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Abstract

The Birnbaum–Saunders regression model is commonly used in reliability studies.
We address the issue of performing inference in this class of models when the number
of observations is small. Our simulation results suggest that the likelihood ratio test
tends to be liberal when the sample size is small. We obtain a correction factor which
reduces the size distortion of the test. Also, we consider a parametric bootstrap
scheme to obtain improved critical values and improved p-values for the likelihood
ratio test. The numerical results show that the modified tests are more reliable in
finite samples than the usual likelihood ratio test. We also present an empirical
application.

Key words: Bartlett correction; Birnbaum–Saunders distribution; Bootstrap;
Likelihood ratio test; Maximum likelihood estimation.

1 Introduction

Different models have been proposed for lifetime data, such as those based
on the gamma, lognormal and Weibull distributions. These models typically
provide a satisfactory fit in the middle portion of the data, but oftentimes fail
to deliver a good fit at the tails, where only a few observations are generally
available. The family of distributions proposed by Birnbaum and Saunders
(1969) can also be used to model lifetime data. It has the appealing feature
of providing satisfactory tail fitting. This family of distributions was origi-
nally obtained from a model in which failure follows from the development
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and growth of a dominant crack. It was later derived by Desmond (1985) us-
ing a biological model which followed from relaxing some of the assumptions
originally made by Birnbaum and Saunders (1969).

The random variable T is said to be Birnbaum–Saunders distributed with
parameters α, η > 0, denoted B-S(α, η), if its distribution function is given by

FT (t) = Φ


 1
α



√
t

η
−
√
η

t




, t > 0, (1)

where Φ(·) is the standard normal distribution function; α and η are shape
and scale parameters, respectively. It is easy to show that η is the median
of the distribution: FT (η) = Φ(0) = 1/2. For any k > 0, it follows that
kT ∼ B-S(α, kη). It is also noteworthy that the reciprocal property holds:
T−1 ∼ B-S(α, η−1), which is in the same family of distributions [Saunders
(1974)].

Rieck and Nedelman (1991) proposed a log-linear regression model based on
the Birnbaum–Saunders distribution. They showed that if T ∼ B-S(α, η),
then y = log(T ) is sinh-normal distributed with shape, location and scale
parameters given by α, µ = log(η) and σ = 2, respectively [y ∼ SN (α, µ, σ)];
see Section 2 for further details. Their model has been widely used and is an
alternative to the usual gamma, lognormal and Weibull regression models; see
Rieck and Nedelman (1991, § 7). Diagnostic tools for the Birnbaum–Saunders
regression model were developed by Galea et al. (2004), Leiva et al. (2007)
and Xie and Wei (2007), and Bayesian inference was developed by Tisionas
(2001).

Hypothesis testing inference is usually performed using the likelihood ratio
test. It is well known, however, that the limiting null distribution (χ2) used
in the test can be a poor approximation to the exact null distribution of the
test statistic when the number of observations is small, thus yielding a size-
distorted test; see, e.g., the simulation results in Rieck and Nedelman (1991,
§ 5). Consider, for instance, the application in which interest lies in model-
ing the die lifetime (T ) in the process of metal extrusion, as in Lepadatu et
al. (2005). As noted by the authors, the die life is mainly determined by its
material properties and the stresses under load. They also note that the ex-
trusion die is exposed to high temperatures, which can also be damaging. The
covariates are the friction coefficient (x1), the angle of the die (x2) and work
temperature (x3). Consider a regression model which also includes interaction
effects, i.e.,

yi = β0 + β1x1i + β2x2i + β3x3i + β4x1ix2i + β5x1ix3i + β6x2ix3i + εi,

where yi = log(Ti) and εi ∼ SN (α, 0, 2), i = 1, 2, . . . , n. There are only 15
observations (n = 15), and we wish to test the significance of the interaction
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effects, i.e., the interest lies in testing H0 : β4 = β5 = β6 = 0. The likelihood
ratio p-value equals 0.094, i.e., one rejects the null hypothesis at the 10% nom-
inal level. Note, however, that the p-value is close to the significance level of
the test and that the number of observations is small. Can the inference made
using the likelihood ratio test be trusted? We shall return to this application
in Section 6.

The chief goal of our paper is to improve likelihood ratio inference in Birnbaum–
Saunders regressions when the number of observations available to the prac-
titioner is small. We do so by following two different approaches. First, we
derive a Bartlett correction factor that can be applied to the likelihood ratio
test statistic. The exact null distribution of the modified statistic is generally
better approximated by the limiting null distribution used in the test than that
of the unmodified test statistic. Second, we consider a parametric bootstrap
resampling scheme to obtain improved critical values and improved p-values
for the likelihood ratio test.

The paper unfolds as follows. Section 2 introduces the Birnbaum–Saunders
regression model. In Section 3, we derive a Bartlett correction to the likelihood
ratio test statistic; we give a closed-form expression for the correction factor
in matrix form. Special cases are considered in Section 4. Numerical evidence
of the effectiveness of the finite sample correction we obtain is presented in
Section 5; we also evaluate bootstrap-based inference. Section 6 addresses the
empirical application introduced above (inferences on die lifetime in metal
extrusion). Finally, concluding remarks are offered in Section 7.

2 The Birnbaum–Saunders regression model

The density function of a Birnbaum–Saunders variate T is

fT (t;α, η) =
1

2αη
√
2π




η
t




1/2

+


η
t




3/2
 exp



−

1

2α2


 t
η
+
η

t
− 2





,

where t, α, η > 0. The density is right skewed, the skewness decreasing with α;
see Lemonte et al. (2007, § 2). The mean and variance of T are, respectively,

E(T ) = η

(
1 +

1

2
α2

)
and Var(T ) = (αη)2

(
1 +

5

4
α2

)
.

McCarter (1999) considered B-S(α, η) parameter estimation under type II
data censoring. Lemonte et al. (2007) derived the second order biases of the
maximum likelihood estimators of α and η, and obtained a corrected likelihood
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ratio statistic for testing hypotheses regarding α. Lemonte et al. (2008) pro-
posed several bootstrap bias-corrected estimators of α and η. Further details
on the Birnbaum–Saunders distribution can be found in Johnson et al. (1995).

The B-S(α, η) survival function is ST (t) = 1 − FT (t), where FT (t) is given
in (1). The hazard function is ν(t) = fT (t)/ST (t), where fT (t) is the corre-
sponding density function. The hazard function ν(t) equals zero at t = 0,
increases up to a maximum value and then decreases towards a given posi-
tive level; see Kundu et al. (2008). For a comparison between the Birnbaum–
Saunders and lognormal hazard functions, see Nelson (1990).

As noted in the previous section, Rieck and Nedelman (1991) showed that if
T ∼ B-S(α, η), then y = log(T ) follows a sinh-normal distribution with the
following shape, location and scale parameters: α, µ = log(η) and σ = 2,
respectively, denoted y ∼ SN (α, µ, σ). The density function of y is

f(y;α, µ, σ) =
2

ασ
√
2π

cosh

(
y − µ

σ

)
exp

{
− 2

σ2
sinh2

(
y − µ

σ

)}
, y ∈ IR.

This distribution has a number of interesting and attractive properties [see
Rieck (1989)]: (i) It is symmetric around the location parameter µ; (ii) It is
unimodal for α ≤ 2 and bimodal for α > 2; (iii) The mean and variance of
y are E(y) = µ and Var(y) = σ2w(α), respectively. There is no closed-form
expression for w(α), but Rieck (1989) obtained asymptotic approximations
for both small and large values of α; (iv) If yα ∼ SN (α, µ, σ), then Sα =
2(yα − µ)/(ασ) converges in distribution to the standard normal distribution
when α→ 0.

Rieck and Nedelman (1991) proposed the following regression model:

yi = x⊤

iβ + εi, i = 1, 2, . . . , n, (2)

where yi is the logarithm of the ith observed lifetime, x⊤

i = (xi1, xi2, . . . , xip)
contains the ith observation on the p covariates (p < n), β = (β1, β2, . . . , βp)

⊤

is a vector of unknown regression parameters, and εi ∼ SN (α, 0, 2).

The log-likelihood function for a random sample y = (y1, . . . , yn)
⊤ from (2)

can be written as

ℓ(θ;y) = −n
2
log(8π) +

n∑

i=1

log(ξi1)−
1

2

n∑

i=1

ξ2i2, (3)

where θ = (β⊤, α)⊤,

ξi1(θ) = ξi1 =
2

α
cosh

(
yi − µi

2

)
, ξi2(θ) = ξi2 =

2

α
sinh

(
yi − µi

2

)
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and µi = x⊤

iβ, i = 1, 2, . . . , n. By differentiating (3) with respect to βr and α,
we obtain

∂ℓ(θ)

∂βr
=

1

2

n∑

i=1

xir

{
ξi1ξi2 −

ξi2
ξi1

}
, r = 1, 2, . . . , p,

and
∂ℓ(θ)

∂α
= −n

α
+

1

α

n∑

i=1

ξ2i2.

The score function for β can be written in matrix form as

Uβ(θ) = Uβ =
∂ℓ(θ)

∂β
=

1

2
X⊤s,

where X = (x1 x2 · · · xn)
⊤ is the n× p design matrix (which is assumed to

have full column rank) and s = s(θ) is an n-vector whose ith element equals
ξi1ξi2 − ξi2/ξi1.

Rieck and Nedelman (1991) obtained a closed-form expression for the maxi-
mum likelihood estimator (MLE) of α2:

α̂2 =
4

n

n∑

i=1

sinh2

(
yi − x⊤

i β̂

2

)
,

where β̂ is the MLE of β. There is no closed-form expression for the MLE of
β. Hence, one has to use a nonlinear optimization method, such as Newton-
Raphson or Fisher’s scoring, to obtain β̂. 1

Let θ̂ = (β̂⊤, α̂)⊤ be the MLE of θ = (β⊤, α)⊤. Rieck and Nedelman (1991)

showed that θ̂
A∼ Np+1(θ,K(θ)−1), when n is large,

A∼ denoting approximately
distributed; K(θ) is Fisher’s information matrix and K(θ)−1 is its inverse.
Also, K(θ) is a block-diagnonal matrix given by K(θ) = diag{K(β), κα,α}:
K(β) = ψ1(α)(X

⊤X)/4 is Fisher’s information for β and κα,α = 2n/α2 is the
information relative to α. Also,

ψ0(α) =

{
1− erf

(√
2

α

)}
exp

(
2

α2

)
and ψ1(α) = 2+

4

α2
−

√
2π

α
ψ0(α), (4)

erf(·) denoting the error function:

erf(x) =
2√
π

∫ x

0
e−t2dt.

1 All log-likelihood maximizations with respect to β and α in this paper were
carried out using the BFGS quasi-Newton method with analytic first derivatives;
see Press et al. (1992). The initial values in the iterative BFGS scheme were β̃ =
(X⊤X)−1X⊤y for β and

√
α̃2 for α, where α̃2 is obtained from α̂2 with β̂ replaced

by β̃.
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Details on erf(·) can be found in Gradshteyn and Ryzhik (2007). Since K(θ)
is block-diagonal, β and α are globally orthogonal [Cox and Reid (1987)] and
β̂ and α̂ are asymptotically independent. It can be shown that when α is
small, ψ0(α) ≈ α/

√
2π and ψ1(α) ≈ 1 + 4/α2; when α is large, ψ0(α) ≈ 1 and

ψ1(α) ≈ 2.

3 An improved likelihood ratio test

Consider a parametric model f(y; θ) with corresponding log-likelihood func-
tion ℓ(θ;y), where θ = (θ⊤

1 , θ
⊤

2 )
⊤ is a k-vector of unknown parameters. The

dimensions of θ1 and θ2 are k−q and q, respectively. Suppose the interest lies
in testing the composite null hypothesis H0: θ2 = θ

(0)
2 against H2: θ2 6= θ

(0)
2 ,

where θ
(0)
2 is a given vector of scalars. Hence, θ1 is a vector of nuisance pa-

rameters. The log-likelihood ratio test statistic can be written as

LR = 2
{
ℓ(θ̂;y)− ℓ(θ̃;y)

}
, (5)

where θ̂ = (θ̂⊤

1 , θ̂
⊤

2 )⊤ and θ̃ = (θ̃⊤

1 , θ
(0)⊤
2 )⊤ are the MLEs of θ = (θ⊤

1 , θ
⊤

2 )
⊤

obtained from the maximization of ℓ(θ;y) under H1 and H0, respectively.

Bartlett (1937) computed the expected value of LR under H0 up to order n−1:
E(LR) = q + B(θ) + O(n−2), where B(θ) is a constant of order O(n−1). It
is possible to show that, under the null hypothesis, the mean of the modified
test statistic

LRb =
LR

1 +B(θ)/q

equals q when we neglect terms of order O(n−2). The order of the approxima-
tion remains unchanged when the unknown parameters in B(θ) are replaced
by their restricted MLEs. Additionally, whereas Pr(LR ≤ z) = Pr(χ2

q ≤
z) + O(n−1), it follows that Pr(LRb ≤ z) = Pr(χ2

q ≤ z) + O(n−2), a clear
improvement. The correction factor c = 1+B(θ)/q is commonly refered to as
the ‘Bartlett correction factor’.

Note that LR can be written as

LR = 2
{
ℓ(θ̂;y)− ℓ(θ;y)

}
− 2

{
ℓ(θ̃;y)− ℓ(θ;y)

}
,

where ℓ(θ;y) is the log-likelihood function at the true parameter values. Law-
ley (1956) has shown that

2E
[
ℓ(θ̂;y)− ℓ(θ;y)

]
= k + ǫk +O(n−2),
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where ǫk is of order O(n−1) and is given by

ǫk =
∑′

(λrstu − λrstuvw), (6)

where
∑

′ denotes summation over all components of θ, i.e., the indices r, s, t, u, v
and w vary over all k parameters, and the λ’s are given by

λrstu = κrsκtu
{
κrstu
4

− κ
(u)
rst + κ

(su)
rt

}
,

λrstuvw = κrsκtuκvw
{
κrtv

(
κsuw
6

− κ(u)sw

)

+ κrtu

(
κsvw
4

− κ(v)sw

)
+ κ

(v)
rt κ

(u)
sw + κ

(u)
rt κ

(v)
sw

}
,

(7)

where κrs = E(∂2ℓ(θ)/∂θr∂θs), κrst = E(∂3ℓ(θ)/∂θr∂θs∂θt), κ
(t)
rs = ∂κrs/∂θt,

etc., and −κrs is the (r, s) element of Fisher’s information matrix inverse.
Analogously,

2E
[
ℓ(θ̃;y)− ℓ(θ;y)

]
= k − q + ǫk−q +O(n−2),

where ǫk−q is of order O(n
−1) and is obtained from (6) when the sum

∑
′ only

covers the components of θ1, i.e., the sum ranges over the k − q nuisance
parameters, since θ2 is fixed under H0.

Under H0, E(LR) = q + ǫk − ǫk−q + O(n−2). Thus, it is possible to achieve
a better χ2

q approximation by using the modified test statistic LRb = LR/c
instead of LR, the Bartlett correction factor being c = 1 + B(θ)/q, where
B(θ) = ǫk − ǫk−q. The corrected statistic LRb is χ2

q distributed up to order
O(n−1) under H0. The improved test follows from the comparison of LRb and
the critical value obtained as the appropriate χ2

q quantile.

The corrected test statistic is usually written as LRb = LR/{1 + B(θ)/q}.
Nonetheless, there are alternative modified statistics that are equivalent to
LRb to order O(n−1), such as LR∗

b = LR exp{−B(θ)/q} and LR∗∗

b = LR{1−
B(θ)/q}. It is noteworthy that LR∗

b has an advantage over the other two
specifications: it never assumes negative values. See Cribari–Neto and Cordeiro
(1996) for further details on Bartlett corrections.

In what follows, we shall derive the Bartlett correction factor for testing in-
ference in the Birnbaum–Saunders regression model. The parameter vector
is θ = (β⊤, α)⊤, which is (p + 1)-dimensional. Hence, we shall obtain ǫp+1

from (6), with the indices varying from 1 up to p+ 1.

Let Z = X(X⊤X)−1X⊤ = {zij} and Zd = diag{z11, z22, . . . , znn}. Also,

Z(2) = Z ⊙ Z, Z
(2)
d = Zd ⊙ Zd, etc., ⊙ denoting the Hadamard (element-

wise) product of matrices. We shall use the following notation for cumulants
of log-likelihood derivatives with respect to β and α: Ur = ∂ℓ(θ)/∂βr, Uα =
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∂ℓ(θ)/∂α, Urs = ∂2ℓ(θ)/∂βr∂βs, Urα = ∂2ℓ(θ)/∂βr∂α, Uαα = ∂2ℓ(θ)/∂α2,
Urst = ∂3ℓ(θ)/∂βr∂βs∂βt, Ursα = ∂3ℓ(θ)/∂βr∂βs∂α, etc; κrs = E(Urs), κrα =
E(Urα), κrst = E(Urst), etc; κ

(t)
rs = ∂κrs/∂βt, κ

(tα)
rα = ∂2κrα/∂βt∂α, etc.

From the log-likelihood function in (3) we obtain the following cumulants:

κrs = −ψ1(α)

4

n∑

i=1

xirxis, κrα = 0, καα = −2n

α2
,

κrst = 0, κrsα =
2 + α2

α3

n∑

i=1

xirxis, κrαα = 0, κααα =
10n

α3
,

κrstu = ψ2(α)
n∑

i=1

xirxisxitxiu, κrstα = 0, κrsαα = −3(2 + α2)

α4

n∑

i=1

xirxis,

κrααα = 0 and καααα = −54n

α4
,

where

ψ2(α) = −1

4

{
2 +

7

α2
−
√
π

2

(
1

2α
+

6

α3

)
ψ0(α)

}

and ψ0(α) and ψ1(α) are defined in (4). For small α, we have ψ2(α) ≈ −5/8−
1/α2; for large α, ψ2(α) ≈ −1/2.

Using these cumulants and also making use of the orthogonality between β and
α, we obtain, after long and tedious algebra (Appendix), ǫp+1 = ǫ(α, p,X),
where

ǫ(α, p,X) = ǫα(α, p) + ǫβ(α,X), (8)

with

ǫα(α, p) =
1

n

{
1

3
+ δ1(α)p+ δ2(α)p

2

}
and ǫβ(α,X) = δ3(α)tr(Z

(2)
d ).

Here, tr(·) denotes the trace operator and

δ0(α) =
2 + α2

ψ1(α)α2
, δ1(α) = 4δ0(α)

{
2

2 + α2
+ δ0(α)−

2αψ3(α)

ψ1(α)

}
,

δ2(α) = 2δ0(α)
2, δ3(α) =

4ψ2(α)

ψ1(α)2
and ψ3(α) =

3

α3
−

√
2π

4α2

(
1 +

4

α2

)
ψ0(α).

In expression (8) – our main result – we write ǫp+1 as the sum of two terms,
namely ǫα(α, p) and ǫβ(α,X). The quantity ǫβ(α,X) is obtained from (6) with∑

′ ranging over the components of β, i.e. as if α were known. The quantity
ǫα(α, p) is the contribution yielded by the fact that α is unknown (see the
Appendix). Note that ǫα(α, p) depends on the design matrix only through its
rank. More specifically, it is a second degree polynomial in p divided by n.
Hence, ǫα(α, p) can be non-negligible if the dimension of β is not considerably
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smaller than the sample size. It is also noteworthy that ǫ(α, p,X) depends
on α but not on β. The dependency of ǫ(α, p,X) on α occurs through δ1(α),
δ2(α) and δ3(α). For small α, we have δ1(α) ≈ 1, δ2(α) ≈ 1/2 and δ3(α) ≈ 0.

For large α, δ1(α) ≈ 1, δ2(α) ≈ 1/2 and δ3(α) ≈ −1/2. Furthermore, tr(Z
(2)
d )

establishes the dependency of ǫ(α, p,X) on X. In other words, ǫ(α, p,X)
depends on the sum of squares of the diagonal elements of the hat matrix Z.
In particular, if p = 1, i.e. if X has a single column, x = (x1, . . . , xn)

⊤ say,

then tr(Z
(2)
d ) =

∑n
i=1 x

4
i /
(∑n

i=1 x
2
i

)2
, the sample kurtosis of x.

Finally, it should be noted that expression (8) is quite simple and can be easily
implemented into any mathematical or statistical/econometric programming
environment, such as R [R Development Core Team (2006)], Ox [Cribari–Neto
and Zarkos (2003); Doornik (2006)] and MAPLE [Abell and Braselton (1994)].

4 Special cases

In this section we present closed-form expressions for the Bartlett correction
factor in situations that are of particular interest to practitioners. The simpli-
fied expressions are obtained from our more general result given in (8).

At the outset, we consider the test of H0: α = α(0) against H1: α 6= α(0), where
α(0) is a given positive scalar and β is a vector of nuisance parameters. The
Bartlett correction factor becomes c = 1 + B(θ), where B(θ) = ǫ(α, p,X)−
ǫβ(α,X), and hence, B(θ) = ǫα(α, p). Note that the correction factor depends
on X only through its rank, p. In particular, when p = 1 (i.i.d. case), we have

B(θ) =
1

n

{
1

3
+ δ1(α) + δ2(α)

}
.

This formula corrects eq. (14) in Lemonte et al. (2007), which is in error. For
small and large values of α, we have B(θ) ≈ 11/(6n).

Oftentimes practitioners wish to test restrictions on a subset of the regression
parameters. For instance, one may want to test whether a given group of co-
variates are jointly significant. To that end, we partition β as β = (β⊤

1 ,β
⊤

2 )
⊤,

where β1 = (β1, β2, . . . , βp−q)
⊤ and β2 = (βp−q+1, βp−q+2, . . . , βp)

⊤ are vec-
tors of dimensions (p − q) × 1 and q × 1, respectively, and consider the test

of H0 : β2 = β
(0)
2 against H1 : β2 6= β

(0)
2 , where β

(0)
2 is a q-vector of known

constants. The most common situation is that in which β
(0)
2 = 0. Note that

β1 and α are nuisance parameters. In accordance with the partition of β,
we partition X as X = (X1 X2), where the dimensions of X1 and X2 are
n × (p− q) and n × q, respectively. The correction factor is c = 1 + B(θ)/q,
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where B(θ) = ǫ(α, p,X)− ǫ(α, p− q,X1). It is easy to obtain

B(θ) =
1

n

{
δ1(α)q + δ2(α)q(2p− q)

}
+ δ3(α)tr(Z

(2)
d −Z

(2)
1d ),

with Z1 = X1(X
⊤

1X1)
−1X⊤

1 = {z1ij} and Z1d = diag{z111, z122, . . . , z1nn}.

Next, suppose we wish to test H0: β = β(0) against H1: β 6= β(0), where β(0)

is a p-vector of known constants and α is a nuisance parameter. The Bartlett
correction factor is c = 1 + B(θ)/p with B(θ) = ǫ(α, p,X) − ǫα(α, 0), which
yields

B(θ) =
1

n

{
δ1(α)p+ δ2(α)p

2
}
+ δ3(α)tr(Z

(2)
d ).

5 Numerical evidence

We shall now report Monte Carlo evidence on the finite sample performance of
three tests in Birnbaum–Saunders regressions, namely: the likelihood ratio test
(LR), the Bartlett-corrected likelihood ratio test (LRb), and an asymptotically
equivalent corrected test (LR∗

b).
2 The model used in the numerical evaluation

is
yi = β1xi1 + β2xi2 + · · ·+ βpxip + εi,

where xi1 = 1 and εi ∼ SN (α, 0, 2), i = 1, 2, . . . , n. The covariate values
were selected as random draws from the U(0, 1) distribution. The number of
Monte Carlo replications was 10,000, the nominal levels of the tests were γ
= 10%, 5% and 1%, and all simulations were carried out using the Ox matrix
programming language (Doornik, 2006).

Table 1 presents the null rejection rates (entries are percentages) of the three
tests. The null hypothesis is H0 : βp−1 = βp = 0, which is tested against
a two-sided alternative, the sample size is n = 30 and α = 0.5. Different
values of p were considered. The values of the response were generated using
β1 = β2 = · · · = βp−2 = 1.

Note that the likelihood ratio test is considerably oversized (liberal), more so
as the number of regressors increases. For instance, when p = 8 and γ = 10%,
its null rejection rate is 18.78%, i.e., nearly twice the nominal level of the test.
The two corrected tests are much less size distorted. For example, their null
rejection rates in the same situation were 11.82% (LRb) and 11.13% (LR∗

b).

The results in Table 2 correspond to α = 0.5 and p = 6. We report results
for samples sizes ranging from 20 to 200. The null hypothesis under test is

2 We do not report results relative to LR∗∗

b since they were very similar to those
obtained using LR∗

b .
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Table 1
Null rejection rates; α = 0.5, n = 30.

γ = 10% γ = 5% γ = 1%

p LR LRb LR∗

b LR LRb LR∗

b LR LRb LR∗

b

3 12.69 10.36 10.22 6.51 4.98 4.90 1.75 1.25 1.23

4 13.44 10.27 10.07 7.46 5.41 5.32 1.90 1.10 1.04

5 14.77 10.74 10.45 8.25 5.53 5.31 2.21 1.18 1.14

6 15.94 11.07 10.53 9.14 5.55 5.23 2.54 1.24 1.17

7 17.28 11.55 10.88 10.13 5.69 5.42 2.95 1.29 1.19

8 18.78 11.82 11.13 11.15 6.44 5.83 3.38 1.48 1.31

9 19.92 12.11 11.00 12.00 6.33 5.66 3.82 1.49 1.25

H0: β5 = β6 = 0. The figures in this table show that the null rejection rates of
all tests approach the corresponding nominal levels as the sample size grows,
as expected. It is also noteworthy that the likelihood ratio test displays liberal
behavior even when n = 100. Overall, the corrected tests are less size distorted
than the unmodified test. For example, when n = 50 and γ = 5%, the null
rejection rates are 7.49% (LR), 5.32% (LRb) and 5.17% (LR∗

b).

Table 2
Null rejection rates; α = 0.5, p = 6 and different sample sizes.

γ = 10% γ = 5% γ = 1%

n LR LRb LR∗

b LR LRb LR∗

b LR LRb LR∗

b

20 19.54 12.04 11.08 11.97 6.54 5.87 4.05 1.58 1.38

30 15.94 11.07 10.53 9.14 5.55 5.23 2.54 1.24 1.17

40 13.57 10.14 9.97 7.45 4.99 4.81 1.79 1.03 1.01

50 13.36 10.72 10.51 7.49 5.32 5.17 1.51 1.02 0.99

100 11.86 10.46 10.44 5.90 4.92 4.88 1.25 1.04 1.03

200 10.92 10.14 10.12 5.57 5.07 5.07 1.04 0.96 0.96

Figure 1 plots relative quantile discrepancies against the associated asymptotic
quantiles for the three test statistics. Relative quantile discrepancies are de-
fined as the difference between exact (estimated by Monte Carlo) and asymp-
totic quantiles divided by the latter. Again, p = 6 and we test the exclusion
of the last two covariates. Also, n = 30 and α = 0.5. The closer to zero the
relative quantile discrepancies, the more accurate the test. While Tables 1 and
2 give rejection rates of the tests at fixed nominal levels, Figure 1 compares
the whole distributions of the different statistics with the limiting null dis-
tribution. We note that the relative quantile discrepancies of the likelihood
ratio test statistic oscillates around 25% whereas for the two corrected statis-
tics they are around 5% (LRb) and 3% (LR∗

b). It is thus clear that the null
distributions of the modified statistics are much better approximated by the
limiting null distribution (χ2

2) than that of the likelihood ratio statistic.

Table 3 contains the nonnull rejection rates (powers) of the tests. Here, p =
4, α = 0.5 and n = 30, 50, 100. Data generation was performed under the
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Fig. 1. Relative quantile discrepancies plot: n = 30, p = 6 and α = 0.5.

alternative hypothesis: β3 = β4 = δ, with different values of δ (δ > 0). We have
only considered the two corrected tests since the likelihood ratio is considerably
oversized, as noted earlier. Note that the two tests display similar powers. For
instance, when n = 50, γ = 5% and δ = 0.5, the nonnull rejection rates are
72.39% (LRb) and 72.28% (LR∗

b). We also note that the powers of the tests
increase with n and also with δ, as expected.

Table 4 presents the null rejection rates for inference on the scalar parameter
α. Here, n = 30 and p = 2, 3 and 4. The null hypotheses under test are
H0: α = 0.5 and H0: α = 1.0. The likelihood ratio test is again liberal. Note
that the two corrected tests are much less size distorted. For instance, when
p = 4, γ = 5% and α = 1.0, the null rejection rates of the LR, LRb and LR

∗

b

tests were 12.03%, 5.20% and 4.02%, respectively.

Our simulation results concerning tests on the regression parameters were
obtained for α = 0.5. In practice, values of α between 0 and 1 cover most
of the applications; see, for instance, Rieck and Nedelman (1991). We shall
now present simulation results for a wide range of values of α, namely α =
0.1, 0.3, 0.5, 0.7, 0.9, 1.2, 2, 10, 50 and 100. The new set of simulation results
includes rejection rates of the likelihood ratio test that uses parametric boot-
strap critical values (with 600 bootstrap replications). The parametric boot-
strap can be briefly described as follows. We can use bootstrap resampling to
estimate the null distribution of the statistic LR directly from the observed
sample y = (y1, . . . , yn)

⊤. To that end, one generates, under H0 (i.e., im-
posing the restrictions stated in the null hypothesis), B bootstrap samples

12



Table 3
Nonnull rejection rates; α = 0.5, p = 4 and different sample sizes.

LRb LR∗

b

n δ 10% 5% 1% 10% 5% 1%

30 0.1 13.20 6.91 1.57 13.01 6.73 1.52

0.2 20.66 12.22 3.46 20.40 12.02 3.30

0.3 33.07 21.63 7.49 32.73 21.28 7.33

0.4 48.36 35.57 14.96 48.08 35.20 14.61

0.5 65.11 51.59 26.42 64.72 51.19 25.99

50 0.1 13.82 7.63 2.03 13.71 7.60 1.99

0.2 25.89 16.03 5.11 25.81 15.96 5.03

0.3 45.00 32.06 13.15 44.86 31.95 13.07

0.4 65.07 52.09 28.18 64.97 51.96 28.03

0.5 82.31 72.39 48.01 82.14 72.28 47.88

100 0.1 18.66 11.02 2.91 18.65 11.01 2.90

0.2 43.63 31.29 13.05 43.61 31.28 13.02

0.3 73.47 62.39 37.40 73.47 62.35 37.34

0.4 92.12 86.39 69.15 92.11 86.37 69.11

0.5 98.76 97.34 89.98 98.76 97.33 89.93

Table 4
Null rejection rates; inference on α; n = 30 and different values for p.

H0: α = 0.5 H0: α = 1.0

p 10% 5% 1% 10% 5% 1%

2 LR 12.76 6.99 1.82 13.55 7.26 1.93

LRb 10.13 5.15 1.21 10.52 5.10 1.08

LR∗

b 9.90 5.02 1.20 10.31 4.94 1.05

3 LR 15.16 8.64 2.45 16.10 9.35 2.70

LRb 10.46 5.43 1.16 10.53 5.06 0.97

LR∗

b 9.77 5.02 1.02 9.65 4.68 0.81

4 LR 18.16 10.72 3.39 19.86 12.03 3.73

LRb 10.45 5.37 0.98 10.73 5.20 0.75

LR∗

b 9.29 4.57 0.72 8.77 4.02 0.43

(y∗1, . . . ,y∗B) from the assumed model with the parameters replaced by re-
stricted estimates computed using the original sample (parametric bootstrap),
and, for each pseudo-sample, one computes LR∗b = 2{ℓ(θ̂∗b;y∗b)−ℓ(θ̃∗b;y∗b)},
b = 1, 2, . . . , B, where θ̃∗b and θ̂∗b are the maximum likelihood estimators
of θ obtained from the maximizations of ℓ(θ;y∗b) under H0 and H1, re-
spectively. The 1 − γ percentile of LR∗b is estimated by q̂1−γ , such that
#{LR∗b ≤ q̂1−γ}/B = 1−γ. One rejects the null hypothesis if LR > q̂1−γ. For
a good discussion of bootstrap tests, see Efron and Tibshirani (1993, Chapter
16).

Figures in Table 5 provide important information. For all values of α the
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Bartlett and the bootstrap corrections are very effective in pushing the rejec-
tion rates toward the nominal levels. An advantage of the Bartlett correction
over the bootstrap approach is that the first requires much less computational
effort. It is noteworthy that as α grows, the rejection rates of the likelihood
ratio test approaches the corresponding nominal levels, making the corrections
less needed.

Table 5
Null rejection rates of H0 : β3 = β4 = 0; p = 4, n = 25 and different values for α.

α = 0.1 α = 0.3

γ LR LRb LR∗

b LRboot LR LRb LR∗

b LRboot

10% 14.33 11.42 11.32 9.90 14.45 10.70 10.44 10.18

5% 7.88 5.82 5.74 4.94 8.01 5.49 5.22 4.97

1% 1.95 1.29 1.23 1.24 2.07 1.20 1.13 1.13

α = 0.5 α = 0.7

γ LR LRb LR∗

b LRboot LR LRb LR∗

b LRboot

10% 14.25 10.23 10.01 10.23 14.17 10.61 10.36 10.14

5% 7.69 5.17 5.02 5.12 8.09 5.35 5.17 5.28

1% 1.89 0.91 0.85 1.24 2.07 1.12 1.06 1.02

α = 0.9 α = 1.2

γ LR LRb LR∗

b LRboot LR LRb LR∗

b LRboot

10% 13.96 10.80 10.60 9.64 13.49 10.45 10.29 9.79

5% 8.03 5.77 5.61 5.17 7.51 5.37 5.26 5.10

1% 2.29 1.30 1.26 1.10 1.90 1.18 1.16 1.38

α = 2 α = 10

γ LR LRb LR∗

b LRboot LR LRb LR∗

b LRboot

10% 13.21 10.87 10.64 10.01 12.44 11.23 11.13 9.75

5% 7.29 5.61 5.50 5.08 6.59 5.81 5.73 4.80

1% 1.63 1.08 1.04 1.21 1.42 1.17 1.16 0.98

α = 50 α = 100

γ LR LRb LR∗

b LRboot LR LRb LR∗

b LRboot

10% 11.26 10.45 10.43 10.11 10.87 10.17 10.12 9.89

5% 5.60 5.21 5.20 4.93 5.67 5.11 5.07 5.18

1% 1.19 1.06 1.06 1.04 1.23 1.07 1.07 1.18

We shall now try to shed some light on the issue of the possible effect of
near-collinearity between the covariates X on the testing procedures. To do
so, we performed an additional simulation experiment. We set p = 4 and
selected the covariate values as follows: xi1 = 1, for i = 1, . . . , n, the values of
x2 were chosen as random draws from the U(0, 1) distribution and the pairs
(xi3, xi4) were selected as random draws from the bivariate normal distribution
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N2(0,Σ), where the covariance matriz Σ has the following form

Σ =



1 ρ

ρ 1


 .

The closer the value of ρ is to either extreme (−1 or 1), the stronger the
linear relation between the covariates x3 and x4. Table 6 presents simulation
results for different values of ρ. The figures in this table suggest that the
sample correlation between x2 and x3 does not have significant effect on the
behaviour of the testing procedures. Hence, near-collinearity does not seem to
a matter of concern.

Table 6
Null rejection rates of H0 : β2 = β4 = 0; p = 4, n = 20 and different values for ρ.

ρ = 0.0

γ LR LRb LR∗

b LRboot

10% 16.00 11.15 10.72 10.20

5% 9.16 5.33 5.08 4.90

1% 2.37 1.27 1.21 1.16

ρ = 0.5

γ LR LRb LR∗

b LRboot

10% 15.54 10.72 10.33 10.14

5% 8.85 5.73 5.48 5.22

1% 2.37 1.15 1.03 1.10

ρ = 0.9

γ LR LRb LR∗

b LRboot

10% 15.73 11.14 10.77 10.31

5% 9.18 6.06 5.70 5.40

1% 2.58 1.15 1.10 1.21

In all simulated situations, the likelihood ratio test was liberal. Of course,
this is not a proof that this is always the case. Indeed, there may be situa-
tions where it is conservative. Simulation results presented in the literature,
however, suggest that the likelihood ratio test is often anti-conservative. For
a theoretical justification in a simple situation, let z1, . . . , zn be a random
sample drawn from the N(µ, σ2) distribution, with both µ and σ2 unknown.
Consider the test of H0 : µ = µ0 versus H1 : µ 6= µ0. The asymptotic likeli-
hood ratio test rejects H0 whenever LR > cγ , where cγ is the 1 − γ quantile
of the χ2

1 distribution. Equivalently, H0 is rejected when
√
n|z − µ0|/σ̂ >

k(γ, n), where z =
∑n

i=1 zi/n, σ̂
2 =

∑n
i=1(zi − z)2/(n − 1) and k(γ, n) =√

(exp(−cγ/2)−2/n − 1)(n− 1). Table 7 shows the true levels of the likelihood
ratio test, i.e. Pr(LR > cγ) evaluated at H0, for different values of n and γ.
Notice that, even in this simple situation, the likelihood ratio test is liberal
when the sample is not large, in agreement with simulation results presented
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elsewhere. See, for instance, Rieck and Nedelman (1991, Table 4) and Cordeiro
et al. (1995).

Table 7
True level; normal distribution.

γ

n 1% 5% 10%

5 2.91 9.79 16.54

8 1.97 7.64 13.72

12 1.58 6.64 12.35

20 1.32 5.93 11.35

50 1.12 5.36 10.52

6 An application

We shall now turn to an empirical application that employs real data. We
consider the investigation made by Lepadatu et al. (2005) on metal extrusion
die lifetime. As noted by the authors (p. 38), “the estimation of tool life (fa-
tigue life) in the extrusion operation is important for scheduling tool changing
times, for adaptive process control and for tool cost evaluation.” They also
note (p. 39) that “die fatigue cracks are caused by the repeat application of
loads which individually would be too small to cause failure.” According to
them, current research aims at describing the whole fatigue process by focus-
ing on the analysis of crack propagation from very small initial defects. It is
noteworthy that fatigue failure due to propagation of an initial crack was the
main motivation for the Birnbaum–Saunders distribution.

In Section 1, we explained that the interest lies in modeling the die lifetime
(T ) in the metal extrusion process, which is mainly determined by its material
properties and by the stresses under load. The extrusion die is exposed to high
temperatures, which can also be damaging. The covariates are the friction
coefficient (x1), the angle of the die (x2) and work temperature (x3). Consider
a regression model which also includes interaction effects, i.e.,

yi = β0 + β1x1i + β2x2i + β3x3i + β4x1ix2i + β5x1ix3i + β6x2ix3i + εi, (9)

where yi = log(Ti) and εi ∼ SN (α, 0, 2), i = 1, 2, . . . , n. There are only 15
observations (n = 15), and we want make inference on the significance of the
interaction effects, i.e., we wish to test H0 : β4 = β5 = β6 = 0. The likelihood
ratio test statistic (LR) equals 6.387 (p-value 0.094), and the two corrected
test statistics are LRb = 4.724 (p-value 0.193) and LR∗

b = 4.492 (p-value
0.213). The p-value of the bootstrap-based likelihood ratio test is 0.276. It is
noteworthy that one rejects the null hypothesis at the 10% nominal level when
the inference is based on the likelihood ratio test, but a different inference is
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reached when the modified (Bartlett-corrected or bootstrap-based) tests are
used. Recall from the previous section that the unmodified test is oversized
when the sample is small (here, n = 15), which leads us to mistrust the
inference delivered by the likelihood ratio test.

We proceed by removing the interaction effects (as suggested by the three
modified tests) from Model (9). We then estimate

yi = β0 + β1x1i + β2x2i + β3x3i + εi,

i = 1, . . . , 15. The point estimates are (standard errors in parentheses): β̂0 =
5.9011 (0.488), β̂1 = 0.7917 (1.777), β̂2 = 0.0098 (0.012), β̂3 = 0.0052 (0.001)
and α̂ = 0.1982 (0.036). The null hypothesis H0 : β3 = 0 is strongly rejected
by the four tests (unmodified and modified) at the usual significance levels.
All tests also suggest the individual and joint exclusions of x1 and x2 from the
regression model. We thus end up with the reduced model

yi = β0 + β3x3i + εi,

i = 1, . . . , 15. The point estimates are (standard errors in parentheses): β̂0 =
6.2453 (0.326), β̂3 = 0.0052 (0.001) and α̂ = 0.2039 (0.037).

We now return to Model (9) and test H0 : β1 = β2 = β4 = β5 = β6 = 0
(exclusion of all variables but x3). The null hypothesis is not rejected at the
10% nominal level by all tests, but we note that the corrected tests yield
considerably larger p-values. The test statistics are LR = 7.229, LRb = 5.610
and LR∗

b = 5.417, the corresponding p-values being 0.204, 0.346 and 0.367; the
p-value obtained from the bootstrap-based likelihood ratio test equals 0.484.

7 Conclusions

We addressed the issue of performing testing inference in Birnbaum–Saunders
regressions when the sample size is small. The likelihood ratio test can be
considerably oversized (liberal), as evidenced by our numerical results. We
derived modified test statistics whose null distributions are more accurately
approximated by the limiting null distribution than that of the likelihood
ratio test statistic. We have also considered a parametric bootstrap scheme to
obtain improved critical values and accurate p-values for the likelihood ratio
test. Our simulation results have convincingly shown that inference based on
the modified test statistics can be much more accurate than that based on the
unmodified statistic. The modified tests behave as reliably as a likelihood ratio
test that relies on bootstrap-based critical values, with no need of computer
intensive procedures. We recommend the use of the following statistics: LRb

and LR∗

b . The latter has the advantage of only taking on positive values, which
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is desirable. We have also presented an empirical application in which the use
of the finite sample adjustment proposed in this paper can lead to inferences
that are different from the ones reached based on first order asymptotics.
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Appendix

From (6), we have

ǫp+1 =

p+1∑

r,s,t,u=1

λrstu −
p+1∑

r,s,t,u,v,w=1

λrstuvw.

Note that
∑p+1

r,s,t,u=1 λrstu can be written as
∑p

r,s,t,u=1 λrstu plus terms in which at
least one subscript equals α. It follows from the orthogonality between α and β that
several terms equal zero. The non-zero terms are

∑p
r,s=1 λrsαα,

∑p
t,u=1 λααtu and

λαααα. Also,
∑p+1

r,s,t,u,v,w=1 λrstuvw is given by
∑p

r,s,t,u,v,w=1 λrstuvw plus the follow-
ing terms:

∑p
r,s,t,u=1 λrstuαα,

∑p
r,s,v,w=1 λrsααvw,

∑p
t,u,v,w=1 λααtuvw,

∑p
r,s=1 λrsαααα,∑p

t,u=1 λααtuαα,
∑p

v,w=1 λααααvw and λαααααα. Here, we present the derivations of∑p
r,s,t,u=1 λrstu and

∑p
v,w=1 λααααvw. The other terms can be obtained in a similar

fashion.

Note that
∑p

r,s,t,u=1 λrstu = (1/4)
∑p

r,s,t,u=1 κ
rsκtuκrstu. Inserting the cumulants

given in Section 3 into this expression we have

p∑

r,s,t,u=1

λrstu =
1

4

p∑

r,s,t,u=1

κrsκtu

{
ψ2(α)

n∑

i=1

xirxisxitxiu

}

=
ψ2(α)

4

n∑

i=1

p∑

r,s,t,u=1

xirκ
rsxisxitκ

tuxiu

=
ψ2(α)

4

n∑

i=1

{
p∑

r,s=1

xirκ
rsxis

}{
p∑

t,u=1

xitκ
tuxiu

}

=
ψ2(α)

4

n∑

i=1

(
x⊤

i K
ββxi

)(
x⊤

i K
ββxi

)
=
ψ2(α)

4

n∑

i=1

(
x⊤

i K
ββxi

)2
,

where x⊤

i = (xi1, xi2, . . . , xip) represents the ith row of X and Kββ = K(β)−1 =
4(X⊤X)−1/ψ1(α) represents the inverse of Fisher’s information matrix for β. There-
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fore,
p∑

r,s,t,u=1

λrstu =
4ψ2(α)

ψ1(α)2

n∑

i=1

{
x⊤

i (X
⊤X)−1xi

}2
.

Note that zii = x⊤

i (X
⊤X)−1xi is the ith diagonal element of Zd given in Section 3.

Hence,
p∑

r,s,t,u=1

λrstu =
4ψ2(α)

ψ1(α)2

n∑

i=1

z2ii =
4ψ2(α)

ψ1(α)2
tr(Z

(2)
d ).

From
∑p

v,w=1 λααααvw = (1/4)(καα)2κααα
∑p

v,w=1 κ
vwκαvw, we obtain

p∑

v,w=1

λααααvw =
α4

4n2
5n

2α3

p∑

v,w=1

κvw

{
2 + α2

α3

n∑

i=1

xivxiw

}

=
5(2 + α2)

8nα2

n∑

i=1

{
p∑

v,w=1

xivκ
vwxiw

}
= −5(2 + α2)

8nα2

n∑

i=1

(
x⊤

i K
ββxi

)

= − 5(2 + α2)

2nα2ψ1(α)

n∑

i=1

{
x⊤

i (X
⊤X)−1xi

}

= − 5(2 + α2)

2nα2ψ1(α)

n∑

i=1

zii = − 5(2 + α2)

2nα2ψ1(α)
tr(Zd) = − 5(2 + α2)p

2nα2ψ1(α)
.
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