seven different coatltin methods plus one
alternative for ensemble (selecting best classifising cross-validation) in the
security domain. The goal was to identify the lmeshbination method. We had used
5 different datasets that were produced using uartechniques and we had made
two versions of each. The first version was binelassed and second copy was
multi-classed. Three interesting parameters wheeasored; accuracy, AUC and



execution-time. We find it most interesting thatle@nsemble had its own characters
and no two where alike.

From the results we learn that in terms of accyraag AUC, Troika is probably
the best choice; it is better than Stacking, thly ather ensemble in the group of
Meta-classifier ensemble. It is also better thast l@assifier chosen using cross-
validation. The benefit of using Troika is douldiest, its AUC and accuracy are very
high. Second, when using multi-class datasetAtIE getting improved in about 8%,
producing a model with lower FPR and a nice capighif identifying the malware’s
specific class. Bayesian-combination, for instamesng second best in accuracy and
AUC, had had a fall of 1% in its AUC performance emhtested on multi-class
dataset. If Execution time is a big concern, tharydsian Combination will be the
best choice, being only second only to Troika i of accuracy and AUC.

We do not recommend using Naive-Bayes ensembleogheth

We can also see that the Naive-Bayes ensemble dhethip good property is its
fast execution time which is the same as all wéightnethods. Its accuracy and AUC
are fairly bad compare to all other ensembles. @mplanation to its poor
performance is the fact that its assumptions ambahly not taking place; for
example, the assumption of independent base-dkrsddes not exist in practice.

Future work may include the involvement of moreucers for base-classifiers (we
had only used 5, while there are plenty more taoskdrom), some different methods
of training the base classifiers — in this reseavehhad used only the trivial training
method while there are many other methods that bsewization of datasets (for
example - One against One or One against All) wigly yield better accuracy and
AUC performance. In addition, in the hereby deslitexperiment, we evaluated
different inducers on the same datasets. In fuaxgeriments we would like to
evaluate the performance of inducers that aregdagn different features.
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