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Summary
Diarrhoea-associated Haemolytic uraemic syndrome (HUS) is a disease that affects the kidneys and
other organs. Motivated by the annual number of cases of HUS collected in Birmingham and
Newcastle of England, respectively, from 1970 to 1989, we consider Bayesian changepoint analysis
with specific attention to Poisson changepoint models. For changepoint models with unknown
number of changepoints, we propose a new non-iterative Bayesian sampling approach (called exact
IBF sampling), which completely avoids the problem of convergence and slow convergence
associated with iterative Markov chain Monte Carlo (MCMC) methods. The idea is to first utilize
the sampling inverse Bayes formula (IBF) to derive the conditional distribution of the latent data
given the observed data, and then to draw iid samples from the complete-data posterior distribution.
For the purpose of selecting the appropriate model (or determining the number of changepoints), we
develop two alternative formulae to exactly calculate marginal likelihood (or Bayes factor) by using
the exact IBF output and the point-wise IBF, respectively. The HUS data are re-analyzed using the
proposed methods. Simulations are implemented to validate the performance of the proposed
methods.
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1. Introduction
Diarrhoea-associated Haemolytic uraemic syndrome (HUS) is a disease that affects the kidneys
and other organs. It poses a substantial threat to infants and young children as one of the leading
causes of both acute and chronic kidney failures. HUS is most common in the warmer months
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of the year, following a gastrointestinal illness caused primarily by a particular strain of
bacterium, Escherichia Coli O157:H7 (Milford et al., 1990). These bacteria (E. Coli O157:H7)
produce extremely potent toxins which are the main cause of the symptoms related to the
gastrointestinal illness. Table 1 displays the annual number of cases of HUS collected in
Birmingham and Newcastle of England, respectively, from 1970 to 1989 (Tarr et al., 1989;
Henderson and Matthews, 1993). The primary concern is the incidence of HUS and when the
frequency of cases increases sharply. In the mean-corrected cumulative sum plot (Figure 1),
the annual totals appear to increase abruptly at about 1980 for the Birmingham series and 1976,
1984 for the Newcastle series. Therefore, a changepoint analysis of the data with Poisson
models seems to be appropriate.

Changepoint problems (CPPs) are often encountered in medicine and other fields, e.g.,
economics, finance, psychology, signal processing, industrial system control and geology.
Typically, a sequence of data is collected over a period of time, we wish to make inference
about the location of one or more points of the sequence at which there is a change in the model.
The literature on CPPs is extensive. For Poisson process CPPs, a well-known example concerns
British coal-mining disasters from 1851–1962 (originally gathered by Maguire et al. (1952)
and corrected by Jarrett (1979)). Frequentist investigations appear in Worsley (1986) and
Siegmund (1988), while traditional Bayesian analysis and Markov chain Monte Carlo
(MCMC) hierarchical Bayesian analysis are presented in Raftery and Akman (1986) and
Carlin, Gelfand and Smith (1992), respectively. Arnold (1993) considered the application of
the Gibbs sampler to a Poisson distribution with a changepoint. For binomial CPPs, Smith
(1975) presented the conventional Bayesian approach for a finite sequence of independent
observations with details on binomial single-changepoint model. Smith (1980) studied
binomial multiple-changepoint model, which were investigated by Stephens (1994) using the
Gibbs sampler. For binary CPPs, Halpern (1999) applied a novel changepoint statistic based
on the minimum value, over possible changepoint locations of Fisher’s Exact Test to assessing
recombination in genetic sequences of HIV. For multiple change-point models, Chib (1998)
provided a comparison study and Fearnhead and Liu (2007) proposed an on-line algorithm.
Three comprehensive reviews on CPPs are provided by Brodsky and Darkhovsky (1993), Chen
and Gupta (2000) and more recently by Wu (2005).

The primary objective in the analysis of CPPs is to make inferences about unknown
changepoints and the associated parameters. Although the MCMC methods can be employed
in such Bayesian analyses, in our viewpoint, the difficulties lie in monitoring the convergence
of the Markov chains. In addition, they could suffer from slow convergence. These issues have
prompted some researchers to take the view that the MCMC methods are to be used only when
there is no better alternative (see, e.g., discussions in Evans and Swartz (1995, 2000) and
Hobert and Casella (1996)). In this article, we first propose a new non-iterative Bayesian
sampling approach (called exact IBF sampling), which completely avoids the problem of
convergence and slow convergence. The idea is to first utilize the sampling-wise inverse Bayes
formulae (IBF, Tan et al., 2003) to derive the conditional distribution of the missing data given
the observed data, and then to draw iid samples from the complete-data posterior distribution.

In practice, we are generally uncertain about the number of changepoints. Hence, model
determination is the first task in changepoint analysis. Let Ms represent a model with s
changepoints. A classical approach of selecting the most appropriate model is the likelihood
ratio test by comparing Ms with Ms+1 (e.g., Henderson and Matthews, 1993). Gelfand and Dey
(1994) reviewed the behavior of the likelihood ratio statistic and well-known adjustments to
it. In the context of Bayesian analysis, Bayes factor is a useful tool for model choice. However,
the calculation of Bayes factor itself has proved extremely challenging (Kass and Raftery,
1995). Approximate computation of Bayes factor (equivalently, marginal likelihood) can be
implemented by using the Gibbs output (Chib, 1995) or the more general MCMC output (Chen,
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2005). In this paper, we will we develop two alternative formulae to exactly calculate marginal
likelihood (or Bayes factor) by using the exact IBF output and the point-wise IBF (Tan et al.,
2003), respectively.

The rest of this paper is organized as follows. In Section 2, we formulate the general Bayesian
changepoint models. In Section 3, we propose a non-iterative Bayesian sampling approach
(called the exact IBF sampling) and derive two simple formulae to exactly calculate the
marginal likelihood. Section 4 considers Poisson models with single and multiple changepoints
and the corresponding Bayesian model selection. In Section 5, we re-analyze the HUS data
using the proposed methods. Simulations are conducted to validate the performance of the
proposed methods in Section 6. Conclusion and comment are presented in Section 7.

2. Bayesian formulation for changepoint problems
Let  denote a realization of the sequence of independent random variables  of
length n. The random variables  are said to have a changepoint at r (1 ≤ r ≤ n) if Yi ~
f1(y|θ1) (i = 1,…, r) and Yi ~ f2(y|θ2) (i = r + 1,…, n), where f1(y|θ1) ≠ f2(y|θ2), θ1 and θ2 could
be vector-valued. In particular, the point r = n represents ‘no change’. Thus, the likelihood
function becomes

(2.1)

Using π(r, θ1, θ2) as a joint prior distribution for r, θ1, and θ2, the joint posterior distribution
is given by

(2.2)

This single-changepoint problem can be easily generalized to incorporate multiple changes in
the sequence. The Bayesian formulation for the multiple-changepoint problem is almost
identical with that for the single-changepoint problem. Let Ms represent a model with s
changepoints denoted by r = (r1,…, rs)⊤. Similar to (2.2), under Ms (s is given), we have

(2.3)

where r0 ≡ 0, rs+1 ≡ n, and the changepoints r take values in the domain

(2.4)

The primary objective is to make inferences about the unknown changepoints r and the
unknown parameters (θ1,…, θs+1).

3. Exact IBF sampling and marginal likelihood calculation
For a given model, let Yobs denote the observed data, Z the missing data or latent data (e.g.,
changepoints) and θ the model-specific parameter vector. We further denote the likelihood
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function by L(Yobs|θ) and the marginal density of Yobs (equivalently, the marginal likelihood)
by m(Yobs). Within a Bayesian framework, we assume that the prior density is π(θ). Two basic
tasks are (i) for the purpose of Bayesian inferences, how to obtain iid samples from the observed
posterior f(θ|Yobs) or equivalently from the joint posterior f(Z, θ|Yobs), and (ii) for the purpose
of Bayesian model choice, how to exactly calculate the marginal likelihood m(Yobs) for the
given model.

3.1 Exact IBF sampling
In general, we can obtain explicit expressions for both the complete-data posterior distribution
f(θ|Yobs, Z) and the conditional predictive distribution f(Z|Yobs, θ), that is, the sampling from
the two distributions and the evaluation of the two densities can routinely be implemented. The
fundamental conditional sampling principle implies

which states that if we could draw  and simulate θ(ℓ) ~ f(θ|Yobs, Z(ℓ)), then

 are iid samples from the joint posterior f(Z, θ|Yobs). Therefore, the key is to be able
to generate iid samples from f(Z|Yobs).

Let (θ|Yobs) and (Z|Yobs) denote the conditional supports of θ|Yobs and Z|Yobs, respectively.
The sampling IBF shows that (Tan et al., 2003)

(3.1)

Consider the case where Z is a discrete random variable/vector taking finite values on the
conditional support (Z|Yobs). For example, in (2.2), the changepoint r takes values in {1,…,
n}; and in (2.3), the s changepoints (r1,…, rs) take values in (r|Yobs) defined by (2.4). Without
loss of generality, we denote the conditional support of Z|(Yobs, θ) by  (Z|Yobs, θ) = {z1,…,
zK}. Since f(Z|Yobs, θ) is available, firstly, we can directly identify  from the model
specification and thus all  are known. Secondly, we assume that  do not depend on
the value of θ, therefore, we have

Because of the discreteness of Z, the notation f(zk|Yobs) will used to denote the pmf, i.e., f(zk|
Yobs) = Pr{Z = zk|Yobs}. Thus, the key is to find pk = f(zk|Yobs) for k = 1, …, K. For some θ0 ∈

(θ|Yobs), let

(3.2)

As both f(Z|Yobs, θ) and f(θ|Yobs, Z) are available, the computation of (3.2) is straight-forward.
Observing that all  depend on θ0, we denote qk by qk(θ0) to emphasize its dependency on
θ0. From the sampling IBF (3.1), we obtain
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(3.3)

where  do not depend on θ0 since  are normalizing probabilities of . Thus, it is
easy to sample from f(Z|Yobs) since it is a discrete distribution with probabilities  on

 (e.g., the built-in S-plus function “ sample” is especially designed for this purpose). We
summarize the algorithm as follows.

The exact ibf sampling—Given both the complete-data posterior distribution f(θ|Yobs, Z)
and the conditional predictive distribution f(Z|Yobs, θ),

a. Identify (Z|Yobs) = {z1,…, zK} from f(Z|Yobs, θ) and calculate  according to (3.3)
and (3.2);

b. Generate iid samples  of Z from the pmf f(Z|Yobs) with probabilities  on
;

c. Generate θ(ℓ) ~ f(θ|Yobs, Z(ℓ)) for ℓ= 1,…,L, then  are iid samples from the
observed posterior distribution f(θ|Yobs).

3.2 Exact calculation of marginal likelihood
In this subsection, we provide two alternative formulae to calculate the marginal likelihood m

(Yobs). Let  denote the output from the exact IBF sampling. From Bayes formula:
m(Yobs) = L(Yobs|θ)π(θ)/f(θ|Yobs), which holds for any θ, we have

(3.4)

For estimation efficiency, θ0 is generally taken to be a high-density point in the support of the
posterior (e.g, the posterior mode/mean as suggested by Chib (1995)). Since the observed
posterior density can be written as

we obtain a Monte Carlo estimate of f(θ|Yobs) at θ0,

(3.5)

where {Z(ℓ)} are iid samples from f(Z|Yobs). Note that this estimate is simulation consistent,
i.e., f̂(θ0|Yobs) → f(θ0|Yobs) as L → ∞. Combining (3.4) with (3.5), we have an approximate
formula to calculate m(Yobs).

On the other hand, note that Z is a discrete random variable taking values on , using the
point-wise IBF (Tan et al., 2003): f(θ|Yobs) = {∫ f(Z|Yobs, θ)/f(θ|Yobs, Z) dZ}−1, we explicitly
have
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(3.6)

where pk and qk(θ0) are defined in (3.3) and (3.2), respectively. Substituting (3.6) into (3.4)
gives an exact formula to calculate m(Yobs).

4. Poisson models with changepoints
4.1 A single changepoint

Let Ms represent a model with s changepoints, Poisson(θ) a Poisson distribution with mean θ
and Poisson(·|θ) the corresponding probability mass function. We first consider the single-
changepoint model M1. In (2.1), we let fj(y|θj) = Poisson(y|θj) for j = 1, 2. As a joint prior
distribution for (r, θ1, θ2), we assume that r, θ1 and θ2 are independent, r has a discrete uniform
distribution on {1,…,n},

(4.1)

where Ga(a, b) is a gamma distribution with density Ga(x|a, b) = baxa−1e−bx/Γ(a), x ≥ 0. Thus,
the joint posterior distribution (2.2) becomes

where . Direct calculation yields

(4.2)

(4.3)

We can treat the changepoint r as latent variable Z and (θ1, θ2) as parameter vector θ. By using
(3.1)–(3.3), for any given (θ1,0, θ2,0) ∈ (θ1, θ2|Yobs), we immediately obtain

(4.4)

where r = 1,…,n. It again confirms that the right-hand side of (4.4) does not depend on (θ1,0,
θ2,0). Based on (4.4) and (4.2), we can obtain iid posterior samples for the changepoint r and
the parameters (θ1, θ2) by using the exact IBF sampling.
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4.2 Multiple changepoints
Now we consider the multiple-changepoints model Ms. In (2.3), let fj(y|θj) = Poisson(θj) for j
= 1,…, s + 1, where θ = (θ1,…, θs+1)⊤ is the mean vector and r = (r1,…, rs)⊤ denote the s
changepoints taking integer values on the domain (r|Yobs) defined in (2.4). We use
independent priors for r, θ, and r has a discrete uniform prior on (r|Yobs),

(4.5)

Thus, the joint posterior distribution (2.3) becomes

(4.6)

where , r0 ≡ 0 and rs+1 ≡ n. From (4.6), we have

(4.7)

(4.8)

We treat r as latent variables and θ as parameter vector. By using (3.1)–(3.3), for any given
θ0 ∈ (θ|Yobs), we immediately obtain

(4.9)

Based on (4.9) and (4.7), we can obtain iid posterior samples for the changepoints r and the
parameter vector θ by using the exact IBF sampling.

4.3 Determining the number of changepoints via Bayes factor
In practice, we are generally uncertain about the number of changepoints. Hence, model
determination is the first task in changepoint analysis. Let Ms represent the Poisson model with
s changepoints r = (r1,…, rs)⊤ and θ = (θ1,…, θs+1)⊤ the mean vector. Further let Θ = (r, θ)
and Θ ̂ = (r ̂, θ ̂) denote the posterior means obtained via the exact IBF output. Under model
Ms, from (3.4), the log-marginal likelihood is given by

(4.10)

where f(Θ ̂|Yobs,Ms) = f(r ̂|Yobs,Ms) · f(θ ̂|Yobs, r ̂,Ms). We choose the model with the largest log-
marginal likelihood. Essentially, the marginal likelihood approach is the same as the Bayes
factor approach. A Bayes factor is defined as the ratio of posterior odds versus prior odds,
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which is simply a ratio of two marginal likelihoods. For comparing models Ms and Ms+1, the
Bayes factor for model Ms vs. model Ms+1 is

(4.11)

Jeffreys (1961, Appendix B) suggested interpreting Bs,s+1 in half-units on the log10 scale, i.e.,
when Bs,s+1 falls in (1, 3.2), (3.2, 10), (10, 100) and (100, +∞), the evidence against Ms+1 is
not worth more than a bare mention, substantial, strong and decisive, respectively.

5. Analysis of the HUS data
We first analyze the Birmingham data in Table 1. Denote the number of cases of HUS in
Birmingham in year i by yi (i = 1,…,n with n = 20, and i = 1 denotes the year 1970). To determine
the number of changepoints via Bayes factor, we can not use non-informative prior distributions
because they are improper. We investigate models M0, M1 and M2 and choose standard
exponential prior distributions, specified by setting all aj = bj = 1 in (4.5). Based on (4.10), we
calculate log-marginal likelihoods for the three models, and we obtain logm(Yobs|M0) = −86.14,
logm(Yobs|M1) = −57.56 and logm(Yobs|M2) = −57.00. Therefore, M2 seems to be the most
appropriate choice. From (4.11), the Bayes factor for M1 versus M0 is 2.583 × 1012, while the
Bayes factor for M2 versus M1 is 1.751. That is, the difference between M2 and M1 is not worth
to mention. Therefore, we select M1, which is consistent with the pattern indicated in Figure
1.

Under M1, we assume that  and , where r is
the unknown changepoint and θ1 ≠ θ2. Table 2 contains the exact posterior probabilities for
the changepoint r using (4.4). The changepoint occurs at r = 11 (i.e., year 1980) with posterior
probability 0.9795. Based on (4.4) and (4.2), we generate 20, 000 iid posterior samples by
using the exact IBF sampling, and the Bayes estimates of r, θ1 and θ2 are given by 11.013,
1.593 and 9.609. The corresponding Bayes standard errors are 0.143, 0.370 and 0.985. The
95% Bayes credible intervals for θ1 and θ2 are [0.952, 2.393] and [7.800, 11.621], respectively.
Figures 2(a) and 2(b) show the histogram of the changepoint r and the posterior densities of
θ1 and θ2, which are estimated by a kernel density smoother based on iid posterior samples.
Figure 2(c) depicts the annual numbers of HUS for Birmingham series, the identified
changepoint position, and the average number of cases before and after the changepoint.

Now we analyze the Newcastle data in Table 1. Similarly, three log-marginal likelihoods are
given by logm(Yobs|M0) = −85.24, logm(Yobs|M1) = −64.13 and logm(Yobs|M2) = −64.10. From
(4.11), the Bayes factor for M2 versus M0 is 1.5169 × 109, and the Bayes factor for M2 versus
M1 is 1.03. Therefore, we select M2, which is consistent with the pattern as indicated in Figure
1. In addition, the selection of M2 is also identical to that obtained by Henderson and Matthews
(1993).

Under M2, we assume that , and
, where (r1, r2) are the unknown changepoints and θ1 ≠ θ2 ≠ θ3.

Using the standard exponential prior distributions, specified by letting aj = bj = 1 (j = 1, 2, 3)
in (4.5), we obtained exact joint posterior probabilities for the changepoint pair (r1, r2) from
(4.9). Two changepoints occur at r1 = 7 and r2 = 15 (i.e., year 1976 and year 1984) with the
joint posterior probability being 0.3589. Based on (4.9) and (4.7), we generated 20, 000 iid
posterior samples. The resulting Bayes estimates of r1, r2, θ1, θ2 and θ3 are given by 7.638,
15.47, 1.805, 3.591 and 9.643. The 95% Bayes credible intervals for θ1, θ2 and θ3 are [0.7461,
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3.620], [1.5085, 11.50] and [0.2806, 13.32], respectively. Figures 3(a) and 3(b) display the
histograms of r1 and r2. Figures 3(c) shows the posterior densities of θj (j = 1, 2, 3). Figure 3
(d) depicts the annual numbers of HUS, two identified changepoints, and the average number
of cases before and after the two changepoints.

6. Simulation Studies

The first simulated dataset consists of 100 observations with  and
. The simulated observations are shown in Figure 4(c). We again

use standard exponential distributions as priors of θ. From (4.10), log-marginal likelihoods for
three models M0, M1 and M2 are given by logm(Yobs|M0) = −187.1, logm(Yobs|M1) = −148.8
and logm(Yobs|M2) = −149.3. From (4.11), we have B10 = 4.3 × 1016 and B12 = 1.649, which
suggest that M1 is appropriate. Computations according to (4.4) show that the changepoint
occurs at r = 50 with posterior probability 0.807. Based on (4.4) and (4.2), we generate 30, 000
iid posterior samples by using the exact IBF sampling. The Bayes means, standard errors, and
95% credible intervals for (r, θ1, θ2) are given by (50.6, 2.8226, 0.5249), (1.642, 0.240, 0.103)
and [50, 56], [2.373, 3.315], [0.341, 0.742], respectively. Figures 4(a) and 4(b) show the
histogram of r and the posterior densities of θ1 and θ2. Figure 4(c) displays the 100 simulated
observations, the identified changepoint position, and the Bayes estimates of θ1 and θ2.

The second simulated dataset consists of 100 observations:
, and . The

simulated observations are shown in Figure 5(d). Similarly, we have logm(Yobs|M0) = −249.7,
logm(Yobs|M1) = −222.2 and logm(Yobs|M2) = −185.6, B20 = 6.891 × 1027, and B21 = 7.856 ×,
which suggest that M2 is appropriate. Computations according to (4.9) show that the
changepoints occur at r1 = 20 and r2 = 70 with the joint posterior probability 0.7912. Based
on (4.9) and (4.7), we generate 30, 000 iid posterior samples by using the exact IBF sampling.
The Bayes means, standard errors, and 95% credible intervals for (r1, r2, θ1, θ2, θ3) are given
by (20.0091, 69.7871, 5.7120, 0.8427, 3.8190), (0.1019, 0.4457, 0.5230, 0.1296, 0.3517) and
[20, 20], [69, 70], [4.735, 6.789], [0.610, 1.116], [3.161, 4.537], respectively. Figures 5(a) and
4(b) show the histogram of r1 and r2. Figures 5(c) shows the posterior densities of θ1, θ2 and
θ3. Figure 5(d) displays the 100 simulated observations, the two identified changepoint
positions, and the Bayes estimates of θ1, θ2 and θ3.

7. Discussion
It is noted that Barry and Hartigan (1992, 1993) and Fearnhead (2006) describe methods for
calculating marginal likelihoods for multiple change-point problems. The latter also discusses
methods for simulating from the change-point positions. Barry and Hartigan (1992, 1993)
assumed a specific prior structure on the number and position of changepoints; while Fearnhead
(2006) considered models with a fixed number of change-points. Although it was claimed that
these methods can deal with arbitrarily large numbers of change-points, these methods are quite
complicated in implementation. For example, the parameter values may be estimated exactly
in O(n3) calculations, or to an adequate approximation by MCMC methods that are O(n) in the
number of observations.

In this paper, we considered Poisson changepoint analysis by using an exact IBF sampling
approach. The advantages of the proposed exact IBF sampling method over MCMC methods
are that: (i) there is no requirement to diagnose whether the MCMC algorithms has converged,
i.e., the former entirely avoids the problems of convergence and slow convergence associated
with MCMC methods; (ii) because the samples generated from the observed posterior
distribution are independent it is straightforward to quantify uncertainty in estimates of features
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of the posterior distributions based on them. To determine the number of changepoints, we
developed simple methods to exactly calculate marginal likelihood (or Bayes factor). Two
simulations are conducted to validate the performance of the proposed methods.

We should point out that the proposed approach is limited. For example, let Ms represent a
model with s changepoints and the s-changepoint is denoted by r = (r1,…, rs)⊤. For a large
number of observations or s ≥ 4, the calculation of (4.9) becomes prohibitive. In this cases, the
general IBF sampler (Tian et al., 2003) is a feasible alternative.

In the re-analysis of the HUS data using the proposed methods, we have focused on the annual
numbers of cases rather than the incidence of the HUS because accurate population are difficult
to obtain for the catchment areas. Possibilities for further analysis might consider extra-Poisson
variation, treads in mean, the influence of some covariates (e.g., age, race) and so on.
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Figure 1.
Mean-corrected cumulative sum plot for the number of cases at Birmingham and Newcastle.
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Figure 2.
Birmingham data set. (a) Histogram of the changepoint r. (b) The posterior densities of θ1 and
θ2 estimated by a kernel density smoother based on 20, 000 iid samples generated via the exact
IBF sampling. (c) The annual numbers of cases of HUS from 1970 to 1989. The dotted vertical
line denotes the identified changepoint position, the lower horizontal line the average number
(1.593) of cases during 1970–1980, and the upper horizontal line the average number (9.609)
of cases during 1980–1989.
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Figure 3.
Newcastle data set. (a) Histogram of the changepoint r1. (b) Histogram of the changepoint
r2. (c) The posterior densities of θ1, θ2 and θ3 estimated by a kernel density smoother based
on 20, 000 iid samples generated via the exact IBF sampling. (d) The annual numbers of cases
of HUS at Newcastle from 1970 to 1989. The two vertical lines denote two identified
changepoint positions (1976 (1984), the three horizontal lines the average numbers (1.805,
3.591, 9.643) of cases during 1970–1976, 1976–1984 and 1984–1989, respectively.
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Figure 4.
Simulated dataset with one changepoint. (a) Histogram of r. (b) The posterior densities of θ1
and θ2. (c) The 100 simulated observations. The dotted vertical line denotes the identified
changepoint position (r = 50), the left horizontal line the Bayes estimate of θ1 (θ ̂1 = 2.8226),
and the right horizontal line the Bayes estimate of θ ̂2 (θ ̂2 = 0.5249).
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Figure 5.
Simulated dataset with two changepoints. (a) Histogram of r1. (b) Histogram of r2. (c) The
posterior densities of θ1, θ2 and θ3. (d) The 100 simulated observations, two identified
changepoints (20, 70), and three Bayes estimates (θ ̂1 = 5.7120, θ ̂2 = 0.8427 and θ ̂3 = 3.8190).
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