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Abstract

Grouped data occur frequently in practice, either because of limited resolution of
instruments, or because data have been summarized in relatively wide bins. A
combination of the composite link model with roughness penalties is proposed to
estimate smooth densities from such data in a Bayesian framework. A simulation
study is used to evaluate the performances of the strategy in the estimation of a
density, of its quantiles and first moments. Two illustrations are presented: the first
one involves grouped data of lead concentrations in the blood and the second one
the number of deaths due to tuberculosis in The Netherlands in wide age classes.
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1. Introduction

Descriptive statistics are easily computed when data are available with high
precision. Unfortunately, this is not always the case. Measured concentrations may
be below the detection limit, or an instrument may have poor resolution. It may
also be the case that precise data have been summarized with a small number of
wide intervals. An obvious quick-and-dirty solution replaces the observations in
each interval by its midpoint and handles them as if they were actually observed.
This can work quite well when computing the mean and the variance, but it fails
for the estimation of quantiles.

An improvement is to assume a parametric model for the underlying distribution,
and fit it to the grouped data with the EM (estimation-maximization) algorithm.
If an approximation to the distribution is available, one distributes the counts in
each wide interval to pseudo-counts on a grid of narrow intervals, proportionally
to the current approximation (the E step). The midpoints of the narrow intervals
are used as “precise data”, with weights proportional to their pseudo-counts, to
estimate distribution parameters by, say, maximum likelihood (the M step). This
process is repeated till convergence.

When the observed coarse distribution has a simple shape, the parametric
method can work quite well. But when it is skewed or multi-modal, or both, a
lot of trial-and-error may be needed to find the right model. A non-parametric
model will be more attractive then.

Histosplines are a popular non-parametric method. The idea is to compute a
smooth spline under the condition that integrals over the given wide intervals are
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equal to the observed counts. Early work in this area was reported by Boneva
et al. (1971). Although the computations are not complicated, histosplines are
not without disadvantages. There is no guaranty that the estimated distribution
will be non-negative everywhere. Especially when there are wide intervals with
zero observations next to intervals with positive counts, the spline, maintaining its
smoothness, may undershoot the horizontal axis. A more fundamental objection is
that the sampling variation in the observed counts is ignored. Generally one sees
that a histospline shows a number of unrealistic wiggles.

Other non-parametric methods have been proposed. Braun et al. (2005) use an
EM-type algorithm to generalize the kernel density estimate for interval censored
data and propose to select the bandwidth using cross-validation. The described
strategy is partially implemented in an R package named ICE where the crucial
choice of the bandwidth is left to the user.

We present here a non-parametric spline-based model: 1) the logarithm of a
smooth latent distribution is modelled with P-splines on a fine grid, 2) expected
counts are obtained from integrals over the wide intervals, and 3) observed counts
are modeled with a multinomial distribution, having the given expectations. The
result is a penalized composite link model (Eilers, 2007).

We introduce a Bayesian variant of the model, allowing uncertainties to be quan-
tified for model components and derived quantities, like quantiles. As is common
for complex Bayesian models, analytic results are not obtainable, so we use a simu-
lation algorithm. A combination of the Langevin-Hastings algorithm and rotation
of the P-spline parameters allows fast computation, making the model a practical
tool for everyday use.

2. Density estimation from grouped data

Assume that one is interested in estimating a discrete representation of a contin-
uous density fY (·) of a random variable Y on a fine grid on (a, b). Fine here means
that the grid spacing is small enough to give an accurate description of the density,
for plotting it or for computing quantiles or other statistics accurately. The fine grid
may consist of, say, 100 or more grid points, partitioning (a, b) into I consecutive
intervals Ii = (xi−1, xi) of equal width ∆ with midpoints ui (i = 1 . . . I), x0 = a
and xI = b. Then, the quantities of interest are πi =

∫
Ii
fY (t)dt ≈ fY (ui)∆.

Let mj (j = 1 . . . J) be the number of observations belonging to each of (say
10 or less) given non-overlapping wide bins Jj = (Lj , Uj) partitioning (a, b). For
simplicity, assume for now that the limits of these (wide) bins make a subset of
{x0, . . . , xI}. The relationship between the wide bins and the initial grid is coded
by the J by I matrix C = [cji], where cji = 1 if Ii ⊂ Jj and 0 otherwise. More
sophisticated settings will be discussed in Section 4.

If γj denotes the probability
∫
Jj
fY (t)dt that Y belongs to wide bin Jj , then

one has γj =
∑I
i=1 cjiπi ; in vector-matrix notation: γ = Cπ. If the only available

data are the frequencies associated to the wide bins, then the estimation of the πi’s
is an ill-conditioned problem.

Therefore, we demand π to be smooth. Our strategy has two components:
1) model the logarithm of π with a generous number of B-splines, and 2) add a
discrete roughness penalty on the B-spline coefficients. This the P-spline approach
advocated by Eilers and Marx (1996) and Eilers (2007).

More specifically, consider a basis {bk(·) : k = 1, . . . ,K} of B-splines associated
to equidistant knots on (a, b). Denote by (B)ik = bik = bk(ui) the I × K matrix
giving the basis functions evaluated at the midpoint ui (i = 1, . . . , I) of Ii. Then,
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we model πi by

πi = πi(φ) =
eηi

eη1 + eη2 + . . .+ eηI
,

with η = Bφ and the identifiability constraint
∑K
k=1 φk = 0.

The P-spline penalty is based on rth order differences, ∆rφ, of the splines
coefficients φ. In a Bayesian setting, it translates into a prior distribution on the
splines coefficients (Lang and Brezger, 2004):

∆rφk ∼ N(0, τ−1).

This idea has been used successfully in several papers in various contexts (see e.g.
Berry et al. (2002) in normal regression models and Lang and Brezger (2004) in
additive models, Lambert and Eilers (2005) in survival analysis, Lambert (2007) in
copula estimation). Consequently, the following (improper) prior for the B-splines
coefficients is assumed

p(φ|τ) ∝ τR(P )/2 exp
{
−τ

2
φ′Pφ

}
, (1)

where φK = 1−
∑K−1
k=1 φk (identifiability constraint), R(P ) denotes the rank of P

and P = D′D is the matrix such that∑
k

(∆rφk)2 = φ′Pφ .

For example, with r = 2, one has

D =


1 −2 1 0 . . . 0
0 1 −2 1 . . . 0
...

. . . . . . . . .
...

0 0 . . . 1 −2 1

 ,
and R(P ) = K − 2.

A gamma prior G (a, b) with a large variance (as obtained by taking a = b =
.0001, say) is usually advocated (Lang and Brezger, 2004) to express prior ignorance
about suitable values for τ . Alternative robust priors can be found in Jullion and
Lambert (2007).

Apart from the penalty, the model for π is a familiar generalized linear model
(GLM), but the model for γ is a composite link model (CLM), as introduced by
Thompson and Baker (1981).

3. Inference

3.1. Frequentist estimation
Thompson and Baker (1981) showed how to estimate the parameters of the CLM

in a maximum likelihood setting. It boils down to a polytomous logistic regression
of m = (m1, . . . ,mJ)′ on a “working” matrix X = W−1CHB, with

H = diag(m+π(1− π)),W = diag(m+γ(1− γ)) and m+ =
J∑
j=1

mj .

The well-known scoring algorithm leads, at iteration (t+ 1), to

X ′tWtXtφt+1 = X ′t(m−m+γ +WtXtφt),
3



φt denoting the current approximation.
The penalized log-likelihood is

lpen =
∑
j

mj log γj −
τ

2
φ′D′Dφ ,

The penalty modifies the scoring algorithm slightly:

(X ′tWtXt + τD′D)φt+1 = X ′t(m−m+γ +WtXtφt), (2)

Different strategies can be used to select the penalty parameter τ : cross-validation
or information criteria like the AIC or BIC (Eilers and Marx, 1996) are possible
guidelines. For a given τ , the variance-covariance of the MLE is, at convergence,
given by

(X ′tWtXt + τD′D)−1. (3)

3.2. Posterior distribution
Combining (using Bayes’ formula) the priors defined in Section 2 with the multi-

nomial likelihood resulting from the observed frequencies for the wide bins, one
obtains the following joint proper posterior for θ = (φ, τ):

p(φ, τ |D) ∝

 J∏
j=1

γ
mj

j

 τa+0.5R(P )−1 exp
{
−τ(b+ 0.5 φ′Pφ)

}
, (4)

where γ = Cπ(φ), D stands for the observed frequencies associated to the (wide)
bins, {(mj ,Jj) : j = 1, . . . , J}, and φK = 1−

∑K−1
k=1 φk (identifiability constraint).

Under that constraint, the conditional posterior distributions can be shown to
be

(τ |φ,D) ∼ G
(
a+ 0.5 R(P ), b+ 0.5 φ′Pφ

)
, (5)

p(φ|τ,D) ∝

 J∏
j=1

γ
mj

j

 exp
{
−τ

2
φ′Pφ

}
. (6)

3.3. Exploring the posterior distribution
Markov chain Monte Carlo (MCMC) methods can be used to draw a sample,

{(φ(m), τ (m)) : m = 1, . . . ,M}, from the posterior. Here, we use a ‘Metropolis-
within-Gibbs’ strategy with a Gibbs step for τ (see Eq. (5)) and a Metropolis step
through the (modified) Langevin-Hastings algorithm (see Section 3.3.1) for φ with
Eq. (6) . Thus, the proposed algorithm for building a chain {(φ(m), τ (m)) : m =
1, . . . ,M} (after an appropriate burn-in) is

For m = 1, . . . ,M :
-1- Draw φ(m) from p(φ|τm−1,D) using Langevin-Hastings.
-2- Generate τ (m) from G

(
a+ 0.5 R(P ), b+ 0.5 φ(m)′Pφ(m)

)
.

To each element of the so-obtained Monte Carlo sample, φ(m), corresponds a
density f (m)(y) for which any summary measure ξ(m) of interest such as the mean,
the standard deviation or quantiles can be computed. Point estimates and credible
intervals for ξ can be derived from the so-obtained sample {ξ(m) : m = 1, . . . ,M}.
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Specific properties such as unimodality or log-concavity can be imposed on the
estimated density by excluding, through the prior, the configurations of φ corre-
sponding to non-desirable densities. If Φ denotes the set of φ meeting the identifi-
ability constraint and ensuring the desired properties for the corresponding density
π(φ), then the following equation will be substituted to the prior for φ in Eq. (1):

p(φ|τ) ∝ τR(P )/2 exp
{
−1

2
τ φ′Pφ

}
IΦ(φ) , (7)

where IΦ(φ) is 1 if φ ∈ Φ, and 0 otherwise. Eqs (4) and (6) will be multiplied by
the same indicator function.

3.3.1. The modified Langevin-Hastings algorithm
Several algorithms can be set up to make a proposal for φ for a given τ (m) in

the Metropolis step of the MCMC algorithm. One strategy relies on a Bayesian
version of the IWLS algorithm in generalized linear models (see e.g. Gamerman,
1997; Brezger and Lang, 2006). Here, we suggest to use a modified version of the
Metropolis-adjusted Langevin algorithm (MALA, Roberts and Tweedie, 1996).

The basic MALA algorithm builds MCMC chains with proposals relying on the
gradient of the log posterior distribution at the current state. More precisely, if
p(θ|D) is the posterior distribution (used as a shorthand notation for conditional
posterior p(φ|τ (m−1),D)) and θ(m−1) ∈ IRK the state of the chain at iteration
(m− 1), then the proposal for θ at iteration m is obtained by a random generation
from the K-variate normal distribution

NK(θ(m−1) + 0.5 δ ∇ log p(θ(m−1)|D), δIK) ,

where δ > 0 and IK is the K dimensional identity matrix. This proposal is accepted
with probability

α(θ(m−1),θ) = min

{
1,

p(θ|D)

p(θ(m−1)|D)

q(θ,θ(m−1))

q(θ(m−1),θ)

}
,

where

q(x, z) = (2πδ)−K/2 exp
[
− 1

2δ

∥∥∥z − x− 0.5δ ∇ log p(x|D)
∥∥∥2
]
,

i.e. θ(m) is set equal to θ if accepted and to θ(m−1) otherwise.
Roberts and Rosenthal (1998) have shown that the relative efficiency of the

algorithm can be characterized by its overall acceptance rate, independently of the
target distribution. The asymptotic optimal value for that last quantity is 0.57 with
acceptance probabilities in the range (0.40, 0.80) still reasonable. The parameter δ
must be tuned to have an acceptance rate in that range.

The mixing of the so-generated chain can be improved and the cross-correlation
lowered with a slight modification of the proposal step by the introduction of a
carefully chosen positive definite matrix Σ of size K. Then the proposal θ for the
next state is generated from

NK(θ(m−1) + 0.5 δΣ ∇ log p(θ(m−1)|D), δΣ) ,

with acceptance probability α(θ(m−1),θ) where

q(θ,θ(m−1))

q(θ(m−1),θ)
= exp

{
−1

2

(
G+G(m−1)

)′(
(θ − θ(m−1)) +

δΣ
4

(G−G(m−1))
)}

,
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with
G = ∇ log p(θ|D) and G(m−1) = ∇ log p(θ(m−1)|D) .

Note that this is equivalent to using the original Langevin-Hastings algorithm on a
posterior reparametrized in terms of ψ with θ = θ0 + Lψ where θ0 ∈ IRK and L
denotes the lower triangular matrix resulting from the Cholesky decomposition of
Σ.

Matrix Σ is ideally an approximation to the 2nd order dependence structure
of the conditional posterior. It can obtained by an estimation of the B-splines
parameters using, for example, a frequentist method for a fixed and reasonably
chosen value of the roughness penalty parameter, see Section 3.1. Then, Eq. (3)
can be used to define Σ and Eq. (2) to select θ0.

3.3.2. Automatic tuning of the Langevin algorithm
An automatic tuning of δ targetting the optimal 0.57 rate can be achieved

(Haario et al., 2001; Atchadé and Rosenthal, 2005): at the end of iteration m,
set the value of δ to be used at iteration (m+ 1) to δm+1 where√

δm+1 = h
(√

δm + γm

(
α(θ(m−1),θ)− 0.57

))
,

with

h(x) =

 ε if x < ε
x if x ∈ (ε, A)
A if x > A

,

ε being a small number (say 10−4) and A a large one (say A = 104). These two
constants must be modified if the targeted acceptance rate is not attained. The
series {γm} is a non-increasing sequence of positive real numbers such that |γm −
γm−1| ≤ m−1. A possible choice for γm is γm = m−1.

In practice, we recommend to use the adaptive (modified) Langevin-Hastings
algorithm for a few hundreds iteration with δ = 1.652/K1/3 as starting value for
the tuning parameter. That value can be derived from the equations in Roberts and
Rosenthal (1998, see Section 2) when the target posterior is the multivariate normal
with identity variance-covariance matrix. The last value of δm in the so-generated
sequence can then be used for the tuning parameter in the non-adaptive version
of the modified Langevin-Hastings algorithm to produce the long chain(s) used for
inference.

4. More general bin patterns

To simplify the presentation, it was assumed in Section 2 that the wide bins Jj
do not overlap, and that their limits are a subset of the grid points.

However, the model has much wider application if the role of the initial grid
is interpreted as a device for numerical integration of the underlying continuous
density. Indeed, for given coefficients φ associated to the B-splines basis, one can
evaluate the density at the midpoints of the (fine) regular grid {xi : i = 0, . . . , I}
on (a, b) (with x0 = a and xI = b). Then, setting dx = (xi − xi−1), one has

fφ(x)dx =
exp

(∑K
k=1 φkbk(ui)

)
∑I
i=1 exp

(∑K
k=1 φkbk(ui)

) = πi if x ∈ (xi−1, xi) , (8)
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where ui denotes the midpoint of (xi−1, xi). At the limit, when dx→ 0, one obtains

fφ(x) =
exp

(∑K
k=1 φkbk(ui)

)
∫ b
a

exp
(∑K

k=1 φkbk(u)
)
du

if x ∈ (xi−1, xi) .

The probability γj that Y belongs to the jth wide bin Jj = (Lj , Uj) can be
obtained from Eq. (8) using numerical integration:

γj =
∫ Uj

Lj

fφ(x)dx ≈
∑
i=1

cjiπi ,

where the weights cji follow from, say, the rectangle method. When the wide bins
boundaries are part of the regular grid, then the cji’s are simply the 0-1 quantities
described in Section 2.

Wide bins may also overlap. In the limit each raw observation may have its own
interval with an associated frequency, mj , equal to one. This leads to a quite general
procedure for density estimation from arbitrarily individually (interval) censored
observations.

The chosen domain (a, b) spanning the fine grid should be chosen to respect the
context of the data. In our examples (see below) we add a wide bin with a zero
frequency at the right tail, because no raw observations were found there, although
the possibility of a non zero count could not be excluded a priori. This forces
the estimated density to go smoothly to zero. On the other hand, our example
data concern chemical concentrations and human age, for which we know that they
cannot be negative. It would not be right to add bins with zero counts below zero,
because that would imply that we allow negative concentration (or age).

Of course our strategy will also work when there is essentially no grouping. In
that case the bins and the grid will coincide and C becomes the identity matrix.

Hybrid situations may also occur, when only a part of the raw observations
is censored. An interesting situation of this kind occurs in some types of genetic
research, in which only individuals with extreme phenotypes (e.g. weight) are geno-
typed. There we have “central censoring”: narrow bins in the tails, with one wide
bin in the center of the distribution.

5. Simulation

A simulation study was performed to assess the performances of the Bayesian
CLM for varying degrees of coarsening when the mean, the standard deviation and
selected quantiles are estimated using the obtained fitted density. The data were
simulated using a gamma distribution with mean 5 and variance σ2 = 2.5. The
compact interval (0,15.18) was taken as the support of the target gamma distri-
bution: this is a reasonable approximation as it contains 99.999% of the probabil-
ity mass. That interval was subdivided into I = 48 (small) bins of equal width
(= 0.2σ). Seven levels of coarsening corresponding to wide bins of respective width
(bw) 0.4σ, 0.6σ, 0.8σ, 1.0σ, 1.2σ, 1.4σ, 1.6σ were considered by grouping consecutive
small bins, larger widths corresponding to coarser data. S = 500 data sets of size
n = 200 (and 1, 000) were simulated. For each data set, the posterior of the spline
parameters in the Bayesian CLM was re-parameterized using the frequentist max-
imum likelihood estimate of these parameters with a roughness penalty parameter
selected using BIC in a pre-defined grid. A first chain of length M = 2, 000 (includ-
ing a burn-in of 500) was built to derive a more reliable estimate of the dependence
structure of the posterior. Then, a final chain of length M = 3, 500 (following a
burn-in of 500) was constructed to explore the posterior distribution. The fitted
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Figure 1: Row 1: Plot of 50 of the M=3,500 generated densities (grey curves) together with the
fitted density f (s) (black curve) for one of the 500 simulated datasets of size n = 200. Row 2: Plot
of 15 of the S = 500 fitted densities f (s) (grey curves) together with the target gamma density
(black curve) of size n = 200.

density f (s) for the sth data set corresponds to the MCMC estimate 1
M

∑M
m=1 φ

(m)

of the posterior mean of the spline parameters φ. It can be used to derive a point
estimate for the mean, standard deviation and selected quantiles of the unknown
density. The strategy is illustrated on Fig. 1.

The integrated squared error (ISE) defined by

ISE =
∫ (

f(x)− f̂(x)
)2

f(x) dx ,

was computed for each of the fitted densities f (s). The boxplots of the logarithm of
this global measure of performance can be viewed on Fig. 2 for different wide bin
widths. These can be compared to the values obtained with a frequentist approach
where the penalty parameter is selected to minimize the AIC or the BIC.

For each sample size and provided that the wide bin width bw is at most 1.2σ,
the Bayesian density estimate (BDE), followed by the frequentist density estimate
(FDE) with τ selected using BIC (FDE-BIC), tends to perform better than the FDE
with τ selected using AIC (FDE-AIC). For coarser data, the FDE-BIC is slightly
better. The AIC criteria was often found to select smaller penalty parameters than
the BIC and, hence, to under-smooth the observed histogram. Note that the same
qualitative conclusions are obtained with the integrated L1 norm.

The kernel density estimate (KDE: strategy -4- on Fig. 2) with a bandwidth
selected using the Sheather and Jones (1991) method was also computed on the
ungrouped data: it is clearly defeated by the BDE and the FDE-BIC computed
from grouped data with wide bins of width 0.4σ.

The mean, the standard deviation and quantiles of the target density can be
estimated by computing these quantities from the Bayesian density estimate. These
posterior estimates for the mean and the standard deviation are plotted in Fig. 3 for
different amounts of grouping together with the sample estimates computed from
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Figure 2: Boxplots of log10 ISE(f̂) for different values of the (wide) bins width bw and different
estimation strategies when n = 200 (Row 1) or n = 1000 (Row 2), S = 500 and the simulated
density is a gamma with mean 5 and variance 2.5. The strategies are either frequentist (with τ
selected using -1- AIC or -2- BIC) or -3- Bayesian. Strategy -4- corresponds to kernel density
estimation (KDE) from the ungrouped data.
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Figure 3: Boxplots of the posterior point estimate of the mean (left panel) or of the standard
deviation (right panel) under different amounts of grouping (with the width of the wide bins
varying from 0.4σ to 1.6σ) or directly using the sample mean ȳ or standard deviation s computed
on the ungrouped data; the horizontal dashed lines show the exact value for the mean and standard
deviation. Row 1: n = 200, S = 500; Row 2: n = 1000, S = 500.

the un-grouped data. It shows that, whatever the sample size, grouping hardly
affects the (negligible) bias and the sampling variance of the estimator for µ: these
are comparable to the corresponding properties of the sample mean computed from
the un-grouped data. When n = 200, the estimator of the standard deviation shows
a non negligible bias ; when n = 1, 000, the bias is moderate provided that bw does
not exceed 1.2σ.

The root mean squared errors (RMSE, expressed as a percentage of the standard
deviation) are reported for quantile estimates in Table 1. These RMSEs slowly
increase with the amount of grouping with an acceleration when bw is larger than
1.2σ. The values corresponding to bw equal to 0.4σ can be compared to what one
obtains when the quantiles are estimated from the kernel density estimate (KDE) or
using the sample quantiles (SQ) computed from the un-grouped data. The Bayesian
quantile estimate is, most of the time, the best performer: its superiority over KDE
is particularly marked in the lower tail, while it is systematically better than SQ.
The preference for the Bayesian estimate over SQ (computed from the un-grouped
data) persists provided that bw does not exceed 1.2σ, a remarkable result. This is
probably attributable to the joint estimation of quantiles in our approach.

RMSEs can be compared (see Table 2) to what one obtains for these when a
gamma distribution is (correctly) assumed for the unknown density with parame-
ters estimated using the EM algorithm (see Section 1 for some more details). Not
surprisingly, the (nonparametric) Bayesian method is less efficient than the para-
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Quantiles (n = 200)
bw 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

1.6σ 10.2 8.8 8.5 8.5 8.3 8.1 8.1 8.5 9.8 13.7 19.2
1.4σ 9.6 8.1 7.5 7.3 7.3 7.5 7.8 8.3 9.7 13.5 18.9
1.2σ 8.7 7.1 6.9 7.0 7.3 7.6 7.9 8.4 9.6 13.1 18.1
1.0σ 8.9 6.9 6.4 6.5 6.9 7.3 7.7 8.4 9.7 13.3 18.2
0.8σ 8.1 6.5 6.4 6.8 7.0 7.3 7.7 8.3 9.4 12.7 17.5
0.6σ 7.8 6.3 6.1 6.4 6.6 6.9 7.2 7.9 9.1 12.4 16.8
0.4σ 7.5 6.1 6.0 6.3 6.5 6.8 7.2 7.9 9.1 12.2 16.7

KDE 13.2 10.1 7.3 6.4 6.3 6.9 7.8 8.9 10.3 12.6 16.0
SQ 8.6 7.7 7.1 6.8 7.1 7.8 8.4 9.4 10.7 13.0 16.9

Quantiles (n = 1000)
J 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

1.6σ 4.5 4.7 5.1 4.8 4.2 3.7 3.6 4.0 5.0 6.7 8.3
1.4σ 4.5 4.5 4.1 3.6 3.3 3.4 3.7 4.2 4.8 5.9 7.7
1.2σ 3.9 3.5 3.3 3.2 3.3 3.4 3.6 4.0 4.6 6.0 7.6
1.0σ 3.7 3.2 3.1 3.2 3.2 3.3 3.5 3.8 4.4 5.8 7.5
0.8σ 3.5 3.1 3.2 3.1 3.2 3.2 3.4 3.7 4.3 5.7 7.3
0.6σ 3.3 2.9 3.0 3.1 3.1 3.2 3.4 3.7 4.3 5.6 7.2
0.4σ 3.1 2.8 2.9 3.0 3.0 3.2 3.3 3.6 4.2 5.5 7.2

KDE 7.0 5.2 3.7 3.1 3.0 3.2 3.6 3.9 4.6 6.1 7.7
SQ 3.7 3.4 3.4 3.1 3.3 3.5 3.8 4.0 4.7 6.3 8.4

Table 1: 100 ×
√

MSE/σ for selected quantiles when estimation is performed under different
amounts of grouping (with the width bw of the wide bins varying from 0.4σ to 1.6σ) or directly
using the sample quantiles (SQ) computed on the ungrouped data ; n = 200 or 1000 and S = 500.
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Quantiles (n = 200)
bw 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

1.6σ 1.23 1.03 1.05 1.11 1.13 1.11 1.08 1.05 1.03 1.09 1.22
1.4σ 1.21 1.01 1.03 1.08 1.09 1.08 1.05 1.02 1.00 1.07 1.19
1.2σ 1.15 0.97 1.01 1.09 1.12 1.12 1.09 1.05 1.02 1.07 1.20
1.0σ 1.21 0.99 0.98 1.05 1.10 1.11 1.08 1.03 1.00 1.05 1.17
0.8σ 1.12 0.96 0.99 1.04 1.09 1.10 1.07 1.02 0.99 1.06 1.19
0.6σ 1.19 1.05 1.04 1.05 1.06 1.06 1.03 1.00 1.00 1.09 1.25
0.4σ 1.11 1.01 1.06 1.10 1.11 1.08 1.04 1.00 0.99 1.09 1.23

Quantiles (n = 1000)
bw 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

1.6σ 1.12 1.21 1.42 1.39 1.23 1.07 1.00 1.03 1.10 1.16 1.17
1.4σ 1.15 1.20 1.18 1.07 1.01 1.03 1.08 1.12 1.09 1.05 1.10
1.2σ 1.07 0.99 0.99 1.01 1.04 1.07 1.08 1.08 1.09 1.11 1.14
1.0σ 1.11 0.98 1.03 1.07 1.09 1.10 1.08 1.06 1.06 1.10 1.18
0.8σ 1.08 1.00 1.07 1.09 1.09 1.09 1.09 1.09 1.10 1.14 1.20
0.6σ 1.07 1.00 1.08 1.11 1.12 1.12 1.11 1.10 1.09 1.12 1.20
0.4σ 1.08 1.00 1.08 1.11 1.13 1.12 1.11 1.09 1.08 1.14 1.22

Table 2:
√

MSE1/
√

MSE2 for selected quantiles when estimation is performed under different
amounts of grouping (with the width bw of the wide bins varying from 0.4σ to 1.6σ) where subscript
’1’ refers to the Bayesian method and ’2’ to an estimation performed under the correct assumption
of a gamma distribution with parameters estimated using the EM algorithm; n = 200 or 1000 and
S = 500.

metric EM when the right parametric guess is made for the density ; this is more
marked in the tails.

The coverages of the 80% and 90% credible intervals were also investigated for
selected quantiles, see Tables 3 and 4. For the sth data set, the (1 − α) × 100%
credible interval of a β−quantile can be estimated using the α/2 and (1 − α/2)
sample quantiles of the set of β−quantiles associated to each of the M = 3, 500
generated densities. The reported coverages correspond to the proportions of the
so-defined S = 500 credible intervals containing the corresponding quantile of the
target gamma density. The bold values in Tables 3 and 4 indicate where coverages
are significantly different from their large sample frequentist nominal values. One
can see that values close to the nominal levels are obtained provided that bw does
not exceed 1.2σ.

6. Illustrations

6.1. Air pollution
Hasselblad et al. (1980) studied interval censored concentrations of lead in the

blood of New-Yorkers in the 1970-1976 period. The dataset of interest concerns
young Puerto Ricans aged 1-12 years in 1974:

Lead concentration (in µg/dl)
Wide interval (0,15) (15,25) (25,35) (35,45) (45,55) (55,65) 65+

Freq. mj 27 71 32 6 3 0 0

The data were recorded in broad intervals for screening purposes. A blood lead level
over 30 µg/dl is sometimes described as an unacceptable medical risk. Therefore,
one quantity of scientific interest is the proportion of persons with a blood lead level
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Quantiles (n = 200)
bw Credib. 0.2 0.3 0.4 0.5 0.6 0.7 0.8

1.6σ 80% 78 75 74 75 76 78 79
90% 89 87 85 85 87 89 89

1.4σ 80% 81 78 78 78 80 81 80
90% 91 88 87 88 89 91 90

1.2σ 80% 82 77 77 77 76 78 78
90% 91 88 88 87 88 89 89

1.0σ 80% 84 82 79 78 77 76 74
90% 93 92 90 88 88 88 87

0.8σ 80% 82 79 76 77 78 76 75
90% 91 88 87 88 88 88 89

0.6σ 80% 83 79 78 78 78 80 77
90% 92 90 89 89 89 89 90

0.4σ 80% 84 79 77 79 80 78 77
90% 92 89 89 89 89 89 89

Table 3: Estimated coverages of 80% and 90% credible intervals for selected quantiles when es-
timation is performed under different amounts of grouping (with the width bw of the wide bins
varying from 0.4σ to 1.6σ) ; n = 200 and S = 500.

Quantiles (n = 1000)
bw Credib. 0.2 0.3 0.4 0.5 0.6 0.7 0.8

1.6σ 80% 65 65 70 72 79 80 78
90% 82 81 82 85 87 89 90

1.4σ 80% 71 72 76 79 81 81 79
90% 84 84 87 89 91 91 90

1.2σ 80% 77 78 81 83 82 79 80
90% 87 89 89 89 91 90 89

1.0σ 80% 80 78 78 78 79 81 79
90% 89 88 88 87 88 89 90

0.8σ 80% 77 77 77 78 80 79 80
90% 87 87 88 89 90 90 89

0.6σ 80% 77 78 78 78 78 79 79
90% 89 88 88 89 90 90 90

0.4σ 80% 79 77 79 80 79 79 81
90% 88 87 88 89 91 91 89

Table 4: Estimated coverages of 80% and 90% credible intervals for selected quantiles when es-
timation is performed under different amounts of grouping (with the width bw of the wide bins
varying from 0.4σ to 1.6σ) ; n = 1000 and S = 500.
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Figure 4: Histogram of the grouped data of lead concentration (in µg/100ml) in the blood of
young Puerto Ricans in New-York in 1974. Frequentist (dashed line) and Bayesian (thick solid
line) estimates of the latent density with knots positioned at the crosses and a 3rd order penalty.
The thin solid lines delimit the (Bayesian) 90% pointwise credible intervals for the density.

over that threshold. We shall use our strategy for density estimation to evaluate
that proportion.

The last wide bin, 65+, was arbitrarily replaced by (65, 80). Larger bins were
also tried: these were not found to affect the final results. A grid of narrow intervals
of width ∆ = 1 on the domain (0, 80) was considered. Twenty (= K) cubic B-splines
associated to equi-spaced knots on (0, 80) were used in the basis.

A frequentist estimate of the density f of the blood lead level can be derived
using Eq. (2) with τ selected in a grid to minimize the BIC: this yields the dashed
curve on Figure 4. The Bayesian estimate for the latent density (thick solid line)
is also shown, with the 90% pointwise credible interval computed from a chain
of length M = 10, 000. In the Bayesian framework, unimodality was forced using
Eq. (7) by giving a zero prior to spline parameters φ not yielding a unimodal density
fφ.

Point estimates and 90% credible intervals for Pr(Y > 30), the mean, the stan-
dard deviation and two quantiles were also derived:

Quantile
Pr(Y > 30) µY σY 0.20 0.80

Posterior mean 0.14 21.8 8.3 14.6 27.8
90% cred. intervals (0.10,0.19) (20.6,23.0) (7.3,9.6) (13.1, 15.9) (26.1,29.5)

This can be done for any function of the density.

6.2. Mortality table
Our second example comes from an (unpublished) study on historical trends

of Tuberculosis mortality in The Netherlands. Yearly data, starting in 1900, are
available on numbers of deaths, classified according to the IDC (International Dis-
ease Classification). Unfortunately, in the early years, very wide age groups have
been used. In contrast, yearly population numbers are available in one-year age
intervals. So, if we estimate density on an age grid with a spacing of one year, we
can construct a detailed mortality table.
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Figure 5: Histogram of age at death (for all-cause deaths) in The Netherlands in 1907. Frequentist
(dashed line) and Bayesian (thick solid line) estimates of the latent density with knots positioned
at the crosses and a 3rd order penalty. The thin solid lines delimit the (Bayesian) 90% pointwise
credible intervals for the density.

Figure 5 shows the histogram of age at death (for all-cause deaths) in The
Netherlands in 1907. Over 128,000 people died in 1907. The available data stopped
at age 99. An extra interval from 100 to 119 was added, with zero count. Figure 6
shows results for counts of deaths by TB in the same year. The total number is
9,440.

In each case, a basis with 20 cubic splines was used with a difference penalty of
the third order. The sampler was run for 30,000 iterations, which took 3 seconds on
a standard model 2007 MacBook computer. The Langevin-Hastings sampler was
programmed in C to enhance speed.

The fitted density is given on both figures by the thick solid lines: it is smooth
as expected. The credible envelope contains, at each age, 90% of the M=30,000
densities generated by MCMC: these are plausible densities given the limited in-
formation provided by the grouped data. The shape of these envelopes shows that
some of the generated densities are somewhat wiggly within a wide bin. Indeed,
given the very large frequencies, the area under one of these densities over a given
wide bin should be very close to the proportion of deaths corresponding to that bin
(as given by the area of the associated rectangle). Therefore, a density that is much
larger (smaller) than the rectangle height at the beginning of the wide bin should
take a smaller (larger) value by the end of the interval. The fitted density and the
width of the credible envelope are not sensitive to the number of bins and knots
(provided that this number is large enough).

Using Bayes theorem and these two densities, one can estimate the probability
that a death at a given age is due to TB. Indeed, one has

Pr(TB death|Age = k & died) =
Pr(Age = k |TB death)

Pr(Age = k |died)
Pr(TB death|died)

An estimate of the numerator (resp. denominator) can be derived from the first
(resp. second) estimated density, while the last factor in the preceding equation is
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Figure 6: Histogram of the grouped counts of deaths by Tuberculosis in The Netherlands in 1907.
Frequentist (dashed line) and Bayesian (thick solid line) estimates of the latent density with knots
positioned at the crosses and a 3rd order penalty. The thin solid lines delimit the (Bayesian) 90%
pointwise credible intervals for the density.

simply the proportion of deaths due to TB (in 1907). The so-obtained estimate is
given by the thick solid line on Fig. 7. A 90% credible envelope can be obtained
from the repeated computation of the preceding expression for each of the M (pairs
of) densities generated by MCMC: it provides a set of plausible values for the
probability of interest at a given age.

7. Discussion

Grouped data occur in many places. There is a need for good tools for density
estimation on real data. The combination of P-splines and the composite link
model provides such a tool. We have documented its performance with extensive
simulations and illustrated it on real data. We provide two variants, one based on
penalized likelihood, the other fully Bayesian. The latter takes more computing
time (but just a few seconds on a modern computer), but it delivers uncertainty
estimates of all sorts of derived statistics, like moments and quantiles.

The prior distribution on the spline parameters can be used to enforce (or only
to encourage) desired shape properties of the density like monotonicity, unimodality
or log-concavity. A 3rd order penalty was used during the simulations and in the
illustrations as it yields a normal density at the limit for large values of the penalty.

We have advocated, following the arguments in Eilers and Marx (1996), to put
many equidistant knots on the compact interval thought to contain most of the
probability mass. In specific circumstances such as a positive random variable
Y with a peaked long-tailed distribution, this is not optimal. One needs light
smoothing near the peak and strong smoothing in the tails, which is impossible to
obtain with one smoothing parameter. In such cases it is advisable to first transform
the data (e.g., taking the logarithm or the square root) or to use adaptive penalties
(Jullion and Lambert, 2007).
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Figure 7: Probability of death due to Tuberculosis at a given age in The Netherlands in 1907
(thick solid line). The thin solid lines delimit the (Bayesian) 90% pointwise credible intervals for
these probabilities.

Several useful generalizations are possible. Extension to two dimensions is one
of them. Intervals become rectangles and we use tensor product of P-splines to
model the logarithm of the smooth density. Expected counts are given by integrals
of this density over the rectangles. Our initial results look very promising; we shall
report on this elsewhere.

All computation were done with R. A R package will soon be available from the
first author.
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