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Abstract

Model-based clustering using a family of Gaussian mixture models, with parsimo-
nious factor analysis-like covariance structure, is described and an efficient algorithm
for its implementation is presented. This algorithm uses the alternating expectation-
conditional maximization (AECM) variant of the expectation-maximization (EM)
algorithm. Two central issues around the implementation of this family of mod-
els, namely model selection and convergence criteria, are discussed. These central
issues also have implications for other model-based clustering techniques and for
the implementation of techniques like the EM algorithm, in general. The Bayesian
information criterion (BIC) is used for model selection and Aitken’s acceleration,
which is shown to outperform the lack of progress criterion, is used to determine
convergence. A brief introduction to parallel computing is then given before the
implementation of this algorithm in parallel is facilitated within the master-slave
paradigm. A simulation study is then carried out to confirm the effectiveness of this
parallelization. The resulting software is applied to two data sets to demonstrate its
effectiveness when compared to existing software.
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1 Introduction

Statistical learning can be either supervised or unsupervised, depending on
whether the outcome variable is present, or even known. In an unsupervised
learning context, the outcome variable is either absent or non-existent. Clus-
tering is a form of unsupervised learning where the outcome variable is cate-
gorical. Model-based clustering is a clustering methodology whereby the group
memberships are learned by imposing some assumed mixture modeling struc-
ture on data and then estimating the parameters, usually using some variant
of the expectation-maximization (EM) algorithm (Dempster et al. 1977). Most
commonly, the Gaussian mixture model has been used for model-based cluster-
ing (Titterington et al. 1985, Ghahramani & Hinton 1997, Tipping & Bishop
1999, Fraley & Raftery 2002, McLachlan et al. 2003, McNicholas & Murphy
2008).

The density of the Gaussian mixture model is of the form

g(x) =
G∑

g=1

πgf(x | µg,Σg), (1)

where

f(x | µg,Σg) =
1√

(2π)p|Σg |
exp

{
− 1

2
(x − µg)

′Σ−1
g (x − µg)

}
,

µg is the group mean, Σg is the group covariance matrix and πg is the prob-
ability of membership of group g.

In Section 2, we review the MCLUST model-based clustering framework which
is based on Gaussian mixture models with constrained eigen-decomposed co-
variance structure. We also review an extension of the MCLUST method that
incorporates variable selection. In Section 3, we review the parsimonious Gaus-
sian mixture model (PGMM) approach to model-based clustering, which is
based on Gaussian mixture models with parsimonious factor analysis-like co-
variance structures; the implementation of this family of models is the primary
focus of this paper.

Aspects of model fitting in the PGMM paradigm are discussed in Section 4
with particular emphasis on the alternating expectation-conditional maxi-
mization (AECM) algorithm (Section 4.2), convergence assessment (Section 4.3)
and model selection (Section 4.4). In Section 5, parallel implementation of the
PGMM approach, within the master-slave paradigm, is described. The result-
ing software is then applied to simulated data to confirm that the speed-up
gained by using this parallel implementation is linear up to a point.
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The PGMM approach is demonstrated on two datasets in Section 6 and the
method is shown to give clustering performance that is competitive with pop-
ular model-based clustering methods. We conclude, in Section 7, with a sum-
mary of this paper.

2 MCLUST and Variable Selection

Banfield & Raftery (1993), Celeux & Govaert (1995) and Fraley & Raftery
(1998, 2002) used an eigenvalue decomposition of the Σg to give rise to the
MCLUST family of mixture models. The eigenvalue decomposition in question
is of the form

Σg = λgDgAgD
′
g, (2)

where λg is a constant, Dg is a matrix consisting of the eigenvectors of Σg and
Ag is a diagonal matrix with entries proportional to the eigenvalues of Σg.
This model-based clustering technique is supported by the mclust package
(Fraley & Raftery 2003) for the statistical software R (R Development Core
Team 2008).

Raftery & Dean (2006) developed a variable selection technique based on the
MCLUST family of models. Variables are selected in a step-wise manner and
models are compared using Bayes factors (Kass & Raftery 1995). The variable
selection technique is supported by the clustvarsel package (Dean & Raftery
2006) for R, which involves repeated application of mclust.

Computationally, it should be noted that while the mclust and clustvarsel

software packages are very efficient implementations, the members of the
MCLUST family with non-diagonal covariance structure have O(p2) covari-
ance parameters. Therefore, these model-based clustering techniques are some-
what limited, by their nature, in applications involving high-dimensional data.

3 Parsimonious Gaussian Mixture Models

Factor analysis (Spearman 1904) is a data reduction technique in which a
p-dimensional real-valued data vector x is modelled using a q-dimensional
vector of latent variables u, where q ≪ p. The u are often called factors
and they can be considered unobservable. The factor analysis model can be
written x = µ + Λu + ǫ, where the factor loadings are given by the p × q
matrix Λ, the latent variables u ∼ N(0, Iq) and ǫ ∼ N(0,Ψ), where Ψ =
diag(ψ1, ψ2, . . . , ψp). Therefore, the marginal distribution of x is multivariate
Gaussian with mean µ and covariance matrix ΛΛ′ + Ψ.

3
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Recall Equation 1 and impose the factor analysis covariance structure on the
group covariance matrix, so that Σg = ΛgΛ

′
g + Ψg. Now, the Λg and Ψg

matrices could be constrained to be equal across groups and the isotropic
constraint Ψg = ψgIp, could also be imposed. These constraints lead to the
eight PGMMs that were introduced by McNicholas & Murphy (2005, 2008).
The covariance structure of these eight mixture models, their nomenclature
and number of covariance parameters are given in Table 1.

Table 1
The covariance structure, nomenclature and number of covariance parameters for
each PGMM.
Model ID Λg = Λ Ψg = Ψ Ψg = ψgIp Covariance Parameters

CCC Constrained Constrained Constrained [pq − q(q − 1)/2] + 1

CCU Constrained Constrained Unconst. [pq − q(q − 1)/2] + p

CUC Constrained Unconst. Constrained [pq − q(q − 1)/2] +G

CUU Constrained Unconst. Unconst. [pq − q(q − 1)/2] +Gp

UCC Unconst. Constrained Constrained G[pq − q(q − 1)/2] + 1

UCU Unconst. Constrained Unconst. G[pq − q(q − 1)/2] + p

UUC Unconst. Unconst. Constrained G[pq − q(q − 1)/2] +G

UUU Unconst. Unconst. Unconst. G[pq − q(q − 1)/2] +Gp

From Table 1, a key computational fact becomes apparent: the number co-
variance parameters for each model is O(p). Therefore, this family of models
has greater potential for application to high-dimensional data than either the
MCLUST or variable selection techniques.

Note that the UCU and UUU models are also known as the mixtures of factor
analyzers model (Ghahramani & Hinton 1997, McLachlan et al. 2003) and the
UUC model is known as the mixtures of probabilistic principal component
analyzers model (Tipping & Bishop 1999).

4 Model Fitting

4.1 The EM Algorithm

The EM algorithm provides an iterative method of finding maximum like-
lihood estimates where data is incomplete or some data is missing. Impor-
tantly, data does not actually need to be incomplete and framing problems
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as incomplete-data problems often leads to efficient solutions using the EM
algorithm.

In the E-step, the expected value of the complete-data log-likelihood is com-
puted based on the current estimates of the model parameters and the complete-
data vector, which is the vector of observed data plus missing data. In the M-
step, this expected value is maximized with respect to the model parameters.

These two steps are repeated iteratively until convergence is reached. There
are a variety of ways to measure convergence: one common approach is to
take convergence as the point at which the difference in successive estimates
of the log-likelihood is sufficiently small. This, however, is not a convergence
criterion but rather an indication of lack of progress: this is discussed further in
Section 4.3 and an actual convergence criteria is presented. A comprehensive
overview of the EM algorithm and variants is given by McLachlan & Krishnan
(2008).

4.2 The AECM Algorithm

The maximum likelihood estimates of the parameters for each PGMM are
found using an alternating expectation-conditional maximization (AECM) al-
gorithm (Meng & van Dyk 1997). The expectation-conditional maximization
(ECM) algorithm (Meng & Rubin 1993) replaces the M-step by a series of
conditional maximization steps and the AECM algorithm allows a different
specification of complete-data for each conditional maximization step.

In the context of the PGMMs, at the first stage of the AECM algorithm, when
estimating πg and µg, the unobserved group membership labels z are taken
as the missing data. Note that z is defined so that zig = 1 if observation i
belongs to group g and zig = 0 otherwise. At the second stage of the AECM
algorithm, when estimating Λg and Ψg, the group membership labels z and
the latent factors u are taken as the missing data. McLachlan & Peel (2000b)
give extensive details of fitting the AECM algorithm in the case where no
constraints are imposed.

Using an AECM algorithm, the estimates ẑ, µ̂g and π̂g are the same for each
member of the PGMM family:

ẑig =
π̂gf(xi | µ̂g, Λ̂g, Ψ̂g)

∑G
g′=1 π̂g′f(xi | µ̂g′ , Λ̂g′, Ψ̂g′ )

, µ̂g =

∑n
i=1 ẑigxi

ng
and π̂g =

ng

n
,

where ng =
∑n

i=1 ẑig. The estimates for Λ and Ψ in the CCC case are given
herein and details of the parameter estimates for each member of the PGMM
family are given by McNicholas & Murphy (2008).
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Let α be some variable, then write α̂ to denote the most recent estimate of α
and α̂new to denote the new estimate of α. Using this notation, the maximum
likelihood estimates for the CCC model are,

β̂ = Λ̂′(Λ̂Λ̂′ + ψ̂Ip)
−1, Λ̂new = S̃β̂

′
Θ̃−1 and ψ̂new =

1

p
tr

{
S̃′ − Λ̂newβ̂S̃

}
,

where ψ̂ is a real number such that Ψ̂ = ψ̂Ip, Θ̃ = Iq − β̂Λ̂ + β̂S̃β̂
′

is a
symmetric q × q matrix and S̃ =

∑G
g=1 π̂gSg, where Sg = (1/ng)

∑n
i=1 ẑig(xi −

µg)(xi − µg)
′.

Now it is possible to outline the AECM algorithm in the CCC case:

initialize ẑ randomly

initialize ng, π̂g, µ̂g, S̃ as per updates

run Householder’s algorithm with QL reduction on S̃ to get S̃ = PDP−1

initialize Λ̂ = dP, where d is the element-wise square root of diag{D}
initialize ψ̂ =

1

p
tr{S̃ − Λ̂Λ̂′ }

while not converged:

CM-step 1





update π̂g

update µ̂g

E-step





if not first iteration:

update ẑ

end if

update S̃, Λ̂, ψ̂, β̂, Θ̃

CM-step 2





update Λ̂new

update ψ̂new

E-step
{

update ẑ

compute log-likelihood

check for convergence

set Λ̂ = Λ̂new and ψ̂ = ψ̂new

end while

Although ẑ is initialized randomly in this CCC case, the ẑ that are output here
are used as the starting values for the other members of the PGMM family.
Of course, other initialization tactics could be used. For example, each of the
eight models could be run from a number of different starting values of ẑ, for
a limited number of iterations. Then the starting values of ẑ that led to the
best model (see Section 4.4) from amongst these quick runs could be used for

6
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the actual analysis.

Note that the elements of diag{D} are in order of size; that is, the first element
is the largest eigenvalue, the second element is the second largest eigenvalue
and so on. Details of Householder’s algorithm with QL reduction are given by
Press et al. (1992).

4.3 Convergence Criteria

4.3.1 Aitken’s Acceleration

The Aitken’s acceleration procedure was used to determine convergence of
each AECM algorithm. Specifically, it was used to estimate the asymptotic
maximum of the log-likelihood at each iteration and then to make a decision
about whether the AECM algorithm had converged or not.

The Aitken’s acceleration at iteration k is given by

a(k) =
l(k+1) − l(k)

l(k) − l(k−1)
,

where l(k+1), l(k) and l(k−1) are the log-likelihood values from iterations k + 1,
k and k − 1, respectively. Then the asymptotic estimate of the log-likelihood
at iteration k + 1 is given by

l(k+1)
∞ = l(k) +

1

1 − a(k)
(l(k+1) − l(k))

(Böhning et al. 1994). This is the estimated value of the log-likelihood, based
on the last three iterations, that the algorithm will converge to asymptotically.
Lindsay (1995) proposes that the algorithm can be stopped when

l(k+1)
∞ − l(k+1) < ǫ, (3)

where ǫ is small. We propose a very similar convergence criterion: that the
algorithm can be stopped when

l(k+1)
∞ − l(k) < ǫ, (4)

where ǫ is small. The criterion in Equation 4 is necessarily no less strict than
that in Equation 3, since l(k+1) ≥ l(k).

4.3.2 Lack of Progress

Some model-based clustering algorithms, such as that described by Fraley &
Raftery (1998), use the difference in successive log-likelihoods as a convergence

7
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criterion. That is, the algorithm is considered to have converged when

l(k+1) − l(k) < ǫ, (5)

where ǫ is small. The condition in Equation 5 is not a convergence criterion
but rather an indication of lack of progress (Lindstrom & Bates 1988).

0 5 10 15 20 25 30 35

−
66

00
−

62
00

−
58

00

Iteration

Lo
g−

lik
el

ih
oo

d

Fig. 1. A classically-shaped plot of iteration number versus log-likelihood for an
AECM algorithm.

Figure 1 shows a classically-shaped plot of iteration number versus log-likelihood
and in this case the criteria in equations 4 and 5 will give very similar results.
However, figures 2 and 3 illustrate situations where the difference between
a lack of progress criterion and a genuine convergence criterion can become
very apparent. In both of these cases, a lack of progress criterion might greatly
underestimate the correct value of the log-likelihood.

Note that figures 1, 2 and 3 all arise from real analyzes using the AECM al-
gorithm detailed herein. Furthermore, the convergence criteria in Equation 4
is necessarily at least as strict as the lack of progress criteria given in Equa-
tion 5. This follows from the fact that 0 ≤ a(k) < 1 in a neighborhood of the
maximum value and so 1/(1 − a(k)) ≥ 1. Hence, l(k+1)

∞ − l(k) ≥ l(k+1) − l(k) in
a neighborhood of the maximum.

4.4 Model Selection

For the MCLUST and PGMM techniques, the Bayesian information criterion
(BIC, Schwartz 1978) is used to select the ‘best’ member of the family for given
data. The BIC can also be used to compare PGMM and MCLUST models.

8
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Fig. 2. A plot of iteration number versus log-likelihood for an AECM algorithm,
illustrating a single step. A lack of progress criterion could stop the algorithm at
the first step, depending on the value of ǫ used.
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Fig. 3. A plot of iteration number versus log-likelihood for an AECM algorithm,
illustrating multiple steps.

For a model with parameters Φ, the BIC is given by

BIC = 2l(x, Φ̂) − ν log n,

where l(x, Φ̂) is the maximized log-likelihood, Φ̂ is the maximum likelihood
estimate of Φ, ν is the number of free parameters in the model and n is the
number of observations.

Leroux (1992) shows that the BIC does not underestimate the number of
components in a mixture model and Keribin (2000) shows that BIC consis-
tently estimates the number of mixture components under certain regularity
conditions. Lopes & West (2004) provide a simulation study where they show

9
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that the BIC has excellent performance in selecting the number of factors in
a factor analysis model, even when the sample size is small.

5 Parallel Implementation

5.1 Parallel Computation

Parallel computation describes the use of multiple processors to execute a
number of tasks simultaneously, or in parallel. Parallel computation is very
attractive when all of these tasks, run simultaneously, take much less time to
execute than if the tasks were run in serial. Broadly, there are two types of
parallelization: coarse-grain parallelization and fine-grain parallelization. Fine-
grain parallelization involves frequent inter-processor communication and is
often dependant on the characteristics of the interconnect between the pro-
cessors for good performance. Coarse-grain parallelization involves a small
amount of inter-processor communication and so performance will not gener-
ally be affected by the quality of the interconnect between processors.

The message passing interface (MPI) is used to enable the parallel commu-
nication between the processes. MPI is a specification for communications
between processes in a compute cluster. It is programming language indepen-
dent and there are versions available for use with C, C++, Fortran, Python
and many other programming languages. Optimized implementations of MPI
are also available for different interconnects such as Infiniband, Myrinet and
on the IBM BlueGene systems. Further details on MPI can be found at
www.mpi-forum.org and www.open-mpi.org, and a comprehensive guide to
MPI is given by Gropp et al. (1999).

A computation that can be split into completely independent tasks that have
no data or time dependency between them is often called ‘trivially paralleliz-
able’. Ray tracing in computer graphics, signal processing, brute force attacks
in cryptography and gene sequence alignment are all examples of problems
that are trivially parallelizable. The most simple way to program these prob-
lems is using the master-slave model. In this system one process (the master)
divides the work to be done into discrete work packages and distributes them
to all of the other processes (the slaves). Once a slave has finished the required
calculation it sends the results back to the master and requests another work
package. The master then collates the results from all of the slaves to gener-
ate an overall result from the calculation. Projects such as SETI@home and
Folding@home use the master-slave model.

Parallel computation has been used in a variety of statistical applications.

10
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These include parallel implementations of algorithms for kernel estimation
(Racine 2002), linear models (Kontoghiorghes 2000, Yanev & Kontoghiorghes
2006), partial least squares (Milidiú & Rentera 2005) and regression submodels
(Gatu et al. 2007).

5.2 Approach

In order to fully exploit the computational attractiveness of the PGMMs that
arises from the linear relationship between the number of covariance parame-
ters and the dimensionality of the data, AECM algorithms like that outlined
in Section 4.2 were parallelized.

The problem of finding the best member of the PGMM family can be consid-
ered as maximizing with respect to the BIC over the triple (M, G, q), where
M ∈ {CCC, . . . ,UUU} is the model in question, G is the number of groups
and q is the number of factors. The nature of the problem makes it trivially
parallelizable: that is, each triple (M, G, q) can be sent to a different processor
and processors can work independently of one another. Note that, apart from
running the CCC models first so that we get the starting values of ẑ for the
other seven models, these triples can be run in any order. Therefore, the slaves
can be used as soon as they become free.

The prospect of parallelizing within-triple is not implemented here because any
within-triple parallelization may actually cost time since the saving achieved
by sending jobs triple-wise to processors may well be so great as to negate any
possible advantage of within-triple parallelization. Therefore, a master-slave
paradigm was used to facilitate parallelization. This software was originally
written in the C language and then parallelized using MPI.

5.3 Implementation

5.3.1 Overview

Due to the strategy adopted for parallelization it was necessary to write two
functions, one for the master and one for the slaves. As is normal in master-
slave implementations, the only communication is between the master and
the various slaves. There is no communication between different slave pro-
cesses. Outlines of the master and slave functions are given in the following
subsections.

11
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5.3.2 Master

The master function can be summarized as follows:

read command line arguments

standardize data

randomly populate ẑ

send CCC jobs to available slaves

receive results from slaves

send other jobs to available slaves

receive results from slaves

kill all slaves

print results to files

5.3.3 Slave

The slave function can be summarized as follows:

while 1:

receive parameter G

if G=-1:

break while

end if

receive all other parameters

receive ẑ

run AECM for model and parameters received

send all results to master

end while

Note that sending G = −1 is the method by which the master ‘kills’ the slave.

5.4 Speed-Up

The speed-up for ρ processors is defined herein as the time taken using ρ
processors divided by the time taken using 1 processor. To evaluate the speed-
up that had been achieved by parallelization, the wine data that is described
in Section 6.2 was analyzed and the parameters associated with the best model
were noted. These parameters were then used to generate six datasets, using
the R software. As in the case of the original dataset, each of these datasets
consisted of 178 cases of 27 variables. These simulated datasets were then
analyzed using 2, 3, 5, 9, 17 and 33 processors respectively; that is, 2n +

12
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1 processors, or 2n slaves, for n = 0, 1, . . . , 5. The software was run for a
maximum of 8 groups and 8 factors per group.

5 10 15 20 25 30
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30
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S
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Fig. 4. Speed-up versus number of slaves for the wine data.

The speed-up for each of the six runs is shown in Figure 4. The solid black
line on Figure 4 represents the linear case where ‘speed-up’ = ‘number of
slaves’. The other lines depict the time taken in the real world, according
to the real output to stderr given by the time() function, in each case.
Within a master-slave paradigm, the ideal situation occurs when the speed-up
is directly proportional to the number of processors — this is known as linear
speed-up. Figure 4 shows roughly linear speed-up as far as about 16 slaves.

The departure from linear speedup at larger numbers of slaves is caused by
contention at the master process. Since the dataset used in this example is
relatively small, the time taken by a slave to carry out the required calculations
is short. With larger numbers of slaves, the master becomes overloaded with
results and is not able to handle the requests in a timely manner. With a
larger data set, the time taken for each work package, or triple (M, G, q),
to be completed will be longer, reducing the percentage of time each slave
spends communicating with the master, thereby reducing congestion on the
master process. The congestion at the master is also greatest at the start of
execution. Each slave will take close to the same length of time to complete
its work package and therefore all slaves will try to communicate back to the
master at approximately the same time.

The ideal number of slave processes to use depends on a combination of vari-
ous factors including CPU performance, interconnect bandwidth and latency,
dataset size, memory usage and filesystem performance. In all master-slave
implementations, the goal is to find a balance between keeping the slaves busy
and not overloading the master. The only way to determine the optimum
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number of processors to use is through experimentation.

5.5 Discussion

The parallel implementation described in this section demonstrates how well-
suited the PGMM family of models is to parallelization. Although MPI has
been previously used for parallel clustering (see Pizzuti & Talia 2003), the
implementation herein is the first to illustrate the relative simplicity of par-
allel implementation of model-based clustering techniques. In fact, MCLUST
could be parallelized in a very similar fashion. The parallelization of the Auto-
Class technique (Cheeseman & Stutz 1996) that was carried out by Pizzuti &
Talia (2003) was very efficient on the hardware that they used. However, this
technique requires more inter-processor communication than the paralleliza-
tion of the PGMM family that is outlined herein. Therefore, its performance
is more dependent on the quality of interconnects in the hardware on which
the software is run. Furthermore, the master-slave paradigm that was used to
facilitate the PGMM parallelization ensures that slaves can be used as soon
as they become free and virtually eliminates the problem of idle processors.

6 Examples

Two examples of the PGMM approach to model-based clustering are given.
The first, an analysis of biological measurements taken on leptograpus crabs,
is used to facilitate comparison of the PGMMs with MCLUST and variable
selection. The second, an analysis of physical and chemical properties of wine,
is used to illustrate the effectiveness of the parallel software when applied to
a higher dimensional data set.

6.1 Leptograpus Crabs Data

6.1.1 The Data

The data consist of biological measurements on 200 leptograpus crabs col-
lected in Fremantle, Western Australia; 50 male and 50 female, for each of
two species; 100 orange and 100 blue. The data were sourced from the MASS

library for R; which contains datasets from Venables & Ripley (2002). There
are five variables in these data, corresponding to the five measurements that
were taken on each crab; these measurements are given in Table 2.
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Table 2
Details of the five measurements that were taken on the leptograpsus crabs.

Variable Measurement

FL Frontal lobe size in millimeters.

RW Rear width in millimeters.

CL Carapace length in millimeters.

CW Carapace width in millimeters.

BD Body depth in millimeters.

These data first appeared in Campbell & Mahon (1974) and were subsequently
analyzed by Ripley (1996), McLachlan & Peel (1998, 2000a) and Raftery &
Dean (2006). These data were selected for analysis here because the results
will be directly comparable with the MCLUST and variable selection analyses
of Raftery & Dean (2006).

6.1.2 The PGMM Family of Models

The PGMM family was fitted to the data for G ∈ {1, 2, . . . , 5} and q ∈
{1, 2, . . . , 5} by running the software from three random starting values, so
that a total of 600 models were fitted. Figure 5 shows the BIC for the best
PGMM for each (G, q) over the eight models and all three random starts. The
BIC values for the best three models are given in Table 3.

1 2 3 4 5

1
2

3
4

5

G

q

Fig. 5. A heat map giving the greatest BIC values for each PGMM at (G, q) for the
crabs data.

The best model was a UCU model with G = 4 and q = 1. The BIC for this
model was 197.87 and a classification table for this best PGMM is given in
Table 4.
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Table 3
The best three models, by BIC, for the PGMM family applied to the crabs data.

Model Number of Groups (G) Number of Factors (q) BIC

UCU 4 1 197.87

CCU 5 1 110.89

CCU 5 2 110.88

Table 4
Classification table for the best PGMM for the crabs data.

1 2 3 4

Blue
Male 39 11

Female 50

Orange
Male 50

Female 4 46

Looking at a pairs plot of the variables in the crabs data, given in Figure 6,
it becomes apparent that a linear relationship exists between each of the five
variables. Therefore, it is somewhat natural that the best PGMM had just
one latent variable.

FL

6 8 12 16 20 20 30 40 50
10

15
20

6
10

14
18

RW

CL

15
25

35
45

20
30

40
50

CW

10 15 20 15 25 35 45 10 15 20

10
15

20

BD

Fig. 6. A pairs plot of the crabs data, produced using R.

6.1.3 MCLUST & Variable Selection

Raftery & Dean (2006) report the results of applying MCLUST to the crabs
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data. Although they do not state a BIC value, they do report a classification
table, which is given herein as Table 5. Raftery & Dean (2006) also used vari-

Table 5
Classification table from the MCLUST analysis of the crabs data.

1 2 3 4 5 6 7

Blue
Male 32 18

Female 31 19

Orange
Male 28 22

Female 24 21 5

able selection to analyze these data and the classification table that resulted
from this analysis is given in Table 6.

Table 6
Classification table from the variable selection analysis of the crabs data.

1 2 3 4

Blue
Male 40 10

Female 50

Orange
Male 50

Female 5 45

6.1.4 Model Comparison

Table 7 gives the Rand index (Rand 1971), adjusted Rand index (Hubert &
Arabie 1985) and the error rate for the three models that were applied to the
crabs data. The variable selection and PGMM techniques were the best for

Table 7
Rand and adjusted Rand indices and error rates for all of the models that were
applied to the crabs data.

Model Rand Index Adjusted Rand Index Error Rate

PGMM 0.932 0.817 0.075

MCLUST 0.851 0.533 0.425

Variable Selection 0.931 0.815 0.075

the crabs data; with the best PGMM having very slightly greater Rand The
error rates, however, were identical.
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6.2 Wine Data

6.2.1 The Data

Forina et al. (1986) recorded twenty-eight chemical and physical properties
of three types of wine (Barolo, Grignolino, Barbera) from Italy. We report
results on the analysis of twenty-seven of the variables from the original study
(Table 8); the sulphur measurements from the original data were not available.

Table 8
The twenty-seven chemical and physical properties of Italian wines used in this
study.

Chemical and Physical Properties

Alcohol Sugar-free extract Fixed acidity

Tartaric acid Malic acid Uronic acids

pH Ash Alcalinity of ash

Potassium Calcium Magnesium

Phosphate Chloride Total phenols

Flavonoids Nonflavonoid phenols Proanthocyanins

Color Intensity Hue OD280/OD315 of diluted wines

OD280/OD315 of flavonoids Glycerol 2-3-butanediol

Total nitrogen Proline Methanol

6.2.2 The PGMM Family of Models

The eight PGMMs were fitted to the data for G ∈ {1, 2, . . . , 6} and q ∈
{1, 2, . . . , 6} and three random starts were used for each model. Hence, a total
of 864 different models were fitted to the data. The model with the highest
BIC was selected; this was the CUU model with G = 3 and q = 4. Figure 7
shows the maximum BIC for the eight parsimonious models for each pair (G, q)
and details of the top three models are given in Table 9. The application of
the PGMM family to these data was previously reported in McNicholas &
Murphy (2008).

The choice of the CUU model can be explained because the loading matrix
for each group in this setting has pq − q(q − 1)/2 free parameters. Hence, the
penalty for allowing the loading matrix to be different across groups is very
large. A cross tabulation of the classifications from the best PGMM versus
the true wine type is given in Table 10: this model correctly classifies all but
one of the wines.
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Fig. 7. A heat map representation of the maximum BIC value for each value of (G, q).

Table 9
The best three models, by BIC, for the PGMM family applied to the wine data.

Model Number of Groups Number of Factors BIC

CUU 3 4 -11,454.11

CUU 3 5 -11,457.70

CUU 3 6 -11,503.95

Table 10
A classification table for the best PGMM model for the wine data.

1 2 3

Barolo 59

Grignolino 70 1

Barbera 48

6.2.3 MCLUST & Variable Selection

Model-based clustering was also completed on the wine data using mclust

and clustvarsel. A cross tabulation of the classifications for each approach
and the wine types is shown in tables 11 and 12.

Table 11
The classification table for the best MCLUST model for the wine data.

1 2 3

Barolo 58 1

Grignolino 4 66 1

Barbera 48
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Table 12
Classifcation table for the best model found using variable selection on the wine
data.

1 2 3 4

Barolo 52 7

Grignolino 17 54

Barbera 1 47

6.2.4 Model Comparison

A comparison of the clustering results on the wine data indicates that all of
the methods are very good at discovering the group structure in the wine
data. The PGMM, MCLUST and variable selection techniques are all good at
separating the wines into types. However, variable selection uses two groups to
model the Grignolino wines. The fact that the variable selection technique has
not performed as well as the MCLUST family of models here suggests that the
subset of variables selected by variable selection is not as good at separating
the wines into type as the full range of variables are. Table 13 shows how the
methods differ in clustering performance.

Table 13
Rand index, adjusted Rand index and error rate for the PGMM, MCLUST and
variable selection techniques on the wine data.

Model Rand Index Adjusted Rand Error Rate

PGMM 0.99 0.98 0.006

MCLUST 0.95 0.90 0.034

Variable Selection 0.91 0.78 0.140

7 Summary

The PGMM approach to model-based clustering has been described and the
algorithm for fitting these models has been outlined and demonstrated on
real data. The use of Aitken’s acceleration for convergence assessment has
been demonstrated as being superior to the frequently-used lack of progress
criterion.

The AECM algorithm used for parameter estimation was parallelized within
the master-slave paradigm using MPI and the resulting speed-up has been
shown to be linear up to a certain point. This parallelization allows the efficient
application of the PGMM family of models to high-dimensional data, thus
fully exploiting the computational attractiveness of the PGMMs that arises
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from the linear relationship between the number of covariance parameters and
data-dimensionality.

This software was applied to two datasets: one giving biological measure-
ments taken on leptograpus crabs and the other on chemical and physical
properties of Italian wines. The crabs data were used to compare the PGMM
model-based clustering technique with two popular model-based clustering
techniques: MCLUST and variable selection. The PGMMs performed favor-
ably. The wine data was used to demonstrate the effectiveness of the parallel
implementation in a higher-dimensional setting. The PGMM family gives su-
perior clustering performance to MCLUST and variable selection when applied
to the wine data.
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