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Abstract

Ensemble methodology, which builds a classification model by integrating mul-
tiple classifiers, can be used for improving prediction performance. Researchers
from various disciplines such as statistics, pattern recognition, and machine
learning have seriously explored the use of ensemble methodology. This paper
presents an updated survey of ensemble methods in classification tasks, while
introducing a new taxonomy for characterizing them. The new taxonomy, pre-
sented from the algorithm designer’s point of view, is based on five dimensions:
inducer, combiner, diversity, size, and members dependency. We also propose
several selection criteria, presented from the practitioner’s point of view, for
choosing the most suitable ensemble method.
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1. Introduction

Supervised learning methods are methods that attempt to discover rela-
tionships between the input attributes (independent variables) and the target
attribute (dependent variable). The relationship discovered is represented in a
structure referred to as a model. Usually models can be used for predicting the
value of the target attribute knowing the values of the input attributes. It is
useful to distinguish between two main supervised models: classification models
(classifiers) and regression models.

Regression models map the input space into a real-valued domain, whereas
classifiers map the input space into predefined classes. For instance, classifiers
can be used to classify mortgage consumers into good (fully payback the mort-
gage on time) and bad (delayed payback).

In a typical supervised learning problem, a training set of labeled examples is
given and the goal is to form a description that can be used to predict previously
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unseen examples.
The main idea of an ensemble methodology is to combine a set of models,

each of which solves the same original task, in order to obtain a better composite
global model, with more accurate and reliable estimates or decisions than can
be obtained from using a single model.

In the literature, the term “ensemble methods” is usually reserved for collec-
tions of models that are minor variants of the same basic model. Nevertheless,
in this survey we also cover hybridization of models that are not from the same
family. The later is also referred in the literature as “multiple classifier systems”
[69, 67].

In fact, ensemble methodology imitates our second nature to seek several
opinions before making any crucial decision. We weigh the individual opinions,
and combine them to reach a final decision [121].

The ensemble methodology has been used to improve the predictive perfor-
mance of single models, in many fields such as: finance [92], bioinformatics [162],
medicine [103], cheminformatics [108], manufacturing [130, 131, 102], geography
[26], information security [106, 113] Information Retrieval [51, 52, 142, 9, 142],
Image Retrieval [95, 163] and recommender systems [148].

The idea of building a predictive model by integrating multiple models has
been under investigation for a long time. The history of ensemble methods starts
as early as 1977 with Tukeys Twicing [170], an ensemble of two linear regression
models. Tukey suggested to fit the first linear regression model to the original
data and the second linear model to the residuals. Two years later, Dasarathy
and Sheela [39] suggest to partition the input space using two or more classi-
fiers. However the main progress in the field has been made during the Nineties.
Hansen and Salamon [64] suggested an ensemble of similarly configured neural
networks to improve the predictive performance of a single ANN. At the same
time Schapire [146] laid the foundations for the award winning AdaBoost [55]
algorithm by showing that a strong classifier in probably approximately correct
(PAC) sense can be generated by combining ”weak” classifiers (that is, simple
classifiers whose classification power is only slightly better than random classi-
fication). In this paper we restrict attention to classification tasks although the
ensemble methodology can be used in other tasks such as regression [61, 174, 82]
or density estimation [128].

In the past few years, experimental studies conducted by the machine-
learning community show that combining the outputs of multiple classifiers
reduces the generalization error [48, 124, 14, 116]. Ensemble methods are very
effective, mainly due to the phenomenon that various types of classifiers have
different “inductive biases” [112]. Indeed, ensemble methods can effectively
make use of such diversity to reduce the variance-error [171, 4] without increas-
ing the bias-error. In certain situations, an ensemble can also reduce bias-error,
as shown by the theory of large margin classifiers [13].
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2. Existing Surveys on Ensemble of Classifiers

Given the potential usefulness of ensemble methods, it is not surprising that a
vast number of methods are now available to researchers and practitioners. The
variety of ensemble techniques have arisen several taxonomies in the literature
which aim to categorize ensemble methods from the algorithm designer point of
view.

Sharkey [155] proposed a taxonomy for ensemble of neural networks. This
taxonomy suggests three dimensions:

1. The first dimension indicates if the ensemble’s members are competitive
or cooperative. In the competitive mode, a single member is selected to
provide the classification. In cooperative mode the classifications of all
members are combined.

2. The second dimension indicates if the ensemble is created top-down or
bottom-up. In top-down mode the combination mechanism is based on
something other than the classifiers outputs. Bottom-up techniques take
the outputs of the members into account in their combination. Bottom up
methods are subdivided into fixed methods (such as voting), and dynamic
methods (such as stacking). In fixed methods, although the outputs are
implicated in the computation, the method of combining remains fixed. In
dynamic methods, the relative contribution of component classifiers varies
as a function of their output.

3. The third dimension indicates if we combine either ensemble, modular,
or hybrid components; Sharkey [152] and Lam [90] distinguish between
modular systems and pure ensemble systems. The main idea of pure
ensemble systems is to combine a set of classifiers, each of which solves
the same original task. The purpose of pure ensemble systems is to obtain
a more accurate and reliable performance than using a single classifier.
On the other hand, the purpose of modular systems is to break down a
complex problem into several manageable problems such that each inducer
is used to either solve a different task or it is applied to a different training
set schema.

Ho [66] as well as Valentini and Masulli [175] dichotomized the ensemble
techniques into two main categories:

1. decision optimization methods (such as mixture of experts) — Use a fixed
set of carefully designed and highly specialized classifiers. The goal of
decision optimization methods is to find an optimal combination of their
classifications.

2. coverage optimization (such as boosting) — use a fixed decision combina-
tion function. Coverage optimization methods generate a set of mutually
complementary, generic classifiers that are combined to improve predictive
performance.

Brown et al. [25] divides up the ensemble methods according to whether
they choose to implicitly obtain diversity by randomization methods or whether
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they explicitly gain diversity via some metric. They then grouped techniques
according to three factors: how they initialize the inducers in the hypothesis
space, what the space of accessible hypotheses is, and how that space is traversed
by the inducer.

Kuncheva [86] proposes to group ensemble methods according to the ways
these ensembles are built. Specifically, there are four layers:

1. Combination level - defines different ways of combining the classifier deci-
sions.

2. Classifier level - indicates which base classifiers are used to constitute the
ensemble.

3. Feature level - in this level different feature subsets can be used for the
classifiers.

4. Data level - indicates which dataset is used to train each base classifier.

Duin [50] as well as Kamel and Wanas [80] propose to differentiate between
trainable and nontrainable ensembles. Specifically nontrainable ensembles do
not need training after the base classifiers have been induced. Trainable en-
sembles need additional training to create the ensemble (either during the base
classifier training or after all base classifiers are trained).

Although several surveys on ensemble for classification tasks are available
in the literature [46, 121, 25] and there are several papers which suggest a
taxonomy for ensemble methods [25, 66, 155], in this paper we introduce four
main contributions:

1. We suggest a new unified taxonomy to categorize all significant ensemble
methods developed in the field. As indicated in [86]: “We still do not
have an agreed upon structure or a taxonomy of the whole field, although
a silhouette of a structure is slowly crystallizing among the numerous
attempts.” On the one hand because existing taxonomies usually concen-
trate on some aspects (for example [25] concentrates on diversity), the new
proposed taxonomy tries to organize existing taxonomies into a coherent
and unified taxonomy. On the other hand the new taxonomy introduce
new elements that have not proposed before. The goal of the new tax-
onomy is to better distinguish between existing ensemble methods and to
help algorithm designers to identify new opportunities (i.e. combinations
that have not been deeply explored).

2. Due to the fact that ensemble learning is an active research field, this paper
proposes an updated survey which refers to new researches from the last
three years that have not been previously covered by existing surveys.

3. The proposed paper covers efficient and mature ensemble methods that
do not belong to the mainstream, and therefore are usually not mentioned
in existing surveys. For example DECORATE [105], Arbiter Trees [30]
and attribute bagging [23].

4. We also propose several selection criteria, presented from the practitioner’s
point of view, for choosing the most suitable ensemble method.
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3. Overview of the proposed taxonomy

A typical ensemble method for classification tasks contains the following
building blocks:

1. Training set - A labeled dataset used for training the ensemble. Most
frequently the training set is a collection of instances (also known as sam-
ples or observations). Each instance is described by an attribute-value
vectors. The input space is spanned by the attributes used to describe
the instances. In semi-supervised methods of ensemble generation, such
as ASSEMBLE [16], unlabeled instances can be also used for the creation
of the ensemble.

2. Inducer – The inducer is an induction algorithm that obtains a training set
and forms a classifier that represents the generalized relationship between
the input attributes and the target attribute.

3. Ensemble generator – This component is responsible for generating the
diverse classifiers.

4. Combiner - The combiner is responsible for combining the classifications
of the various classifiers.

The nature of each building block and especially the relation among them
can be used to categorize ensemble methods. Our taxonomy consists of the
following dimensions:

1. Combiner usage — This property specifies the relation between the en-
semble generator and the combiner.

2. Classifiers dependency — During the classifier training how does each
classifier affect the other classifiers? Classifiers may be dependent or in-
dependent.

3. Diversity generator — In order to make the ensemble more effective, there
should be some sort of diversity between the classifiers [87]. Brown et
al. [25] indicate that for classification tasks the concept of ”diversity” is
still an ill-defined concept. Nevertheless it is believed to be closely related
to the statistical concept of correlation. Diversity is obtained when the
misclassification events of the base classifiers are not correlated. Several
means can be used to reach this goal: different presentations of the input
data, variations in learner design, or by adding a penalty to the outputs
to encourage diversity.

4. Ensemble size — The number of classifiers in the ensemble and how the
undesirable classifiers are removed from the ensemble.

5. Cross-Inducer — A Cross-inducer ensemble techniques could run on all
common inducers, or simply more than one. Some ensembles have been
specifically designed for a certain inducer and can not be used for other
inducers.

The issues of classifiers’ dependency and diversity are closely linked. More
specifically, it can be argued that any effective method for generating diver-
sity results in dependent classifiers (otherwise obtaining diversity is just luck).
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Nevertheless, it is very simple to independently build ensemble of diverse clas-
sifiers. For example, we can train in parallel a number of different classifiers
by randomly drawing their training instances from the original set. Because
none of these classifiers in anyway affects the training of others, they remain
”independent”. Moreover , as we will explain later one can independently create
the classifiers and then, as a post-processing step, select the most diverse clas-
sifiers. Instead of using the notion of classifiers’ dependency, Brown et al. [25]
make a distinction between explicit and implicit diversity methods. In implicit
techniques no measurement is taken to ensure diversity will emerge (thus, the
classifiers can be independently trained). Explicit methods, on the other hand,
explicitly try to optimize some metric of diversity during building the ensemble
(thus, the classifiers are usually build in some dependent manner as they need
together maximize diversity).

Naturally there might be other dimensions which can be used to differentiate
an ensemble scheme and we discuss it in the conclusion section.

The rest of this paper is organized as follows: In sections 3 to 8 we discuss
and describe each one of the above mentioned dimensions in details. Section 9
illustrates how the new taxonomy can be used to categorize popular ensemble
methods. Section 10 suggests criteria for selecting an ensemble method from the
practitioner point of view. Finally, Section 11 concludes the work and presents
suggestions for further research in the field.

4. Combiner Usage

This property specifies the relation between the ensemble generator and
the combiner. Some ensemble generators are combiner-dependent. That is to
say, they have been developed specifically for a certain combination method.
Other ensemble generators are combiner-independent; the combination method
is provided as input to the framework. Potentially there could be ensemble
generators that, given a set of combiners, would be capable of choosing the best
combiner in the current case.

There are two main methods for combining classifiers: weighting methods
and meta-learning. The weighting methods are best suited for problems where
the individual classifiers perform the same task and have comparable success
or when we would like to avoid problems associated with added learning (such
as overfitting or long training time). Meta-learning methods are best suited for
cases in which certain classifiers consistently correctly classify, or consistently
misclassify, certain instances.

4.1. Weighting Methods
When combining classifiers with weights, a classifier’s classification has a

strength proportional to its assigned weight. The assigned weight can be fixed or
dynamically determined for the specific instance to be classified. The following
weighting methods are frequently used in the literature:
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Majority Voting Select the class that obtains the highest number of votes
among the ensemble members [4].

Mathematically, majority voting can be written as:

class(x) = arg max
ci∈dom(y)

(∑

k

g (yk(x), ci)

)
(1)

where yk(x) is the classification of the k’th classifier and g(y, c) is an
indicator function defined as:

g (y, c) =
{

1 y = c
0 y 6= c

(2)

Note that in case of a probabilistic classifier, the crisp classification yk(x)
is usually obtained as follows:

yk(x) = arg max
ci∈dom(y)

P̂Mk
(y = ci |x) (3)

where Mk denotes classifier k and P̂Mk
(y = c |x ) denotes the probability

of y obtaining the value c given an instance x.

Performance Weighting Weight the classifiers proportionally to their accu-
racy performance on a validation set [117].

Mathematically, performance weighting can be written as:

αi =
(1−Ei)

T∑
j=1

(1− Ej)
(4)

where Ei is a normalization factor which is based on the performance
evaluation of classifier i on a validation set.

Distribution Summation Sum up the conditional probability vector ob-
tained from each classifier, and select the most probable class [35]. Math-
ematically, it can be written as:

Class(x) = argmax
ci∈dom(y)

∑

k

P̂Mk
(y = ci |x ) (5)

Dempster–Shafer Use Dempster–Shafer theory of evidence for combining
classifiers [156]. This method uses the notion of basic probability assign-
ment defined for a certain class ci given the instance x:

bpa(ci, x) = 1−
∏

k

(
1− P̂Mk

(y = ci |x )
)

(6)
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Consequently, the selected class is the one that maximizes the value of the
belief function:

Bel(ci, x) =
1
A
· bpa(ci, x)
1− bpa(ci, x)

(7)

where A is a normalization factor defined as:

A =
∑

∀ci∈dom(y)

bpa(ci, x)
1− bpa(ci, x)

+ 1 (8)

Vogging (Variance Optimized Bagging) Optimize a linear combination of
base-classifiers so as to aggressively reduce variance while attempting to
preserve a prescribed accuracy [42].

Näıve Bayes Using Näıve Bayes for combining various classifiers assuming the
classifiers predictions are conditionally independent given the class [138]:

Class(x) = argmax
cj ∈ dom(y)
P̂ (y = cj) > 0

P̂ (y = cj) ·
∏

k=1

P̂Mk
(y = cj |x )

P̂ (y = cj)
(9)

Logarithmic Opinion Pool Extending the Näıve Bayes combination by pro-
viding a different weight for each member [63]:

Class(x) = argmax
cj∈dom(y)

e

∑
k

αk·log(P̂Mk
(y=cj |x ))

(10)

where αk denotes the weight of the k-th classifier, such that:

αk ≥ 0;
∑

αk = 1 (11)

DEA Using the data envelop analysis (DEA) methodology in order to assign
weights to different classifiers [158].

Gating Network - Use a gating network to adjust the weights of the classifiers
based on the input to be classified [77].

Some of the weighting methods are trainable. Lin et al. [96] propose to
use genetic algorithms in attempt to find the optimal weights. They describe
two different combinatory schemes to improve the performance of handwritten
Chinese character recognition: the accuracy rate of the first candidate class and
the accuracy rate of top ten candidate classes. Their extensive study show that
this new approach can significantly improve the accuracy performance.

Reinforcement learning (RL) has been used to adaptively combine the base
classifiers [47]. The ensemble consists of a controlling agent that selects which
base classifiers are used to classify a particular instance. The controlling agent
learn to make decisions so that classification error is minimized. The agent is
trained through a Q-learning inspired technique. The usage of reinforcement
learning improves results when there are many base classifiers.
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4.2. Meta-combination Methods
Meta-learning means learning from the classifiers produced by the inducers

and from the classifications of these classifiers on training data. The following
meta-combination methods are frequently used in the literature:

Stacking The idea is to create a meta-dataset containing a instance for each
instance in the original dataset [183, 43]. However, instead of using the
original input attributes, it uses the predicted classifications by the classi-
fiers as the input attributes. The target attribute remains as in the original
training set. A test instance is first classified by each of the base classi-
fiers. These classifications are used to create a meta-level training set from
which a meta-classifier is produced. This classifier combines the different
predictions into a final one. Stacking is usually employed to combine mod-
els built by different inducers. There are several extensions to the stacking
approach, including StackingC [150], Troika [107] and SCANN (Stacking,
Correspondence Analysis and Nearest Neighbor) [110].

Arbiter Trees In this method, the training set is randomly partitioned into
k disjoint subsets [30]. The arbiter is induced from a pair of classifiers
and recursively a new arbiter is induced from the output of two arbiters.
Consequently for k classifiers, there are log2(k) levels in the arbiter tree
which is built in a bottom-up fashion.

The creation of the arbiter is performed as follows. For each pair of classi-
fiers, the union of their training dataset is classified by the two classifiers.
A selection rule compares the classifications of the two classifiers and se-
lects instances from the union set to form the training set for the arbiter.
The arbiter is induced from this set with the same learning algorithm used
in the base level. The purpose of the arbiter is to provide an alternate
classification when the base classifiers present diverse classifications. This
arbiter, together with an arbitration rule, decides on a final classification
outcome, based upon the base predictions. The process of forming the
union of data subsets; classifying it using a pair of arbiter trees; compar-
ing the classifications; forming a training set; training the arbiter; and
picking one of the predictions, is recursively performed until the root ar-
biter is formed.

Combiner Trees This is an extension to the arbiter trees, in which a com-
biner, instead of an arbiter, is placed in each non-leaf node of a combiner
tree [31]. In the combiner strategy, the classifications of the learned base
classifiers form the basis of the meta-learner’s training set. A composition
rule determines the content of training examples from which a combiner
(meta-classifier) will be generated. In classifying an instance, the base
classifiers first generate their classifications and based on the composition
rule, a new instance is generated. The aim of this strategy is to combine
the classifications from the base classifiers by learning the relationship
between these classifications and the correct classification. Hothorn and
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Lausen [70] propose to use classification tree to fuse the classifications of
arbitrary classifiers. The classification tree is trained on the original input
attributes and additional transformations of the original attributes. The
transformations are non-linear functions which are trained using either
the out-of-bag samples or additional bootstrap samples as learning sam-
ples. Similarly Buttrey and Karo [28] incorporate nearest neighbors in the
leaves of a tree.

Grading This technique uses “graded” classifications as meta-level classes
[149]. The term “graded” is used in the sense of classifications that have
been marked as correct or incorrect. The method transforms the classifi-
cation made by the k different classifiers into k training sets by using the
instances k times and attaching them to a new binary class in each occur-
rence. This class indicates whether the k–th classifier yielded a correct or
incorrect classification, compared to the real class of the instance.

For each base classifier, one meta-classifier is learned whose task is to
classify when the base classifier will misclassify. At classification time,
each base classifier classifies the unlabeled instance. The final classifica-
tion is derived from the classifications of those base classifiers that are
classified to be correct by the meta-classification schemes. In case several
base classifiers with different classification results are classified as correct,
voting, or a combination considering the confidence estimates of the base
classifiers, is performed. Grading may be considered as a generalization of
cross-validation selection [145], which divides the training data into k sub-
sets, builds k−1 classifiers by dropping one subset at a time and then uses
it to find a misclassification rate. Finally, the procedure simply chooses
the classifier corresponding to the subset with the smallest misclassifica-
tion. Grading tries to make this decision separately for each and every
instance by using only those classifiers that are predicted to classify that
instance correctly. The main difference between grading and combiners
(or stacking) is that the former does not change the instance attributes
by replacing them with class predictions or class probabilities (or adding
them to it). Instead it modifies the class values. Furthermore, in grading
several sets of meta-data are created, one for each base classifier. Several
meta-level classifiers are learned from those sets.

Adaptive fusion and co-operative training This hierarchical architecture
uses a set of classifiers, called detectors, that are applied to make the
aggregation scheme a more adaptive process. The detectors utilize both
the input space and the prediction of the classifiers to present a weighting
factor for each classifier. The weights and the output of the classifiers were
then combined and used as inputs to the aggregation module. The latter
learned how to combine different classifiers to produce the final decision.
Furthermore, a co-operative training algorithm helps to determine whether
further training is required. Applying the co-operative training algorithm,
reduce the number of training epochs [177].
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Mathematical Programming Adem and Gochet [2] formulate the combina-
tion task as a mixed integer linear programming problem. This formula-
tion guarantees that the combined classification will be at least as good as
the best base classifier. Moreover using this approach the user is capable
to include extra problem-specific constraints into the combination task.

Most of the combination methods do not consider dependence relationship
among base classifiers. Therefore, when the classifiers are highly dependent,
the performance of these combining methods tend to be degraded and biased
[81]. Behavior-Knowledge Space (BKS) method search for optimal combination
without an independence assumption [73]. The BKS method determines a rep-
resentative class, as a combined decision, which has maximum frequencies for
given observed decisions. However the Achilles’ heel of BKS is that it requires
storage that is exponential to the ensemble size. In order to solve this draw-
back Kang and Lee [81] propose minimizing the upper bound of Bayes error
rate. For this purpose they go beyond the first-order dependency assumption
but avoiding the sparsity problem encountered by the BKS method.

Liu [98] proposes to transform the classifiers outputs to confidence measures.
Each confidence transformation method is the combination of a scaling function
(global normalization, Gaussian density modeling, and logistic regression) and a
confidence type (linear, sigmoid, and evidence). The combination rules include
fixed rules (sum-rule, product-rule, median-rule, etc.) and trained rules (lin-
ear discriminants and weighted combination with various parameter estimation
techniques). The experimental study indicates that confidence transformation
improves the accuracy performance of either fixed rules or trained rules. Trained
rules mostly outperform fixed rules, especially when the classifier set contains
weak classifiers.

5. Classifier Dependency

This property indicates whether the various classifiers are dependent or in-
dependent. In a dependent framework the outcome of a certain classifier affects
the creation of the next classifier. Alternatively each classifier is built indepen-
dently and their results are combined in some fashion. Some researchers refer
to this property as “the relationship between modules” and distinguish between
three different types: successive, cooperative and supervisory [152]. Roughly
speaking, “successive” refers to “dependent” while “cooperative” refers to “in-
dependent”. The last type applies to those cases in which one model controls
the other model.

5.1. Dependent Methods
In dependent approaches for learning ensembles, there is an interaction be-

tween the learning runs. Thus it is possible to take advantage of knowledge
generated in previous iterations to guide the learning in the next iterations. We
distinguish between two main approaches for dependent learning, as described
in the following sections [123].
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5.1.1. Model-guided Instance Selection
In this dependent approach, the classifiers that were constructed in previous

iterations are used for manipulating the training set for the following iteration.
One can embed this process within the basic learning algorithm. These methods
usually ignore all data instances on which their initial classifier is correct and
only learn from misclassified instances.

The most well known model-guided instance selection is boosting. Boosting
(also known as arcing — Adaptive Resampling and Combining) is a general
method for improving the performance of a weak learner (such as classification
rules or decision trees). The method works by repeatedly running a weak learner
(such as classification rules or decision trees), on various distributed training
data. The classifiers produced by the weak learners are then combined into a
single composite strong classifier in order to achieve a higher accuracy than the
weak learner’s classifiers would have had.

The AdaBoost algorithm was first introduced in [55]. The main idea of
this algorithm is to assign a weight in each example in the training set. In
the beginning, all weights are equal, but in every round, the weights of all
misclassified instances are increased while the weights of correctly classified
instances are decreased. As a consequence, the weak learner is forced to focus
on the difficult instances of the training set. This procedure provides a series of
classifiers that complement one another.

Breiman [19] explores a simpler arcing algorithm called Arc-x4 which was
aim to demonstrate that AdaBoost works not because of the specific form of
the weighing function, but because of the adaptive resampling. In Arc-x4 the
classifiers are combined by simple voting.

The basic AdaBoost algorithm deals with binary classification. Freund and
Schapire describe two versions of the AdaBoost algorithm (AdaBoost.M1, Ad-
aBoost.M2), which are equivalent for binary classification and differ in their
handling of multi-classes classification problems.

Friedman et al. [57] present a generalized version of AdaBoost, which they
call Real AdaBoost. The revised algorithm combines the class probability esti-
mate of the classifiers by fitting an additive logistic regression model in a forward
stepwise manner. The revision reduces computation cost and may lead to better
performance especially in decision trees. Moreover it can provide interpretable
descriptions of the aggregate decision rule.

Friedman [58] developed gradient boosting which builds ensemble by se-
quentially fitting base learner parameters to current ”pseudo”-residuals by least
squares at each iteration. The pseudo-residuals are the gradient of the loss func-
tional being minimized, with respect to the model values at each training data
point evaluated at the current step. To improve accuracy performance, increase
robustness and reduce computational cost, at each iteration a subsample of the
training set is randomly selected (without replacement) and used to fit the base
classifier.

Phama and Smeuldersb [120] present a strategy to improve the AdaBoost
algorithm with a quadratic combination of base classifiers. The idea is to con-
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struct an intermediate learner operating on the combined linear and quadratic
terms. First a classifier is trained by randomizing the labels of training exam-
ples. Then, the input learner is called repeatedly with a systematic update of the
labels of the training examples in each round. This method is in contrast to the
AdaBoost algorithm that uses reweighting of training examples. Together they
form a powerful combination that makes intensive use the given base learner by
both reweighting and relabeling the original training set.

Tsao and Chang [167] refer to boosting as a stochastic approximation proce-
dure Based on this viewpoint they develop the SABoost (stochastic approxima-
tion ) algorithm which is similar to AdaBoost except the way members’ weights
is calculated.

All boosting algorithms presented here assume that the weak inducers which
are provided can cope with weighted instances. If this is not the case, an un-
weighted dataset is generated from the weighted data by a resampling technique.
Namely, instances are chosen with a probability according to their weights (until
the dataset becomes as large as the original training set).

Boosting seems to improve performance for two main reasons:

1. It generates a final classifier whose error on the training set is small by
combining many hypotheses whose error may be large.

2. It produces a combined classifier whose variance is significantly lower than
those produced by the weak learner.

On the other hand, boosting sometimes leads to a deterioration in generalization
performance. According to Quinlan [124], the main reason for boosting’s failure
is overfitting. The objective of boosting is to construct a composite classifier
that performs well on the data, but a large number of iterations may create
a very complex composite classifier, that is significantly less accurate than a
single classifier. A possible way to avoid overfitting is by keeping the number of
iterations as small as possible. It has been shown that boosting approximates
a large margin classifier such as the SVM [143].

AdaBoost rarely suffers from overfitting problems. Nevertheless in highly
noisy datasets overfitting does occur. Sun et al. [161] pursue a strategy which
penalizes the data distribution skewness in the learning process to prevent sev-
eral hardest examples from spoiling decision boundaries. They use two smooth
convex penalty functions, based on Kullback–Leibler divergence (KL) and l2
norm, to derive two new algorithms: AdaBoostKL and AdaBoostNorm2. These
two AdaBoost variations achieve better performance on noisy datasets.

An online boosting algorithm called ivoting trains the base models using con-
secutive subsets of training examples of some fixed size [20]. For the first base
classifier, the training instances are randomly selected from the training set. To
generate a training set for the kth base classifier, ivoting selects a training set
in which half the instances have been correctly classified by the ensemble con-
sisting of the previous base classifiers and half have been misclassified. ivoting
is an improvement on boosting that is less vulnerable to noise and overfitting.
Further, since it does not require weighting the base classifiers, ivoting can be
used in a parallel fashion, as demonstrated in [32].
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Another important drawback of boosting is that it is difficult to understand.
The resulting ensemble is considered to be less comprehensible since the user is
required to capture several classifiers instead of a single classifier. Despite the
above drawbacks, Breiman [18] refers to the boosting idea as the most significant
development in classifier design of the Nineties.

Zhang and Zhang [188] have recently proposed a new boosting-by-resampling
version of Adaboost. In the local Boosting algorithm, a local error is calculated
for each training instance which is then used to update the probability that this
instance is chosen for the training set of the next iteration. Classifying a new
instance is based on its similarity with each training instance.

Merler et al. [109] developed the P-AdaBoost algorithm which is a dis-
tributed version of AdaBoost. Instead of updating the ”weights” associated
with instance in a sequential manner, P-AdaBoost works in two phases. In
the first phase, the AdaBoost algorithm runs in its sequential, standard fashion
for a limited number of steps. In the second phase the classifiers are trained
in parallel using weights that are estimated from the first phase. P-AdaBoost
yields approximations to the standard AdaBoost models that can be easily and
efficiently distributed over a network of computing nodes.

5.1.2. Incremental Batch Learning
In this method the classification produced in one iteration is given as “prior

knowledge” to the learning algorithm in the following iteration. The learning
algorithm uses the current training set together with the classification of the
former classifier for building the next classifier. The classifier constructed at
the last iteration is chosen as the final classifier.

5.2. Independent Methods
In this methodology the original dataset is partitioned into several subsets

from which multiple classifiers are induced. The subsets created from the origi-
nal training set may be disjointed (mutually exclusive) or overlapping. A com-
bination procedure is then applied in order to produce a single classification
for a given instance. Since the method for combining the results of induced
classifiers is usually independent of the induction algorithms, it can be used
with different inducers at each subset. Moreover this methodology can be easily
parallelized. These independent methods aim either at improving the predic-
tive power of classifiers or decreasing the total execution time. The following
sections describe several algorithms that implement this methodology.

5.2.1. Bagging
The most well-known independent method is bagging (bootstrap aggregat-

ing) [18]. The method aims to increase accuracy by creating an improved com-
posite classifier, by amalgamating the various outputs of learned classifiers into
a single prediction. Each classifier is trained on a sample of instances taken
with a replacement from the training set. Each sample size is equal to the size
of the original training set. Note that since sampling with replacement is used,
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some of the original instances may appear more than once in the each training
set and some may not be included at all.

So while the training sets may be different from each other, they are certainly
not independent from a statistical point of view. To classify a new instance, each
classifier returns the class prediction for the unknown instance. The composite
bagged classifier, returns the class that has been predicted most often (voting
method). The result is that bagging produces a combined model that often per-
forms better than the single model built from the original single data. Breiman
[18] notes that this is true especially for unstable inducers because bagging can
eliminate their instability. In this context, an inducer is considered unstable
if perturbing the learning set can cause significant changes in the constructed
classifier.

Bagging, like boosting, is a technique for improving the accuracy of a classi-
fier by producing different classifiers and combining multiple models. They both
use a kind of voting for classification in order to combine the outputs of the dif-
ferent classifiers of the same type. In boosting, unlike bagging, each classifier is
influenced by the performance of those built before with the new classifier try-
ing to pay more attention to errors that were made in the previous ones and to
their performances. In bagging, each instance is chosen with equal probability,
while in boosting, instances are chosen with a probability proportional to their
weight. Furthermore, according to Quinlan [124], as mentioned above, bagging
requires that the learning system should not be stable, where boosting does not
preclude the use of unstable learning systems, provided that their error rate can
be kept below 0.5.

5.2.2. Wagging
Wagging is a variant of bagging [14] in which each classifier is trained on the

entire training set, but each instance is stochastically assigned a weight.
In fact bagging can be considered to be wagging with allocation of weights

from the Poisson distribution (each instance is represented in the sample a
discrete number of times). Alternatively it is possible to allocate the weights
from the exponential distribution, because the exponential distribution is the
continuous valued counterpart to the Poisson distribution [179].

5.2.3. Random Forest and Random Subspace Projection
A Random Forest ensemble [21] uses a large number of individual, unpruned

decision trees. The individual trees are constructed using a simple algorithm.
The decision tree is not pruned and at each node, rather than choosing the
best split among all attributes, the inducer randomly samples N (where N is
an input parameter) of the attributes and choose the best split from among
those variables. The classification of an unlabeled instance is performed using
majority vote. Originally, the random forests algorithm applies only to building
decision trees, and is not applicable to all types of classifiers, because it involves
picking a different subset of the attributes in each node of the tree. Nevertheless,
the main step of the random forest algorithm can be easily replaced with the
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broader ”random subspace method” [65], which can be applied to many other
inducers, such as nearest neighbor classifiers [68] or linear discriminators [157].

One important advantage of the random forest method is its ability to handle
a very large number of input attributes [157]. Another important feature of the
random forest is that it is fast.

Using an extensive simulation study, Archer and Kimes [8] examine the
effectiveness of Random Forest variable importance measures in identifying the
true predictor among a large number of candidate predictors. They concluded
that the Random Forest technique is useful in domains which require both an
accurate classifier and insight regarding the discriminative ability of individual
attribute (like in microarray studies).

5.2.4. Cross-validated Committees
This procedure creates k classifiers by partitioning the training set into k-

equal-sized sets and training, in turn, on all but the i-th set. This method, first
used by Gams [60], employed 10-fold partitioning. Parmanto et al. [118] have
also used this idea for creating an ensemble of neural networks. Domingos [48]
used cross-validated committees to speed up his own rule induction algorithm
RISE, whose complexity is O(n2), making it unsuitable for processing large
databases. In this case, partitioning is applied by predetermining a maximum
number of examples to which the algorithm can be applied at once. The full
training set is randomly divided into approximately equal-sized partitions. RISE
is then run on each partition separately. Each set of rules grown from the
examples in partition p is tested on the examples in partition p + 1, in order to
reduce overfitting and to improve accuracy.

6. Ensemble Diversity

In an ensemble, the combination of the output of several classifiers is only
useful if they disagree about some inputs [171].

Creating an ensemble in which each classifier is as different as possible while
still being consistent with the training set is theoretically known to be an im-
portant feature for obtaining improved ensemble performance [85]. According
to [71], diversified classifiers lead to uncorrelated errors, which in turn improve
classification accuracy.

In the regression context, the bias-variance-covariance decomposition has
been suggested to explain why and how diversity between individual models
contributes toward overall ensemble accuracy. Nevertheless, in the classification
context, there is no complete and agreed upon theory [25]. More specifically,
there is no simple analogue of variance-covariance decomposition for the zero-
one loss function. Instead, there are several ways to define this decomposition.
Each way has its own assumptions.

Sharkey [154] suggested a taxonomy of methods for creating diversity in en-
sembles of neural networks. More specifically, Sharkey’s taxonomy refers to four
different aspects: the initial weights; the training data used; the architecture of
the networks; and the training algorithm used.
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Brown et al. [25] suggest a different taxonomy which consists of the following
branches: varying the starting points within the hypothesis space; varying the
set of hypotheses that are accessible by the ensemble members (for instance by
manipulating the training set); and varying the way each member traverses the
hypothesis space.

In this paper we suggest the following taxonomy. Note however that the
components of this taxonomy are not mutually exclusive, namely, there are a
few algorithms which combine two of them.

1. Manipulating the Inducer – We manipulate the way in which the base
inducer is used. More specifically each ensemble member is trained with
an inducer that is differently manipulated.

2. Manipulating the Training Sample – We vary the input that is used by
the inducer for training. Each member is trained from a different training
set.

3. Changing the target attribute representation – Each classifier in the en-
semble solve a different target concept.

4. Partitioning the hypothesis space – Each member is trained on a different
hypothesis subspace.

5. Hybridization – Diversity is obtained by using various base inducers or
ensemble strategies.

6.1. Manipulating the Inducer
A simple method for gaining diversity is to manipulate the inducer used for

creating the classifiers. Below we survey several strategies to gain this diversity.

6.1.1. Manipulation of the inducer’s parameters
The base inducer usually can be controlled by a set of parameters. For

example, the well known decision tree inducer C4.5 has the confidence level
parameter that greatly affects learning. Drucker [49] examine the effect of early
pruning of decision trees on the performance of the entire ensemble. When an
algorithm (such as decision tree) is used as a single strong learner, then certain
aspects should be taken into consideration. But when the same algorithm is
used as a weak learner then other aspects should be taken into consideration.

In the neural network community, there were several attempts to gain diver-
sity by using different number of nodes [119, 186]. Nevertheless, these researches
conclude that variation in numbers of hidden nodes is not effective method of
creating diversity in neural network ensembles. Nevertheless the CNNE algo-
rithm [76] which simultaneously determines the ensemble size along with the
number of hidden nodes in individual NNs, has shown encouraging results.

Another effective approach for ANNs is to use several network topologies.
For instance the Addemup algorithm [117] uses genetic algorithm to select the
network topologies composing the ensemble. Addemup trains with standard
backpropagation, and then selects groups of networks with a good error diversity
according to the measurement of diversity.
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6.1.2. Starting Point in Hypothesis Space
Some inducers can gain diversity by starting the search in the Hypothesis

Space from different points. For example the simplest way to manipulate the
back-propagation inducer is to assign different initial weights to the network
[84]. Experimental study indicates that the resulting networks differed in the
number of cycles in which they took to converge upon a solution, and in whether
they converged at all. While it is very simple way to gain diversity, it is now
generally accepted that it is not sufficient for achieving good diversity [25].

6.1.3. Hypothesis Space Traversal
These techniques alter the way the inducer traverses the space, thereby lead-

ing different classifiers to converge to different hypotheses [25]. We differentiate
between two techniques for manipulating the space traversal for gaining diver-
sity: Random and Collective-Performance.

Random-based strategy
The idea in this case is to “inject randomness” into the inducers in order

to increase the independence among the ensemble’s members. Ali and Pazzani
[4] propose to change the rule learning HYDRA algorithm in the following way:
Instead of selecting the best attribute at each stage (using, for instance, an
information gain measure), the attribute is selected randomly such that its
probability of being selected is proportional to its measured value. A similar
idea has been implemented for C4.5 decision trees [45]. Instead of selecting
the best attribute in each stage, it selects randomly (with equal probability) an
attribute from the set of the best 20 attributes.

Collective-Performance-based strategy
In this case the evaluation function used in the induction of each member is

extended to include a penalty term that encourages diversity. The most studied
penalty method is the Negative Correlation Learning [24, 144]. The idea of
negative correlation learning is to encourage different individual classifiers in the
ensemble to represent different subspaces of the problem. While simultaneously
creating the classifiers, the classifiers may interact with each other in order to
specialize (for instance by using a correlation penalty term in the error function
to encourage such specialization).

6.2. Manipulating the training samples
In this method, each classifier is trained on a different variation or subset

of the original dataset. This method is useful for inducers whose variance-error
factor is relatively large (such as decision trees and neural networks). That is to
say, small changes in the training set may cause a major change in the obtained
classifier. This category contains procedures such as bagging, boosting and
cross-validated committees.

18



6.2.1. Resampling
The distribution of instances among the different classifier could be random

as in the bagging algorithm or in the arbiter trees. Other methods distribute
the instances based on the class distribution such that the class distribution in
each subset is approximately the same as that in the entire dataset. It has been
shown that proportional distribution as used in combiner trees [30] can achieve
higher accuracy than random distribution.

Instead of perform sampling with replacement, some methods (like AdaBoost
or Wagging) manipulate the weights that are attached to each instance in the
training set. The base inducer should be capable to take these weights into
account. Recently a novel framework was proposed in which each instance
contributes to the committee formation with a fixed weight, while contributing
with different individual weights to the derivation of the different constituent
classifiers [33]. This approach encourages model diversity without biasing the
ensemble inadvertently towards any particular instance.

6.2.2. Creation
The DECORATE algorithm [105] is a dependent approach in which the en-

semble is generated iteratively, learning a classifier at each iteration and adding
it to the current ensemble. The first member is created by using the base induc-
tion algorithm on the original training set. The successive classifiers are trained
on an artificial set that combines instances from the original training set and
also on some fabricated instances. In each iteration, the input attribute values
of the fabricated instances are generated according to the original data distribu-
tion. On the other hand, the target values of these instances are selected so as
to differ maximally from the current ensemble predictions. Comprehensive ex-
periments have demonstrated that this technique is consistently more accurate
than the base classifier, Bagging and Random Forests. Decorate also obtains
higher accuracy than boosting on small training sets, and achieves comparable
performance on larger training sets.

6.3. Manipulating the target attribute representation
In methods that manipulate the target attribute, instead of inducing a single

complicated classifier, several classifiers with different and usually simpler repre-
sentations of the target attribute are induced. This manipulation can be based
on an aggregation of the original target’s values (known as Concept Aggregation)
or more complicated functions (known as Function Decomposition).

Classical concept aggregation replaces the original target attribute with a
function, such that the domain of the new target attribute is smaller than the
original one [27].

The idea to convert K class classification problems into K-two class clas-
sification problems has been proposed by [6]. Each problem considers the dis-
crimination of one class to the other classes. Lu and Ito [99] extend Anand’s
method and propose a new method for manipulating the data based on the
class relations among the training data. By using this method, they divide a
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K class classification problem into a series of K(K − 1)/2 two-class problems
where each problem considers the discrimination of one class to each one of the
other classes. The researchers used neural networks to examine this idea.

A general concept aggregation algorithm called Error-Correcting Output
Coding (ECOC) uses a code matrix to decompose a multi-class problem into
multiple binary problems [44]. ECOC for multi-class classification hinges on the
design of the code matrix.

Data-driven Error Correcting Output Coding (DECOC) [194]. explore the
distribution of data classes and optimize both the composition and the number
of base learners to design an effective and compact code matrix. Specifically,
DECOC calculate the confidence score of each base classifier based on the struc-
tural information of the training data and use sorted confidence scores to assist
the determination of code matrix of ECOC. The results show that the proposed
DECOC is able to deliver competitive accuracy compared with other ECOC
methods, using parsimonious base learners than the pairwise coupling (one-vs-
one) decomposition scheme.

Sivalingam et al. [160] propose to transform a multiclasses recognition prob-
lem into a minimal binary classification problem using the Minimal Classifi-
cation Method (MCM) aided with error correcting codes. The MCM requires
only log2K classifications because instead of separating only two classes at each
classification, this method separate two groups of multiple classes. Thus the
MCM requires small number of classifiers and still provide similar accuracy
performance.

A general-purpose function decomposition approach for machine learning
was proposed in [192]. According to this approach, attributes are transformed
into new concepts in an iterative manner to create a hierarchy of concepts.

6.4. Partitioning
Partitioning means dividing the original training set into smaller training

sets. A different classifier is trained on each sub-sample. After all classifiers
are constructed, the models are combined in some fashion [101]. There are two
obvious ways to partition the original dataset: Horizontal Partitioning and Ver-
tical Partitioning. In horizontal partitioning the original dataset is partitioned
into several datasets that have the same features as the original dataset, each
containing a subset of the instances in the original. In vertical partitioning the
original dataset is partitioned into several datasets that have the same number
of instances as the original dataset, each containing a subset of the original set
of features.

In order to illustrate the idea of partitioning, consider the training set in
Table 1 which contains a segment of the Iris dataset. This is one of the
best known datasets in the pattern recognition literature. The goal in this
case is to classify flowers into the Iris subgeni according to their characteris-
tic features. The dataset contains three classes that correspond to three types
of iris flowers: dom (y) = {IrisSetosa, IrisV ersicolor, IrisV irginica}. Each
pattern is characterized by four numeric features (measured in centimeters):
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A = {sepallength, sepalwidth, petallength, petalwidth}. Tables 2 and 3 respec-
tively illustrate mutually exclusive horizontal and vertical partitions of the Iris
dataset. Note that despite the mutually exclusiveness, the class attribute must
be included in each vertical partition.

Table 1: The Iris Dataset consisting of Four Numeric Features and Three Possible Classes.

Sepal Length Sepal Width Petal Length Petal Width Class (Iris Type)

5.1 3.5 1.4 0.2 Iris-setosa
4.9 3.0 1.4 0.2 Iris-setosa
6.0 2.7 5.1 1.6 Iris-versicolor
5.8 2.7 5.1 1.9 Iris-virginica
5.0 3.3 1.4 0.2 Iris-setosa
5.7 2.8 4.5 1.3 Iris-versicolor
5.1 3.8 1.6 0.2 Iris-setosa

Table 2: Horizontal Partitioning of the Iris Dataset.

Sepal Length Sepal Width Petal Length Petal Width Class (Iris Type)

5.1 3.5 1.4 0.2 Iris-setosa
4.9 3.0 1.4 0.2 Iris-setosa
6.0 2.7 5.1 1.6 Iris-versicolor

Sepal Length Sepal Width Petal Length Petal Width Class (Iris Type)

5.8 2.7 5.1 1.9 Iris-virginica
5.0 3.3 1.4 0.2 Iris-setosa
5.7 2.8 4.5 1.3 Iris-versicolor
5.1 3.8 1.6 0.2 Iris-setosa

6.4.1. Horizontal Partitioning
Some argue that classic ensemble techniques (such as boosting and bagging)

have limitations on massive datasets, because the size of the dataset can be-
come a bottleneck [32]. Moreover, it is suggested that partitioning the datasets
into random, disjoint partitions will not only overcome the issue of exceeding
memory size, but will also lead to creating an ensemble of diverse and accurate
classifiers, each built from a disjoint partition but with the aggregate process-
ing all of the data. This can improve performance in a way that might not be
possible by subsampling. More recently a framework for building thousands of
classifiers that are trained from small subsets of data in a distributed environ-
ment was proposed [32]. The robust learning from bites (RLB) algorithm that
was proposed by Christmann et al. [34] is also designed to work with large data
sets.
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Table 3: Vertical Partitioning of the Iris Dataset.

Petal Length Petal Width Class (Iris Type)

1.4 0.2 Iris-setosa
1.4 0.2 Iris-setosa
5.1 1.6 Iris-versicolor
5.1 1.9 Iris-virginica
1.4 0.2 Iris-setosa
4.5 1.3 Iris-versicolor
1.6 0.2 Iris-setosa

Sepal Length Sepal Width Class (Iris Type)

5.1 3.5 Iris-setosa
4.9 3.0 Iris-setosa
6.0 2.7 Iris-versicolor
5.8 2.7 Iris-virginica
5.0 3.3 Iris-setosa
5.7 2.8 Iris-versicolor
5.1 3.8 Iris-setosa

The CBCD (cluster-based concurrent decomposition) algorithm [139] first
clusters the input space by using the K-means clustering algorithm. Then,
it creates disjoint sub-samples using the clusters in such a way that each sub-
sample is comprised of instances from all clusters and hence represents the entire
dataset. An inducer is applied in turn to each sub-sample. A voting mechanism
is used to combine the classifiers classifications. Experimental study indicates
that the CBCD algorithm outperforms the bagging algorithm.

Up to this point, each classifier in the ensemble considers the entire input
space. Alternatively, the original input space can be divided into several sub-
spaces and each member in the ensemble explores only a certain sub-space.
When using the late approach, one should decide if the subspaces will overlap.
At one extreme, the original problem is decomposed into several mutually ex-
clusive sub-problems, such that each subproblem is solved using a dedicated
classifier. In such cases, the classifiers may have significant variations in their
overall performance over different parts of the input space [172]. At the other
extreme, each classifier solves the same original task. In such cases, “If the
individual classifiers are then appropriately chosen and trained properly, their
performances will be (relatively) comparable in any region of the problem space.
[172]”. However, usually the sub-spaces may have soft boundaries, namely sub-
spaces are allowed to overlap.

Denison et al. [41] examine two schemas for partitioning the input space
into disjoint subspaces: The BPM (Bayesian partition model) schema has been
shown to be unsuitable when the training set is large or there are many input
attributes. The PPM (product partition model) schema provides good results
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in several cases especially in datasets where there are many irrelevant input
attributes and it is less suitable to situations where there are strong interactions
among input attributes.

Tao et al. [164] partition the space to improve the performance of content-
based image retrieval (CBIR) based on the assumption that all positive instances
are included in a set and the negative instances split into a small number of
clusters. Thus, they first group the negative instances into clusters, and then
train a set of classifiers between these negative clusters. Additional classifier
is built for the single positive cluster; Finally, these classifiers are combined to
make a single classifier.

In the neural-networks community, Nowlan and Hinton [114] examined the
mixture of experts (ME) approach, which partitions the input space into several
subspaces and assigns different experts (classifiers) to the different subspaces.
The subspaces, in ME, have soft boundaries (i.e., they are allowed to overlap).
A gating network then combines the experts’ outputs and produces a composite
decision. An extension to the basic mixture of experts, known as hierarchical
mixtures of experts (HME), has been proposed in [79]. This extension decom-
poses the space into sub-spaces, and then recursively decomposes each sub-space
into sub-spaces.

Some researchers have used clustering techniques to partition the space [140,
133]. The basic idea is to partition the input space into mutually exclusive
subsets using K-means clustering algorithm. An analysis of the results shows
that the proposed method is well suited for datasets of numeric input attributes
and that its performance is influenced by the dataset size and its homogeneity.

NBTree [83] induces a decision tree and a Näıve Bayes hybrid classifier. To
induce an NBTree, the input space is recursively partitioned according to at-
tributes values. The result of the recursive partitioning is a decision tree whose
terminal nodes are Näıve Bayes classifiers. Since subjecting a terminal node to a
Näıve Bayes classifier means that the hybrid classifier may classify two instances
from a single hyper-rectangle region into distinct classes, the NBTree is more
flexible than a pure decision tree. More recently Cohen et al. [36] generalizes the
NBTree idea and examines a decision-tree framework for space decomposition.
According to this framework, the original instance-space is hierarchically parti-
tioned into multiple subspaces and a distinct classifier (such as neural network)
is assigned to each subspace. Subsequently, an unlabeled, previously-unseen in-
stance is classified by employing the classifier that was assigned to the subspace
to which the instance belongs.

Altincay [5] proposes the use of model ensemble-based nodes where a mul-
titude of models are considered for making decisions at each node. The en-
semble members are generated by perturbing the model parameters and input
attributes. In generating model ensembles multi-layer perceptron (MLP), linear
multivariate perceptron and Fishers linear discriminant type models are consid-
ered. One of the main strengths of the proposed approach is that it uses small
number of training samples that reach at nodes close to the leaf in an efficient
way. Experiments conducted on several datasets and three model types indicate
that the proposed approach achieves better classification accuracies compared to
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individual nodes, even in cases when only one model class is used in generating
ensemble members.

6.4.2. Vertical (Feature set) partitioning
In this section we describe ensemble methods that vertically partition the

original training dataset for creating the ensemble members. The idea is to
simply give each classifier a different projection of the training set. Tumer and
Oza. [173] claim that feature set partitioning potentially facilitate the creation
of a classifier for high dimensionality data sets without the feature selection
drawbacks. Moreover, these methods can be used to improve the classification
performance due to the reduced correlation among the classifiers. Bryll et al.
[23] also indicate that the reduced size of the dataset implies faster induction of
classifiers. Feature set partitioning avoids the class under-representation which
may happen in instance subsets methods such as bagging. There are three
popular strategies for creating feature subset-based ensembles: random-based,
reduct-based and collective-performance-based strategy.

Random-based strategy The most straightforward techniques for creating
feature subset-based ensemble are based on random selection or random projec-
tion [147]. Ho [65] uses random subsets to create forest of decision trees. The
ensemble is constructed systematically by pseudo-randomly selecting subsets of
features. The training instances are projected to each subset and a decision tree
is constructed using the projected training samples. The process is repeated
several times to create the forest. The classifications of the individual trees are
combined by averaging the conditional probability of each class at the leaves
(distribution summation). Ho shows that simple random selection of feature
subsets may be an effective technique because the diversity of the ensemble
members compensates for their lack of accuracy.

Tao and Tang [165] propose a relevance feedback algorithm using the Ran-
dom Subspace Method to overcome the SVM’s unstable and over-fitting prob-
lems that are common to content-based image retrieval. The idea is to build a
strong classifier with a set of weak classifiers, which are trained on different ran-
domly sampled features. Using this method, they construct a multiple number
of SVMs with no over-fitting problem. Finally they combine these SVMs using
the majority voting rule in attempt to solve the unstable problem.

Bay [15] proposed MFS which uses simple voting in order to combine outputs
from multiple KNN (K-Nearest Neighbor) classifiers, each having access only to
a random subset of the original features. Each classifier employs the same
number of features. This procedure resembles the random subspaces methods.

Bryll et al. [23] introduce attribute bagging (AB) which combine random
subsets of features. AB first finds an appropriate subset size by a random search
in the feature subset dimensionality. It then randomly selects subsets of features,
creating projections of the training set on which the classifiers are trained. A
technique for building ensembles of simple Bayesian classifiers in random feature
subsets was also examined [168] for improving medical applications.
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Reduct-based strategy
A reduct is defined as the smallest feature subset which has the same pre-

dictive power as the whole feature set. By definition, the size of the ensembles
that were created using reducts are limited to the number of features. There
have been several attempts to create classifier ensembles by combining several
reducts. Wu et al. [184] introduce the worst-attribute-drop-first algorithm to
find a set of significant reducts and then combine them using näıve Bayes. Bao
and Ishii [12] examine the idea of combining multiple K-nearest neighbor classi-
fiers for text classification by reducts. Hu et al. [74] propose several techniques
to construct decision forests, in which every tree is built on a different reduct.
The classifications of the various trees are combined using a voting mechanism.

Collective-Performance-based strategy
Cunningham and Carney [38] introduced an ensemble feature selection strat-

egy that randomly constructs the initial ensemble. Then, an iterative refinement
is performed based on a hill-climbing search in order to improve the accuracy
and diversity of the base classifiers. For all the feature subsets, an attempt is
made to switch (include or delete) each feature. If the resulting feature sub-
set produces a better performance on the validation set, that change is kept.
This process is continued until no further improvements are obtained. Simi-
larly, Zenobi and Cunningham [187] suggest that the search for the different
feature subsets will not be solely guided by the associated error but also by the
disagreement among the ensemble members.

Tumer and Oza [173] present a new method called input decimation (ID),
which selects feature subsets based on the correlations between individual fea-
tures and class labels. This experimental study shows that ID can outperform
simple random selection of feature subsets.

Tsymbal et al. [169] compare several feature selection methods that incor-
porate diversity as a component of the fitness function in the search for the best
collection of feature subsets. This study shows that there are some datasets in
which the ensemble feature selection method can be sensitive to the choice of
the diversity measure. Moreover, no particular measure is superior in all cases.

Gunter and Bunke [62] suggest employing a feature subset search algorithm
in order to find different subsets of the given features. The feature subset search
algorithm not only takes the performance of the ensemble into account, but also
directly supports diversity of subsets of features.

Combining genetic search with ensemble feature selection was also exam-
ined in the literature. Opitz and Shavlik [117] applied GAs to ensembles using
genetic operators that were designed explicitly for hidden nodes in knowledge-
based neural networks. In a later research, Opitz [115] used genetic search
for ensemble feature selection. This genetic ensemble feature selection (GEFS)
strategy begins by creating an initial population of classifiers where each classi-
fier is generated by randomly selecting a different subset of features. Then, new
candidate classifiers are continually produced by using the genetic operators of
crossover and mutation on the feature subsets. The final ensemble is composed
of the most fitted classifiers. Similarly, the genetic algorithm that Hu et al. [74]
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use for selecting the reducts to be included in the final ensemble, first creates
N reducts then it trains N decision trees using these reducts. It finally uses a
GA for selecting which of the N decision trees are included in the final forest.

Disjoint feature set partitioning In this section we discuss ensembles in
which the subsets are pairwise disjoint subsets. Thus, a set of classifiers is
trained such that each classifier employs a different subset of the original fea-
ture set. Subsequently, an unlabelled instance is classified by combining the
classifications of all classifiers.

Several researchers have shown that this disjoint partitioning methodology
can be appropriate for classification tasks with a large number of features [132,
89, 100, 135]. Specifically, Ahn et al. [3] indicate that random partition of the
input attribute set into several subsets such that each classifier is induced from
a different subset, is particularly useful for high-dimensional datasets. Their
experiments indicate that for unbalanced data, their approach maintains the
balance between sensitivity and specificity more adequately by adjusting the
decision threshold in training phase.

In one research, the features are grouped according to the feature type:
nominal value features, numeric value features and text value features [89]. A
similar approach was also used for developing the linear Bayes classifier [59].
The basic idea consists of aggregating the features into two subsets: the first
subset containing only the nominal features and the second only the continuous
features.

In another research, the feature set was decomposed according to the target
class [171]. For each class, the features with low correlation relating to that class
were removed. This method was applied on a feature set of 25 sonar signals
where the target was to identify the meaning of the sound (whale, cracking ice,
etc.).

The feature set decomposition can be obtained by grouping features based
on pairwise mutual information, with statistically similar features assigned to
the same group [94]. For this purpose one can use an existing hierarchical
clustering algorithm. As a consequence, several feature subsets are constructed
by selecting one feature from each group. A neural network is subsequently
constructed for each subset. All networks are then combined.

In statistics literature, the well-known feature-oriented ensemble algorithm
is the MARS algorithm [56]. In this algorithm, a multiple regression function is
approximated using linear splines and their tensor products. It has been shown
that the algorithm performs an ANOVA decomposition, namely, the regression
function is represented as a grand total of several sums. The first sum is of
all basic functions that involve only a single attribute. The second sum is of
all basic functions that involve exactly two attributes, representing (if present)
two-variable interactions. Similarly, the third sum represents (if present) the
contributions from three-variable interactions, and so on. In a recent study,
severl methods for combining different feature selection results have been pro-
posed [137]. The experimental results indicate that combining different feature
selection methods can significantly improve the accuracy results.
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A general framework that searches for helpful feature set disjoints partition-
ing structures has also been proposed [138]. This framework nests many algo-
rithms, two of which are tested empirically over a set of benchmark datasets.
This work indicates that feature set decomposition can increase the accuracy of
decision trees. More recently, genetic algorithm has been successfully applied
for feature set partitioning [129]. This GA uses a new encoding schema and a
Vapnik–Chervonenkis dimension bound for evaluating the fitness function. The
algorithm also suggests a new caching mechanism to speed up the execution and
avoid recreation of the same classifiers.

6.5. Multi-Inducers
In Multi-Inducer strategy, diversity is obtained by using different types of

inducers [111]. Each inducer contains an explicit or implicit bias that leads it
to prefer certain generalizations over others. Ideally, this multi-inducer strat-
egy would always perform as well as the best of its ingredients. Even more
ambitiously, there is hope that this combination of paradigms might produce
synergistic effects, leading to levels of accuracy that neither atomic approach by
itself would be able to achieve.

Most research in this area has been concerned with combining empirical ap-
proaches with analytical methods (see for instance [166]. Woods et al. [182]
combine four types of base inducers (decision trees, neural networks, k-nearest
neighbors and quadratic Bayes). They then estimate local accuracy in the fea-
ture space to choose the appropriate classifier for a given new unlabeled instance.
Wang et al. [178] examined the usefulness of adding decision trees to an ensem-
ble of neural networks. The researchers concluded that adding a few decision
trees (but not too many) usually improved the performance. Langdon et al. [91]
proposed using Genetic Programming to find an appropriate rule for combining
decision trees with neural networks.

Brodley [22] proposed the model class selection (MCS) system. MCS fits
different classifiers to different subspaces of the input space, by employing one
of three classification methods (a decision-tree, a discriminant function or an
instance-based method). In order to select the classification method, MCS uses
the characteristics of the underlined training-set, and a collection of expert rules.
Brodley’s expert-rules were based on empirical comparisons of the methods’
performance (i.e., on prior knowledge).

The NeC4.5 algorithm, which integrates decision tree with neural networks
[193], first trains a neural network ensemble. Then, the trained ensemble is
employed to generate a new training set by replacing the desired class labels
of the original training examples with the output from the trained ensemble.
Some extra training examples are also generated from the trained ensemble and
added to the new training set. Finally, a C4.5 decision tree is grown from the new
training set. Since its learning results are decision trees, the comprehensibility
of NeC4.5 is better than that of neural network ensembles.

Using several inducers can solve the dilemma which arises from the “no free
lunch” theorem. This theorem implies that a certain inducer will be successful
only insofar its bias matches the characteristics of the application domain [17].
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Thus, given a certain application, the practitioner need to decide which inducer
should be used. Using the multi-inducer obviate the need to try each one and
simplifying the entire process.

6.6. Measuring the Diversity
As stated above, it is usually assumed that increasing diversity may decrease

ensemble error [187]. For regression problems, variance is usually used to mea-
sure diversity [85]. In such cases it can be easily shown that the ensemble error
can be reduced by increasing ensemble diversity while maintaining the average
error of a single model.

In classification problems, a more complicated measure is required to evalu-
ate the diversity. There have been several attempts to define diversity measure
for classification tasks.

In the neural network literature two measures are presented for examining
diversity:

• Classification coverage: An instance is covered by a classifier, if it yields
a correct classification.

• Coincident errors: A coincident error amongst the classifiers occurs when
more than one member misclassifies a given instance.

Based on these two measures, Sharkey [153] defined four diversity levels:

• Level 1 - No coincident errors and the classification function is completely
covered by a majority vote of the members.

• Level 2 - Coincident errors may occur, but the classification function is
completely covered by a majority vote.

• Level 3 - A majority vote will not always correctly classify a given instance,
but at least one ensemble member always correctly classifies it.

• Level 4 - The function is not always covered by the members of the en-
semble.

Brown et al. [25] claim that the above four-level scheme provides no indica-
tion of how typical the error behavior described by the assigned diversity level
is. This claim, especially, holds when the ensemble exhibits different diversity
levels on different subsets of input space.

There are other more quantitative measures which categorize these measures
into two types [25]: pairwise and non-pairwise. Pairwise measures calculate the
average of a particular distance metric between all possible pairings of members
in the ensemble, such as Q-statistic [25] or kappa-statistic [104]. The non-
pairwise measures either use the idea of entropy (such as [38]) or calculate a
correlation of each ensemble member with the averaged output. The comparison
of several measures of diversity has resulted in the conclusion that most of them
are correlated [88].
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Here we focus on the pairwise diversity measures. For an ensemble of n
classifiers the total pairwise diversity measure is calculated as the mean pairwise
measure over all n · (n− 1)/2 pairs of classifiers:

FTotal =
2

n(n− 1)

∑

∀i 6=j

fi,j (12)

where fi,j is a similarity or diversity measure of two classifiers outputs i and
j. Kuncheva and Whitaker (2003) find the following two diversity pairwise
measures useful:

1. The disagreement measure is defined as the ratio between the number of
instances on which one classifier is correct and its counterpart is incorrect
to the total number of instances:

Disi,j =
mī j + mi j̄

mī j + mi j̄ + mi j + mī j̄

(13)

where mi j specifies the number of instances in which both classifier i
and classifier j are correct while mī j̄ indicates the number of instances
that are misclassified by both classifiers. Similarly, mi j̄ and mī j indicate
the number of instances in which one classifier has correctly classified the
instances but its counterpart has misclassified these instances.

2. The double-fault measure is defined as the proportion of the cases that
have been misclassified by both classifiers:

DFi,j =
mī j̄

mī j + mi j̄ + mi j + mī j̄

(14)

Instead of measuring the diversity, we can complementarily use the following
pairwise similarity measures:

1. The Q statistics is defined as:

Qi,j =
(
mi j ·mī j̄ −mi j̄ ·mī j

)/(
mi j ·mī j̄ + mi j̄ ·mī j

)
(15)

The Q measures varies between −1 and 1, where positive values indicate
that the two classifiers are correlated (namely they tend to correctly clas-
sify the same instances). A value close to 0 indicates that the classifiers
are independent.

2. The correlation coefficient – The ρ measure is very similar to the Q mea-
sure. It has the same numerator as Q measure. Moreover, it always has
the same sign but the value magnitude is never greater than the corre-
sponding Q value:

ρi,j =

(
mi j ·mī j̄ −mi j̄ ·mī j

)
√(

mi j + mi j̄

) · (mi j + mī j

) · (mī j̄ + mi j̄

) · (mī j̄ + mī j

) (16)
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Kuncheva and Whitaker [88] show that these measures are strongly corre-
lated between themselves. Still on specific real classification tasks, the measures
might behave differently, so they can be used as a complementary set. Neverthe-
less, Kuncheva and Whitaker [88] could not find a definitive connection between
the measures and the improvement of the accuracy. Thus, they conclude that
it is unclear if diversity measures have any practical value in building classifier
ensembles.

7. Ensemble Size

7.1. Selecting the Ensemble Size
An important aspect of ensemble methods is to define how many component

classifiers should be used. There are several factors that may determine this
size:

• Desired accuracy — In most cases, ensembles containing ten classifiers
are sufficient for reducing the error rate [64]. Nevertheless, there is em-
pirical evidence indicating that: when AdaBoost uses decision trees, error
reduction is observed in even relatively large ensembles containing 25 clas-
sifiers [116]. In disjoint partitioning approaches, there may be a trade-off
between the number of subsets and the final accuracy. The size of each
subset cannot be too small because sufficient data must be available for
each learning process to produce an effective classifier.

• Computational cost — Increasing the number of classifiers usually in-
creases computational cost and decreases their comprehensibility. For that
reason, users may set their preferences by predefining the ensemble size
limit.

• The nature of the classification problem - In some ensemble methods, the
nature of the classification problem that is to be solved, determines the
number of classifiers. For instance in the ECOC algorithm the number of
classes determine the ensemble size.

• Number of processors available — In independent methods, the number of
processors available for parallel learning could be put as an upper bound
on the number of classifiers that are treated in paralleled process.

There are three approaches for determining the ensemble size, as described
by the following subsections.

7.2. Pre selection of the ensemble size
This is the most simple way to determine the ensemble size. Many ensemble

algorithms have a controlling parameter such as “number of iterations”, which
can be set by the user. Algorithms such as Bagging belong to this category.
In other cases the nature of the classification problem determine the number of
members (such as in the case of ECOC).
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7.3. Selection of the ensemble size while training
There are ensemble algorithms that try to determine the best ensemble size

while training. Usually as new classifiers are added to the ensemble these algo-
rithms check if the contribution of the last classifier to the ensemble performance
is still significant. If it is not, the ensemble algorithm stops. Usually these al-
gorithms also have a controlling parameter which bounds the maximum size of
the ensemble.

Random forests algorithm uses out-of-bag (oob) procedure to get an unbiased
estimate of the test set error [20]. The effectiveness of using out-of-bag error
estimate, to decide when a sufficient number of classification trees have been
recently examined in [10]. Specifically, the algorithm works by first smoothing
the out-of-bag error graph with a sliding window in order to reduce the variance.
After the smoothing has been completed, the algorithm takes a larger window
on the smoothed data points and determines the maximum accuracy within that
window. It continues to process windows until the maximum accuracy within
a particular window no longer increases. At this point, the stopping criterion
has been reached and the algorithm returns the ensemble with the maximum
raw accuracy from within that window. It has been shown that out-of-bag
obtain an accurate ensemble for those methods that incorporate bagging into
the construction of the ensemble.

7.4. Pruning - Post selection of the ensemble size
As in decision tree induction, it is sometimes useful to let the ensemble grow

freely and then prune the ensemble in order to get more effective and compact
ensembles. Post selection of the ensemble size allows ensemble optimization
for such performance metrics as accuracy, cross entropy, mean precision, or
the ROC area. Empirical examinations indicate that pruned ensembles may
obtain a similar accuracy performance as the original ensemble [104]. In another
empirical study that was conducted in order to understand the affect of ensemble
sizes on ensemble accuracy and diversity, it has been shown that it is feasible
to keep a small ensemble while maintaining accuracy and diversity similar to
those of a full ensemble [97].

The pruning methods can be divided into two groups: pre-combining pruning
methods and post-combining pruning methods.

7.4.1. Pre-combining pruning
Pre-combining pruning is performed before combining the classifiers. Classi-

fiers that seem to perform well are included in the ensemble. Prodromidis et al.
[122] present three methods for pre-combining pruning: based on an individual
classification performance on a separate validation set, diversity metrics, the
ability of classifiers to classify correctly specific classes.

In attribute bagging [23], classification accuracy of randomly selected m-
attribute subsets is evaluated by using the wrapper approach and only the clas-
sifiers constructed on the highest ranking subsets participate in the ensemble
voting.
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7.4.2. post-combining pruning
In post-combining pruning methods, we remove classifiers based on their

contribution to the collective.
Prodromidis [122] examines two methods for post-combining pruning assum-

ing that the classifiers are combined using meta-combination method: Based on
decision tree pruning and the correlation of the base classifier to the unpruned
meta-classifier.

A forward stepwise selection procedure can be used in order to select the
most relevant classifiers (that maximize the ensemble’s performance) among
thousands of classifiers [29]. It has been shown that for this purpose one can
use feature selection algorithms. However, instead of selecting features one
should select the ensemble’s members [97].

Rokach et al. [136, 7] suggest first to rank the classifiers according to their
ROC performance. Then, they suggest to plot a graph where the Y- axis displays
a performance measure of the integrated classification . The X-axis presents the
number of classifiers that participated in the combination. i.e., the first best
classifiers from the list are combined by voting (assuming equal weights for now)
with the rest getting zero weights. The ensemble size is chosen when there are
several sequential points with no improvement.

The algorithm FS-PP-EROS generates a selective ensemble of rough sub-
spaces [72]. The algorithm performs an accuracy-guided forward search and
post-pruning strategy to select part of the base classifiers for constructing an
efficient and effective ensemble system. The experimental results show that
FS-PP-EROS outperform bagging and random subspace methods in terms of
accuracy and size of ensemble systems.

The GASEN algorithm was developed for selecting the most appropriate
classifiers in a given ensemble [191]. In the initialization phase, GASEN assigns a
random weight to each of the classifiers. Consequently, it uses genetic algorithms
to evolve those weights so that they can characterize to some extent the fitness
of the classifiers in joining the ensemble. Finally, it removes from the ensemble
those classifiers whose weight is less than a predefined threshold value.

Recently a revised version of the GASEN algorithm called GASEN-b has
been suggested [190]. In this algorithm, instead of assigning a weight to each
classifier, a bit is assigned to each classifier indicating whether it will be used
in the final ensemble. In an experimental study the researchers showed that
ensembles generated by a selective ensemble algorithm, which selects some of
the trained C4.5 decision trees to make up an ensemble, may be not only smaller
in size but also stronger in the generalization than ensembles generated by non-
selective algorithms.

A study had compared several post combining pruning methods that were
applied to Boosting and Bagging [181]. Specifically the following pruning meth-
ods have been compared: Minimum Error Pruning (MEP), Error-based Pruning
(EBP), Reduced-Error Pruning(REP), Critical Value Pruning (CVP) and Cost-
Complexity Pruning (CCP). The results indicate that if a single pruning method
needs to be selected then overall the popular EBP makes a good choice.
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A comparative study of pre combining pruning and post combining pruning
methods when meta-combining methods are used has been performed in [122].
The results indicate that the post-combining pruning methods tend to perform
better in this case.

Zhang et al. [189] use boosting for determining the order in which the
base classifiers are fused, and then construct a pruned ensemble by stopping
the fusion process early. Two heuristics rules are used to stop fusion: one is
to select the upper twenty percent of the base classifiers from the ordered full
Double-Bagging ensemble and the other is to stop the fusion when the weighted
training error reaches 0.5.

Croux et al. [37] propose the idea of trimmed bagging which aims to prune
classifiers that yield the highest error rates, as estimated by the out-of-bag
error rate. It has been shown that trimmed bagging performs comparably to
standard bagging when applied to unstable classifiers as decision trees, but yields
improved accuracy when applied to more stable base classifiers, like support
vector machines.

Rokach [134] introduces the Collective-Agreement-based Pruning (CAP)
measure for selecting the most relevant classifiers in the ensemble. Rather than
ranking individual members, CAP ranks subsets by considering the individual
predictive ability of each member along with the degree of redundancy among
them. Subsets whose members highly agree with the class while having low
inter-agreement are preferred.

8. Cross-Inducer

This property indicates the relation between the ensemble technique and the
inducer used. Some implementations are considered as an inducer-dependent
type, namely these ensemble generators which use intrinsic inducer, have been
developed specifically for a certain inducer. They can neither work nor guar-
antee effectiveness in any other induction method. For instance, the works of
[64, 99, 152] were developed specifically for neural networks. Other procedures
were developed specifically for SVM [163], decision trees [21, 138] and logistic
regression [151].

Other implementations are considered to be the inducer-independent type.
These implementations can be performed on any given inducer and are not
limited to a specific inducer like the inducer-dependent.

9. Multistrategy Ensemble Learning

Multistrategy ensemble learning combines several ensemble strategies. It
has been shown that this hybrid approach increases the diversity of ensemble
members.

MultiBoosting, an extension to AdaBoost expressed by adding wagging-like
features [179], can harness both AdaBoost’s high bias and variance reduction
with wagging’s superior variance reduction. Using C4.5 as the base learning
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algorithm, MultiBoosting, significantly more often than the reverse, produces
decision committees with lower error than either AdaBoost or wagging . It
also offers the further advantage over AdaBoost of suiting parallel execution.
MultiBoosting has been further extended by adding the stochastic attribute se-
lection committee learning strategy to boosting and wagging [180]. The latter’s
research has shown that combining ensemble strategies would increase diversity
at the cost of a small increase in individual test error resulting in a trade-off
that reduced overall ensemble test error.

Tao et al. [163] propose to combine bagging-based SVM and random sub-
space SVM in order to improve the relevance feedback in image retrieval, par-
ticularly when the number of labeled positive feedback samples is small. Addi-
tionally, Li et al. [93] develop a new machine learning technique, multitraining
SVM (MTSVM), which combines the merits of the co-training technique and a
random sampling method in the feature space.

Another multistrategy method suggests to create the ensemble by decom-
posing the original classification problem into several smaller and more manage-
able sub-problems[132]. This multistrategy uses an elementary decomposition
framework that consists of five different elementary decompositions: Concept
Aggregation, Function, Sample, Space and Feature Set. The concept of ele-
mentary decomposition can be used to obtain a complicated decomposition by
using the elementary decomposition concept recursively. Given a certain prob-
lem, the procedure selects the most appropriate elementary decomposition (if
any) to that problem. A suitable decomposer then decomposes the problem
and provides a set of sub-problems. A similar procedure is performed on each
sub-problem until no beneficial decomposition is anticipated. The selection of
the best elementary decomposition for a given problem is performed by using a
meta-learning approach.

10. Illustration of new taxonomy

Figure 10 presents the complete taxonomy based on the description provided
in previous sections. Table 4 illustrates the categorization of 10 popular ensem-
ble algorithms. It is not surprising that AdaBoost and Arc-x4 have the same
characterization, since both of them instances of arcing. Similarly, bagging and
wagging also have the same characteristics, because bagging is a specific case
of wagging. The categorization for multistrategy ensemble techniques is not
mutually exclusive and these techniques belong to more than one leaf within
the same dimension. For instance, the diversity of Random Forest is gained by
a combination of training set manipulation with random traversal of hypothesis
space.
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Combiner Usage 
└─── Combiner-independent 
└─── Combiner-dependent 

└───Weighting Methods 
  └───Meta-combination Methods 
 
Classifier Dependency 

└───Dependent Methods 
  └───Model-guided Instance Selection 
  └───Incremental Batch Learning 
 └───Independent Methods 
 
Ensemble Diversity 
 └───Manipulating the Inducer 
  └───Manipulation of the inducer's parameters 
  └───Starting Point in Hypothesis Space 

└───Hypothesis Space Traversal 
   └─── Random-based strategy 
   └─── Collective-Performance-based strategy 
 └───Manipulating the training samples 
  └───Resampling 
  └───Creation 
 └───Manipulating the target attribute representation 
 └───Partitioning 
  └───Horizontal 
  └───Vertical 
 └───Multi-Inducers 
   
Ensemble Size 
 └───Pre selection of the ensemble size 
 └───Selection of the ensemble size while training 
 └───Pruning 
  └───Pre-combining pruning 
  └───Post-combining pruning 
 
Cross-Inducer 
 └───Inducer-dependent 
 └───Inducer-independent 

Figure 1: The complete ensemble taxonomy

35



Table 4: Illustration the categorization using the new taxonomy

Algorithm Combiner
Usage

Classifier
Depen-
dency

Ensemble
Diversity

Ensemble
Size

The In-
ducer
Usage

AdaBoost
[55]

Weighting Model-
guided

Resampling Pre selec-
tion

Inducer-
independent

Bagging [18] Weighting Independent Resampling Pre selec-
tion

Inducer-
independent

RandomForest
[21]

Weighting Independent Resampling +
Random
Traversal of
Hypothesis
Space

Pre selec-
tion

Inducer-
dependent
(Decision
Tree)

Attribute
Bagging [23]

Weighting Vertical
Partition-
ing

Pre-combining
pruning

Inducer-
independent

DECORATE
[105]

Weighting Model-
guided

Creation Pre selec-
tion

Inducer-
independent

Stacking
[183]

Meta-
combination

Independent Multi-Inducers Pre selec-
tion

Inducer-
independent

ECOC [44] Weighting Independent Manipulating
target attribute

Pre selec-
tion

Inducer-
independen

Arc-x4 [19] Weighting Model-
guided

Resampling Pre selec-
tion

Inducer-
independent

MultiBoosting
[179]

Weighting Model-
guided+
Indepen-
dent

Resampling Pre selec-
tion

Inducer-
independent

Wagging [14] Weighting Independent Resampling Pre selec-
tion

Inducer-
independent
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11. Which Ensemble Method Should be Used?

The previous sections concentrated on design aspects of ensemble methods.
Given the vast repertoire of ensemble methods to choose from, this section
provides several selection criteria which aim to help practitioners selecting the
most suitable ensemble method for their specific needs. For each criterion we
also indicate how it can be evaluated.

11.1. Predictive performance
Historically predictive performance measures are the main criteria for select-

ing inducers. Moreover, the predictive performance measures, such as accuracy,
are considered to be an objective and quantified, which can be easily used to
benchmark algorithms.

In addition to the experimental studies that are performed to validate the
contribution of a new specific ensemble method, there are several large compar-
ative studies, which aim to assist the practitioner in his decision making.

Dietterich [45] has compared three methods for constructing forest of C4.5
classifiers: Randomizing, Bagging, and Boosting. The experiments show that
when there is little noise in the data, boosting gives the best results. Bagging
and Randomizing are usually equivalent. Another study [14] compared Bagging
and Boosting using decision trees and naive Bayes. The study determines that
Bagging reduced variance of unstable methods, while boosting methods reduced
both the bias and variance of unstable methods but increased the variance for
stable methods.

Additional study [116] that compared Bagging with Boosting using neural
networks and decision trees indicates that Bagging is sometimes significantly
less accurate than Boosting. The study indicates that the performance of the
Boosting methods is much more sensitive to the characteristics of the dataset,
specifically Boosting may overfit noisy data sets and reducing classification per-
formance.

A recent research has experimentally evaluated bagging and seven other
randomization-based approaches for creating an ensemble of decision tree clas-
sifiers [10]. Statistical tests were performed on experimental results from 57
publicly available datasets. When cross-validation comparisons were tested for
statistical significance, the best method was statistically more accurate than
bagging on only eight of the 57 datasets. Alternatively, examining the aver-
age ranks of the algorithms across the group of datasets, Banfield et al. found
that boosting, random forests, and randomized trees is statistically significantly
better than bagging.

Sohna and Shinb [159] compared the performance of several ensemble meth-
ods (bagging, modified random subspace method, classifier selection, parametric
fusion) to a single classifier assuming that the base inducer is logistic regression.
They argue that several factors should be taken into consideration when per-
forming such comparison, including correlation between input variables; vari-
ance of observation, and training data set size. They show that for large training
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sets, the performances of a single logistic regression and bagging are not signif-
icantly different. However, when training set size are small, bagging is superior
to a single logistic regression classifier. When training data set size is small
and correlation is strong, both modified random subspace method and bagging
perform better than the other methods. When correlation is weak and variance
is small, both parametric fusion and classifier selection algorithm appear to be
the worst.

11.2. Computational Cost
It is important to check the method efficiency, i.e., does it produce results

in a reasonable amount of time (i.e. complexity cost) relative to the data size,
the nature of the base inducer and other variables. We will distinguish between
training time and classification time:

• Training time - indicate the complexity cost for obtaining the ensemble of
classifiers.

• The classifying time, which span from receiving new data until the data
is classified. The nature of the application determines if this measure is
constrained, or not.

11.3. Scalability
Scalability indicates the method ability to scale to large data sets. There

are ensemble methods (such as partitioning methods) that are more suitable to
scale to large dataset than other.

Moreover independent methods are considered to be more scalable than de-
pendent methods because the former case, classifiers can be trained in parallel.

11.4. Flexibility
Flexibility indicates the ability to use any inducer (inducer-independent),

any combiner (Combiner-independent), provide a solution to variety of classifi-
cation tasks (for example it is should not be limited to a binary classification
task), a set of controlling parameters which enable the user to examine several
variations of the ensemble techniques.

11.5. Usability
Machine learning is highly iterative process. Practitioners typically adjust

algorithm’s parameters to generate better classifiers. A good ensemble method
should provide a set of controlling parameters that are comprehensive and can
be easily tuned.
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11.6. Interpretability of the resulting ensemble
Interpretability indicates the user ability to understand the ensemble re-

sults. This is especially important in applications in which the user is required
to understand the system behavior or explain its classification. For example
the revised version of AdaBoost presented in [57] is considered to provide inter-
pretable descriptions of the aggregate decision rule.

Interpretability is usually a subjective criterion. Nevertheless, there are
several quantitative measures and indicators that can help us in evaluating this
criterion. For example:

• Compactness - measures the knowledge representation size efficiency. Ob-
viously, results presented by a smaller size are easier to understand. In
ensemble methods compactness can be measured by the ensemble size
(number of classifiers) and the complexity of each classifier. According to
Freund and Mason [54] Even for modest values of ensemble size, boosting
of decision trees could result in a final combined classifier with thousands
(or millions) of nodes which it is difficult to visualize.

• Base Inducer Used - The base inducer used by the ensemble can determine
its interpretability. For example, decision trees are easier to understand
than black-box methods such as neural networks.

11.7. Software Availability
Software Availability of an ensemble method indicates how many off-the-shelf

software packages support this ensemble method. High Availability implies that
the practitioner can move from one software to another, without the need to
replace his ensemble method. Table 5 indicates the popularity (as measured
by the number of citation in Google scholar in June, 2007) of the ten methods
presented in Table 4 and the total availability of these methods in five open
source packages: Weka [53], Orange [40], Tanagra [125], RapidMiner (formerly
YALE)[75], OpenDT [11], Java-ML /citeAbeel and R programming environment
[126]. The table indicates that high popularity is a necessary condition for high
availability, but still there are popular methods with relatively low availability.

11.8. Why is it difficult to choose?
The difficulty in choosing the ensemble methods results from the fact that

this is a MCDM (Multiple Criteria Decision Making) problem. There is a trade
off relationship among the criteria. Some criteria can not be measured in com-
mensurate units. Thus, in order to systematically choose the right method, the
practitioner is encouraged to implement one of the MCDM solving technique
such as AHP (Analytic Hierarchy Process).

Moreover, the context of the specific classification problem to be solved has
tremendous effect on the results. In general, all comparative studies that have
been performed in the literature and aim to compare the predictive performance,
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Table 5: Software Availability of the Ensemble Method

Algorithm Google
Scholar
(June 2009)

Software Availabil-
ity

Reference

AdaBoost 2730 Weka, Orange,
Tanagra, Rapid-
Miner, R

[55]

Bagging 4907 All [18]
RandomForest 1988 All [21]
DECORATE 81 Weka [105]
MultiBoosting 184 Weka, RapidMiner [179]
Wagging 993 Weka, RapidMiner [14]
Attribute
Bagging

52 Weka [23]

Stacking 1582 Weka, Tanagra,
RapidMiner

[183]

ECOC 1007 Weka, RapidMiner [44]
Arc-x4 644 Weka, Tanagra [19]

show that the no-free-lunch theorem holds [25, 159], i.e. the best ensemble
technique depends much on the particular training dataset. Thus, the current
challenge is to automatically choose the best ensemble technique. There are two
alternatives to achieve this goal:

• The wrapper approach – Given a certain dataset, use each ensemble
method and select the one that appears to give the highest success rate.
The main advantage of this approach is its ability to predict quite well
the performance of each examined method. The main disadvantage of this
method is it’s prolonged processing time. For some inducers the induction
times may be very long, particularly in large real-life datasets. Several
researchers have implemented this approach for selecting induction algo-
rithms or dimension reduction algorithms and showed that it produces
superior results [145].

• The meta-learning approach [176]– Based on datasets characteristics, the
meta-classifier decides whether to use ensemble method or not and what
technique to use. If a certain ensemble method outperforms other meth-
ods in a particular dataset, then one should expect that this method will
be preferable when other problems with similar characteristics are pre-
sented. For this purpose one can employ meta-learning. Meta-learning
is concerned with accumulating experience on the performance of multi-
ple applications of a learning system. One possible output of the meta-
learning process is a meta-classifier that is capable to indicate which learn-
ing method is most appropriate to a given problem. This goal can be
accomplished by performing the following phases: In the first phase one
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should examine the performance of all investigated ensemble methods on
various datasets. Upon examination of each dataset, the characteristics of
the dataset are extracted. The dataset’s characteristics, together with the
indication of the most preferable ensemble method, (in this dataset) are
stored in a meta-dataset. This meta-dataset reflects the experience accu-
mulated across different datasets. In the second phase, an inducer can be
applied to this meta-dataset to induce a meta-classifier that can map a
dataset to the most appropriate ensemble method (based on the charac-
teristics of the dataset). In the last phase, the meta-classifier is actually
used to match a new unseen dataset to the most appropriate ensemble
method. Several researchers have implemented this approach for selecting
an ensemble method and showed that it produces superior results [132]

12. Conclusion and Open Issues

This paper presented an updated taxonomy survey of ensemble methods
for classification problems. It has been shown that most algorithms fit into a
relatively simple taxonomy. We also presented several criteria for practically
selecting an ensemble method.

There are several open issues in the field of ensemble methodology:

• In this paper we have proposed using five dimensions for ensemble taxon-
omy. It is natural that not all of them can be put into one framework.
Other dimensions which are not considered in the proposed taxonomy can
be used to categorize ensemble methods. For example it has been proposed
to categorize combinations methods into three levels [185]: abstract, rank
and measurement. In the abstract level, a classifier only outputs a single
label. In the second level, a classifier ranks all labels or a subset of the
labels in a queue. In the measurement level, a classifier attributes to each
class a measurement value that reflects the degree of confidence that a
specific input belongs to a given class.

• Experimental studies show that the success of an ensemble technique de-
pends upon many factors, including the training sample size; the choice of
a base classifier; the exact way in which the training set is modified; the
choice of the combination method; and, finally, on the data distribution
and the potential ability of the chosen base classifier to solve the problem.
Thus it is necessary to develop universal criteria to predict the usefulness
of an ensemble technique given a certain dataset.

• A closely related issue is explaining ensemble behavior and performance for
generalized loss functions. Recently researchers have started to examine
the behavior of various ensemble techniques. For instance, Rudin et al.
[143] analyze AdaBoosts asymptotic behavior and describe many aspects
of AdaBoosts dynamical traits including the fact that AdaBoost does not
necessarily converge to a maximum margin solution. There are many
interesting questions that still remain open.
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• The relation between ensemble diversity to the ensemble performance has
been formalized for regression problems; nevertheless, this has not yet
been formalized for classification problems [25].

• Most of the ensemble learning research has concentrated on simple classi-
fication tasks. Further study is required to better apply this methodology
to increasing variety of data types such as time series, spatial, multimedia,
etc or derived supervised tasks such as active learning, sequence classifi-
cation.
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[43] Džeroski S., Ženko B., Is Combining Classifiers with Stacking Better than
Selecting the Best One?, Machine Learning, 54(3): 255–273, 2004.

[44] Dietterich, T. G., and Ghulum Bakiri. Solving multiclass learning prob-
lems via error-correcting output codes. Journal of Artificial Intelligence
Research, 2:263-286, 1995.

[45] Dietterich, T. G., An Experimental Comparison of Three Methods for Con-
structing Ensembles of Decision Trees: Bagging, Boosting and Randomiza-
tion. 40(2):139-157, 2000a.

[46] Dietterich T., Ensemble methods in machine learning. In J. Kittler and F.
Roll, editors, First International Workshop on Multiple Classifier Systems,
Lecture Notes in Computer Science, pages 1-15. Springer-Verlag, 2000b.

[47] Dimitrakakis C., Bengio S., Online adaptive policies for ensemble classi-
fiers,Neurocomputing 64:211-221, 2005.

[48] Domingos, P., Using Partitioning to Speed Up Specific-to-General Rule In-
duction. In Proceedings of the AAAI-96 Workshop on Integrating Multiple
Learned Models, pp. 29-34, AAAI Press, 1996.

[49] Drucker H., Effect of pruning and early stopping on performance of a boost-
ing ensemble, Computational Statistics and Data Analysis 38 (2002) 393-
406

[50] Duin, R. P. W., The combining classifier: to train or not to train? In Proc.
16th International Conference on Pattern Recognition, ICPR02, Canada,
2002, pp. 765-770.

[51] Elovici, Y., Shapira, B. and Kantor, P., Using the Information Structure
Model to Compare Profile-Based Information Filtering Systems. Informa-
tion Retrieval Journal 6(1), 2002, 75-97.

45



[52] Elovici, Y., Shapira, B., and Kantor, P., A Decision Theoretic Approach
to Combining Information Filters: Analytical and Empirical Evaluation.
Journal of the American Society for Information Science and Technology
(JASIST), 57(3), 2006, 306-320.

[53] Frank E., Hall M.,Holmes G., Kirkby R., Pfahringer B., WEKA - A Ma-
chine LearningWorkbench for Data Mining, in O. Maimon, L. Rokach,
editors TheData Mining and Knowledge Discovery Handbook, Springer,
pp.1305-1314, 2005.

[54] Yoav Freund and Llew Mason. The Alternating Decision Tree Algorithm.
Proceedings of the 16th International Conference on Machine Learning,
pages 124-133 (1999)

[55] Freund Y. and Schapire R. E., Experiments with a new boosting algo-
rithm. In Machine Learning: Proceedings of the Thirteenth International
Conference, pages 325-332, 1996.

[56] Friedman, J. H., “Multivariate Adaptive Regression Splines”, The Annual
Of Statistics, 19, 1-141, 1991.

[57] Friedman, J., T. Hastie and R. Tibshirani (2000) Additive Logistic Regres-
sion: a Statistical View of Boosting, Annals of Statistics, 28(2):337-407.

[58] Friedman, J.H., 2002. Stochastic gradient boosting. Comput. Statist. Data
Anal. 38 (4), 367-378.

[59] Gama J., A Linear-Bayes Classifier. In C. Monard, editor, Advances on
Artificial Intelligence – SBIA2000. LNAI 1952, pp 269-279, Springer Verlag,
2000

[60] Gams, M., New Measurements Highlight the Importance of Redun-
dant Knowledge. In European Working Session on Learning, Montpeiller,
France, Pitman, 1989.

[61] Gey, S., Poggi, J.-M., 2006. Boosting and instability for regression trees
Comput. Statist. Data Anal. 50, 533-550.

[62] Gunter S., Bunke H. , Feature Selection Algorithms for the generation of
multiple classifier systems, Pattern Recognition Letters, 25(11):1323–1336,
2004.

[63] Hansen J., Combining Predictors. Meta Machine Learning Methods and
Bias, Variance & Ambiguity Decompositions. PhD dissertation. Aurhus
University. 2000.

[64] L.K. Hansen and P. Salamon, ”Neural network ensembles,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 12, no. 10, pp.
993-1001, 1990.

46



[65] Ho T. K., The Random Subspace Method for Constructing Decision
Forests, IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. 20, No. 8, 1998, pp. 832-844.

[66] T. K. Ho, Data complexity analysis for classifier combination, in: Proc.
Int. Workshop on Multiple Classifier Systems (LNCS 2096), Springer, Cam-
bridge, UK, 2001, pp. 53-67.

[67] Ho T. K., Multiple Classifier Combination: Lessons and Next Steps, in
Kandel and Bunke, (eds.), Hybrid Methods in Pattern Recognition, World
Scientific, 2002, 171–198.

[68] Ho T. K., Nearest Neighbors in Random Subspaces, Proc. of the Second
International Workshop on Statistical Techniques in Pattern Recognition,
Sydney, Australia, August 11-13, 1998, 640–648.

[69] Ho T. K. , Hull J.J., Srihari S.N.,Decision Combination in Multiple Clas-
sifier Systems, PAMI 1994, 16(1):66–75.

[70] Hothorn T., Lausen B., Bundling classifiers by bagging trees, Computa-
tional Statistics and Data Analysis 49 (2005) 1068-1078

[71] Hu, X., Using Rough Sets Theory and Database Operations to Construct a
Good Ensemble of Classifiers for Data Mining Applications. ICDM01. pp.
233-240, 2001.

[72] Hu Q., Yu D., Xie Z., Li X., EROS: Ensemble rough subspaces,Pattern
Recognition 40 (2007) 3728 - 3739.

[73] Huang Y. S. and Suen C. Y. , A method of combining multiple experts for
the recognition of unconstrained handwritten numerals, IEEE Trans. Patt.
Anal. Mach. Intell. 17 (1995) 90-94.

[74] Q. H. Hu, D. R. Yu, M. Y. Wang, Constructing Rough Decision Forests,
D. Slezak et al. (Eds.): RSFDGrC 2005, LNAI 3642, Springer, 2005, pp.
147-156

[75] Mierswa, Ingo and Wurst, Michael and Klinkenberg, Ralf andScholz, Mar-
tin and Euler, Timm: YALE: Rapid Prototyping forComplex Data Mining
Tasks, in Proceedings of the 12th ACM SIGKDDInternational Conference
on Knowledge Discovery and Data Mining(KDD-06), 2006.

[76] M. M. Islam, X. Yao, K. Murase, A constructive algorithm for training
cooperative neuralnetwork ensembles, IEEE Transactions on Neural Net-
works 14 (4)(2003) 820-834.

[77] Jacobs, R., Jordan, M., Nowlan, S., Hinton, G. 1991. Adaptivemixtures of
local experts Neural Computation, 3, 79-87.

47



[78] Johansen T. A. and Foss B. A., A narmax model representation for adap-
tive control based on local model -Modeling, Identification and Control,
13(1):25-39, 1992.

[79] Jordan, M. I., and Jacobs, R. A., Hierarchical mixtures of experts and the
EM algorithm. Neural Computation, 6, 181-214, 1994.

[80] Kamel M. S. and Wanas N. M., Data dependence in combining classifiers.
In T. Windeattand F. Roli, editors, Proc. 4th Int. Workshop on Multiple
Classifier Systems (MCS 2003),Vol. 2709 of Lecture Notes in Computer
Science LNCS, Guildford, UK, 2003, Springer-Verlag, pp. 1-14.

[81] Kang H., Lee S., Combination Of Multiple Classifiers By Minimizing The
Upper Bound Of Bayes Error Rate For Unconstrained Handwritten Nu-
meral Recognition, International Journal of Pattern Recognition and Arti-
ficial Intelligence, 19(3):395 - 413, 2005.

[82] Kim,Y., Koo, J.-Y., 2005. Inverse boosting for monotone regression func-
tions. Comput. Statist. Data Anal. 49, 757-770.

[83] Kohavi R., Scaling up the accuracy of naive-bayes classifiers: adecision-tree
hybrid. In Proceedings of the Second InternationalConference on Knowl-
edge Discovery and Data Mining, pages 114–119,1996.

[84] Kolen, J. F., and Pollack, J. B., Back propagation is sesitive to initial
conditions. In Advances in Neural Information Processing Systems, Vol. 3,
pp. 860–867 San Francisco, CA. Morgan Kaufmann, 1991.

[85] Krogh, A., and Vedelsby, J., Neural network ensembles, cross validation and
active learning. In Advances in Neural Information Processing Systems 7,
pp. 231–238 1995.

[86] Kuncheva L., Combining Pattern Classifiers, Wiley Press 2005.

[87] Kuncheva L.I. Diversity in multiple classifier systems (Editorial), Informa-
tion Fusion, 6 (1), 2005, 3-4.

[88] Kuncheva, L., & Whitaker, C., Measures of diversity in classifier ensembles
and their relationship with ensemble accuracy. Machine Learning 51:181–
207, 2003.

[89] Kusiak, A., Decomposition in Data Mining: An Industrial Case Study,
IEEE Transactions on Electronics Packaging Manufacturing, Vol. 23, No.
4, pp. 345-353, 2000.

[90] Lam L., Classifier combinations: implementations and theoretical issues.
In J. Kittlerand F. Roli, editors, Multiple Classifier Systems, Vol. 1857
of Lecture Notes in ComputerScience, Cagliari, Italy, 2000, Springer, pp.
78-86.

48



[91] Langdon W. B., Barrett S. J., Buxton B. F., Combining decision trees and
neural networks for drug discovery, in: Genetic Programming, Proceedings
of the 5th European Conference, EuroGP 2002, Kinsale, Ireland, 2002, pp.
60–70.

[92] Leigh W., Purvis R., Ragusa J. M., Forecasting the NYSE composite index
with technical analysis, pattern recognizer, neural networks, and genetic
algorithm: a case study in romantic decision support, Decision Support
Systems 32(4): 361–377, 2002.

[93] Jing Li, Nigel Allinson, Dacheng Tao, and Xuelong Li, Multitraining Sup-
port Vector Machine for Image Retrieval, IEEE Transactions on Image
Processing, vol. 15, no. 11, pp. 3597-3601, November 2006.

[94] Liao Y., and Moody J., Constructing Heterogeneous Committees via Input
Feature Grouping, in Advances in Neural Information Processing Systems,
Vol.12, S.A. Solla, T.K. Leen and K.-R. Muller (eds.),MIT Press, 2000.

[95] Lin H., Kao Y., Yang F., Wang P., Content-Based Image Retrieval Trained
By Adaboost For Mobile Application, International Journal of Pattern
Recognition and Artificial Intelligence, 20(4):525-541, 2006.

[96] Lin L., Wang X., Yeung D., Combining Multiple Classifiers Based On
A Statistical Method For Handwritten Chinese Character Recognition,
International Journal of Pattern Recognition and Artificial Intelligence,
19(8):1027 - 1040, 2005.

[97] Liu H., Mandvikar A., Mody J., An Empirical Study of Building Compact
Ensembles. WAIM 2004: pp. 622-627.

[98] Liu C., Classifier combination based on confidence transformation, Pattern
Recognition 38 (2005) 11 - 28

[99] Lu B.L., Ito M., Task Decomposition and Module Combination Based on
Class Relations: A Modular Neural Network for Pattern Classification,
IEEE
Trans. on Neural Networks, 10(5):1244-1256, 1999.

[100] Maimon, O. and Rokach, L., Improving supervised learning by feature de-
composition, Proceedings of the Second International Symposium on Foun-
dations of Information and Knowledge Systems, Lecture Notes in Computer
Science, Springer-Verlag, pp. 178–196, 2002.

[101] Maimon, O. and Rokach, L., Decomposition Methodology for Knowledge
Discovery and Data Mining: Theory and Applications, Series in Machine
Perception and Artificial Intelligence - Vol. 61, World Scientific Publishing,
ISBN:981-256-079-3, 2005.

49



[102] Maimon, O. and Rokach, L., Data Mining by Attribute Decomposition
with semiconductors manufacturing case study, Data Mining for Design
and Manufacturing: Methods and Applications, pp. 311–336, 2001, Kluwer
Academic Publishers.

[103] Mangiameli P., West D., Rampal R., Model selection for medical diagnosis
decision support systems, Decision Support Systems, 36(3): 247–259, 2004.

[104] Margineantu D. and Dietterich T., Pruning adaptive boosting. In Proc.
Fourteenth Intl. Conf. Machine Learning, pages 211–218, 1997.

[105] Prem Melville, Raymond J. Mooney: Constructing Diverse Classifier En-
sembles using Artificial Training Examples. IJCAI 2003: 505-512

[106] Menahem, E., Shabtai, A., Rokach, L., Elovici, Y., Improving malware de-
tection by applying multi-inducer ensemble. Computational Statistics and
Data Analysis, 53(4):1483–1494, 2009.

[107] Menahem, E., Rokach, L., Elovici, Y., Troika - An Improved Stacking
Schema for Classification Tasks, Information Sciences (to appear).

[108] Merkwirth C., Mauser H., Schulz-Gasch T., Roche O., Stahl M., Lengauer
T., Ensemble methods for classification in cheminformatics, Journal of
Chemical Information and Modeling, 44(6):1971–1978, 2004.

[109] Merler S., Caprile B., Furlanello C., Parallelizing AdaBoost by weights
dynamics, Computational Statistics and Data Analysis 51 (2007) 2487-2498

[110] Merz, C. J., Using Correspondence Analysis to Combine Classifier, Ma-
chine Learning, 36(1-2):33-58, 1999.

[111] Michalski R. S., and Tecuci G.. Machine Learning, A Multistrategy Ap-
proach,Vol. J. Morgan Kaufmann, 1994.

[112] Mitchell, T., Machine Learning, McGraw-Hill, 1997.

[113] Moskovitch R, Elovici Y, Rokach L, Detection of unknown computer
worms based on behavioral classification of the host, Computational Statis-
tics and Data Analysis, 52(9):4544–4566, 2008.

[114] Nowlan S. J., and Hinton G. E. Evaluation of adaptive mixtures of com-
peting experts. In Advances in Neural Information Processing Systems, R.
P. Lippmann, J. E. Moody, and D. S. Touretzky, Eds., vol. 3, pp. 774-780,
Morgan Kaufmann Publishers Inc., 1991.

[115] Opitz, D., Feature Selection for Ensembles, In: Proc. 16th National Conf.
on Artificial Intelligence, AAAI,1999, pp. 379-384.

[116] Opitz, D. and Maclin, R., Popular Ensemble Methods: An Empirical
Study, Journal of Artificial Research, 11: 169-198, 1999.

50



[117] Opitz D. and Shavlik J., Generating accurate and diverse members of a
neuralnetwork ensemble. In David S. Touretzky, Michael C. Mozer, and
Michael E. Hasselmo, editors, Advances in Neural Information Processing
Systems, volume 8, pages 535–541. The MIT Press, 1996.

[118] Parmanto, B., Munro, P. W., and Doyle, H. R., Improving committee
diagnosis with resampling techinques. In Touretzky, D. S., Mozer, M. C.,
and Hesselmo, M. E. (Eds). Advances in Neural Information Processing
Systems, Vol. 8, pp. 882-888 Cambridge, MA. MIT Press, 1996.

[119] D. Partridge, W. B. Yates (1996), Engineering multiversion neural-net
systems, Neural Computation, 8(4):869-893.

[120] Phama T., Smeuldersb A., Quadratic boosting, Pattern Recognition
41(2008): 331 - 341.

[121] Polikar R., “Ensemble Based Systems in Decision Making,” IEEECircuits
and Systems Magazine, vol.6, no. 3, pp. 21-45, 2006

[122] Prodromidis, A. L., Stolfo, S. J. and Chan, P. K., Effective and efficient
pruning of metaclassifiers in a distributed Data Mining system. Technical
report CUCS-017-99, Columbia Univ., 1999.

[123] Provost, F.J. and Kolluri, V., A Survey of Methods for Scaling Up Induc-
tive Learning Algorithms, Proc. 3rd International Conference on Knowl-
edge Discovery and Data Mining, 1997.

[124] Quinlan, J. R., Bagging, Boosting, and C4.5. In Proceedings of the Thir-
teenth National Conference on Artificial Intelligence, pages 725-730, 1996.

[125] Ricco Rakotomalala, ”TANAGRA: a free software for research andaca-
demic purposes”, in Proceedings of EGC’2005, RNTI-E-3, vol. 2,pp.697-
702, 2005

[126] R Development Core Team (2004), R: A language and environment for
statistical computing. R Foundation for Statistical Computing, Vienna,
Austria. ISBN 3-900051-00-3, http://cran.r-project.org/, 2004

[127] Ramamurti, V., and Ghosh, J., Structurally Adaptive Modular Networks
for Non-Stationary Environments, IEEE Transactions on Neural Networks,
10 (1):152-160, 1999.

[128] Ridgeway G., Looking for lumps: boosting and bagging for density esti-
mation,Computational Statistics and Data Analysis 38 (2002) 379-392

[129] Rokach L., Genetic algorithm-based feature set partitioning for classifica-
tion problems,Pattern Recognition, 41(5):1676–1700, 2008.

[130] Rokach L., Mining manufacturing data using genetic algorithm-based fea-
ture set decomposition, Int. J. Intelligent Systems Technologies and Appli-
cations, 4(1):57-78, 2008.

51



[131] Rokach, L. and Maimon, O., Data mining for improving the quality of
manufacturing: a feature set decomposition approach, Journal of Intelligent
Manufacturing, 17(3):285–299, 2006, Springer.

[132] Rokach L., Decomposition Methodology for Classification Tasks - A Meta
Decomposer Framework, Pattern Analysis and Applications, 9(2006):257-
271.

[133] Rokach, L. and Maimon, O., Clustering methods, Data Mining and
Knowledge Discovery Handbook, pp. 321–352, 2005, Springer.

[134] Rokach, L., Collective-agreement-based pruning of ensembles. Computa-
tional Statistics and Data Analysis, 53(4):1015–1026, 2009.

[135] Rokach, L. and Mainon, O., Theory and applications of attribute decom-
position, Proceedings of IEEE International Conference on Data Mining
(ICDM 01), IEEE Computer Society Press, 2001. pp 473–480

[136] Rokach L., R. Arbel, O. Maimon, “Selective Voting - Getting More For
Less in Sensor Fusion”, International Journal of PatternRecognition and
Artificial Intelligence, 20(3):329-350, 2006.

[137] Rokach L., Chizi B. and Maimon O., A Methodology For Improving The
Performance Of Non-Ranker Feature Selection Filters,International Journal
of Pattern Recognition and Artificial Intelligence, 21(5): 809 - 830, 2007.

[138] Rokach L. and Maimon O., Feature Set Decomposition for Decision Trees,
Journal of Intelligent Data Analysis, Volume 9, Number 2, 2005b, pp 131-
158.

[139] Rokach L., Maimon O., Arad O., “Improving Supervised Learning by
Sample Decomposition”, International Journal of Computational Intelli-
gence and Applications, 5(1):37-54, 2005.

[140] Rokach L., Maimon O. and Lavi I., Space Decomposition In Data Mining:
A Clustering Approach, Proceedings of the 14th International Symposium
On Methodologies For Intelligent Systems, Maebashi, Japan, Lecture Notes
in Computer Science, Springer-Verlag, 2003, pp. 24–31.

[141] Rokach, L. and Averbuch, M. and Maimon, O., Information Retrieval
System for Medical Narrative Reports, The 6th International Conference
On Flexible Query Answering Systems, Lyon, France, Lecture Notes in
Artificial intelligence 3055, pp. 217–228 Springer-Verlag, 2004

[142] Rokach L., Romano R., Maimon O., Negation Recognition in Medical
Narrative Reports, Information Retrieval, 11(6): 499-538, 2008

[143] Rudin C., Daubechies I., and Schapire R. E., The Dynamics of Adaboost:
Cyclic behavior and convergence of margins, Journal of Machine Learning
Research Vol. 5, 1557-1595, 2004.

52



[144] Rosen B. E., Ensemble Learning Using Decorrelated Neural Networks.
Connect. Sci. 8(3): 373-384 (1996)

[145] Schaffer, C., Selecting a classification method by cross-validation. Machine
Learning 13(1):135-143, 1993.

[146] R.E. Schapire, ”The strength of weak learnability,” Machine Learning,
vol. 5, no. 2, pp. 197-227, 1990.

[147] Schclar A., Rokach L.: Random Projection Ensemble Classifiers. ICEIS
2009: 309–316.

[148] Schclar A., Rokach L., A. Meisels, Ensemble Methods for Improving the
Performance of Neighborhood-based Collaborative Filtering, Proc. ACM
RecSys 2009 (to appear).

[149] Seewald, A.K. and Fürnkranz, J., Grading classifiers, Austrian research
institute for Artificial intelligence, 2001.

[150] Seewald A.K.: How to Make Stacking Better and FasterWhile Also Tak-
ing Care of an Unknown Weakness, in Sammut C.,Hoffmann A. (eds.),
Proceedings of the Nineteenth InternationalConference on Machine Learn-
ing (ICML 2002), Morgan Kaufmann Publishers, pp.554-561, 2002.

[151] Sexton J., Laake P., LogitBoost with errors-in-variables, Computational
Statistics and Data Analysis 52 (2008) 2549-2559

[152] Sharkey, A., On combining artificial neural nets, Connection Science, Vol.
8, pp.299-313, 1996.

[153] Sharkey A., Sharkey N., Combining diverse neural networks, The Knowl-
edge Engineering Review 12(3): 231–247, 1997.

[154] Sharkey, A., Multi-Net systems, In Sharkey A. (Ed.) Combining Artificial
Neural Networks: Ensemble and Modular Multi-Net Systems. pp. 1-30,
Springer
-Verlag, 1999.

[155] A. J. C. Sharkey, Types of multinet system, in: Proc. Int. Workshop on
Multiple Classifier Systems (LNCS 2364), Springer, Calgiari, Italy, 2002,
pp. 108-117.

[156] Shilen, S., Multiple binary tree classifiers. Pattern Recognition 23(7): 757-
763, 1990.

[157] Skurichina M. and Duin R.P.W., Bagging, boosting and the random
subspace method for linear classifiers. Pattern Analysis and Applications,
5(2):121–135, 2002

[158] Sohn S. Y., Choi, H., Ensemble based on Data Envelopment Analysis,
ECML Meta Learning workshop, Sep. 4, 2001.

53



[159] Sohna S.Y., Shinb H.W., Experimental study for thecomparison of classi-
fier combination methods, Pattern Recognition 40 (2007) 33 - 40.

[160] Sivalingam D., Pandian N., Ben-Arie J., Minimal Classification Method
With Error-Correcting Codes For Multiclass Recognition, International
Journal of Pattern Recognition and Artificial Intelligence 19(5): 663 - 680,
2005.

[161] Sun Y., Todorovic S., Li L. Reducing The Overfitting Of Adaboost By
Controlling Its Data Distribution Skewness, International Journal of Pat-
tern Recognition and Artificial Intelligence, 20(7):1093-1116, 2006.

[162] Tan A. C., Gilbert D., Deville Y., Multi-class Protein Fold Classification
using a New Ensemble Machine Learning Approach. Genome Informatics,
14:206–217, 2003.

[163] Dacheng Tao, Xiaoou Tang, Xuelong Li, and Xindong Wu, Asymmetric
Bagging and Random Subspace for Support Vector Machines-based Rele-
vance Feedback in Image Retrieval, IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 28, no.7, pp. 1088-1099, July 2006

[164] Dacheng Tao, Xuelong Li, and Stephen J. Maybank, Negative Samples
Analysis in Relevance Feedback, IEEE Transactions on Knowledge and
Data Engineering, vol. 19, no. 4, pp. 568-580, April 2007.

[165] Dacheng Tao and Xiaoou Tang, SVM-based Relevance Feedback Using
Random Subspace Method, IEEE International Conference on Multimedia
and Expo, pp. 647-652, 2004

[166] Towell, G. Shavlik, J., Knowledge-based artificial neural net-
works,Artificial Intelligence, 70: 119-165, 1994.

[167] Tsao, C.A., Chang, Y.I., 2007. A stochastic approximation view of boost-
ing. Comput. Stat. Data Anal. 52 (1), 325-344.

[168] Tsymbal A., and Puuronen S., Ensemble Feature Selection with the Simple
Bayesian Classification in Medical Diagnostics, In: Proc. 15thIEEE Symp.
on Computer-Based Medical Systems CBMS2002, Maribor, Slovenia,IEEE
CS Press, 2002, pp. 225-230.

[169] Tsymbal A., Pechenizkiy M., Cunningham P., Diversity in search strate-
gies for ensemble feature selection. Information Fusion 6(1): 83-98, 2005.

[170] Tukey J.W., Exploratory data analysis, Addison-Wesley, Reading, Mass,
1977.

[171] Tumer, K. and Ghosh J., Error Correlation and Error Reduction in En-
semble Classifiers, Connection Science, Special issue on combining artificial
neural networks: ensemble approaches, 8 (3-4): 385-404, 1996.

54



[172] Tumer, K., and Ghosh J., Robust Order Statistics based Ensembles for
Distributed Data Mining. In Kargupta, H. and Chan P., eds, Advances in
Distributed and Parallel Knowledge Discovery , pp. 185-210, AAAI/MIT
Press, 2000.

[173] K. Tumer, C. N. Oza, Input decimated ensembles. Pattern Analysis and
Application 6 (2003) 65-77.

[174] Tutz, G., Binder, H., 2006. Boosting ridge regression. Computational
Statistics and Data Analysis. Corrected Proof, Available online 22 Decem-
ber 2006, in press.

[175] Valentini G. and Masulli F., Ensembles of learning machines. In R. Tagli-
aferri andM. Marinaro, editors, Neural Nets, WIRN, Vol. 2486 of Lecture
Notes in ComputerScience, Springer, 2002, pp. 3-19.

[176] Vilalta R., Giraud–Carrier C., Brazdil P., “Meta-Learning”, in O. Maimon
and L. Rokach (Eds.), Handbook of Data Mining and Knowledge Discovery
in Databases, pp. 731-748, Springer, 2005.

[177] Wanas Nayer M., Dara Rozita A. , Kamel Mohamed S., Adaptivefusion
and co-operative training for classifier ensembles, PatternRecognition 39
(2006) 1781 - 1794

[178] Wang W., Jones P., Partridge D., Diversity between neural networks and
decision trees for building multiple classifier systems, in: Proc. Int. Work-
shop on Multiple Classifier Systems (LNCS 1857), Springer, Calgiari, Italy,
2000, pp. 240–249.

[179] Webb G., MultiBoosting: A technique for combining boosting and wag-
ging. Machine Learning, 40(2): 159-196, 2000.

[180] Webb G., and Zheng Z., Multistrategy Ensemble Learning: Reducing
Error by Combining Ensemble Learning Techniques. IEEE Transactions
on Knowledge and Data Engineering, 16 No. 8:980-991, 2004.

[181] Windeatt T. and Ardeshir G., An Empirical Comparison of Pruning Meth-
ods for Ensemble Classifiers, IDA2001, LNCS 2189, pp. 208-217, 2001.

[182] Woods K., Kegelmeyer W., Bowyer K., Combination of multiple classifiers
using local accuracy estimates, IEEE Transactions on Pattern Analysis and
Machine Intelligence 19:405–410, 1997.

[183] Wolpert, D.H., Stacked Generalization, Neural Networks, Vol. 5, pp. 241-
259, Pergamon Press, 1992.

[184] Q. X. Wu , D. Bell and M. McGinnity, Multi-knowledge for decision mak-
ing, Journal Knowledge and Information Systems, 7(2005): 246-266

55



[185] Xu L., Krzyzak A., Suen C.Y., Methods of combining multiple classifiers
and their application to handwriting recognition, IEEE Trans. SMC 22,
418-435, 1992

[186] W. Yates, D. Partridge, Use of methodological diversity to improve neural
network generalization,Neural Computing and Applications 4 (2) (1996)
114-128.

[187] Zenobi, G., and Cunningham, P. Using diversity in preparing ensembles
of classifiers based on different feature subsets to minimize generalization
error. In Proceedings of the European Conference on Machine Learning,
2001.

[188] Zhang, C.X., Zhang, J.S., 2008. A local boosting algorithm for solving
classification problems. Comput. Stat. Data Anal. 52 (4), 1928-1941.

[189] Zhang, C.X., Zhang, J.S., Zhang G. Y., Using Boosting to prune Double-
Bagging ensembles. Computational Statistics and Data Analysis, (2008),
doi:10.1016/j.csda.2008.10.040

[190] Zhou, Z. H., and Tang, W., Selective Ensemble of Decision Trees, in
Guoyin Wang, Qing Liu, Yiyu Yao, Andrzej Skowron (Eds.): Rough Sets,
Fuzzy Sets, Data Mining, and Granular Computing, 9th International Con-
ference, RSFDGrC, Chongqing, China, Proceedings. Lecture Notes in Com-
puter Science 2639, pp.476-483, 2003.

[191] Zhou, Z. H., Wu J., Tang W., Ensembling neural networks: many could
be better than all. Artificial Intelligence 137: 239-263, 2002.

[192] Zupan, B., Bohanec, M., Demsar J., and Bratko, I., Feature transforma-
tion by function decomposition, IEEE intelligent systems & their applica-
tions, 13: 38-43, 1998.

[193] Zhou Z., Jiang Y., NeC4.5: Neural Ensemble Based C4.5, IEEE Trans-
actions on Knowledge and Data Engineering, vol. 16, no. 6, pp. 770-773,
Jun., 2004.

[194] Zhoua J., Pengb H., Suenc C., Data-driven decomposition formulti-class
classification, Pattern Recognition 41: 67 - 76, 2008.

56


