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Abstract

An approximate rank revealing factorization problem with structure constraints on the
normalized factors is considered. Examples of structure, motivated by an application
in microarray data analysis, are sparsity, nonnegativity,periodicity, and smoothness.
In general, the approximate rank revealing factorization problem is nonconvex. An
alternating projections algorithm is developed, which is globally convergent to a locally
optimal solution. Although the algorithm is developed for aspecific application in
microarray data analysis, the approach is applicable to other types of structure.
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1. Introduction

Rank estimation

Consider anm×n real matrixX0 with rank r0 < min(m,n). A factorizationX0 =
C0P0, whereC0 is m× r0 andP0 is r0 ×n is calledrank revealing. Suppose that in-
stead ofX0 a matrixX := X0 + E is observed, whereE is a perturbation, e.g.,E can
represent rounding errors in a finite precision arithmetic or measurement errors in data
acquisition. The rank of the perturbed matrixX may not be equal tor0. If E is random,
generically,X is full rank, so that from a practical point of view, a nonzeroperturba-
tion E makes the matrixX full rank. If, however,E is “small”, in the sense that its

Frobenius norm‖E‖F :=
√

∑m
i=1 ∑n

j=1e2
i j is less than a constantε (defining the pertur-

bation size), thenX will be “close” to a rank-r0 matrix in the sense that the distance
of X to the manifold of rank-r0 matrices

d(X, r0) := min
X̂

‖X− X̂‖F subject to rank(X̂) = r0 (1)
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is less than the perturbation sizeε. Therefore, provided that the sizeε of the perturba-
tion E is known, the distance measured(X, r), for r = 1,2, . . ., can be used to estimate
the rank of the unperturbed matrix as follows

r̂ = argmin{ r | d(X, r) < ε }.

It is well known that problem (1) has analytic solution in terms of the singular
valuesσ1, . . . ,σmin(m,n) of X

d(X, r0) :=
√

σ2
r0+1 + · · ·+ σ2

min(m,n)
,

and therefore the rank ofX0 can be estimated from the decay of the singular values ofX
(find the largest singular value that is sufficiently small compared to the perturbation
sizeε). This is the standard way for rank estimation in numerical linear algebra, where
the estimatêr is callednumerical rank of X. The question occurs:

Given a perturbed matrixX := X0 + E, is the numerical rank ofX the
“best” estimate for the rank ofX0, and if so, in what sense?

The answer to the above question depends on the type of the perturbationE. If E is
a random matrix with zero mean elements that are normally distributed, independent,
and with equal variances, then the estimateX̂, defined by (1) is a maximum likelihood
estimator ofX0, i.e., it is statistically optimal. If, however, one or moreof the above
assumptions are not satisfied,X̂ is not optimal and can be improved by modifying
problem (1). The objective of this paper is to justify this statement in a particular case
when there is prior information about the true matrixX0 in the form of structure in
a normalized rank-revealing factorization and the elements of the perturbationE are
independent but possibly with different variances.

Prior knowledge in the form of structure

In applications often there is prior knowledge about the unperturbed matrixX0

(apart from the basic one thatX0 is rank deficient). Whenever available, such prior
knowledge is beneficial to use in the computation of the distance measured(X, r).
Using the prior knowledge amounts to modification of problem(1). For example, com-
mon prior information in image and text classification is nonnegativity of the elements
of X0, see [7]. In this case, we require the approximationX̂ to be nonnegative and in
order to achieve this, we impose nonnegativity of the estimate X̂ as an extra constraint
in (1). Similarly, in signal processing and system theory the matrixX0 is Hankel or
Toeplitz structured [11] and the relevant modification of (1) is to constrain̂X to have
the same structure. In chemometrics, the measurement errors ei j may have different
variancesσ2vi j , which are known (up to a scaling factor) from the measurement setup
or from repeated experiments, see [17, 9]. Such prior information amounts to chang-
ing the cost function‖X− X̂‖F to an element-wise weighted norm of the error matrix
X− X̂

‖X− X̂‖W :=

√
m

∑
i=1

n

∑
j=1

wi j (xi j − x̂i j )2,
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where the elementswi j of the weight matrixW ∈ R
m×n are the inverses of the error

variancesvi j . In general, either the addition of constraints onX̂ or the replacement of
the Frobenius norm with a weighted norm, renders the modifieddistance problem (1)
difficult to solve. A globally optimal solution can no longerbe given in terms of the
singular values ofX and the resulting optimization problem is nonconvex.

Most of the approaches to compute low-rank approximation with weighted cost
function and constraints are based on local optimization methods, and fall into one of
two main classes:

1. methods based on the variable projections [3], and
2. methods based on the alternating projections.

The alternating projections type algorithms are globally convergent with linear local
convergence rate [6, 4]. The variable projections type algorithms, when properly im-
plemented, are globally convergent with superlinear localconvergence rate. This im-
plies that when the initial approximation is sufficiently close to a local minimum, the
variable projections type algorithms are faster than the alternating projections type al-
gorithms. Numerical results [13], however, suggest that inpractice, when the initial
approximation is “far” from a local minimum, the two approaches are comparable in
efficiency.

In this paper, we use the alternating projections approach,because of the easier
to modify it for constrained optimization problems. We notethat certain constrained
problems can be treated also using a modification of the variable projections, see [14,
Chapter 8]. Solving constrained low-rank approximation problems via the variable
projections approach will be pursued elsewhere.

Application in bioinformatics
Microarray data analysis

One motivation for our interest in structured factorization comes from the analysis
of high throughput gene expression data, measured with microarray technology, where
the interest is in inferring the regulatory processes. Expression data correspond to the
average concentrations of messenger RNA molecules in a sample of cells. While most
work in the use of microarrays deals with static systems, such as profiles of patients
with and without a particular disease, there has been growing interest in the modelling
of time-course data, either in studying the response of an organism to a particular type
of environmental stress, or in steady state dynamical behaviors such as cell-cycle regu-
lation. What motivates us is the last of these, where the expression data is in the form of
a matrixX, row-wise indexed by the genes in the genome of the organism,and column-
wise indexed by time. Typical datasets, where periodic behavior has been the subject of
interest, contain two or three periods of the phenomenon, following some experimental
method to synchronize the cells in a colony. The classic dataset in this domain is the
cell-cycle experiments conducted by Spellman et al. [15] where four different methods
were used to synchronize cells, followed by measurements ofthe expression profiles
at a number of equally spaced intervals over two periods. A more recent study [16]
focused on the regulation of yeast metabolic cycle, and included three periods of cyclic
behavior. Other studies of this nature include the monitoring of Circadean rhythm in
plants and cultured.
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Such dynamical behavior in which a large number of genes in the organism can be
shown to be expressed periodically is regulated by a much smaller set of regulatory pro-
teins, known as transcription factors. In the regulation ofyeast cell cycle behavior for
example, Fourier transform based estimations detect about600 genes to be regulated
in a cyclic manner. However the number of regulators known tocontrol this behavior
is less than 30. An important aspect of biology that justifiesthe need for model based
inference in this topic is the fact that the measured mRNA profiles of the regulators
is not an accurate reflection of their regulatory activities. Part of the reason for this is
that transcription factors are usually found in low abundances in cells, and hence their
measurements are subject to noise. Further, as a result of phenomena known as post-
transcriptional and post-translational regulation messenger RNA levels do not correlate
well with protein levels. This is particularly true for regulatory proteins, and there is
evidence that a significant fraction of cell cycle regulating transcription factors in yeast,
for example, are subject to post-transcriptional regulation.

Matrix factorization techniques have been used in the analysis of microarray data in
a number of studies [1, 5, 8, 12]. Alter and Golub [1] seek a principal component pro-
jection to visualize high dimensional gene expression dataand show that some known
biological aspects of the data are visible in a two dimensional subspace defined by the
first two principal components. Thenetwork component analysismodel uses a factor-
ization of the formX = CP, whereC the connectivity matrix is rich in structure from
prior knowledge of which transcription factors bind to the upstream regions of which
genes. Sanguinetti et al. [12] study a variant of this model in a probabilistic state space
formulation and estimate parameters using Bayesian methods. Chang et al. [2] has de-
veloped a fast computational algorithm to estimate what is called a network component
analysis model.

Formulation as an approximate low-rank factorization withstructured factors
The measurements of a microarray experiment are collected in anm×n real ma-

trix X—rows correspond to genes and columns correspond to time instants. The ele-
mentxi j is theexpression levelof the ith gene at thejth moment of time. The rank-r
of X is equal to the number oftranscription factorsthat regulate the gene expression
levels. In a rank revealing factorizationX = CP, the jth column ofP is a vector of
intensities of the transcription factors at timej, and theith row of C is a vector of
sensitivities of theith gene to the transcription factors. For example,ci j equal to zero
means that thejth transcription factor does not regulate theith gene.

An important problem in bioinformatics is to discover what transcription factors
regulate a particular gene and what the time evaluation of the transcription factor activ-
ities are. This problem amounts to computing an (approximate) factorizationCPof the
gene expression level versus time matrixX. The need of approximation comes from:
1) inability to account for all relevant transcription factors (therefore accounting only
for a few dominant ones), and 2) measurement errors occurring in the collection of the
data.

Often it is known a priori that certain transcription factors do not regulate certain
genes. This implies that certain elements of the sensitivity matrixC are known to be
zeros. In addition, the transcription factor activities are modeled to be nonnegative,
smooth, and periodic functions of time. Where transcription factors down regulate a
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gene, the elements ofC have to be negative to account for this. The constraints (11–
14) in the considered estimation problem (9) (see Section 2)encapsulate this prior
knowledge.

A factorizationX =CP is nonunique; for anyr× r nonsingular matrixT, we obtain
a new factorizationX = C̃P̃, whereC̃ := CT−1 andP̃ = TP. Obviously, this imposes a
problem in estimating transcription factor intensities and gene sensitivities from data.
In order to resolve the nonuniqueness problem, we assume that r genes are known to be
regulated by single transcription factors that are different. Moreover, the sensitivities
of these genes to the corresponding transcription factors are normalized to ones. The
assumption implies that after reordering of the genes, the sensitivity matrix has the

form C =
[

Ir
C′

]
, whereIr is ther × r identity matrix. This assumption corresponds to

constraint (10) in the estimation problem (9).
In this paper we present an algorithm for approximate low-rank factorization with

structured factors and test its performance on synthetic data. A paper on its application
to yeast metabolic cycle regulation will be presented elsewhere.

Notation
:= (=:) left (right) hand side is defined by the right (left) hand side
A≥ 0 matrix with element-wise nonnegative elements, i.e.,ai j ≥ 0

‖A‖F :=
√

∑i j a2
i j Frobenius norm ofA∈ R

m×n

‖A‖W :=
√

∑i j wi j a2
i j element-wise weighted norm with weightW ∈ R

m×n, W ≥ 0

diag(·) form a diagonal matrix out of a vector diag(w) :=

[w1
. . .

wn

]

vec :Rm×n 7→ R
mn operator vectorizing a matrix column-wise

vec−1 : R
mn 7→ R

m×n operator reconstructing the matrixA back from vec(A)
⊗ Kronecker productA⊗B := [ai j B]

1n =

[
1
...
1

]
vector withn elements that are all ones

e∼ N(me,Ve) normally distributed random vector with meanme and
varianceVe

selector matrix anm×n matrixSzeros/ones elements, such thatS1n = 1m

difference matrix D :=

[ 1 −1
−1 1

. . .
. . .
−1 1

]

2. Statistical model and maximum likelihood estimation problem

Consider the errors-in-variables model

X = X0 +E, where X0 = C0P0, C0 ∈ R
m×r , P0 ∈ R

r×n, with r < min(m,n)

and vec(E) ∼ N
(
0,σ2diag(v)

)
.

(2)

Thetrue data matrix X0 has rankr and the measurement errorsei j are zero mean, nor-
mal, and uncorrelated, with covarianceσ2vi+m( j−1). The vectorv∈ R

mn specifies the
element-wise variances of the measurement error matrixE up to an unknown factorσ2.
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In order to make the parametersC0 andP0 unique, we impose the normalization
constraint

C0 =

[
Ir
C′

0

]
. (3)

In addition, the blockC′
0 of C0 has elements (specified by a selector matrixS) equal to

zero
Svec(C′

0) = 0. (4)

The parameterP0 is periodic with a periodl ∈ N

P0 = 1⊤l ⊗P′
0, (5)

nonnegative
P′

0 ≥ 0, (6)

and with smooth rows in the sense that

‖P′
0D‖2

F ≤ d, (7)

whered > 0 is a smoothness parameter.
Define them×n matrix

W := vec−1(v−1/2
1 , . . . ,v−1/2

mn
)
. (8)

The maximum likelihood estimator for the parametersC0 andP0 in (2) under assump-
tions (3–7), with known parametersr, v, S, andd, is given by the following optimization
problem:

minimize overC′, P′, X̂ ‖X− X̂‖2
W (cost function) (9)

subject to X̂ = CP (rank constraint)

C =
[

Ir
C′

]
(normalization ofC) (10)

Svec(C′) = 0 (zero elements ofC′) (11)

P = 1⊤l ⊗P′ (periodicity ofP) (12)

P′ ≥ 0 (nonnegativity ofP) (13)

‖P′D‖2
F ≤ d (smoothness ofP) (14)

The rank and measurement errors assumptions in the model (2)imply the weighted
low-rank approximation nature of the estimation problem (9–14) with weight matrix
given by (8). Furthermore, the assumptions (3–7) about the true data matrixX0 corre-
spond to the constraints (10–14) in the estimation problem.

3. Computational algorithm

3.1. Algorithm

The alternating projections algorithm, see Algorithm 1, isbased on the observation
that the cost function (9) is quadratic and the constraints (10–14) are linear in either
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Algorithm 1 Alternating projections algorithm for solving problem (9–14).

• Find an initial approximation(C′(0),P′(0)).

• Fork = 0,1, . . . till convergence do

1. C′(k+1) := argminC′ ‖X−CP‖2
W subject to (10–11) withP′ = P′(k)

2. P′(k+1) := argminP′ ‖X−CP‖2
W subject to (12–14) withC′ = C′(k+1)

C or P. Therefore, for a fixed value ofC, (9–14) is a nonnegativity constrained least
squares problem inP and vice versa, for a fixed value ofP, (9–14) is a constrained least
squares problem inC. These problems correspond to, respectively, steps 1 and 2 of the
algorithm. Geometrically they are projections. In the unweighted (i.e.,W = 1m1⊤n ) and
unconstrained case, the problem on step 1 is the orthogonal projectionX(PP⊤)−1P⊤

of X on the span of the rows ofP, and problem on step 2 is the orthogonal projection
(C⊤C)−1C⊤X of X on the span of the column ofC. The algorithm iterates the two
projections, thus its name—alternating projections.

Note1 (Rank deficient factorsC andP). If the factorP is rank deficient, the indicated
inverse in the computation of the projected matrixC∗ does not exist. (This may happen
when the rank of the approximation̂X if less thanr.) The projectionC∗, however, is
still well defined by the optimization problem on step 1 of thealgorithm and can be
computed in closed form by replacing the inverse with the pseudo inverses. The same
is true when the factorP is rank deficient.

Two special cases of the estimation problem of Section 2 are studied and alternating
projections type algorithms are proposed.

• In the weighted and unconstrained case, Algorithm 1 is equivalent to the MLPCA
algorithm of [17].

• In the weighted case with nonnegativity constraint (13), Algorithm 1 is equiva-
lent to the modified MLPCA algorithm of [18].

In Appendix A we describe the implementation of Algorithm 1 for the general case of
inhomogeneous weights and constraints (10–14). Next, we state convergence proper-
ties of Algorithm 1.

3.2. Convergence properties

Theorem 2. Algorithm 1 is globally and monotonically convergent in the‖ ·‖W norm,
i.e., if X̂(k) := C(k)P(k) is the approximation on the kth step of the algorithm, then

f (k) := ‖X− X̂(k)‖2
W → f ∗, as k→ ∞. (15)

Assuming that there exists a solution to the problem (9–14) and any (locally optimal)
solution is unique (i.e., it is a strict minimum), the sequencesX̂(k), C(k), and P(k) con-
verge element-wise, i.e.,

X̂(k) → X∗, C(k) →C∗, and P(k) → P∗, as k→ ∞, (16)
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where X∗ := C∗P∗ is a (locally optimal) solution of (9–14).

Proof. First, we show that the sequenceX̂(k), for k = 1,2, . . ., converges monotonically
in the‖ · ‖W norm. On each iteration, Algorithm 1 solves two optimization problems
(steps 1 and 2), which cost function and constraints coincide with the ones of prob-
lem (9–14). Therefore, the cost function‖X − X̂(k)‖2

W is monotonically nonincreas-
ing. The cost function is bounded from below, so that the sequence‖X− X̂(k)‖2

W, for
k = 1,2, . . ., is convergent. This proves (15).

Although,X̂(k) converges in norm, it may not converge element-wise. A sufficient
condition for element-wise convergence is that the underlying optimization problem
has a solution and it is unique [4, Theorem 5]. The element-wise convergence of̂X(k)

and the uniqueness (due to the normalization condition (3))of the factorsC(k) andP(k),
givenX̂(k), implies element-wise convergence of the factor sequencesC(k) andP(k) as
well. This proves (16).

In order to show that the algorithm convergence to a minimum point of (9–14),
we need to verify that the first order optimality conditions for (9–14) are satisfied at a
cluster point of the algorithm. The algorithm converges to acluster point if and only if
the union of the first order optimality conditions for the problems on steps 1 and 2 are
satisfied. Then

P′(k−1) = P′(k) =: P′∗ and C′(k−1) = C′(k) =: C′∗.

From the above conditions for a stationary point and the Lagrangians of the problems
of steps 1 and 2 and (9–14), it is easy to see that the union of the first order optimality
conditions for the problems on steps 1 and 2 coincides with the first order optimality
conditions of (9–14).

4. Simulation results

In this section, we show empirically that exploiting prior knowledge ((8) and as-
sumptions (3–7)) improves the performance of the estimator. The data matrixX is gen-
erated according to the errors-in-variables model (2) withparametersm= 100,n = 6,
andr = 2. The true low-rank matrixX0 =C0P0 is random and the parametersC0 andP0

are normalized according to assumption (3) (so that they areunique). For the purpose
of validating the algorithm, the elementc0,mn is set to zero but this prior knowledge is
not used in the parameter estimation.

The estimation algorithm is applied onN = 100 independent noise realizations of
the dataX. The estimated parameters on theith repetition are denoted bŷCi , P̂i and
X̂i := ĈiP̂i . The performance of the estimator is measured by the following average
relative estimation errors:

eX =
1
N

N

∑
i=1

‖X0− X̂i‖2
F

‖X0‖2
F

, eC =
1
N

N

∑
i=1

‖C0−Ĉi‖2
F

‖C0‖2
F

, eP =
1
N

N

∑
i=1

‖P0− P̂i‖2
F

‖P0‖2
F

,

and ez =
1
N

N

∑
i=1

|ĉi
mn|.
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For comparison the estimation errors are reported for the low-rank approximation
algorithm, using only the normalization constraint (3), aswell as for the proposed al-
gorithm, exploiting the available prior knowledge. The difference between the two
estimation errors is an indication of how important is the prior knowledge in the esti-
mation.

Lack of prior knowledge is reflected by specific choice of the simulation parameters
as follows:

homogeneous errors ↔ W = ones(m,n)
no periodicity ↔ l = 1
no zeros inC′ ↔ S= []
no sign constraint onP′ ↔ nonneg= 0

We perform the following experiments:

1. W = rand(m,n), l = 1, S= [], nonneg= 0
2. W = ones(m,n), l = 3, S= [], nonneg= 0
3. W = ones(m,n), l = 1, S 6= [], nonneg= 0
4. W = ones(m,n), l = 1, S= [], nonneg= 1
5. W = rand(m,n), l = 3, S 6= [], nonneg= 1

which test individually the effect of (8), assumptions (4),(5), (6), and their combined
effect on the estimation error. Figures 1–5 show the averagerelative estimation errors
(solid blue line is the estimator that exploits prior knowledge and dashedred line is
the estimator that does not exploit prior knowledge) versusthe measurement noise
standard deviationσ , for the five experiments. The vertical bars on the plots visualize
the standard deviation of the estimates. The results indicate that main factors for the
improved performance of the estimator are:

1. assumption (5) — known zeros in theC′
0 and

2. (8) — known covariance structure of the measurement noise.

MATLAB files reproducing the numerical results and figures presented in the paper are
available from:http://users.ecs.soton.ac.uk/im/factorize.tar
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Figure 1: Effect of weighting (solidblue line — exploiting prior knowledge, dashedred line— without
exploiting prior knowledge, vertical bars — standard deviations).
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Figure 2: Effect of periodicity ofP (solidblue line— exploiting prior knowledge, dashedred line— without
exploiting prior knowledge, vertical bars — standard deviations).
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Figure 3: Effect of zero elements inC (solid blue line— exploiting prior knowledge, dashedred line—
without exploiting prior knowledge, vertical bars — standard deviations).
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Figure 4: Effect of nonnegativity ofP (solid blue line— exploiting prior knowledge, dashedred line —
without exploiting prior knowledge, vertical bars — standard deviations).
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Figure 5: Effect of weighting, periodicity, and nonnegativity of P, and zero elements inC (solid blue line—
exploiting prior knowledge, dashedred line— without exploiting prior knowledge, vertical bars — standard
deviations).

5. Conclusions

The low-rank approximation accuracy improves when there isprior knowledge
about the to-be-estimation data matrix or the perturbations and this prior knowledge
is used in the approximation problem. Using the prior knowledge changes the basic
low-rank approximation problem in the Frobenius norm to a weighted constrained low-
rank approximation problem. Unfortunately, the latter problem is, in general, difficult
nonconvex optimization problem, while the former is solvable in terms of the singular
value decomposition. We adopted a solution approach for theweighted constrained
low-rank approximation problem that is based on an alternating projection algorithm.
The alternating projection algorithm is globally convergent to a local solution, the con-
vergence is monotonic, and has linear local rate. An interesting research question for
future research is to use first and second derivative information in order to speed up
the convergence (e.g., achieve superlinear convergence rate). In the specific estimation
problem considered in the paper, the simulation results suggest that the improvement
in the estimation accuracy is mainly due to known zeros in a factor of the normalized
rank revealing factorization and the known covariance structure of the measurement
noise.
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A. Implementation of Algorithm 1

Initial approximation. For initial approximation(C′(0),P′(0)) we choose the normal-
ized factors of a rank revealing factorization of the solution X̂ of (1). LetX = UΣV⊤

be the singular value decomposition ofX and define the partitioning

U =:
r m− r[
U1 U2

]
, Σ =:

r n− r[
Σ1 0
0 Σ2

]
r

m− r
, V =:

r n− r[
V1 V2

]
.

Furthermore, let
[

U11
U21

]
:= U , with U11 ∈ R

r×r . Then

C′(0) := U21U
−1
11 and P(0) := U11ΣV⊤

define the Frobenius-norm optimal unweighted and unconstrained low-rank approxi-
mation

X̂(0) :=

[
I

C′(0)

]
P(0).

More sophisticated choices for the initial approximation that take into account the
weight matrixW are described in [10].

Separable least squares problem for C.In the weighted case, the projection on step 1
of the algorithm is computed separately for each rowci of C. Let xi be theith row ofX
andwi be theith row ofW. The problem

minimizeC ‖X−CP‖2
W subject to (10–11)

is equivalent to the problem

minimizeci ‖(xi−ciP)diag(wi)‖2
2 subject to (10–11), for i = 1, . . . ,m. (17)

The projection on step 2 of the algorithm is not separable dueto constraint (14) (see
below).
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Taking into account constraint (10).Since the firstr rows ofC are fixed, we do not
solve (17) fori = 1, . . . , r, but define

ci := e⊤i , for i = 1, . . . , r,

whereei is theith unit vector (theith column of the identity matrixIr ).

Taking into account constraint (11).Let Si be a selector matrix for the zeros in theith
row ofC

Svec(C′) = 0 ⇐⇒ ciSi = 0, for i = r +1, . . . ,m.

(If there are no zeros in theith row, thenSi is skipped.) Theith problem in (17) becomes

minimizeci ‖(xi −ciP)diag(wi)‖2
2 subject to ciSi = 0. (18)

Let the rows of the matrixNi form a basis for the left null space ofSi . ThenciSi = 0 if
and only ifci = ziNi , for certainzi , and problem (18) becomes

minimizezi ‖(xi −ziNiP)diag(wi)‖2
2.

Therefore, the solution of (17) is

c∗i = xiP
⊤N⊤

i (NiPP⊤N⊤
i )−1Ni .

Note3. It is not necessary to explicitly construct the matricesSi and compute basisNi

for their left null spaces. SinceSi is a selector matrix, it is a submatrix of the identity
matrix Ir . The rows of the complementary submatrix ofIr form a basis for the left null
space ofSi . This particular matrixNi is also a selector matrix, so that the productNiP
need not be computed explicitly.

Taking into account constraint (12).We have,

X−CP= X−C(1⊤l ⊗P′) =
[
X1 · · · Xl

]
−C

[
P′ · · · P′]

=




X1
...

Xl


−




C
...
C


P′ =: X′− (1l ⊗C)︸ ︷︷ ︸

C′

P′ = X′−C′P′.

LetW′ :=

[
W1
...

Wl

]
, whereW =:

[
W1 · · · W2

]
. Then the problem

minimizeP‖X−CP‖2
W subject to (12–14)

is equivalent to the problem

minimizeP′ ‖X′−C′P′‖2
W′ subject to (13–14).

Taking into account constraint (13).Adding the nonnegativity constraint changes the
least squares problem to a nonnegative least squares problem, which is a standard con-
vex optimization problem for which robust and efficient methods and software exist.
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Taking into account constraint (14).The problem

minimizeP ‖X−CP‖2
W subject to ‖PD‖2

F ≤ δ

is equivalent to a Tychonov regularized least squares problem

minimizeP ‖X−CP‖2
W + γ‖PD‖2

F

for certain regularization parameterγ. The latter problem is equivalent to the standard
least squares problem

minimizep

∥∥∥∥
[
diag

(
vec(W)

)
0

0 I

][
x−C p√γD p

]∥∥∥∥
2

2

wherep = vecP, C := I ⊗C, andD := D⊤⊗ I .

Stopping criteria. The iteration is terminated when the following stopping criteria are
satisfied

• ‖C(k+1)P(k+1)−C(k)P(k)‖W/‖C(k+1)P(k+1)‖W < εX ,

• ‖(C(k+1)−C(k))P(k+1)‖W/‖C(k+1)P(k+1)‖W < εC, and

• ‖C(k+1)(P(k+1) −P(k))‖W/‖C(k+1)P(k+1)‖W < εP.

HereεX , εP, andεC are user defined relative convergence tolerances forX, P, andC,
respectively.
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