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Abstract

Principal component analysis (PCA) is a widely adopted multivariate data analysis
technique, with interpretation being established on the basis of both classical lin-
ear projection and a probability model (i.e. probabilistic PCA (PPCA)). Recently
robust PPCA models, by using the multivariate t distribution, have been proposed
to consider the situation where there may be outliers within the data set. This pa-
per presents an overview of the robust PPCA technique, and further discusses the
issue of missing data. An expectation-maximization (EM) algorithm is presented
for the maximum likelihood estimation of the model parameters in the presence
of missing data. When applying robust PPCA for outlier detection, a contribution
analysis method is proposed to identify which variables contribute the most to the
occurrence of outliers, providing valuable information regarding the source of outly-
ing data. The proposed technique is demonstrated on numerical examples, and the
application to outlier detection and diagnosis in an industrial fermentation process.

Key words: EM algorithm, missing data, multivariate t distribution, principal
component analysis, probability density estimation, robust model.

1 Introduction

Principal component analysis (PCA) (Jolliffe, 2002) is a general multivariate sta-
tistical projection technique for dimension reduction, and it has seen a wide
spectrum of applications in various areas, including exploratory data analysis,
pattern recognition, quality monitoring and control. The traditional approach to
the implementation of PCA is based on the linear projection of the original data
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onto a space where the variance is maximized. Let {xn, n = 1, · · · , N} be the
d-dimensional data set, then the first step in PCA is to compute the sample co-
variance matrix, S, of order d×d. The eigenvectors wj and eigenvalues λj of S are
then calculated (j = 1, · · · , d). By retaining those eigenvectors corresponding to
the q largest eigenvalues, the q-dimensional PCA score vectors, tn, are calculated
as: tn = WT(xn − µ), where W = (w1, · · · ,wq), and µ is the mean of the data
set. Therefore the original data can be represented as a linear combination of the
scores plus a noise vector: xn = Wtn + µ + en.

More recently Tipping and Bishop (1999b) proposed a probabilistic formulation
of PCA (PPCA) from the perspective of a Gaussian latent variable model. The
PPCA model is realized by specifying a Gaussian noise model e ∼ G(0, σ2I),
which implies that the conditional distribution of data given PCA scores is:
x|t ∼ G(Wt + µ, σ2I). By adopting a prior Gaussian distribution for the PCA
score vector, t ∼ G(0, I), the marginal distribution of the data x is also shown to
be Gaussian: x ∼ G(µ,WWT + σ2I). PPCA degenerates to traditional PCA if
σ2 → 0. Within the PPCA framework, the principal components are essentially
the maximum likelihood estimates of the model parameters, which can be imple-
mented using either the eigen-decomposition of the sample covariance matrix (as
in the traditional PCA), or an expectation-maximization (EM) algorithm (Demp-
ster et al., 1977). Tipping and Bishop (1999b) argued that PPCA attains several
advantages over traditional PCA, including its extendability to handling missing
data and to forming a mixture model (Tipping and Bishop, 1999a), and its po-
tential application in probability density estimation and multivariate statistical
process monitoring (Chen and Sun, 2009; Kim and Lee, 2003).

It is a well known issue that the conventional PCA is sensitive to anomalous
observations because the calculation of sample mean and covariance matrix can
be significantly influenced by a small number of outliers. Similarly, PPCA is not
robust to outliers since the data are assumed to follow a multivariate Gaussian
distribution that is easily affected by deviant observations. There is a rich litera-
ture on robust PCA methods to obtain principal components that are insensitive
to outliers. The first category of methods are based on a robust estimate of the
covariance matrix (Cambell, 1980; Devlin et al., 1981; Huber, 1981; Ruymagaart,
1981). The idea is to give different weights to the observations where the weight
is a function of Mahalanobis distance. The observations with large Mahalanobis
distance are automatically down-weighted since they tend to be outliers. The ma-
jor difficulty with these weighting methods is due to high computation. Note that
computing the covariance matrix requires O(Nd2) operations, which is infeasi-
ble for high dimensional data. Recently, more robust estimates of the covariance
structure have been proposed, including positive-breakdown estimator (Croux
and Haesbroeck, 2000) and that based on a convex loss function (Ibazizen and
Dauxois, 2003). Nevertheless, these methods are still limited to moderate dimen-
sions due to computational cost.
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An alternative approach to robust PCA is based on projection pursuit (Li and
Chen, 1985; Hubert et al., 2002). Dealing with high dimensional data, projec-
tion pursuit seeks low dimensional projections that maximize a robust measure
of spread. By obtaining the projections sequentially, projection pursuit is compu-
tationally efficient particularly when q � d. More recently, Hubert et al. (2005)
proposed a robust PCA method that is aimed at combining the advantages of
robust covariance estimation and projection pursuit. It should be noted that all
the robust PCA methods reviewed above are based on conventional PCA, and
thus they do not fall into the family of probability models.

This paper discusses a robust PCA method within a probabilistic framework,
based on replacing the Gaussian distribution utilized in the original PPCA by a
heavy-tailed t distribution that is robust to the presence of outliers. The idea of
using t distribution was originally proposed by Archambeau et al. (2006) for both
robust PPCA and robust probabilistic canonical correlation analysis (PCCA),
and was later extended to developing robust latent variable regression models
(Fang and Jeong, 2008). This paper will initially review the rationale of the
multivariate t distribution in Section 2, and the formulation of robust PPCA in
Section 3. In Section 4 we address the issue of missing data, which is common
in many data analysis tasks due to sensor fault or human errors, within the
framework of robust PPCA. An EM algorithm will be developed for the estimation
of model parameters in the presence of missing data. Section 5 gives two numerical
examples to illustrate the effectiveness of the proposed robust PPCA model.
Subsequently we demonstrate the application of the robust PPCA for outlier
detection in Section 6. Specifically we present a contribution analysis method,
which was previously proposed for multivariate statistical process control using
non-robust PPCA and mixture models (Chen and Sun, 2009), to identify which
variables contribute the most to the occurrence of outliers and provide useful
information regarding the source of outlying data. Finally Section 7 concludes
this paper.

2 Multivariate t distribution

Assume the random variable x follows a multivariate Gaussian distribution: x ∼
G(m,Σ). In the presence of outliers, a two-component Gaussian mixture model
can be employed to account for the relatively large variance of the outliers:

x ∼ (1 − ε)G(m,Σ) + εG(x;m, bΣ) (1)

where b is a positive large factor, and ε ∈ [0, 1] is a small value to reflect the prior
knowledge that a small portion of the data may be outliers. This two-component
model has seen various applications in outlier detection and measurement rectifi-
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cation (Chen et al., 2008; Schick and Mitter, 1994). The mixture model in Eq. (1)
can be extended to an infinite Gaussian mixture model as (Peel and McLachlan,
2000):

x ∼
∫

G(m, bΣ)p(b)db (2)

where the integration is performed over the scaling factor b. Suppose u = 1/b is
a chi-square random variable with degrees of freedom v: u ∼ Ga(v/2, v/2), where
the Gamma probability density function is given by: Ga(α, β) = βαuα−1e−βu/Γ(α)
Then the marginal distribution of x can be obtained by performing the integra-
tion in (2), resulting in a multivariate t distribution with degrees of freedom v
(Lange et al., 1989; Liu, 1997; Peel and McLachlan, 2000): x ∼ tv(m,Σ). An
alternative perspective on the t distribution is to treat u as a latent variable, and
the conditional distribution of x|u is Gaussian: x|u ∼ G(m,Σ/u).

The Gaussian distribution is a special case of the t distribution when v → ∞.
In general the t distribution has significantly heavier tails than the Gaussian
distribution, which is a desirable property to handle data sets in the presence of
outliers.

3 Robust PPCA

This section reviews the robust PPCA model originally proposed in (Archambeau
et al., 2006; Fang and Jeong, 2008), including the probability model and detailed
parameter estimation method using EM algorithm.

3.1 The probability model

To consider the presence of outliers in the data set, the Gaussian distribution in
PPCA is replaced by the t distribution to achieve a robust model. Specifically
the conditional distribution of the data x given PCA scores t is

x|t, u ∼ G
(

Wt + µ, σ2I/u
)

(3)

where u ∼ Ga(v/2, v/2). Thus x|t ∼ tv(Wt+ µ, σ2I). If the prior of the scores is
also a t distribution: t|u ∼ G(0, I/u), or equivalently t ∼ tv(0, I), the distribution
of the data given u is:
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x|u ∼
∫

p(x|t, u)p(t|u)dt = G(µ,C/u) (4)

where C = WWT + σ2I is a d× d matrix. The marginal distribution of the data
x is then a multivariate t distribution: x ∼ tv(µ,C).

For the estimation of model parameters presented subsequently, the conditional
distributions, u|x and t|x, u, are required. The former was shown (Lange et al.,
1989) to be a Gamma distribution:

u|x ∼ Ga

(

v + d

2
,
v + p

2

)

(5)

where p = (x−µ)TC−1(x−µ). The conditional distribution of the scores can be
calculated by using Bayes’ rule, resulting in:

t|x, u ∼ G
(

M−1WT(x − µ), σ2M−1/u
)

(6)

where M = WTW + σ2I is a q × q matrix. Similarly t|x is also t distributed:
t|x ∼ tv(M

−1WT(x − µ), σ2M−1). In summary, the Gaussian distributions pri-
marily used in PPCA have been replaced by the t distributions in the proposed
robust PPCA model. For the purpose of inference, it is required to invert the
covariance matrix C. This can be efficiently performed by using the Woodbury
matrix identity if q � d (which is often the case if d is large):

C−1 =
(

WWT + σ2I
)

−1
= I/σ2 − WM−1WT/σ2 (7)

The objective of dimension reduction, one of the major motivation behind PCA,
can be achieved by utilizing the mean of the latent variables:

〈t|x〉 = M−1WT(x − µ) (8)

where 〈〉 is the expectation operator. This is also the projection of the original
d-dimensional data to the (lower) q-dimensional PCA scores.

3.2 Maximum likelihood estimation

The model parameters to be estimated are: {µ,W, σ2, v}. Given a set of training
data, the maximum likelihood estimation of these parameters can be achieved
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by using the expectation-maximization (EM) algorithm (Dempster et al., 1977).
To apply the EM algorithm, the latent variables {tn, un} are treated as “missing
data”, and the “complete” data comprise the latent variables and the observed
data xn. The corresponding complete-data log-likelihood is:

LC =
N
∑

n=1

ln{p(xn, tn, un)} (9)

where the joint distribution can be factorized as:

p(xn, tn, un) = p(xn|tn, un)p(tn|un)p(un) (10)

In the E-step, the expectation of the complete-data log-likelihood with respect to
the conditional distribution tn, un|xn is calculated as follows:

〈LC〉 = −
N
∑

n=1

{

d

2
ln(σ2) +

〈un〉

2σ2
(xn − µ)T(xn − µ) −

1

σ2
〈untn〉

TWT(xn − µ)

+
1

2σ2
tr(WTW〈untnt

T
n 〉) +

v

2
log

v

2
+
(

v

2
− 1

)

〈log un〉 − log Γ
(

v

2

)

−
v

2
〈un〉

}

(11)

where the terms that are independent of the model parameters are omitted. The
expectation terms in (11) are:

〈un〉 =
v + d

v + pn

(12)

〈tn〉 = M−1WT(xn − µ) (13)

〈untn〉 = 〈un〉〈tn〉 (14)

〈untnt
T
n 〉 = σ2M−1 + 〈un〉〈tn〉〈tn〉

T (15)

〈log un〉 = ψ

(

v + d

2

)

− log
(

v + pn

2

)

(16)

where pn = (xn − µ)TC−1(xn − µ), and ψ() is the digamma function.

The M-step maximizes 〈LC〉 with respect to the model parameters, resulting in
the update equations as:
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µ̃ =

∑N
n=1〈un〉 (xn − W〈tn〉)

∑N
n=1〈un〉

(17)

W̃ =

(

N
∑

n=1

(xn − µ̃)〈untn〉
T

)(

N
∑

n=1

〈untnt
T
n 〉

)

−1

(18)

σ̃2 =
1

Nd

N
∑

n=1

{

〈un〉||xn − µ̃||2 − 2〈untn〉
TW̃T(xn − µ̃) + tr(W̃TW̃〈untnt

T
n 〉)

}

(19)

and ṽ can be updated using a scalar non-linear maximization routine that is
available in most computation software packages. The EM algorithm does not
explicitly calculate the sample covariance matrix that requires O(Nd2) opera-
tions. An inspection of (18)(19) reveals that the computational complexity is
only O(Ndq). When q � d, considerable computational cost can be saved.

Furthermore, the EM algorithm can be simplified by using a two-stage procedure,
where the PCA scores tn are not considered in the first stage (Tipping and Bishop,
1999a). Hence the objective of the first stage is to estimate µ. More specifically,
the complete-data log-likelihood in the first stage is:

LC1
=

N
∑

n=1

ln{p(xn, un)} =
N
∑

n=1

ln{p(xn|un)p(un)} (20)

where p(xn|un) is given by (4). The expectation of LC1
with respect to un|xn, as

given in (5), is:

〈LC1
〉 = −

N
∑

n=1

〈un〉(xn − µ)TC−1(xn − µ) (21)

Maximization of (21) with respect to µ gives

µ̃ =

∑N
n=1〈un〉xn
∑N

n=1〈un〉
(22)

In the second stage, the latent variables tn are introduced, and the log-likelihood
in (20) is increased through the EM algorithm to update W, σ2 and v. It should
be noted that in the second stage LC is not actually maximized, because µ̃ is
kept fixed. In this sense, the second stage corresponds to the generalized EM
algorithm (Gelman et al., 1995). This two-stage EM algorithm leads to improved
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convergence speed (Tipping and Bishop, 1999a), since the expectation terms in
(12)-(15) are calculated using the updated mean, µ̃, to update W, σ2 and v.

In summary, the two-stage EM algorithm operates as follows.

(1) Stage 1:
• E-Step: Given current parameters {µ,W, σ2, v}, calculate the expected

value 〈un〉 as in (12).
• M-Step: Update µ̃ as in (22).

(2) Stage 2:
• E-Step: Given current parameters {µ̃,W, σ2, v}, re-calculate the expected

value as in (12)-(16).
• M-Step: Update W̃ and σ̃2 as in (18)(19), followed by the updating of ṽ.

(3) Repeat Stage 1 and 2 until convergence is reached.

3.3 Post-processing of W

In general, the loading matrix W at convergence is not necessarily orthogonal
(Tipping and Bishop, 1999b), and a rotation of W through an arbitrary q × q
orthogonal matrix R, i.e. WR, is still the maximum likelihood estimate of the ro-
bust PPCA model. The rotational ambiguity can be resolved if necessary by com-
puting the eigen-decomposition of WTW = RTΛR where Λ = diag(λ1, . . . , λq),
and rotating W according to WR. Based on this eigen-decomposition the per-
centage of explained variance by the PCA model, a widely used measure to assess
the effectiveness of the PCA, can be calculated as

∑q
j=1 λj/(

∑q
j=1 λj + σ2)

4 Missing data

The issue of missing data refers to the situations where the d-dimensional data
x has some missing values. By assuming the missing-data mechanism does not
depend on the missing values, i.e. missing at random, the conditional distribution
of the missing values given observed data can be formulated, and it forms the
basis of the EM algorithm for parameter estimation.

4.1 Conditional distribution of missing data

The data can be divided as xT = [xoT,xuT], where xo and xu are sub-vectors
of observed and unobserved (missing) data respectively. According to the robust
PPCA model, x|u ∼ G(µ,C/u). For ease of derivation the mean and covariance
are also organized into blocks:
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µ =







µ
o

µ
u





 ; C =







Coo Cou

Cuo Cuu







The conditional distribution of missing data given observed data, xu|xo, u, is also
Gaussian (Little and Rubin, 1987) with mean µ

u + CuoC
−1
oo (xo − µ

o), and co-
variance (Cuu − CuoC

−1
oo Cou)/u. For the development of maximum likelihood

estimation, it is convenient to utilize the distribution of the complete vector
x, which is again a Gaussian distribution: x|xo, u ∼ G(z,Q/u), or equivalently
x|xo ∼ tv(z,Q), where

z =







xo

µ
u + CuoC

−1
oo (xo − µ

o)






; Q =







0 0

0 (Cuu −CuoC
−1
oo Cou)






(23)

4.2 Maximum likelihood estimation

The EM algorithm for the maximum likelihood estimation of model parameters
is similar to that presented in Section 3.2, the difference being the handling of
missing data represented by a Gaussian distribution x|u ∼ G(z,Q/u). In the
first stage of the EM algorithm, the PCA scores is not considered, and thus the
expectation in the E-step is:

〈LC1
〉 = −

N
∑

n=1

tr
(

〈un(xn − µ)(xn − µ)T〉C−1
)

(24)

Due to the presence of missing data, the expectation in (24) is taken with respect
to xn, un|x

o
n, as opposed to un|xn in (21). p(xn, un|x

o
n) further factorizes as:

p(xn, un|x
o
n) = p(xn|un,x

o
n) p(un|x

o
n) (25)

where the first term is formulated in (23) as a Gaussian distribution: G(zn,Qn/u).
The second term is a Gamma distribution:

un|x
o
n ∼ Ga

(

v + do
n

2
,
v + po

n

2

)

(26)

where do
n is the dimension of observed data xo

n, and po
n = (xo

n−µ
o)TC−1

oo (xo
n−µ

o).
Therefore the expectations can be obtained as
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〈un〉 =
v + do

n

v + po
n

(27)

〈un(xn − µ)(xn − µ)T〉 = Qn + 〈un〉(zn − µ)(zn − µ)T (28)

Substituting (28) into (24) and letting ∂〈LC1
〉/∂µ = 0 results in the updating

formula for µ:

µ̃ =

∑N
n=1〈un〉zn
∑N

n=1〈un〉
(29)

In the second stage of the EM algorithm, the PCA scores tn are considered to
estimate W, σ2 and v. Now the expectation of the complete-data log-likelihood
in (9)(10) must be calculated with respect to p(xn, tn, un|x

o
n), which can be fac-

torized as: p(xn, tn, un|x
o
n) = p(tn|xn, un)p(xn, un|x

o
n), where the two terms are

given in (6) and (25) respectively. Therefore the expected log-likelihood can be
expanded as:

〈LC〉 = −
N
∑

n=1

{

d

2
ln(σ2) +

1

2σ2
tr
[

〈un(xn − µ̃)(xn − µ̃)T〉
]

−
1

σ2
tr
[

〈un(xn − µ̃)tT
n 〉W

T
]

+
1

2σ2
tr
[

WTW〈untnt
T
n 〉
]

}

(30)

and the expectation terms are

〈un(xn − µ̃)tT
n 〉 = 〈un(xn − µ̃)(xn − µ̃)T〉WM−1 (31)

〈untnt
T
n 〉 = σ2M−1 + M−1WT〈un(xn − µ̃)(xn − µ̃)T〉WM−1 (32)

where 〈un(xn−µ̃)(xn−µ̃)T〉 is given in (28) by replacing µ with µ̃. Maximization
of 〈LC〉 with respect to W and σ2 results in the following updating formula:

W̃ =

(

N
∑

n=1

〈un(xn − µ)tT
n 〉

)(

N
∑

n=1

〈untnt
T
n 〉

)

−1

(33)

σ̃2 =
1

Nd

N
∑

n=1

{

tr
[

〈un(xn − µ̃)(xn − µ̃)T〉
]

− 2tr
[

〈un(xn − µ̃)tT
n 〉W

T
]

+tr(W̃TW̃〈untnt
T
n 〉)

}

(34)
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and ṽ can be updated using a non-linear maximization algorithm. The two-stage
EM algorithm operates by alternating the E-step and M-step until convergence,
similar to the procedure summarized in Section 3.2.

5 Numerical examples

We first consider a simple numerical example that comprises a data set with 90
random samples generated from a two-dimensional Gaussian distribution with
zero mean and the following covariance matrix:







1.0 0.5

0.5 1.0





 (35)

Another 10 data points were generated from a uniform distribution over the range
[−5, 5] to simulate the presence of outliers. These 100 data points were utilized for
the development of the PPCA and robust PPCA model. In addition, a separate
data set with missing values was simulated by randomly removing each value in
the original data with probability 0.2.

Fig. 1 illustrates the first principal component and the 2.58 standard deviation
contour obtained by using the PCA models. The “true results” were obtained
by eigen-decomposition of the covariance matrix in Eq. (35), which was used to
generate the data. It can be seen that the PPCA is sensitive to outliers, both
the principal component and the contour being significantly different from the
true ones. In contrast, the robust PPCA is much less susceptible to outliers.
Furthermore, the presence of a reasonable level of missing data appears to have
only small impact on the results of robust PPCA. Fig. 2(a) shows the projections
of the first 20 data points by using robust PPCA whilst in Fig. 2(b) 20% of the
values are missing. Despite some variations, the two plots are largely similar,
indicating the effectiveness of the proposed approach to the handling of missing
data.

To demonstrate the computational efficiency of the proposed method, we further
consider five numerical data sets each having 500 data points (N = 500) with
varying dimensions: d = (10, 50, 200, 500, 1000). For each d, the data matrix X of
order N ×d is formed such that each element is a random sample generated from
a univariate Gaussian distribution with zero mean and standard deviation. Note
the PCA model is not appropriate for analyzing these data sets since the variables
are independent. In this study the data are purely utilized for the illustration of
computational time. In all cases we fix the number of principal components to
five (q = 5).
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Fig. 1. The first principal component (straight line) and the 2.58 standard deviation
contour (ellipsoid) obtained by using the PCA models. Original data (×); True results
(——); PPCA (− · −·); robust PPCA (−−); robust PPCA with 20% missing values
(· · · ). The results of the latter two situations are very similar, indicating small impact
of the missing data on the robust PPCA model.
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Fig. 2. Projections of the first 20 data points by using robust PPCA (a) on the full
data set and (b) with 20% missing values.

Table 1 gives the CPU time (s) for each iteration of the EM algorithm for the
parameter estimation. The algorithm was implemented within the Matlab envi-
ronment under Windows XP system equipped with a Pentium 2.8 GHz CPU.
The results show the proposed method is reasonably efficient in computation.
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Table 1
CPU time (s) for the parameter estimation (per iteration) of the robust PPCA models.

d 10 50 200 500 1000

Time (s) 0.05 0.06 0.11 0.77 2.67

The CPU time at 1000 variables is still feasible from the practical perspective.
Clearly the total computation time is also dependent on the number of EM it-
erations that are required to converge. We have observed that in all the cases
presented in Table 1, the EM algorithm appears to converge within 10 iterations.
If necessary, the algorithm can run significantly faster by compiling the Matlab
script into a binary executable file.

6 Application to outlier detection and diagnosis

As a general multivariate statistical tool, PCA has been applied to many practical
problems in science, engineering and econometrics. As an example this section
considers the application in outlier detection in an industrial fermentation process.

Since there is no formal definition of “outlier”, this paper relies on the informal
and intuitive statement that outliers are observations that are in some way in-
consistent with the remainder of a data set (Barnett and Lewis, 1994). A large
number of univariate outlier detection approaches have been suggested in the lit-
erature; see (Barnett and Lewis, 1994) for a review. However, these approaches,
if applied to multivariate problems by investigating one variable at a time, would
ignore the covariance structure of the data. Therefore multivariate techniques
must be employed, and PCA has been one of the most accepted methods for
outlier detection (Daszykowski et al., 2007; Jolliffe, 2002).

The procedure of using PCA for outlier detection is closely related to that of
multivariate statistical process control (MSPC) (Qin, 2003), which is to mon-
itor the performance of a manufacturing process to ensure process safety and
delivery of consistent product. Both methods require the modeling of data using
PCA (MSPC further requires the data being collected under normal operating
conditions), followed by the development of confidence bound. If the confidence
bound is exceeded, the occurrence of an outlier (or abnormal behavior in MSPC)
is detected. Furthermore for diagnosis purpose, a contribution analysis procedure
can be applied to identify which variables contribute the most to the occurrence
of the outlier or abnormal process. These issues will be discussed in more detail
subsequently.
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6.1 Confidence bound

One of the advantages of a probabilistic PCA model, in place of conventional
PCA, for outlier detection (and MSPC), is that it provides a single likelihood-
based confidence bound to detect outliers, as opposed to the confidence bounds
for two metrics, i.e. Hotelling’s T 2 and squared prediction error (SPE). In the
literature of PCA, outliers are classified into two categories: leverage and orthog-
onal. Leverage outliers are far from the data majority on the score space (i.e.
large T 2), whilst orthogonal outliers have large residuals from the PCA model
(i.e. large SPE) (Daszykowski et al., 2007). In the community of process fault
detection and diagnosis based on conventional PCA, the combination of T 2 and
SPE metrics has attracted significant attention (Yue and Qin, 2001); however
this is not an issue with probabilistic models. The likelihood value is a sufficient
metric to measure how far one observation is from the majority of the data that is
represented by the probabilistic model. Therefore the distinction between lever-
age and orthogonal outliers is unnecessary in the context of probabilistic models.
In practice a single monitoring metric will reduce the work load of data analyst
and plant operators as they will only be exposed to one monitoring chart. This is
crucial for the wider acceptance of outlier detection and MSPC in practice (Chen
et al., 2006).

On the basis of the probability distribution p(x), the 100α% confidence bound
can be defined as a likelihood threshold h that satisfies the integral (Chen et al.,
2006):

∫

x:p(x)>h
p(x)dx = α (36)

For PPCA model p(x) is a multivariate Gaussian distribution, and the equivalent
confidence bound to (36) is based on the squared Mahalanobis distance M2: the
data point x is considered as an outlier if

M2 = (x − µ)TC−1(x − µ) > χ2
d(α) (37)

where χ2
d(α) is the α-fractile of the chi-square distribution with degrees of freedom

d. For robust PPCA model where p(x) is multivariate t distribution, M2/d has
a F -distribution with d and v degrees of freedom (Kotz and Nadarajah, 2004).
Therefore a data point is detected as an outlier if M2/d exceeds the α-fractile of
the corresponding F -distribution. However as the result of the heavy-tail char-
acteristic of the t distribution, the confidence bound is observed in extensive
preliminary studies (not reported) to be larger than is required and thus will
fail to identify potential outliers. An alternative approach is to regard the robust
PPCA as a method to robustly estimate the PCA projections (and thus µ and
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C), and the outlier detection is performed based on the chi-square distribution as
in (37). This method was used in (Peel and McLachlan, 2000) for noise detection.

Note the confidence bound based on the chi-square distribution is approximate,
since the mean and covariance are not exactly known but estimated. Indeed,
the determination of an appropriate threshold for the confidence bound has
been a difficult task in the literature of outlier detection. Wilks (1962) showed
that if the mean and covariance are estimated using the standard method (i.e.
µ =

∑N
n=1 xn/N and C =

∑N
n=1(xn − µ)(xn − µ)T/(N − 1)), then the squared

Mahalanobis distance has a Beta distribution. However, the confidence bound
derived from the Beta distribution is also approximate, as the mean and covari-
ance are not estimated from the above standard equations in robust methods.
Hardin and Rocke (2005) developed an improved F approximation to the distri-
bution of M2 for the robust minimum covariance determinant (MCD) estimator
(Rousseeuw and van Driessen, 1999); how this improved approach can be adapted
for the proposed robust PPCA method is an interesting topic to explore in the
future.

In the presence of missing data, M2 can be calculated as the expected value with
respect to the conditional distribution of the missing data (Section 4.1):

E[M2] = tr
[

C−1
{

(z − µ)(z − µ)T + Q
}]

(38)

6.2 Contribution analysis

The objective of contribution analysis is to identify which variables contribute
the most to the occurrence of outliers. In general contribution analysis may not
explicitly reveal the root-cause of the presence of outliers, but it is undoubt-
edly helpful in pointing out the inconsistent variables that may undergo further
diagnosis procedures.

The traditional contribution analysis (Miller et al., 1998) is to decompose the
Hotelling’s T 2 and SPE obtained from PCA model into the sum of d contribut-
ing terms, each corresponding to a variable. A similar method was developed for
PPCA model (Kim and Lee, 2003). These techniques are limited by the require-
ment of investigating the contribution to two metrics. It is not clear how to resolve
the conflicts if the two contribution analysis procedures reach different conclusion
about the responsible variables. Alternatively reconstruction based methods have
been proposed (Dunia et al., 1996; Yue and Qin, 2001), where each variable is
treated as if it were missing and is reconstructed in turn, and the variables cor-
responding to the largest reconstruction errors are considered to contribute the
most to the occurrence of outlier.
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Motivated by the reconstruction based techniques, this paper adopts a missing
variable based contribution analysis method, which was originally proposed for
MSPC using non-robust PPCA and mixture models (Chen and Sun, 2009), for
robust PPCA model. Assume x is identified as a candidate outlier, for the j-th
variable of x (j = 1, . . . , d), the proposed method operates as follows:

(1) Let xj be the candidate outlier with the j-th variable missing. Calculate the
conditional distribution of xj given the observed variables (Section 4.1).

(2) Calculate E[M2] as in (38).
(3) The contribution of the j-th variable can be quantified as M2 −E[M2], i.e.

the decrease in the monitoring metric if the variable is eliminated.

Furthermore, in step (c) if E[M2] is smaller than the confidence bound χ2
d(α), the

corresponding variable can be regarded as being significantly influential, since its
elimination would bring the data back to normal.

6.3 Application in a batch fermentation process

In the beer production industry, the fermentation process has the greatest influ-
ence over the product quality and production time variability. The process under
investigation is operated in batch mode, where the wort from previous operations
is fed into the fermenter. Then yeast is added to metabolize sugars and amino
acids and alcohol is produced. As the sugars are used up the fermentation slows
down, and a cooling operation can stop the process at the desired gravity (density
of beer) and/or diacetyl concentration.

Since it is difficult to produce beer consistently in industrial scale, the quality
control in beer industry relies significantly on the consistency of raw materials and
process conditions. In this study data was collected from an industrial fermenter
comprising 100 batches (Basabe, 2004). Each batch is treated as one data point
that consists of 9 variables (Table 1), including initial conditions and process
parameters. As opposed to including the temperature trajectory throughout each
batch, only initial and mean temperatures were used for analysis. This is because
the process temperature was manually controlled, and its large variation during
the batch is not directly related to product quality (Basabe, 2004). Of all the
900 values (100 batches × 9 variables) 59 (6.56%) are missing. The data are
preprocessed to zero mean and unit standard deviation on each dimension.

Both PPCA and robust PPCA were performed on the data and the dimension
of the problem was reduced to 5 principal components, which explained 76.4%
(PPCA) and 77.9% (robust PPCA) of the total variance. Fig. 3(a) gives the outlier
detection chart for robust PPCA. Due to the heavy-tail effect of the t distribution,
the F -distribution based confidence bound is significantly larger than the bound
based on chi-square distribution, and the F -distribution identifies only one outlier.

16



Table 2
Variables that were used for the analysis of the fermentation process.

Variable Definition Variable Definition

1 Dissolved oxygen 6 End gravity

2 Pitch weight 7 Time to reach desirable gravity

3 Viability 8 Time to reach desirable diacetyl

4 Initial gravity 9 Batch mean temperature

5 Initial temperature
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Fig. 3. Outlier detection by using (a) robust PPCA and (b) PPCA with 99% confidence
bound based on chi-square distribution (——) and F -distribution (− · −·). The batch
numbers of the detected outliers are labeled.

An post-inspection revealed that the F -distribution missed a number of batches
that are clearly regarded as outliers. Therefore the chi-square distribution based
confidence bound is recommended and will be used subsequently.

Fig. 3 shows that PPCA detects 6 outliers (batches 12, 14, 39, 48, 66 and 92),
whilst robust PPCA identifies an additional three (batches 1, 6, 46). Batch 14
is the most obvious outlier, and the contribution analysis in Fig. 4 (d) clearly
indicates the first variable (dissolved oxygen) is responsible for the batch being
detected as outlying. Variable 1 in batch 14 has the value of 99 ppm that appears
to be the result of measurement error as opposed to abnormal process condition,
since the concentration of dissolved oxygen at 99 ppm is not physically possible
in this fermentation process. Fig. 4 (a) depicts that batch 1 is also detected as
outlying by robust PPCA due to the first variable, whose value is 40 ppm and less
extreme than batch 14. However due to the dominant influence of batch 14, the
PPCA significantly over-estimates the variance of the first variable, and it failed
to identify batch 1 as outlier. In general PPCA tends to be sensitive to a small
number of influential data points. Therefore robust PPCA is more appropriate
for the modeling of the data where outliers are present.
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Fig. 4. Contribution analysis for robust PPCA with 99% confidence bound (——) that
was calculated as M2 −χ2

d(0.99). (a) Batch 1; (b) Batch 6; (c) Batch 12; (d) Batch 14.

Fig. 4 also depicts the contribution analysis for batch 6 and 12. Clearly the
contribution plots provide important information for the diagnosis of the source
of outliers.

7 Conclusions and discussions

This paper presents a robust PCA model within a probabilistic framework, with
specific focus on handling missing data and its applications in outlier detection
and diagnosis. The idea is to replace the Gaussian distribution utilized by the
probabilistic PCA with the heavy-tailed and more robust multivariate t distribu-
tion. The EM algorithm is implemented for the maximum likelihood parameter
estimation and the handling of missing data. Numerical example has shown that
the presence of a reasonable level of missing data appears to have only small im-
pact on the results of robust PPCA. Furthermore, a contribution analysis method

18



has been developed to help identify the influential variables that contribute to
the occurrence of outliers, and it has been successfully applied to the analysis of
the data collected from an industrial fermentation process.

One limitation of the robust PPCA model is that it does not consider the sit-
uation where outliers are clustered and thus the overall distribution of data is
multi-modal. In general, clustered outliers are more difficult to detect. The pre-
sented robust PPCA, which assumes a uni-modal distribution of the data, is
not specifically designed to address this issue. A potential solution, suggested by
Rocke and Woodruff (2001), is to utilize cluster analysis to first identify the clus-
ters, and then develop a metric from the largest identified cluster(s) for outlier
detection. Following this idea, the robust PPCA can be extended to a mixture
model, similar to the mixture of (non-robust) PPCA (Tipping and Bishop, 1999a).
Alternatively, the methodology of “forward search” (Atkinson et al., 2004) can be
adopted to incrementally include the data for analysis, and thus both the isolated
and clustered outliers can be identified sequentially. Currently these methods are
under investigation.

References

Archambeau, C., Delanney N., Verleysen, M., 2006. Robust probabilistic Projec-
tion. Proc. 23rd International Conference on Machine Learning, Pittsburgh,
USA.

Atkinson, A. C., Riani, M., Cerioli, A., 2004. Exploring Multivariate Data with
the Forward Search. Springer-Verlag, New York.

Barnett, V., Lewis, T., 1994. Outliers in Statistical Data, 3rd Edition. John Wiley,
New York.

Basabe, X. L., 2004. Towards improved fermentation consistency using multi-
variate analysis of process data. Master’s thesis, University of Newcastle upon
Tyne, UK.

Cambell, N. A., 1980. Robust procedures in multivariate analysis. Applied Statis-
tics 29, 231–237.

Chen, T., Morris, J., Martin, E., 2006. Probability density estimation via an
infinite Gaussian mixture model: application to statistical process monitoring.
Journal of the Royal Statistical Society C (Applied Statistics) 55, 699–715.

Chen, T., Morris, J., Martin, E., 2008. Dynamic data rectification using particle
filters. Computers and Chemical Engineering 32, 451–462.

Chen, T., Sun, Y., 2009. Probabilistic contribution analysis for statistical process
monitoring: a missing variable approach. Control Engineering Practice 17, 469–
477.

Croux, C., Haesbroeck, G., 2000. Principal components analysis based on robust
estimators of the covariance or correlation matrix: Influence functions and ef-
ficiencies. Biometrika 87, 603–618.

19



Daszykowski, M., Kaczmarek, K., Heyden, Y. V., Walczak, B., 2007. Robust
statistics in data analysis - a review basic concepts. Chemometrics and Intelli-
gent Laboratory Systems 85, 203–219.

Dempster, A. P., Laird, N. M., Rubin, D. B., 1977. Maximum likelihood from
incomplete data via the EM algorithm. Journal of Royal Statistical Society B
39, 1–38.

Devlin, S. J., Gnanadesikan, R., Kettenring, J. R., 1981. Robust estimation of dis-
persion matrices and principal component. Journal of the American Statistical
Association 12, 136–154.

Dunia, R., Qin, S., Edgar, T., McAvoy, T., 1996. Identification of faulty sensors
using PCA. AIChE Journal 42, 2797–2812.

Fang, Y., Jeong, M. K., 2008. Robust probabilistic multivariate calibration model.
Technometrics 50, 305–316.

Gelman, A. B., Carlin, J. S., Stern, H. S., Rubin, D. B., 1995. Bayesian data
analysis. Chapman & Hall/CRC.

Hardin, J., Rocke, D. M., 2005. The distribution of robust distances. Journal of
Computational and Graphical Statistics 14, 910–927.

Huber, P. J., 1981. Robust Statistics. Wiley, New York.
Hubert, M., Rousseeuw, P. J., Branden, K. V., 2005. ROBPCA: a new approach

to robust principal component analysis. Technometrics 47, 64–79.
Hubert, M., Rousseeuw, P. J., Verboven, S., 2002. A fast method for robust

principal components with applications to chemometrics. Chemometrics and
Intelligent Laboratory Systems 60, 101–111.

Ibazizen, M., Dauxois, J., 2003. A robust principal component analysis. Statistics
37, 73–83.

Jolliffe, I. T., 2002. Principal Component Analysis, 2nd Edition. Springer.
Kim, D., Lee, I.-B., 2003. Process monitoring based on probabilistic PCA. Chemo-

metrics and intelligent laboratory systems 67, 109–123.
Kotz, S., Nadarajah, S., 2004. Multivariate t distributions and their applications.

Cambridge University Press.
Lange, K. L., Little, R. J. A., Taylor, J. M. G., 1989. Robust statistical modeling

using the t distribution. Journal of the American Statistical Association 84,
881–896.

Li, G., Chen, Z., 1985. Projection-pursuit approach to robust dispersion matrices
and principal components: Primary theory and Monte Carlo. Journal of the
American Statistical Association 80, 759–766.

Little, R. J. A., Rubin, D. B., 1987. Statistical Analysis with Missing Data. Wiley,
Chichester.

Liu, C., 1997. ML estimation of the multivariate t distribution and the EM algo-
rithm. Journal of Multivariate Analysis 63, 296–312.

Miller, P., Swanson, R. E., Heckler, C. F., 1998. Contribution plots: a missing link
in multivariate quality control. International Journal of Applied Mathematics
and Computer Science 8, 775–792.

Peel, D., McLachlan, G. J., 2000. Robust mixture modelling using the t distribu-
tion. Statistics and Computing 10, 339–348.

20



Qin, S. J., 2003. Statistical process monitoring: basics and beyond. Journal of
Chemometrics 17, 480–502.

Rocke, D. M., Woodruff, D. L., 2001. Multivariate outlier detection and robust
covariance matrix estimation - discussion. Technometrics 43, 300–303.

Rousseeuw, P. J., van Driessen, K., 1999. A fast algorithm for the minimum
covariance determinant estimator. Technometrics 41, 212–223.

Ruymagaart, F. H., 1981. A robust principal component analysis. Journal of
Multivariate Analysis 11, 485–497.

Schick, I. C., Mitter, S. K., 1994. Robust recursive estimation in the presence of
heavy-tailed observation noise. Annals of Statistics 22, 1045–1080.

Tipping, M. E., Bishop, C. M., 1999a. Mixtures of probabilistic principal compo-
nent analysers. Neural Computation 11, 443–482.

Tipping, M. E., Bishop, C. M., 1999b. Probabilistic principal component analysis.
Journal of the Royal Statistical Society B 61, 611–622.

Wilks, S., 1962. Mathematical Statistics. Wiley, New York.
Yue, H., Qin, S., 2001. Reconstruction based fault identification using a combined

index. Industrial and Engineering Chemistry Research 40, 4403–4414.

21


