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Abstract

Multivariate extensions of well-known linear mixed-effects models have been increasingly utilized
in inference by multiple imputation in the analysis of multilevel incomplete data. The normality
assumption for the underlying error terms and random effects plays a crucial role in simulating the
posterior predictive distribution from which the multiple imputations are drawn. The plausibility of
this normality assumption on the subject-specific random effects is assessed. Specifically, the
performance of multiple imputation created under a multivariate linear mixed-effects model is

investigated on a diverse set of incomplete data sets simulated under varying distributional
characteristics. Under moderate amounts of missing data, the simulation study confirms that the
underlying model leads to a well-calibrated procedure with negligible biases and actual coverage
rates close to nominal rates in estimates of the regression coefficients. Estimation quality of the
random-effect variance and association measures, however, are negatively affected from both the
misspecification of the random-effect distribution and number of incompletely-observed variables.
Some of the adverse impacts include lower coverage rates and increased biases.

1. Introduction

The existence of missing data is inevitable in many settings. Among them are multilevel
applications where missing values are arbitrarily seen in the observational units nested within
naturally occurring groups, such as patients nested within hospitals. As most statistical methods
for analyzing data under such circumstances are not designed to handle arbitrary missingness
(some model fitting techniques can handle longitudinal data with drop-out under missing at
random), in general, missing values are recognized as a complicating factor to the analyses.
Indeed, identifying appropriate analytical tools to draw the desired inferences in the presence
of missing data is often a daunting task because such tools need to account for the reasons for
missingness (i.e. missingness mechanism) as well as the key features of the multilevel design
such as levels of variations. Ignoring these essential characteristics may result in misleading
results such as biased parameter estimates (e.g. underestimated variances) and reduced
statistical power (Rubin, 1976, 1987; Schafer, 1997).

One of the most popular methods in conducting inference from incomplete data applications
is multiple imputation (MI) (Rubin, 1987). Ml is a simulation-based inferential tool operating
on M > 1 “completed” data sets, where the missing values are replaced by random draws from
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their respective predictive distributions (e.g. posterior predictive distribution of missing data).
These M versions of completed data are then analyzed by standard complete-data methods and
the results are combined into a single inferential statement using rules to yield estimates,
standard errors and p-values that formally incorporate the missing data uncertainty into the
modeling process (Rubin, 1987). The key ideas and the advantages of Ml are given by Rubin
(1987) and Schafer (1997).

The crucial step in Ml is filling in the missing data by drawing from the posterior predictive
distribution of the missing data (i.e. the conditional distribution of the missing data, given the
observed data and the unknown parameters). This typically involves positing a parametric
model for the data and using it to derive this conditional distribution. In multilevel data
applications, multivariate extensions of the mixed-effects models based on normality have
often been perceived as a natural assumption because (1) it reflects the design features; and (2)
the conditional distribution of the missing data given the observed data is easily tractable
(Schafer and Yucel, 2002). There are two software products implementing the MI-based
inference in multilevel data applications. The first one is freeware and available asa R (R
Development Core Team, 2007) package called pan (Schafer and Yucel, 2002), and the second
one is a macro called mimacro (Carpenter and Goldstein, 2004) which operates within a
commercially available software package MLwiN (Rasbash et al., 2006). Because these are
extensively used, it is important to examine how good their performance is when the underlying
distributional assumption on the random-effects is not met. To the best of our knowledge,
despite their growing use in the analyses of multilevel incomplete data, the plausibility and
impact of the normality assumption of the random-effects have not been thoroughly evaluated.
An evaluation using simulated examples that represent deviations from the standard normality
assumption, such as skewness, non-zero peakedness, heavy tails, and flatness of the density
that clearly violate the characteristics of normality, is provided in the current study.
Performance of MI under varying distributional assumptions and sample sizes is also
examined. Throughout the computations, R package pan (Schafer and Yucel, 2002) was used.

Section 2 gives a brief overview of the model used to impute the missing values for continuous
or nearly-continuous variables and provides a discussion of the crucial assumptions of Ml
inference. Section 3 then summarizes how multiple imputations are created under a
multivariate generalization of mixed-effects models. Section 4 outlines and discusses the
findings of the simulations. Finally, Section 5 concludes the manuscript with a discussion of
the implications of these findings.

2. Models used in Ml inference

2.1. Imputation model

Below, a brief review on the imputation model commonly used to jointly impute missing values
for a set of continuous random variables under a multivariate linear mixed-effects model is
given. This model assumes two levels in the data collection, e.g. repeated measurements from
individuals or secondary sampling units (US residents) within primary sampling units (US
Census blocks). Allowing higher levels of nesting is possible by incorporating the
corresponding random-effects in the imputation model (1) below, which has been implemented
in MLwiN (Browne, 2003, ch. 17; Carpenter and Goldstein, 2004). We focus on the two-level
model because it simplifies the assessment of the impact of the departures from normality and
it is the underlying model of the R package pan.

Let yj denote an n; x r matrix of multivariate responses for sample uniti,i=1, 2, ..., m, where
each row of y; is a joint realization of a set of r variables subject to missing values. In
longitudinal studies, for example, the rows correspond to the measurements of an individual
at each point in time, and in clustered data, the rows correspond to the individuals within a
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cluster. From the perspective of imputing missing values, the variables subject to missingness
are included in y;, regardless of being classified as a predictor (covariate) or a response. Often
there exists auxiliary information that should be included for the reasons of post-imputation
analyses or enriching the reasons for missingness, and we will denote this auxiliary information
by X; for the ith unit or cluster. Multivariate extension of a linear mixed-effects model with
conventional Gaussian error structures on the residuals and random-effects is used as the
imputation model for the missing values in y;:

yi=Xip+Zbi+¢;, (1)

where X; (n;j x p) and Z; (n; % g) are known covariate matrices, B (p x r) is a matrix of regression
coefficients (fixed-effects) common to all units, and b; (g x r) is a matrix of random coefficients,
exhibiting the deviations of cluster i from the overall mean structure. In a fully parametric
mixed-effects model framework, a normal probability distribution is often imposed on these
deviations: vec(b;) ~ N(0, ') (here the vec operator vectorizes a matrix by stacking its columns).
Model (1) assumes that the rows of the residuals matrix &; are independently distributed as N
(0, Z), or alternatively, vec(gj) ~ N(0, £ &® Ip;).

Following the standard notation in the missing data literature, the complete data Y is comprised
of the observed data Yops and Ypis: Y = (Yobs, Ymis). Note that Yons = (Y1(obs), Y2(obs)s -+
Ym(obs)) @aNd Ymis = (Y1(mis): Y2(mis): ---» Ym(mis)) denote all the observed and missing responses.
Further, 6 includes all the unknown parameters §, X, \V'.

2.2. Models for missingness mechanism

Explicit or implicit assumptions are made about the missing-data mechanisms in all missing-
data methods. To set the notation for the discussion of missingness mechanisms, let R denote
the set of missing-value indicators; note that R has the same dimension as Y, and it is always
observed. Each element of R takes the value of 0 or 1 depending on whether the corresponding
element in Y is missing or observed, respectively. Similar to Y, R can be seen as a random
variable; and the conditional distribution of R given Y depends on a set of parameters, say y.
The small letters r and yqps denote the realized values of R and Y gps.

Most tools available to the practitioners of Ml (via software packages such as SAS PROC
MIXED, R packages norm, cat, mix and pan) assume missing at random (MAR) as the
missingness mechanism. This assumption simply means that the missingness probability may
depend on the observed data but not on the missing data over the conditional distribution of
R given Ygps. More formally, P(R|Yobs, Ymis: ¥) = P(R|Yops: ¥). Some misconceptions among
practitioners exist due to the name MAR. The missing values do not occur at random under
MAR; when they do, the mechanism is, in fact, missing completely at random (MCAR). Under
MCAR, the missingness probabilities are independent from both Ygps and Ypis: P(R|Yops:
Ymis: V) = P(R]y). When the missingness probabilities depend on Yis, the missingness
mechanism is called missing not at random (MNAR). Under MNAR, one must posit a model
for the complete data as well as for R. These models are usually very sensitive to the model
assumptions (see detailed discussion by Schafer and Graham (2002) for more information).
Another important concept is the “ignorability” of the missingness mechanism, and it is often
seen as an implied condition once MAR is assumed. Specifically, ignorability occurs when the
mechanism is MAR and the parameters y and 6 are distinct: f(Yqps, R|6, v) = f(Yobs|O)f(R]y) (see
Little and Rubin (2002) and Schafer (1997) for more details).
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3. Multiple imputation under a multivariate linear mixed-effects model

(MLMM)

A brief overview of Ml and how it is conducted under a multivariate linear mixed-effects model
(MLMM) for a two-level incomplete data is given (see Schafer and Yucel (2002) for
computational details). Ml is a Monte Carlo simulation-based technique where the missing
values are replaced by a moderate number (M > 1 and usually less than 10) of simulated values.
How these simulated values are drawn relate to distributional assumptions and the missingness
mechanism (Schafer and Yucel, 2002; Browne, 2003, ch. 17; Carpenter and Goldstein,
2004).

The principle idea of Ml is that it treats the missing data as an explicit source of random
variability which is incorporated into computation of standard errors. The process of creating
imputations, analyzing the imputed data sets and combining the results isa Monte Carlo version
of averaging the statistical results over the predictive distribution of the missing data, | P(6|
Yobs: Ymis)P(YmislYobs)dYmis- In applications with a moderate level of missingness, reasonably
well-calibrated results can be obtained with M < 10. Once the imputations have been created,
the M completed data sets may be analyzed with complete-data techniques, resulting in M set
of estimates and associated standard errors, which are then combined by rules described by
Rubin (1987).

The role of the imputation model in multilevel data such as those arising in longitudinal or
clustered designs, is to preserve the relationships among variables (subject to missingness or
not) and correlations among the observations from the same subject or cluster. Often the
meaning or interpretation of its parameters is not crucial. The key importance of the imputation
model is in its functionality to predict, simulate the missing observations and to capture, as
much as possible, reasons for the missingness (to make the MAR plausible). MLMM given in
(1), for these reasons, has found a common use among imputers. While other models of a
similar nature are also possible, we focus on model (1) as it is the only one implemented in
software products (R package pan and MLwiN).

Multiple imputations under model (1) are M independent draws Y,(,f,.i., — Y,%.) from a posterior
predictive distribution for the missing data, P(Ymis|Yobs) = | P(Ymis|Yobs, 0) P(0]Yopbs)d where
P(6]Yqps) is the observed-data posterior density, which is proportional to the product of a prior
density m(0) and the observed-data likelihood function L(]Yqps) = | L(0]Y)dYmis. As in most

missing-data problems with arbitrary missingness patterns, the posterior distribution P(Y gl

Yobs) cannot be simulated directly. Markov Chain Monte Carlo (MCMC) techniques facilitate
the creation of random draws of Ypis from P(Ynis|Yobs)- In MCMC, one generates a sequence
of dependent random variates whose distribution converges to the desired target — in this case

the posterior distribution of missing data.

An MCMC procedure called the Gibbs sampler is the underlying iterative simulation algorithm
used to draw the missing values from P(Ymis|Yobs)- Specifically, suppose the current versions

of the unknown parameters 80 = (3®, £O, ¥®) and missing data Y""

steps: (1) BV ~P(biY b, Y., 67, independently for i = 1, ..., m; (2)
6 D~ PO o, Yy,

O BED): and finally, (3) Yooy ~POimis Yovs: B D, 670) fori=1, ..., m,
where B = (by, ..., by,). Given the starting values 6©) and Y'*), these steps define one cycle of

an MCMC procedure, or the Gibbs sampler. Executing the cycle repeatedly creates sequences

0 @
{9(1)’ 6.(2)’ } and {Ymis’ Ymis’ =
respectively.

are updated in three

.} whose limiting distributions are P(6]Yqps) and P(Ymis|Yobs),
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To reflect the uncertainty in the unknown parameters 6, the Bayesian paradigm has often been
used in the preceding MCMC to create multiply imputed data sets. Under the model given in
(1), independent inverted Wishart priors are used on the variance components: 1, ¥1: 371
~W(vq, Ag) and ¥~1 ~ W(vy, Ay), where W(v, A) denotes a Wishart variate with v > 0 degrees

of freedom and mean vA > 0. It is helpful to regard v;' A" and v;' A5 " as prior guesses for =
and ¥ with confidence equivalent to v1 and v, degrees of freedom, respectively. For B, an
improper prior uniform ‘density’ over ®P" is often employed. In practice, determination of
these hyperparameters can be difficult. Here, we used the R package mImmm (Yucel, 2007)
which computes maximum likelihood estimates of model (1) parameters to assign as the initial
guesses for ¥ and X and as the initial values p(©, =(© and W(© for the Gibbs sampler.

Computational details of the algorithm derived under these priors, Gaussian assumptions on
the by, €;, and model (1) are given in detail by Schafer and Yucel (2002). An important question
is how to monitor convergence of the underlying Gibbs sampler. As noted by many, including
Gelman et al. (2003), and Schafer (1997), there are two general issues with the convergence:
(1) whether the simulations are representative of the predictive distribution of missing data P
(YmislYobs), and (2) whether the successive draws are significantly correlated. These two issues,
individually or collectively, can seriously damage the overall quality of inferences in terms of
accuracy and representativeness of the target distribution. Simple investigation of time series
plots and autocorrelation function plots is often indicative of the interdependency of the
successive draws. These plots, along with mode-finding algorithms such as EM, can be used
to assess convergence behavior and to determine the number of iterations needed to achieve
independent samples from the desired distributions P(Ymis|Yops) @nd P(60]Yops). Running
multiple independent chains from common starting values and checking if they converge to
the same P(Ynis|Yobs) iS also a powerful and practical tool to monitor the convergence. We
provide more specific details on Section 4.1.5.

Studies in the multiple imputation literature indicate that inference by Ml is quite robust to
departures from model assumptions used to derive the posterior predictive distribution of
missing data P(Ymis|Yons) (Schafer, 1997; Demirtas et al., 2008). Under Gaussian assumptions
on the random effects, bj, and the error terms, &j, MLMM-based MI uses simple conjugacy to
derive the conditional posterior distributions of 6, random-effects and missing data which are
all either normal or Wishart-based distributions (Schafer and Yucel, 2002). These conditionals
constitute the steps of the Gibbs sampler given above, leading to the posterior predictive
distribution of missing data. How sensitive is the inference by multiple imputation to the
Gaussian assumption on the random effects? This question begs several sub-questions: what
are the consequences of imputing under MLMM when the true distribution has heavier tails
than normal, or when it is not symmetric and so on. The real data often do not conform with
normality, and many procedures of statistical practice use the normality as an approximation.
Itis impossible to tailor the analytical solutions and computational algorithms suitable to tackle
the underlying missing-data problem. Therefore, many of the consumers of multiple imputation
rely on the normality assumption when imputing continuous multilevel data.

The next section assesses the viability of the Gaussian assumption in extensive simulation
scenarios representing a diverse set of distributional violations of the assumed normality of the
random-effects. We devise a simulation study primarily to generate the conditions under which
the incomplete data were realized and where the imputation approach relies on the incompatible
normality assumption. This strategy provides a feasible way of evaluation of the performance
of the MLMM imputation with normal random-effects (Demirtas, 2004, 2005).
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4. A simulation study

The characteristics of the MLMM-based M1 when the real data-generating mechanism employs
non-normal random effects are evaluated via the simulation study. Simulation design consists
of the following steps: data generation, imposing a missingness mechanism, Ml inference under
a hypothetical analyst’s model, parameter estimation, and evaluation of this estimation.

4.1. Simulation design

4.1.1. Data generation—A bivariate linear mixed-effects model was used to generate the
complete data:

iy "=181821 "+ bi b "+ g1 €] )

wherei=1,2,...,m,andj=1,2, ..., nj. The number of clusters (m) and observations per
cluster (n;) are varied so that large and small sample behavior were observed. We allowed m
to take values of 100, 50 and 20; n; to take values of 5 and 10 (the n; are assumed to be same
across the clusters).

The error term g; are assumed to be distributed as N(0, X) and our simulations used values of
611 =0.9, 612 = 0.3and o5, = 0.4. Subject-specific random-effects b; = [bi1 bio] T were imposed,
varying distributions with means zero to investigate the performance of Ml-based inferences
under MLMM with non-normal random-effects. Results pertaining to varying distributions of
the random effects are summarized in the Section 4.2. Similar results are also seen with non-
normal distributions on &; and are available upon request from the authors.

* Multivariate normal distribution: This is the default assumption under MLMM
imputation, and was primarily used for comparative reasons. Random variates, say
b, were drawn from Ny (0, Xp):

FBIZp)=Cm) =7/ exp (%bTZ?b) -

Elements of Xy, were set as: rrﬁ1 =3 0,2,2:1.5 and oy, b, = 0.25. These values were also
used in the following distributions.

*  Multivariate tdistribution: Multivariate t distribution with v = 4 was used to observe
the behavior of M1l under MLMM when the underlying distribution of the random-
effects has heavier tails than normal (see Fig. 1). Here the random variates follow the
density function of the form:

[((v+d)/2)

L(v/2)v2qd/2

—(v+d)/2
J(0lZp)= )

1
2,12 (1+;b’2b'b

» Multivariate Laplace distribution: Multivariate Laplace distribution or double
exponential distribution was considered to examine the behavior of Ml inferences
under distributions with heavier tails than normal (see Fig. 2). The density function
is given by,

yID) /2

2 exp (-6, b
27(F(2/7)| bl 7 exp (=(b°X, D)

JblZp, v)= )-
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»  Multivariate uniform distribution: Random bi-variates from Uq(0, 1) were
generated with Xy, to assess the behavior under a flat density.

4.1.2. Imposing missingness mechanism—Throughout the simulation study, we
considered two general cases: (1) missingness is confined to covariates; and (2) arbitrary
missingness is present in both response and covariates of the analyst’s model which is described
in Section 4.1.3. To study the first case, we imposed missing values on the covariate Y, under
the missingness mechanism MAR defined by

P(r,, =1]Y1)

1
01T

— =—1.3+1.1
Plr, =1y

where ry, is the missingness indicator for Y,. Conditioning on completely-observed y; makes
the MAR assumption (Little and Rubin, 2002) as assumed by MLMM imputation, more
plausible. The model stated above results in approximately 45% missingness in Y, values.
Tables 1 and 2 in the results section pertain to case (1).

Missing values were imposed under two independent intercept-only regression models leading
to MCAR mechanisms (stronger assumption than MAR) to study the arbitrary missingness on
both covariates and responses:

P(r, =1)

P(r,,=1)

—2 02
I—H%:DO

log -0.2, log

Under these specifications, rates of missingness in Y1 and Y5 are, on average, 45% and 55%.
Tables 3 and 4 in the results section pertain the case (2).

4.1.3. Estimation of the Analyst’s model—To mimic the practice of MI, the model given
in (3) isassumed to underlie the substantive goal of the analysis, i.e. the analyst’s model. Hence,
we performed Ml inference on the parameters of this model and evaluated the estimation quality
using the criteria given in Section 4.1.4.

Y1Lii=Bo+B1yaij+bitei, )

where bj and ¢; are the random errors for level-1 and level-2 observational units, and assumed

to be N(0, o3) and N(0, o’2). In a typical analysis, the parameters of interest are p = (Bo, B1),
op. For each of the imputed datasets created under MLMM model (1) via the R package pan,
these parameters were estimated using the R package called Ime4 (Bates and Sarkar, 2007). In
Section 4.2, the performance of MI under MLMM in estimating these unknown quantities is
summarized.

One of the important issues in Ml inference is the compatibility of the MI model with the
analyst’s model as well as the data-generation mechanism. M1 practitioners are typically
advised to include auxiliary variables either to account for the causes of missingness or to
improve the missing data procedure. Collins et al. (2001) discuss this subject extensively in
cross-sectional settings and present a simulation study assessing the benefits and costs of
inclusive and restrictive Ml strategies. Theoretical aspects of the compatibility of the M1 model
with the analyst’s model was earlier explored by Meng (1994), who also coined the term
“uncongeniality” (i.e. incompatibility of MI and analyst’s model). In general, to prevent
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inferential biases, the M1 models should be kept general enough to imply any particular
analyst’s model.

4.1.4. Evaluation criteria—Multiple imputations were created using the R package pan.
The simulation procedure (data generation, imposing missing values, creating Mls, finding the
estimates of the analyst’s model (3) for each of the imputed datasets, and combining these
estimates using Rubin’s rules) was repeated 1000 times to fully describe the behavior in a
repetitive sampling environment as well as to reduce the simulation error as much as possible.
Several quantities were used to measure the accuracy as well as the efficiency of parameter
estimates under MLMM-based MI when the distributional assumptions are violated. Briefly,
these quantities are (assuming the unknown parameter is 6):

e Coverage rate (CR): The percentage of times that the true parameter value is covered
in the 95% confidence interval. Here the true parameter value is the average parameter
estimate across the simulations before the missing values are imposed. If a procedure
is working well, the actual coverage should be close to the nominal rate of 95% in
our study. However, it is important to evaluate coverage with the other measures
because high variances can lead to higher CRs. The performance of the procedure is
regarded to be poor if its coverage drops below 90% (Collins et al., 2001). If the
procedure results in CRs that are close to 100% or below 85%, extra caution should
be taken when using that procedure.

* Root-mean-square error (RMSE): Because nonresponse or missing values have
undesirable effect on the variances, it is important to evaluate this adverse effect. An
integrated measure of bias and variance is used, evaluating  in terms of combined

accuracy and precision. RMSE(®) is defined as E@ - 0)2.

« Average width of confidence interval (AW): The distance between the average
lower and upper confidence interval limits across 1000 confidence intervals. A high
CR along with narrow, calibrated confidence intervals translates into greater accuracy
and higher power.

4.1.5. Notes on computation—As noted in Section 3, it is important to monitor the
convergence of the Gibbs sampler in the R package pan, the computational engine for
producing the multiple imputations under model MLMM (1). To assess the convergence, the
Gibbs sampler was run for 10,000 cycles under mild prior distributions; we set

v1=2, AT'=2%, v,=2, and A;'=2¥ where £ and ¥ were computed by the R package mimmm
(Yucel, 2007). We assessed time-series plots and sample autocorrelations for elements of f,
¥ and Y for several of the simulations. This exercise suggested that, even in the extreme cases
of m =100, nj =10 and m = 20, n; = 5, several thousand cycles were needed for the dependence
between successive Gibbs draws to die out. To be quite conservative for the convergence, each
of the simulations in all scenarios used a burn-in period of 10,000 cycles and saved the
simulated values of missing data at 11,000, 12,000, ..., 20,000 as multiple imputations. This
required about 45 min on a 2.6 GHz Intel Core Duo workstation for each of the simulation
scenarios presented in Tables 1-4. These multiply imputed datasets were used to estimate the
model given in (3) using the R package Ime4 (Bates and Sarkar, 2007), leading to 10 sets of

B. 52.(B)), (G, 5.2.(G)) Which were then combined using the M1 combining rules defined by
Rubin (1987).

The simulation results focus on the performance of the MLMM-based M1 on the parameter
estimates of the analyst’s model given by (3) (i.e. fo, B1 and op,). Results show that the residual
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variance term is mostly unaffected by the current model misspecifications, and are, therefore,
not reported here. Tables 1-4 present the results from scenarios that mimic a missing covariate
(y2 missing on average 45% under MAR) and an arbitrary missingness (both y; and y, missing
on average 45% and 55%, respectively, under MCAR). The first column of Tables 1-4 denotes
the respective distributions of the random-effects and error terms used to simulate data and
sample size (m, n;). The second column denotes the parameter of interest (PI): Bg, B1, and op,.
The next column contains the true value (TV) of the P1. The columns 4-7 state the evaluation
measures for each of the unique combination of the first three column values. These are
evaluation measures under the M1 inference (first entry) and complete-case only or case
deletion (second entry). For example, when both the random-effects and residuals are assumed
to be distributed as normal with m = 100, n; = 10, the true value for By is calculated to be 2.713,
as the average of g across the 1000 simulated data before missing values are imposed. The
average Ml-estimate across the 1000 simulations is —2.694 and the average complete-case-
only (restricting the analysis to completely-observed cases) estimate is —1.398. Corresponding
coverage rates are 93% and 8.7%, respectively. Either method of handling missing data uses
the same model-fitting technique as implemented by the R package Ime4 (Bates and Sarkar,
2007).

Tables 1 and 2 show that, across the board, the Ml inferences lead to acceptable parameter
estimation and coverage, indicating a good performance of the MLMM-based MI procedure.
We specifically observe estimates with minimal biases and Cls with excellent coverage rates,
even when the distribution assumption is clearly violated and when the sample sizes are small.
The performance of the M1 is far superior to the unprincipled method of simple case-deletion,
which leads to significant biases as well as dismal coverage rates (in some cases it is as dramatic
as 0%). It is also noted that in some conditions the performance of the MI procedure is not as
satisfactory. When the underlying distribution of the random-effects has heavier tails than
normal, specifically a t distribution (see the bottom panel in Table 1), we observe weak
performance (e.g. higher RMSEs, lower CRs and larger AWSs) in the estimation of . However,
in most conditions, regardless of the distributional assumption of the random-effects, the Ml
procedure results in well-calibrated estimates with minimal bias and coverage rates that are
around the nominal rate of 95%. This consistent performance across the distributions and the
varying sample sizes indicate that, under the MLMM-based Ml inference, large and small
sample properties of the maximum likelihood estimates are satisfied (Demidenko, 2004).
Examples of these properties include unbiasedness, smaller uncertainty measures, and
decreased RMSE for increased sample size. In the mixed-effects framework, we follow the
convention of large m and n; for “large sample” while noting that the large m is more important
for the large sample properties to hold. For more discussion see Demidenko (2004).

Overall performance of the MLMM-based MI is weaker when both variables are subject to
missingness under the non-normal random-effects. We note bigger biases, relatively lower
CRs, higher RMSEs and larger AWSs in Tables 3 and 4 compared to Tables 1 and 2. This simply
means that under arbitrary patterns of missing data, the inferences are more vulnerable to the
misspecification of the random-effect distribution as well as to the small sample sizes. The
estimates describing the associations and the spread of the random-effect distribution are most
impacted. There is little discernible difference in the overall performance in the estimation of
Bo between the two missing-data scenarios (univariate versus arbitrary). When both response
and covariate are subject to missingness, even though the estimation of B4 is still impacted by
the relatively higher RMSE, AW, the CR and small biases indicate that the inference on the
fixed-effects remains insensitive to the non-normality of the random-effects and to the small
sample sizes. This essentially implies that the MI inference leads to estimates with good
frequentist properties even when the joint aspects of data are not well-estimated due to arbitrary
patterns of missing data. However, when the distribution of random-effects is not normal, the
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validity of the M1 inferences on the random-effect variance is highly questionable in terms of
bias, CR or RMSE.

Recall that data generation scenario (given by model (2)) assumes a weak correlation between
Y1 and Y,. To assess whether this assumption has any discernible impact on the performance
measures, a similar simulation experiment to the one presented above under three different
conditions for weak, moderate and high correlations among Y4 and Y, was also conducted. All
scenarios are in agreement on well-calibrated Ml inference under MLMM. Higher correlations
between Y, and Y5, translate into the improved accuracy measures of performance, such as
reduced AWSs, higher rates of coverage, and lower RMSE. However, it should be noted that
even when Y; and Y5 are weakly correlated, these performance measures still indicate
inferences with desirable properties (e.g. unbiasedness, low average width, low RMSE, close
to 95% coverage rates). The effect of the correlations has little impact on the overall
performance measures (Table 5).

5. Discussion

The overall goal of our work was to assess the impact of the normality assumption of the random
effects on the MI-based inferences in multilevel incomplete data applications. In problems
where the missing values are confined to a small number of variables, or when there are sources
for auxiliary information that can be used as predictors in the imputation model, the assumption
of normality does not seem to matter on the final inferences, even when the random-effects are
wrongly assumed to be normal. However, when the missingness is arbitrary in many variables
and the rates of missingness are high (or when the sample sizes are small), the validity of MI-
based estimation is more adversely affected under the similar non-normal random effects. For
incorrectly specified distributions, this negative effect is more clearly seen in parameters
describing the relationships and/or the distribution of the random-effects. This is somewhat
expected, as very little useful data might be available to estimate the “relatedness” aspects of
the distribution. Our simulation study also suggests that taking no action about the missing
data can lead to inferences that are far more misleading, regardless of correct or incorrect
specification of distributional assumptions.

For the purposes of assessing the sensitivity of MLMM-based Ml to distributional assumptions
on the random-effects, a limited number of distinct distributions was considered. Therefore,
the simulation study does not claim to be generalizable, as there are many other scenarios that
can be potentially encountered in real data applications. However, we believe that our
simulation study is valuable in the sense that it sheds some light on the effects of making wrong
assumptions on the distribution of the random effects (or any distribution on the subject-
specific effects when there is not much data support for estimation) in the imputation model.

MiI-based procedures, when cautiously used, produce reasonably well-calibrated inference as
long as the missingness is not widely spread across the data. However, it is important for the
practitioners of missing data methods not to use the MLMM-based software blindly. Similar
to the general practice of model-fitting and the associated checks for assessing the goodness-
of-fit, inference by multiple imputation should always be performed in conjunction with the
tools necessary to assess the plausibility of the underlying assumptions. What are these tools?
While they are not as widely implemented as the imputation procedures, there are still well-
established techniques for this purpose. Posterior predictive checks, as suggested by Gelman
et al. (1996, 2003), can be employed to assess the plausibility of the imputation model. As a
direct check for the quality of the assumed model in creating imputations, one can devise a
calibration strategy to make the imputations better represent the structure of the data and
possibly the varying structure of the clusters. Post-imputation checks and calibration-based
methods are presented in detail by Gelman et al. (2005) and Yucel et al. (2008).
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The results suggest a number of directions for future research. The first direction is the
imputation models with less restrictive distributional assumptions such as those based on
marginal models. These models can be particularly useful in small sample scenarios, especially
when the missingness is seen indiscriminately in the response or covariates. A second
potentially fruitful direction is to explore the ad-hoc methods of imputation, e.g. predictive
mean matching applied to multilevel settings. These methods usually make minimal
assumptions, but may lead to underestimation of the standard errors in the multilevel settings.
However, with improvements to adjust the standard errors, the pay-off might be considerable
when there is a reasonable hesitation to use a fully parametric approach for multiple imputation.
Finally, we believe that the most important direction is the dissemination of any computational
development and/or improvements by means of statistical software.
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Fig. 1.
Bivariate normal and t (with scale parameter 1 and 10 degrees of freedom) distributions.
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