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Abstra
t: We study the nonparametri
 
ovarian
e estimation of a stationary Gaussian �eld X
observed on a latti
e. To ta
kle this issue, a neighborhood sele
tion pro
edure has been re
ently

introdu
ed. This pro
edure amounts to sele
ting a neighborhood m̂ by a penalization method

and estimating the 
ovarian
e of X in the spa
e of Gaussian Markov random �elds (GMRFs)

with neighborhood m̂. Su
h a strategy is shown to satisfy ora
le inequalities as well as minimax

adaptive properties. However, it su�ers several drawba
ks whi
h make the method di�
ult to apply

in pra
ti
e. On the one hand, the penalty depends on some unknown quantities. On the other hand,

the pro
edure is only de�ned for toroidal latti
es. The present 
ontribution is threefold. A data-

driven algorithm is proposed for tuning the penalty fun
tion. Moreover, the pro
edure is extended

to non-toroidal latti
es. Finally, numeri
al study illustrate the performan
es of the method on

simulated examples. These simulations suggest that Gaussian Markov random �eld sele
tion is

often a good alternative to variogram estimation.

Key-words: Gaussian �eld, Gaussian Markov random �eld, Data-driven 
alibration, model

sele
tion, pseudolikelihood.
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Séle
tion automatique de voisinage d'un 
hamp gaussien

Résumé : Nous étudions l'estimation non-paramétrique d'un 
hamp gaussien stationnaire X
observé sur un réseau régulier. Dans 
e 
adre, nous avons pré
édemment introduit une pro
édure

de séle
tion de modèle [Ver09℄. Cette pro
édure revient à séle
tionner un voisinage m̂ grâ
e une

te
hnique de pénalisation puis à estimer la 
ovarian
e du 
hamp X dans l'espa
e des 
hamps de

Markov gaussiens de voisinage m̂. Une telle stratégie satisfait des inégalités ora
les et des propriétés

d'apdaptation au sens minimax. En pratique, elle présente néanmoins quelques in
onvénients.

D'une part, la pénalité dépend de quantités in
onnues. D'autre part, la pro
édure est uniquement

dé�nie pour des réseaux toriques. La 
ontribution de 
et arti
le est triple. Nous proposons un

algorithme automatique pour 
alibrer la pénalité. De plus, nous introduisons une extension à des

réseaux non-toriques. En�n, nous étudions les performan
es pratiques de la pro
édure sur des

données simulées. Ces simulations suggèrent que la séle
tion de 
hamps de Markov gaussiens est

souvent une bonne alternative à l'estimation de variogramme.

Mots-
lés : Champ gaussien, 
hamp de Markov gaussien, 
alibration automatique, séle
tion de

modèle, pseudo-vraisemblan
e.
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1 Introdu
tion

We study the estimation of the distribution of a stationary Gaussian �eld (X [i,j])(i,j)∈Λ indexed by

the nodes of a re
tangular latti
e Λ of size p1 × p2. This problem is often en
ountered in spatial

statisti
s or in image analysis. Classi
al statisti
al pro
edures allow to estimate and subtra
t the

trend. Hen
eforth, we assume that the �eld X is 
entered. Given a n-sample of the �eld X , the


hallenge is to infer the 
orrelation. In pra
ti
e, the number n of observations often equals one.

Di�erent methods have been proposed to ta
kle this problem.

A traditional approa
h amounts to 
omputing an empiri
al variogram and then �tting a suit-

able parametri
 variogram model su
h as the exponential or Matérn model (see [Cre93℄ Ch.2 or

[Ste99℄). The main disadvantage with this method is that the pra
titioner is required to sele
t a

good variogram model. When the �eld exhibits long range dependen
e, spe
i�
 pro
edures have

been introdu
ed (e.g. Frías et al. [FARMA08℄). In the sequel, we fo
us on small range dependen
es.

Most of the nonparametri
 (Hall et al. [HFH94℄) and semiparametri
 (Im et al. [ISZ07℄) methods

are based on the spe
tral representation of the �eld. To our knowledge, these pro
edures have

not yet been shown to a
hieve adaptiveness, i.e. their rate of 
onvergen
e does not adapt to the


omplexity of the 
orrelation fun
tions.

In this paper, we de�ne and study a nonparametri
 estimation pro
edure relying on Gaussian

Markov random �elds (GMRF). This pro
edure is 
omputationally fast and satis�es adaptive prop-

erties. Let us �x a node (0, 0) at the 
enter of Λ and let m be a subset of Λ \ {(0, 0)}. The �eld

X is a GMRF with respe
t to the neighborhood m if 
onditionally to (X [k,l])(k,l)∈m, the variable

X [0,0] is independent from all the remaining variables in Λ. We refer to Rue and Held [RH05℄

for a 
omprehensive introdu
tion on GMRFs. If we know that X is a GMRF with respe
t to the

neighborhood m, then we 
an estimate the 
ovarian
e by applying likelihood or pseudolikelihood

maximization. Su
h parametri
 pro
edures are well understood, at least from an asymptoti
 point

of view (see for instan
e [Guy95℄ Se
t.4). However, we do not know in pra
ti
e what is the �good�

neighborhood m. For instan
e, 
hoosing the empty neighborhood amounts to assuming that all the


omponents of X are independent. Alternatively, if we 
hoose the 
omplete neighborhood, whi
h


ontains all the nodes of Λ ex
ept (0, 0), then the number of parameters is huge and estimation

performan
es are poor.

We ta
kle in this paper the problem of neighborhood sele
tion from a pra
ti
al point of view.

The purpose is to de�ne a data-driven pro
edure that pi
ks a suitable neighborhood m̂ and then

estimates the distribution of X in the spa
e of GMRFs with neighborhood m̂. This pro
edure

neither requires any knowledge on the 
orrelation of X , nor assumes that the �eld X satis�es a

Markov 
ondition. Indeed, the pro
edure sele
ts a neighborhood m̂ that a
hieves a trade-o� between

an approximation error (distan
e between the true 
orrelation and GMRFs with neighborhood m)

and an estimation error (varian
e of the estimator). If X is a GMRF with respe
t to a small

neighborhood, then the pro
edure a
hieves a parametri
 rate of 
onvergen
e. Alternatively, if X is

not a GMRF then the rate of 
onvergen
e of the pro
edure depends on the rate of approximation of

the true 
ovarian
e by GMRFs with growing neighborhood. In short, the pro
edure is nonparametri


and adaptive.

Besag and Kooperberg [BK95℄, Rue and Tjelmeland [RT02℄, Song et al. [SFG08℄, and Cressie

and Verzelen [CV08℄ have 
onsidered the problem of approximating the 
orrelation of a Gaussian

�eld by a GMRF, but this approa
h requires the knowledge of the true distribution. Guyon and

Yao have stated in [GY99℄ ne
essary 
onditions and su�
ient 
onditions for a model sele
tion pro-

RR n° 6798



4 Verzelen


edure to 
hoose asymptoti
ally the true neighborhood of a GMRF with probability one. Our

point of view is slightly di�erent. We do not assume that the �eld X is a GMRF with respe
t to

a sparse neighborhood. We do not aim at estimating the true neighborhood, we rather want to

sele
t a neighborhood that allows to estimate well the distribution of X (i.e. to minimize a risk).

The distin
tion between these two points of view has been ni
ely des
ribed in the �rst 
hapter of

Ma
Quarrie and Tsai [MT98℄.

In [Ver09℄, we have introdu
ed a neighborhood sele
tion pro
edure based on pseudolikelihood

maximization and penalization. Under mild assumptions, the pro
edure a
hieves optimal neigh-

borhood sele
tion. More pre
isely, it satis�es an ora
le inequality and it is minimax adaptive to

the sparsity of the neighborhood. To our knowledge, these are the �rst results of neighborhood

sele
tion in this spatial setting.

If the pro
edure exhibits appealing theoreti
al properties, it su�ers several drawba
ks from a

pra
ti
al perspe
tive. First, the method 
onstrains the largest eigenvalue of the estimated 
ovari-

an
e to be smaller than some parameter ρ. In pra
ti
e, it is di�
ult to 
hoose ρ sin
e we do not

know the largest eigenvalue of the true 
ovarian
e. Se
ond, the penalty fun
tion pen(.) introdu
ed
in Se
t.3 of the previous paper depends on the largest eigenvalue of the 
ovarian
e of the �eld X .

Hen
e, we need a pra
ti
al method for tuning the penalty. Third, the pro
edure has only been

de�ned when the latti
e Λ is a square torus.

Our 
ontribution is twofold. On the one hand, we propose pra
ti
al versions of our neighborhood

sele
tion pro
edure that over
ome the previously-mentioned drawba
ks:

� The pro
edure is extended to re
tangular latti
es.

� We do not 
onstrain anymore the largest eigenvalue of the 
ovarian
e.

� We provide an algorithm based on the so-
alled slope heuristi
s of Birgé and Massart [BM07℄

for tuning the penalty. Theoreti
al justi�
ations for its use are also given.

� Finally, we extend the pro
edure to the 
ase where the latti
e Λ is not a torus.

On the other hand, we illustrate the performan
es of this new pro
edure on numeri
al examples.

When Λ is a torus, we 
ompare it with likelihood-based methods like AIC [Aka73℄ and BIC [S
h78℄,

even if they were not studied in this setting. When Λ is not toroidal, likelihood methods be
ome in-

tra
table. Nevertheless, our pro
edure still applies and often outperforms variogram-basedmethods.

The paper is organized as follows. In Se
tion 2, we de�ne a new version of the estimation

pro
edure of [Ver09℄ that does not require anymore the 
hoi
e of the 
onstant ρ. We also dis
uss

the 
omputational 
omplexity of the pro
edure. In Se
tion 3, we 
onne
t this new pro
edure to

the original method and we re
all some theoreti
al results. We provide an algorithm for tuning the

penalty in pra
ti
e in Se
tion 4. In Se
tion 5, we extend our pro
edure for handling non-toroidal

latti
es. The simulation studies are provided in Se
tion 6. Se
tion 7 summarizes our �ndings, while

the proofs are postponed to Se
tion 8.

Let us introdu
e some notations. In the sequel, Xv
refers to the ve
torialized version of X with

the 
onvention X [i,j] = Xv
[(i−1)×p2+j] for any 1 ≤ i ≤ p1 and 1 ≤ j ≤ p2. Using this new notation

amounts to �forgetting� the spatial stru
ture of X and allows to get into a more 
lassi
al statisti
al

framework. We note X1,X2, . . . ,Xn the n observations of the �eld X . The matrix Σ stands for

INRIA
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the 
ovarian
e matrix of Xv
. For any matrix A, ϕ

max

(A) and ϕ
min

(A) respe
tively refer the largest
eigenvalue and the smallest eigenvalues of A. Finally, Ir denotes the identity matrix of size r.

2 Neighborhood sele
tion on a torus

In this se
tion, we introdu
e the main 
on
epts and notations for GMRFs on a torus. Afterwards,

we des
ribe our pro
edure based on pseudolikelihood maximization. Finally, we dis
uss some 
om-

putational aspe
ts. Throughout this se
tion and the two following se
tions, the latti
e Λ is assumed

to be toroidal. Consequently, the 
omponents of the matri
es X are taken modulo p1 and p2.

2.1 GMRFs on the torus

The notion of 
onditional distribution is underlying the de�nition of GMRFs. By standard Gaussian

derivations (see for instan
e [Lau96℄ App.C), there exists a unique p1 × p2 matrix θ su
h that

θ[0,0] = 0 and

X [0,0] =
∑

(i,j)∈Λ\{(0,0)}
θ[i,j]X [i,j] + ǫ[0,0] , (1)

where the random variable ǫ[0,0] follows a zero-mean normal distribution and is independent from

the 
ovariates (X [i,j])(i,j)∈Λ\{(0,0)}. The linear 
ombination
∑

(i,j)∈Λ\{(0,0)} θ[i,j]X [i,j] is the kriging

predi
tor of X [0,0] given the remaining variables. In the sequel, we note σ2
the varian
e of ǫ[0,0] and

we 
all it the 
onditional varian
e of X [0,0].

Equation (1) des
ribes the 
onditional distribution of X [0,0] given the remaining variables. By

stationarity of the �eld X , it holds that that θ[i,j] = θ[−i,−j]. The 
ovarian
e matrix Σ is 
losely

related to θ through the following equation:

Σ = σ2 [Ip1p2
− C(θ)]

−1
, (2)

where the p1p2 × p1p2 matrix C(θ) is de�ned by C(θ)[(i1−1)p2+j1,(i2−1)p2+j2] := θ[i2−i1,j2−j1] for any

1 ≤ i1, i2 ≤ p1 and 1 ≤ j1, j2 ≤ p2. The matrix (Ip1p2
− C(θ)) is 
alled the partial 
orrelation

matrix of the �eld X . The so-de�ned matrix C(θ) is symmetri
 blo
k 
ir
ulant with p2× p2 blo
ks.
We refer to [RH05℄ Se
t.2.6 or the book of Gray [Gra06℄ for de�nitions and main properties on


ir
ulant and blo
k 
ir
ulant matri
es.

Identities (1) and (2) have two main 
onsequen
es. First, estimating the p1 × p2 matrix θ
amounts to estimating the 
ovarian
e matrix Σ up to a multipli
ative 
onstant. We shall therefore

fo
us on θ. Se
ond, by Equation (1), the �eld X is a GMRF with respe
t to the neighborhood

de�ned by the support θ. The adaptive estimation issue of the distribution of X by neighborhood

sele
tion therefore reformulates as an adaptive estimation problem of the matrix θ via support

sele
tion.

Let us now pre
ise the set of possible values for θ. The set Θ denotes the ve
tor spa
e of the

p1×p2 matri
es that satisfy θ[0,0] = 0 and θ[i,j] = θ[−i,−j], for any (i, j) ∈ Λ. Hen
e, a matrix θ ∈ Θ

orresponds to the distribution of a stationary Gaussian �eld if and only if the p1p2 × p1p2 matrix

(Ip1p2
− C(θ)) is positive de�nite. This is why we de�ne the 
onvex subset Θ+

of Θ by

Θ+ := {θ ∈ Θ s.t. [Ip1p2
− C(θ)] is positive de�nite} . (3)

RR n° 6798



6 Verzelen

The set of 
ovarian
e matri
es of stationary Gaussian �elds on Λ with unit 
onditional varian
e is

in one to one 
orresponden
e with the set Θ+
. We sometimes assume that the �eld X is isotropi
.

The 
orresponding sets Θiso

and Θ+,iso
for isotropi
 �elds are introdu
ed as:

Θiso := {θ ∈ Θ , θ[i,j] = θ[−i,j] = θ[j,i] , ∀(i, j) ∈ Λ} and Θ+,iso := Θ+ ∩Θiso .

2.2 Des
ription of the pro
edure

Let |(i, j)|t refer to the toroidal norm de�ned by

|(i, j)|2t := [i ∧ (p1 − i)]2 + [j ∧ (p2 − j)]2 ,

for any node (i, j) ∈ Λ.
In the sequel, a model m stands for a subset of Λ \ {(0, 0)}. It is also 
alled a neighborhood.

For the sake of simpli
ity, we shall only use the 
olle
tion of models M1 de�ned below.

De�nition 2.1. A subset m ⊂ Λ \ {(0, 0)} belongs to M1 if and only if there exists a number

rm > 1 su
h that

m = {(i, j) ∈ Λ \ {(0, 0)} s.t. |(i, j)|t ≤ rm} . (4)

In other words, the neighborhoods m in M1 are sets of nodes lying in a dis
 
entered at (0, 0).
Obviously, M1 is totally ordered with respe
t to the in
lusion. Consequently, we order the models

m0 ⊂ m1 ⊂ . . . ⊂ mi . . .. For instan
e, m0 
orresponds to the empty neighborhood, m1 stands for

the neighborhood of size 4, and m2 refers to the neighborhood with 8 neighbours. See Figure 1 for

an illustration.

a) b) 
)

Figure 1: (a) Model m1 with �rst order neighbors. (b) Model m2 with se
ond order neighbors. (
)

Model m3 with third order neighbors.

For any model m ∈ M1, the ve
tor spa
e Θm is the subset of matri
es Θ whose support is

in
luded in m. Similarly Θiso

m is the subset of Θiso

whose support is in
luded in m. The dimensions

of Θm and Θiso

m are respe
tively noted dm and disom . Sin
e we aim at estimating the positive matrix

(Ip1p2
− C(θ)), we also 
onsider the 
onvex subsets of Θ+

m and Θ+,iso
m whi
h 
orrespond to non-

negative pre
ision matri
es.

Θ+
m := Θm ∩Θ+

and Θ+,iso
m := Θiso

m ∩Θ+,iso . (5)

INRIA
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For any θ′ ∈ Θ+
, the 
onditional least-squares (CLS) 
riterion γn,p1,p2

(θ′) [Guy87℄ is de�ned

by

γn,p1,p2
(θ′) :=

1

np1p2

n∑

i=1

∑

(j1,j2)∈Λ

(
Xi[j1,j2] −

∑

(l1,l2)∈Λ\{(0,0)}
θ′[l1,l2]Xi[j1+l1,j2+l2]

)2

. (6)

The fun
tion γn,p1,p2
(.) is a least-squares 
riterion that allows us to perform the simultaneous lin-

ear regression of all Xi[j1,j2] with respe
t to the 
ovariates (Xi[l1,l2])(l1,l2) 6=(k1,k2). This 
riterion is


losely 
onne
ted with the pseudolikelihood introdu
ed by Besag [Bes75℄. The asso
iated estimator

is slightly less e�
ient estimator than maximum likelihood estimation ([Guy95℄ Se
t.4.3). Never-

theless, its 
omputation is mu
h faster sin
e it does not involve determinants as for the likelihood.

See [Ver09℄ Se
t. 7.1, for a more 
omplete 
omparison between CLS and maximum likelihood esti-

mators in this setting. For any model m ∈ M1, the estimators are de�ned as the unique minimizers

of γn,p1,p2
(.) on the sets Θ+

m and Θ+,iso
m .

θ̂m := arg min
θ′∈Θ+

m

γn,p1,p2
(θ′) and θ̂isom := arg min

θ′∈Θ+,iso
m

γn,p1,p2
(θ′) , (7)

where A stands for the 
losure of A. We further dis
uss the 
onne
tion between θ̂m and θ̂m,ρ1
in

Se
tion 3.

Given a sub
olle
tion of models M of M1 and a positive fun
tion pen : M → R
+

alled a

penalty, we sele
t a model as follows:

m̂ := arg min
m∈M

[
γn,p1,p2

(
θ̂m

)
+ pen(m)

]
and m̂iso := arg min

m∈M

[
γn,p1,p2

(
θ̂isom

)
+ pen(m)

]
. (8)

For short, we write θ̃ and θ̃iso for θ̂bm and θ̂isobmiso

. We dis
uss the 
hoi
e of the penalty fun
tion in

Se
tion 4.

2.3 Computational aspe
ts

Sin
e the latti
e Λ is a torus, the 
omputation of the estimators θ̂m is performed e�
iently thanks

to the following lemma.

Lemma 2.1. For any p× p matrix A and for any 1 ≤ i ≤ p1 and 1 ≤ j ≤ p2, let λ[i,j](A) be the

(i, j)-th term of two-dimensional dis
rete Fourier transform of the matrix A, i.e.

λ[i,j](A) :=

p1∑

k=1

p2∑

l=1

A[i,j] exp

[
2ιπ

(
ki

p1
+

jl

p2

)]
, (9)

where ι2 = −1. The 
onditional least-squares 
riterion γn,p1,p2
(θ′) simpli�es as

γn,p1,p2
(θ′) =

1

np21p
2
2

{ p1∑

i=1

p2∑

j=1

[1− λ[i,j](θ)]
2

[ n∑

k=1

λ[i,j] (Xk)λ[i,j] (Xk)

]}
.

A proof is given in Se
tion 8. Optimization of γn,p1,p2
(.) over the set Θ+

m is performed fastly

using the fast Fourier transform (FFT). Nevertheless, this is not the privilege of CLS estimators,

sin
e maximum likelihood estimators are also 
omputed fastly by FFT when Λ is a torus.

In Se
tion 5, we mention that the 
omputation of the CLS estimators θ̂m remains quite easy

when Λ is not a torus whereas likelihood maximization be
omes intra
table.

RR n° 6798
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3 Theoreti
al results

Throughout this se
tion, Λ is assumed to be a toroidal square latti
e and we note p its size. Let us
mention that the restri
tion to square latti
es made in [Ver09℄ allows to simplify the proofs but is

not ne
essary so that the theoreti
al results hold. In this se
tion, we �rst re
all the original pro
e-

dure and we emphasize the di�eren
es with the one de�ned in the previous se
tion. We also mention

a result of optimality. This will provide some insights for 
alibrating the penalty pen(.) in Se
tion 4.

Given ρ > 2 be a positive 
onstant, we de�ne the subsets Θ+
m,ρ and Θ+,iso

m,ρ by

Θ+
m,ρ :=

{
θ ∈ Θ+

m , ϕ
max

[Ip1p2
− C(θ)] < ρ

}
(10)

Θ+,iso
m,ρ :=

{
θ ∈ Θ+,iso

m , ϕ
max

[Ip1p2
− C(θ)] < ρ

}
.

Then, the 
orresponding estimators θ̂m,ρ and θ̂isom,ρ are de�ned as in (7), ex
ept that we now 
onsider

Θ+
m,ρ instead of Θ+

m. Let us mention that the estimator θ̂m 
orresponds to the estimator θ̂m,ρ1

de�ned in [Ver09℄ Se
t.2.2 with ρ1 = +∞.

θ̂m,ρ := arg min
θ′∈Θ+

m,ρ

γn,p,p(θ
′) and θ̂isom,ρ := arg min

θ′∈Θ+,iso
m,ρ

γn,p,p(θ
′) .

Given a sub
olle
tion M of M1 and a penalty fun
tion pen(.), we sele
t the models m̂ρ and m̂iso

ρ

as in (8) ex
ept that we use θ̂m,ρ and θ̂isom,ρ instead of θ̂m and θ̂isom . We also note θ̃ρ and θ̃isoρ for θ̂bmρ,ρ

and θ̂isobmiso

ρ ,ρ.

The only di�eren
e between the estimators θ̃ and θ̃ρ is that the largest eigenvalue of the pre
i-

sion matrix (Ip2 − C(θ̃)) is restri
ted to be smaller than ρ. We make this restri
tion in [Ver09℄ to

fa
ilitate the analysis.

In order to assess the performan
e of the penalized estimator θ̃ρ and θ̃isoρ , we use the predi
tion

loss fun
tion l(θ1, θ2) de�ned by

l(θ1, θ2) :=
1

p2
tr [(C(θ1)− C(θ2))Σ(C(θ1)− C(θ2))] . (11)

As explained in [Ver09℄ Se
t.1.3, the loss l(θ1, θ2) expresses in terms of 
onditional expe
tation

l(θ1, θ2) = Eθ

{[
Eθ1

(
X [0,0]|XΛ\{0,0}

)
− Eθ2

(
X [0,0]|XΛ\{0,0}

)]2}
, (12)

where Eθ(.) stands for the expe
tation with respe
t to the distribution N (0, σ2(Ip1p2
− C(θ))−1).

Hen
e, l(θ̂, θ) 
orresponds the mean squared predi
tion loss of X [0,0] given the other 
ovariates. A

similar loss fun
tion is also used by Song et al. [SFG08℄, when approximation Gaussian �elds by

GMRFs. For any neighborhood m ∈ M, we de�ne the proje
tion θm,ρ as the 
losest element of θ
in Θ+

m,ρ with respe
t to the loss l(., .).

θm,ρ := arg min
θ′∈Θ+

m,ρ

l(θ′, θ) and θisom,ρ := arg min
θ′∈Θ+,iso

m,ρ

l(θ′, θ) .

INRIA
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We 
all the loss l(θm,ρ, θ) the bias of the set Θ
+
m,ρ. This implies that θ̂m,ρ 
annot perform better

than this loss.

Theorem 3.1. Let ρ > 2, K be a positive number larger than an universal 
onstant K0 and M be

a sub
olle
tion of M1. If for every model m ∈ M, it holds that

pen(m) ≥ Kρ2ϕ
max

(Σ)
dm + 1

np2
, (13)

then for any θ ∈ Θ+
, the estimator θ̃ρ satis�es

Eθ[l(θ̃ρ, θ)] ≤ L(K) inf
m∈M

[l(θm,ρ, θ) + pen(m)] , (14)

where L(K) only depends on K. A similar bound holds if one repla
es θ̃ρ by θ̃isoρ , Θ+
by Θ+,iso

,

θm,ρ by θisom,ρ, and dm by disom .

Although we have assumed the 
orrelation is non-singular, the theorem still holds if the spatial

�eld is 
onstant. The nonasymptoti
 bound is provided in a slightly di�erent version in [Ver09℄. It

states that θ̃ρ a
hieves a trade-o� between the bias and a varian
e term if the penalty is suitable


hosen. In Theorem 3.1, we use the penalty Kρ2ϕ
max

(Σ)(dm + 1)/(np2) instead of the penalty

Kρ2ϕ
max

(Σ)dm/(np2) stated in the previous paper. This makes the bound (14) simpler. Observe

that these two penalties yield the same model sele
tion sin
e they only di�er by a 
onstant. Let us

further dis
uss two points.

� In this paper, we use the estimator θ̃ rather than θ̃ρ. Given a 
olle
tion of models M, there

exists some �nite ρ > 2, su
h that these two estimators 
oin
ide. Take for instan
e ρ =
supm∈M supθ∈Θ+

m
ϕmax(Ip1p2

−C(θ)). Admittedly, the so-obtained ρ may be large, espe
ially

if there are large models in M. The upper bound (14) on the risk therefore be
omes worse.

Nevertheless, we do not think that the dependen
y of (14) on ρ is sharp. Indeed , we illustrate

in Se
tion 6 that the risk of θ̃ exhibits good statisti
al performan
es.

� Theorem 3.1 provides a suitable form of the penalty for obtaining ora
le inequalities. However,

this penalty depends on ϕ
max

(Σ) whi
h is not known in pra
ti
e. This is why we develop a

data-driven penalization method in the next se
tion.

4 Slope Heuristi
s

Let us introdu
e a data-driven method for 
alibrating the penalty fun
tion pen(.). It is based on

the so-
alled slope heuristi
 introdu
ed by Birgé and Massart [BM07℄ in the �xed design Gaussian

regression framework (see also [Mas07℄ Se
t.8.5.2). This heuristi
 relies on the notion of minimal

penalty. In short, assume that one knows that a good penalty has a form pen(m) = NF (dm)
(where dm is the dimension of the model and N is a tuning parameter). Let us de�ne m̂(N) the

sele
ted model as a fun
tion of N . There exists a quantity N̂
min

satisfying the following property: If

N > N̂
min

, the dimension of the sele
ted model dbm(N) is reasonable and if N < N̂
min

, the dimension

of the sele
ted model is huge. The fun
tion pen
min

(.) := N̂
min

F (.) is 
alled the minimal penalty.

In fa
t, a dimension jump o

urs for dbm(N) at the point N̂min

. Thus, the quantity N̂
min

is 
learly

RR n° 6798



10 Verzelen

observable for real data sets. In their Gaussian framework, Birgé and Massart have shown that

twi
e the minimal penalty is nearly the optimal penalty. In other words, the model m̂ := m̂(2N̂
min

)
yields an e�
ient estimator.

The slope heuristi
 method has been su

essfully applied for multiple 
hange-point dete
tion

[Leb05℄. Appli
ations are also being developed in other frameworks su
h as mixture models [MM08℄,


lustering [BCM08℄, estimation of oil reserves [Lep02℄, and genomi
 [Vil07℄.

If this method was originally introdu
ed for �xed design Gaussian regression, Arlot and Massart

[AM09℄ have proved more re
ently that a similar phenomenon o

urs in the heteros
edasti
 random-

design 
ase. In the GMRF setting, we are only able to partially justify this heuristi
. For the sake

of simpli
ity, let us assume in the next proposition that the latti
e Λ is a square of size p.

Proposition 4.1. Consider ρ > 2, and η < 1 and suppose that p is larger than some numeri
al


onstant p0. Let m
′
be the largest model in M1 that satis�es dm′ ≤

√
np2. For any model m ∈ M1,

we assume that

pen(m′)− pen(m) ≤ K1(1− η)σ2
{
ϕ
min

(
Ip2 − C(θ)

)
∧
[
ρ− ϕ

max

(
Ip2 − C(θ)

)]} dm′ − dm
np2

, (15)

where K1 is a universal (
onstant de�ned in the proof). Then, for any θ ∈ Θ+
m′,ρ, it holds that

P

{
dbmρ

> L
[√

np2 ∧ p2
]}

≥ 1

2
,

where L only depends on η, ρ, ϕ
min

(
Ip2 − C(θ)

)
, and ϕ

max

(
Ip2 − C(θ)

)
.

The proof is postponed to Se
tion 8. Let us de�ne

N1 := K1σ
2 {ϕ

min

(Ip1p2
− C(θ)) ∧ [ρ− ϕ

max

(Ip1p2
− C(θ))]} ,

and let us 
onsider penalty fun
tions pen(m) = N dm

np1p2
for some N > 0. The proposition states

that if N is smaller than N1, then the pro
edure sele
ts a model of huge dimension with large

probability, i.e dbm(N) is huge. Alternatively, let us de�ne

N2 := K0
σ2ρ2

ϕ
min

(Ip1p2
− C(θ))

dm
np1p2

,

where the numeri
al 
onstantK0 is introdu
ed in Theorem 3.1 in [Ver09℄. By Theorem 3.1, 
hoosing

N > N2 ensures that the risk of θ̃ρ a
hieves a type-ora
le inequality and the dimension dbmρ(N) is

reasonable. The quantities N1 and N2 are di�erent espe
ially when the eigenvalues of (Ip1p2
−C(θ))

are far from 1. Sin
e we do not know the behavior of the sele
ted model m̂ρ(N) when N is between

N1 and N2, we are not able to really prove a dimension jump as the �xed design Gaussian regression

framework. Besides, we have mentioned in the pre
eding se
tion that we are more interested in the

estimator θ̃ than θ̃ρ. Nevertheless, we 
learly observe in simulation studies a dimension jump for

some N between N1 and N2 even if we use the estimators θ̂m instead of θ̂m,ρ. This suggests that

the slope heuristi
 is still valid in the GMRF framework.

Algorithm 4.1. (Data-driven penalization with slope heuristi
). Let M be a sub
olle
tion of M1.

1. Compute the sele
ted model m̂(N) as a fun
tion of N > 0

m̂(N) ∈ arg min
m∈M

{
γn,p1,p2

(
θ̂m

)
+N

dm
np1p2

}
.

INRIA
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2. Find N̂
min

> 0 su
h that the jump dbm
“
[ bN

min

]
−

” − dbm
“
[ bN

min

]
+

”
is maximal.

3. Sele
t the model m̂ = m̂(2N̂
min

).

The di�eren
e f(x−) − f(x+) measures the dis
ontinuity of a fun
tion f at the point x. Step

2 may need to introdu
e huge models in the 
olle
tion M all the other ones being 
onsidered as

�reasonably small�. As the fun
tion m̂(.) is pie
ewise linear with at most Card(M) jumps, so that

steps 1-2 have a 
omplexity O (Card(M))
2
. We refer to App.A.1 of [AM09℄ for more details on the


omputational aspe
ts of steps 1 and 2. Let us mention that there are other ways of estimating

N̂
min

than 
hoosing the largest jump as des
ribed in [AM09℄ App.A.2. Finally, the methodology

des
ribed in this se
tion straightforwardly extends to the 
ase of isotropi
 GMRFs estimation by

repla
ing m̂(N) by m̂iso(N) and dm by disom .

In 
on
lusion, the neighborhood sele
tion pro
edure des
ribed in Algorithm 4.1 is 
ompletely

data-driven and does not require any prior knowledge on the matrix Σ. Moreover, its 
omputational

burden remains small. We illustrate its e�
ien
y in Se
tion 6.

5 Extension to non-toroidal latti
es

It is often arti�
ial to 
onsider the �eld X as stationary on a torus. However, we needed this

hypothesis for deriving nonasymptoti
 properties of the estimator θ̃ in [Ver09℄. In many appli
ations,

it is more realisti
 to assume that we observe a small window of a Gaussian �eld de�ned on the

plane Z
2
. If we are unable to prove nonasymptoti
 risk bounds in this new setting. Nevertheless,

Lakshman and Derin have shown in [LD93℄ that there is no phase transition within the valid

parameter spa
e for GMRFs de�ned on the plane Z
2
. Let us brie�y explain what this means:


onsider a GMRF de�ned on a square latti
e of size p, but only observed on a square latti
e of

size p′. The absen
e of phase transition implies the distribution of this �eld observed on this �xed

window of size p′ does not asymptoti
ally depend on the bound 
onditions when p goes to in�nity.

Consequently, it is reasonable to think that our estimation pro
edure still performs well to the pri
e

of slight modi�
ations. In the sequel, we assume that the �eld X is de�ned on Z
2
, but the data X

still 
orrespond to n independent observations of the �eld X on the window Λ of size p1 × p2. The

onditional distribution of X [0,0] given the remaining 
ovariates now de
omposes as

X [0,0] =
∑

(i,j)∈Z2\{(0,0)}
θ[i,j]X [i,j] + ǫ[0,0] , (16)

where θ[.,.] is an �in�nite� matrix de�ned on Z
2
and where ǫ[0,0] is a 
entered Gaussian variable of

varian
e σ2
independent of (X [i,j])(i,j)∈Λ\{(0,0)}. The distribution of the �eld X is uniquely de�ned

by the fun
tion θ and positive number σ2
. The set Θ+,∞

of valid parameter for θ is now de�ned

using the spe
tral density fun
tion. We refer to Rue and Held [RH05℄ Se
t.2.7 for more details.

De�nition 5.1. A fun
tion θ : Z2 → R belongs to the set Θ+,∞
if it satis�es the three following


onditions:

1. θ[0,0] = 0.

2. For any (i, j) ∈ Z
2
, θ[i,j] = θ[−i,−j].

RR n° 6798
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3. For any (ω1, ω2) ∈ [0, 2π)2, 1−∑
(i,j)∈Z2 θ[i,j] cos (iω1 + jω2) > 0.

Similarly, we de�ne the set Θ+,∞,iso
for the isotropi
 GMRFs on the latti
es. As done in Se
tion

2 for toroidal latti
es, we now introdu
e the parametri
 parameter sets. For any modelm ∈ M1, the

set Θ+,∞
m refers to the subset of matri
es θ in Θ+,∞

whose support is in
luded in m. Analogously,

we de�ne the parameter set Θ+,∞,iso
m 
orresponding to isotropi
 GMRFs.

We 
annot dire
tly extend the CLS empiri
al 
ontrast γn,p1,p2
(.) de�ned in (6) in this new

setting be
ause we have to take the edge e�e
t into a

ount. Indeed, if we want to 
ompute

the 
onditional regression of Xi[j1,j2], we have to observe all its neighbors with respe
t to m, i.e.

{Xi[j1+l1,j2+l2], (l1, l2) ∈ m}. In this regard, we de�ne the sublatti
e Λm for any model m ∈ M1.

Λm := {(i1, i2) ∈ Λ , (m+ (i1, i2)) ⊂ Λ} ,

where (m + (i, j)) denotes the set m of nodes translated by (i, j). For instan
e, if we 
onsider the
model m1 with four nearest neighbors, the edge e�e
t size is one and Λm 
ontains all the nodes

that do not lie on the border. The model m3 with 12 nearest neighbors yields an edge e�e
t of

size 2 and Λm 
ontains all the nodes in Λ, ex
ept those whi
h are at a (eu
lidean) distan
e stri
tly

smaller than 2 from the border.

For any model m ∈ M1, any θ′ ∈ Θ+,∞
m , and any sublatti
e Λ′ ⊂ Λm, we de�ne γ

Λ′

n,p1,p2
(.) as an

analogous of γn,p1,p2
(.) ex
ept that it only relies on the 
onditional regression of the nodes in Λ′

.

γΛ′

n,p1,p2
(θ′) :=

1

nCard(Λ′)

n∑

i=1

∑

(j1,j2)∈Λ′

(
Xi[j1,j2] −

∑

(l1,l2)∈m

θ′[l1,l2]Xi[j1+l1,j2+l2]

)2

.

Then, the CLS estimators θ̂Λ
′

m and θ̂Λ
′,iso

m are de�ned by

θ̂Λ
′

m ∈ arg min
θ′∈Θ+,∞

m

γΛ′

n,p1,p2
(θ′) and θ̂Λ

′,iso
m ∈ arg min

θ′∈Θ+,∞,iso
m

γΛ′

n,p1,p2
(θ′) .

Contrary to θ̂m, the estimator θ̂Λm
m is not ne
essarily unique espe
ially if the size of Λm is smaller

than dm. Let us mention that it is quite 
lassi
al in the literature to remove nodes to take edge

e�e
ts or missing data into a

ount (see e.g. [Guy95℄ Se
t.4.3). We 
annot use anymore fast

Fourier transform for 
omputing the parametri
 estimator. Nevertheless, the estimators θ̂Λ
′

m are

still 
omputationally amenable, sin
e they minimizes a quadrati
 fun
tion on the 
losed 
onvex set

Θ+,∞
m .

Suppose we are given a sub
olle
tion M of M1. We note ΛM the smallest sublatti
e among

the 
olle
tion of latti
es Λm with m ∈ M. In order to sele
t the neighborhood m̂, we 
ompute

the estimators θ̂ΛM

m and minimize the 
riteria γΛM

n,p1,p2
(θ̂ΛM

m ) penalized by a quantity of the order

dm/(nCard(ΛM)). We 
ompute the quantities γΛM

n,p1,p2
(θ̂ΛM

m ) instead of γΛm
n,p1,p2

(θ̂Λm
m ) sin
e we want

to 
ompare the adequation of the models using the same data set.

We now des
ribe a data-driven model sele
tion pro
edure for 
hoosing the neighborhood. It is

based on the slope heuristi
 developed in the previous se
tion.

Algorithm 5.1. (Data-driven penalization for non-toroidal latti
e).

1. Compute the sele
ted model m̂(N) as a fun
tion of N > 0

m̂(N) ∈ arg min
m∈M

{
γΛM

n,p1,p2
(θ̂ΛM

m ) +N
dm

nCard(ΛM)

}
.
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2. Find N̂
min

> 0 su
h that the jump dbm
“
[ bN

min

]
−

” − dbm
“
[ bN

min

]
+

”
is maximal.

3. Sele
t the model m̂ = m̂(2N̂
min

).

4. Compute the estimator θ̂Λcm
bm .

This pro
edure straightforwardly extends to the 
ase of isotropi
 GMRFs estimation by repla
ing

m̂(N) by m̂iso(N) and dm by disom . For short, we write θ̃ (resp. θ̃iso) for θ̂Λcm
bm (resp. θ̂Λcm,iso

bm ). As for

Algorithm 4.1, it is advised to introdu
e huge models in the 
olle
tion M in order to better dete
t

the dimension jump. However, when the dimension of the models in
reases the size of Λm de
reases

and the estimator θ̂Λm
m may be
ome unreliable. The method therefore requires a reasonable number

of data. In pra
ti
e, Λ should not 
ontain less than 100 nodes.

6 Simulation study

In the �rst simulation experiment, we 
ompare the e�
ien
y of our pro
edure with penalized maxi-

mum likelihood methods when the �eld is a torus. In the se
ond and third studies, we 
onsider the

estimation of a Gaussian �eld observed on a re
tangle. The 
al
ulations are made with R [R D08℄.

Throughout these simulations, we only 
onsider isotropi
 estimators.

6.1 Isotropi
 GMRF on a torus

First, we 
onsider X an isotropi
 GMRF on the torus Λ of size p = p1 = p2 = 20. There are

therefore 400 points in the latti
e. The number of observations n equals one and the 
onditional

varian
e σ2
is one. We introdu
e a radius r :=

√
17. Then, for any number φ > 0, we de�ne the

p× p matrix θφ as:





θφ[0,0] := 0 ,
θφ[i,j] := φ if |(i, j)|t ≤ r and (i, j) 6= (0, 0) ,
θφ[i,j] := 0 if |(i, j)|t > r .

In pra
ti
e, we set φ to 0, 0.0125, 0.015, and 0.0175. Observe that these 
hoi
es 
onstrain ‖θφ‖1 < 1.
The matrix θφ therefore belongs to the set Θ+,iso

m10
of dimension 10 introdu
ed in De�nition 2.1.

First simulation experiment. In Se
tion 3, we have advo
ated the use of the estimator θ̃
instead of θ̃ρ, although theoreti
al results are only available for θ̃ρ with ρ < ∞. We re
all that

θ̃ = θ̃ρ with ρ = ∞. We 
he
k in this simulation study that the performan
es of θ̃ and θ̃ρ with

di�erent values of ρ are similar.

We 
onsider the 
olle
tion of neighborhoodsM := {m0,m1, . . . ,m20} whose maximal dimension

disom20
is 21. The estimator θ̃iso is built using the CLS model sele
tion pro
edure introdu
ed in

Algorithm 4.1. The estimators θ̃isoρ are 
omputed similarly, ex
ept that they are based on the

parametri
 estimators θ̂isom,ρ (Se
t. 3) instead of θ̂isom .

The Gaussian �eld X with φ = 0.015 is simulated by using the fast Fourier transform. The

quality of the estimations is assessed by the predi
tion loss fun
tion l(., .) de�ned in (11). The

experiments are repeated 1000 times. For ρ = 2, 4, 8, we evaluate the risks Eθφ [l(θ̃iso, θφ)] and

Eθφ [l(θ̃isoρ , θφ)] as well as the 
orresponding empiri
al 95% 
on�den
e intervals by a Monte-Carlo
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method. We also estimate the risks of θ̂isom and θ̂isom,ρ for ea
h model m ∈ M. It then allows to eval-

uate the ora
le risks Eθφ [l(θ̂isom∗,ρ, θ
φ)] and the risk ratios Eθφ [l(θ̃isoρ , θφ)]/Eθφ [l(θ̂isom∗,ρ, θ

φ)]. The risk

ratio measures how well the sele
ted model m̂iso

performs in 
omparison to the �best� model m∗
.

Moreover, the risk ratio roughly illustrates the ora
le type inequality presented in Theorem 3.1. In-

deed, the in�mum infm∈M[l(θm,ρ, θ)+pen(m)] in (14) is a good measure of the risk Eθφ [l(θ̂isom∗,ρ, θ
φ)]

as explained in [Ver09℄ Se
t.4. The results are given in Table 1. They 
orroborate that the esti-

mators θ̃iso and θ̃isoρ perform similarly. Moreover, the risk ratios Eθφ [l(θ̃isoρ , θφ)]/Eθφ [l(θ̂isom∗,ρ, θ
φ)]


orrespond to the ratios

ρ 2 4 8 ∞
Eθφ [l(θ̃isoρ , θφ)]× 102 4.1± 0.1 4.2± 0.2 4.2± 0.1 4.2± 0.3

Eθφ [l(θ̃isoρ , θφ)]/Eθφ [l(θ̂isom∗,ρ, θ
φ)] 1.3± 0.1 1.3± 0.1 1.3± 0.1 1.3± 0.2

Table 1: First simulation study. Estimates and 95% 
on�den
e intervals of the risks Eθφ [l(θ̃iso, θφ)],

Eθφ [l(θ̃isoρ , θφ)], and of the ratios Eθφ [l(θ̃iso, θφ)]/Eθφ [l(θ̂isom∗ , θφ)] and Eθφ [l(θ̃isoρ , θφ)]/Eθφ [l(θ̂isom∗,ρ, θ
φ)]

with φ = 0.015 and ρ = 2, 4, 8.

Se
ond simulation experiment. We 
ompare the e�
ien
y of the method with two alter-

native model sele
tion pro
edures. For ea
h of them, we use the 
olle
tion M as in the previous

experiment. The two alternative pro
edures are based on likelihood maximization. In this regard,

we �rst de�ne the parametri
 maximum likelihood estimator θ̂mle

m for any model m ∈ M,

(
θ̂mle

m , σ̂mle

m

)
:= arg min

θ′∈Θ+,iso
m ,σ′

−Lp(θ
′, σ′,X) ,

where Lp(θ
′,X) stands for the log-likelihood at the parameter θ′. We then sele
t a modelm applying

either an AIC-type 
riterion [Aka73℄ or a BIC-type 
riterion [S
h78℄:

m̂AIC := arg min
m∈M

{
−2Lp(θ̂

mle

m , σ̂mle

m ,X) + 2disom

}
,

m̂BIC := arg min
m∈M

{
−2Lp(θ̂

mle

m , σ̂mle

m ,X) + log(p2)disom

}
.

For short, we write θ̂AIC and θ̂BIC for the two obtained estimators θ̂mle

bmAIC

and θ̂mle

bmBIC

. Although AIC

and BIC pro
edures are not justi�ed in this setting, we still apply them as they are widely used

in many frameworks. Their 
omputation is performed e�
iently using the fast Fourier transform

des
ribed in Se
tion 2.3.

The experiments are repeated 1000 times. The Gaussian �eld is simulated using the fast Fourier

transform. The quality of the estimations is assessed by the predi
tion loss fun
tion l(., .). For any

φ and any of these three estimators, we evaluate the risks Eθφ [l(θ̂AIC, θφ)], Eθφ [l(θ̂BIC, θφ)], and

Eθφ [l(θ̃iso, θφ)] as well as the 
orresponding empiri
al 95% 
on�den
e intervals by a Monte-Carlo

method. We also estimate the risk ratios Eθφ [l(θ̃iso, θφ)]/Eθφ [l(θ̂isom∗ , θφ)] The results are given in

Table 2.
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φ× 102 0 1.25 1.5 1.75

Eθφ [l(θ̂AIC, θφ)]× 102 1.2± 0.2 3.1± 0.2 4.3± 0.2 6.4± 0.2

Eθφ [l(θ̂BIC, θφ)]× 102 0.01± 0.01 1.9± 0.1 3.7± 0.1 9.7± 0.3

Eθφ [l(θ̃iso, θφ)]× 102 1.6± 0.2 3.2± 0.2 4.2± 0.1 7.2± 0.3

Eθφ [l(θ̃iso, θφ)]/Eθφ [l(θ̂isom∗ , θφ)] +∞ 1.9± 0.7 1.3± 0.2 1.5± 0.3

Table 2: Se
ond simulation study. Estimates and 95% 
on�den
e intervals of the risks

Eθφ [l(θ̂AIC, θφ)], Eθφ [l(θ̂BIC, θφ)], and Eθφ [l(θ̃iso, θφ)] and of the ratio Eθφ [l(θ̃iso, θφ)]/Eθφ [l(θ̂isom∗ , θφ)].

The BIC 
riterion outperforms the other pro
edures when φ = 0, 0.0125, or 0.015 but behaves

bad for a large φ. Indeed, the BIC 
riterion has a tenden
y to overpenalize the models. For the

two �rst values of φ the ora
le model in M is m0. Hen
e, overpenalizing in
reases the performan
e

of estimation in this 
ase. However, when φ in
reases, the dimension of the ora
le model is larger

and BIC therefore sele
ts too small models.

In 
ontrast, AIC and the CLS estimator exhibit similar behaviors. If we forget the 
ase φ = 0
for whi
h the ora
le risk is 0, the risk of θ̃iso is 
lose to the risk of the ora
le model (the ratio is


lose to one). Hen
e, the neighborhood 
hoi
e for θ̃iso is almost optimal.

In 
on
lusion, θ̃iso or θ̂AIC both exhibit good performan
es for estimating the distribution of a

regular Gaussian �eld on a torus. The strength of our neighborhood sele
tion pro
edure lies in the

fa
t it easily generalizes to non-toroidal latti
es as illustrated in the next se
tion.

6.2 Isotropi
 Gaussian �elds on Z
2

First simulation experiment. We now 
onsider X an isotropi
 Gaussian �eld de�ned on Z
2
but

only observed on a square Λ of sizes p = p1 = p2 = 20 or p = p1 = p2 = 100. This 
orresponds to
the setting des
ribed in Se
tion 5. The varian
e of X [0,0] is set to one and the distribution of the

�eld is therefore uniquely de�ned by its 
orrelation fun
tion ρ(k, l) := 
orr(X [k,l], X [0,0]). Again, the
number of repli
ations n is 
hosen to be one. In the �rst experiment, we use four 
lassi
al 
orrelation

fun
tions: exponential, spheri
al, 
ir
ular, and Matérn (e.g. [Cre93℄ Se
t.2.3.1 and [Mat86℄).

Exponential: ρ(k, l) = exp

(
−d(k, l)

r

)

Cir
ular: ρ(k, l) =





1− 2
π

[
d(k,l)

r

√
1−

(
d(k,l)

r

)2

+ sin−1

(√
d(k,l)

r

)]
if d(k, l) ≤ r

0 else

Spheri
al: ρ(k, l) =

{
1− 1.5 d(k,l)

r + 0.5
(
d(k,l)

r

)3

if d(k, l) ≤ r

0 else

Matérn: ρ(k, l) =
1

2κ−1Γ(κ)

(
d(k, l)

r

)κ

Kκ

(
d(k, l)

r

)
,

where d(k, l) denotes the eu
lidean distan
e from (k, l) to (0, 0) and Kκ(.) is the modi�ed Bessel

fun
tion of order κ. In a nutshell, the parameter r represents the range of 
orrelation, whereas κ
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may be regarded as a smoothness parameter for the Matérn fun
tion. In this simulation experiment,

we set r to 3. When 
onsidering the Matérn model, we take κ equal to 0.05, 0.25, 0.5, 1, 2, and 4.
The Gaussian �elds are simulated using the fun
tionGaussRF in the libraryRandomFields [S
h09℄.

For ea
h of experiments, we 
ompute the estimator θ̃iso based on Algorithm 5.1 with the 
olle
tion

M := {m ∈ M1 , d
iso

m ≤ 18}. Sin
e the latti
e Λ is not a torus, methods based on likelihood

maximization exhibit a prohibitive 
omputational burden. Consequently, we do not use MLE in

this experiment. We shall 
ompare the e�
ien
y of θ̃iso with a variogram-based estimation method.

We re
all that the linear 
ombination

∑
(i,j)∈Λ\{(0,0)} θ[i,j]X [i,j] is the kriging predi
tor of X [0,0]

given the remaining variables (Equation (1)). A natural method to estimate θ in this spatial setting

amounts to estimating the variogram of the observed Gaussian �eld and then performing ordinary

kriging at the node (0, 0). More pre
isely, we �rst estimate the empiri
al variogram by applying

the modulus estimator of Hawkes and Cressie (e.g. [Cre93℄ Eq.(2.2.8)) to the observed �eld of 400
points. Afterwards, we �t this empiri
al variogram to a variogram model using the reweighted least-

squares suggested by Cressie [Cre85℄. This pro
edure therefore requires the 
hoi
e of a parti
ular

variogram model. In the �rst simulation study, we 
hoose the model that has generated the data.

Observe that this method is not adaptive sin
e it requires the knowledge of the variogram model.

In pra
ti
e, we use Library geoR [RJD01℄ implemented in R [R D08℄ to estimate the parameters

r, var(X [0,0]) and eventually κ of the variogram model. Then, we 
ompute the estimator θ̂V by

performing ordinary kriging at the 
enter node of Λ. For ea
h of these estimations, we assume

that the variogram model is known. For 
omputational reasons, we use a kriging neighborhood of

size 11× 11 that 
ontains 120 points. Previous simulations have indi
ated that this neighborhood


hoi
e does not de
rease the pre
ision of the estimation. For the Matèrn model with κ = 2 and 4,
the 
ovarian
e is almost singular. There are sometimes inversion di�
ulties and we therefore use

kriging neighborhood of respe
tive size 7× 7 and 3× 3.
We again assess the performan
es of the pro
edures using the loss l(., .). Even if this loss is de-

�ned in (11) for a torus, the alternative de�nition (12) 
learly extends to this non-toroidal setting.

Consequently, the loss l(θ̂, θ) measures the di�eren
e between the predi
tion error of X [0,0] when

using

∑
(i,j)∈Λ\{(0,0)} θ̂[i,j]X [i,j] and the predi
tion error of X [0,0] when using the best predi
tor

E[X [0,0]|(X [i,j])(i,j)∈Λ\{(0,0)}]. In other words, l(θ̂, θ) is the di�eren
e of the kriging error made with

the estimated parameters θ̂ and the kriging error made with the true parameter θ.

The experiments are repeated 1000 times. For any of the four 
orrelation models previously

mentioned, we evaluate the risks Eθ[l(θ̃
iso, θ)] and Eθ[l(θ̂

V , θ)] by Monte-Carlo. In order to assess

the e�
ien
y of the sele
tion pro
edure, we also evaluate the risk ratio

Risk.ratio =
Eθ[l(θ̂

ΛM,iso
bm , θ)]

Eθ[l(θ̂
ΛM,iso
m∗ , θ)]

.

As in Se
tion 6.1, the ora
le risk E[l(θ̂ΛM,iso
m∗ , θ)] is evaluated by taking the minimum of the evalua-

tions of the risks E[l(θ̂ΛM,iso
m , θ)] over all models m ∈ M. Results of the simulation experiment are

given in Table 3 and 4.

Observe that none of the �elds 
onsidered in this study are GMRFs. Here, the GMRF models

should only be viewed as a 
olle
tion of approximation sets of the true distribution. This simulation

experiment is in the spirit of Rue and Tjelmeland's study [RT02℄. However, there are some major

di�eren
es. Contrary to them, we perform estimation and not only approximation. Moreover, our
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latti
e is not a torus. Finally, we use our predi
tion loss l(., .) to assess the performan
e, whereas

they 
ompare the 
orrelation fun
tions.

Model Exponential Cir
ular Spheri
al

Eθ[l(θ̂
V , θ]× 102 0.08± 0.01 9.1± 0.5 2.9± 0.1

Eθ[l(θ̃
iso, θ)]× 102 1.08± 0.01 6.5± 0.1 3.4± 0.1

Risk.ratio 3.6± 0.4 1.4± 0.1 1.6± 0.1

Table 3: Estimates and 95% 
on�den
e intervals of the risks Eθ[l(θ̂
V , θ)] and Eθ[l(θ̃

iso, θ)] and of

Risk.ratio for the exponential, 
ir
ular and spheri
al models with p = 20.

κ 0.05 0.25 0.5 1

Eθ[l(θ̂
V , θ)]× 103 91.8± 0.7 80.0± 0.2 18.0± 0.1 2.5± 0.1

Eθ[l(θ̃
iso, θ)]× 103 2.24± 0.01 0.62± 0.01 0.33± 0.01 0.08± 0.01

Risk.ratio 1.3± 0.1 1.7± 0.2 1.5± 0.2 1.3± 0.1

κ 2 4

Eθ[l(θ̂
V , θ)]× 104 6.3± 1.1 0.011± 0.001

Eθ[l(θ̃
iso, θ)]× 104 1.9± 0.1 0.17± 0.01

Risk.ratio 2.6± 0.2 1.1± 0.1

Table 4: Estimates and 95% 
on�den
e intervals of the risks Eθ[l(θ̂
V , θ)] and Eθ[l(θ̃

iso, θ)] and of

Risk.ratio for Matérn model with p = 100.

Comments on Tables 3 and 4. In both tables, the ratio Eθ[l(θ̂
ΛM,iso
bm , θ)]/Eθ[l(θ̂

ΛM,iso
m∗ , θ)] stays


lose to one. Hen
e, the model sele
tion is almost optimal from an e�
ien
y point of view. In most

of the 
ases, the estimator θ̃iso outperforms the estimator θ̂V based on geostatisti
al methods. This

is parti
ularly striking for the Matérn 
orrelation model be
ause in that 
ase the 
omputation of

θ̂V requires the estimation of the additional parameter κ. Indeed, let us re
all that the exponential
model and the Matérn model with κ = 0.5 are equivalent. For κ = 0.5, the risk of θ̂V is 100 times

higher when κ has to be estimated than when κ is known.

Se
ond simulation experiment. The kriging estimator θ̂V requires the knowledge or the


hoi
e of a 
orrelation model. In the se
ond simulation experiment, the 
orrelation of X is the

Matèrn fun
tion with range r = 3 and κ = 0.05. The size p of the latti
e is 
hosen to be 100. We

now estimate θ using di�erent variogram models, namely the exponential, the 
ir
ular, the spheri
al

and the Matèrn model. The estimator θ̃iso for su
h a �eld was already 
onsidered in Table 4. The

experiment is repeated 1000 times.

Comments on Table 5. One observes that 
ir
ular and spheri
al models yield worse perfor-

man
es than Matèrn model. In 
ontrast, the exponential model behaves better. The 
hoi
e of the

variogram model therefore seems 
riti
al to get good performan
es. The model sele
tion estimator

θ̃iso (Table 4) exhibits a smaller risk than the exponential model.
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Model Exponential Cir
ular Spheri
al Matèrn

Eθ[l(θ̂
V , θ)]× 103 48.3± 0.4 461± 16 293± 7 91.8± 0.7

Table 5: Estimates and 95% 
on�den
e intervals of the risks Eθ[l(θ̂
V , θ)] for Matérn model with

κ = 0.05 when using the exponential, 
ir
ular, spheri
al, and Matèrn models with p = 100.

6.3 Anisotropi
 Gaussian �elds on Z
2

We still 
onsider X a Gaussian �eld observed on a square Λ of size 100 × 100. Contrary to the

previous study, the �eld is not assumed to be isotropi
. To model the geometri
 anisotropy, we

suppose that X is an isotropi
 �eld on a deformed latti
e Λ′
. The transformation 
onsists in multi-

plying the original 
oordinates by a rotation R and a shrinking matrix T . For the sake of simpli
ity,

we take the identity for R. The shrinking matrix T is de�ned by the anisotropy ratio (Ani.ratio).

It 
orresponds to the ratio between the dire
tions with smaller and greater 
ontinuity in the �eld

X , i.e the ratio between maximum and minimum ranges. In this experiment, X follows a Matèrn


orrelation with range r = 3, κ = 0.05, 0.25, 0.5, 1, 2, and 4 and Ani.ratio=2 or 5. We 
ompute the

anisotropi
 estimator θ̃ based on Algorithm 5.1 with the 
olle
tion M := {m ∈ M1, dm ≤ 28}. As
a ben
hmark, we also 
ompute the variogram-based estimator θ̂V based on the Matèrn model. In

order to 
ompute θ̂V , we assume that we know the anisotropy ratio and the anisotropy dire
tions.

Observe that the estimator θ̃ does not require any assumption on the form of anisotropy, while θ̂V

uses the geometri
 parameters of the anisotropy.

The experiments are repeated 1000 times. We evaluate the risks Eθ[l(θ̂
V , θ)] and Eθ[l(θ̃, θ)] and

the risk ratio de�ned by

Risk.ratio =
Eθ[l(θ̂

ΛM

bm , θ)]

Eθ[l(θ̂
ΛM

m∗ , θ)]
.

κ 0.05 0.25 0.5 1

Eθ[l(θ̂
V , θ)]× 102 15.8± 0.1 13.9± 0.1 3.3± 0.1 0.30± 0.01

Eθ[l(θ̃, θ)]× 102 0.65± 0.01 0.20± 0.01 0.089± 0.001 0.17± 0.01
Risk.ratio 1.2± 0.1 1.1± 0.1 1.1± 0.1 1.7± 0.2

κ 2 4

Eθ[l(θ̂
V , θ)]× 104 9.8± 0.1 0.020± 0.001

Eθ[l(θ̃
iso, θ)]× 104 45.0± 0.1 4.3± 0.1

Risk.ratio 2.9± 0.2 22.3± 1.7

Table 6: Estimates and 95% 
on�den
e intervals of the risks Eθ[l(θ̂
V , θ)] and Eθ[l(θ̃, θ)] and of

Risk.ratio for Matérn model and Ani.ratio= 2.

Comments on Tables 6 and 7. Ex
ept for the 
ases κ = 2, 4, the estimator θ̃ performs better

than the variogram-based estimator θ̂V , although θ̂V uses the true anisotropy parameters. For

κ = 4, the neighborhood sele
tion is no performed e�
iently (the risk ratio is large).
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κ 0.05 0.25 0.5 1

Eθ[l(θ̂
V , θ)]× 102 11.2± 0.1 14.9± 0.1 3.7± 0.1 2.9± 0.1

Eθ[l(θ̃, θ)]× 102 0.66± 0.1 0.40± 0.01 0.081± 0.001 0.14± 0.01
Risk.ratio 1.1± 0.1 1.1± 0.1 1.2± 0.1 3.4± 0.8

κ 2 4

Eθ[l(θ̂
V , θ)]× 104 30.6± 0.1 0.22± 0.01

Eθ[l(θ̃
iso, θ)]× 104 38.0± 0.1 39.6± 0.1

Risk.ratio 2.1± 0.1 9.0± 1.4

Table 7: Estimates and 95% 
on�den
e intervals of the risks Eθ[l(θ̂
V , θ)] and Eθ[l(θ̃, θ)] and of

Risk.ratio for Matérn model and Ani.ratio= 5.

7 Dis
ussion

In this paper, we have extended a neighborhood sele
tion pro
edure introdu
ed in [Ver09℄. On the

one hand, an algorithm is provided for tuning the penalty in pra
ti
e. On the other hand, the new

method also handles non-toroidal latti
es. The 
omputational 
omplexity remains reasonable even

when the size of the latti
e is large.

In the 
ase of stationary �elds on a torus, our neighborhood sele
tion pro
edure exhibits a


omputational burden and statisti
al performan
es analogous to the AIC pro
edure. Even if AIC

has not been analyzed from an e�
ien
y point of view, this suggests that AIC may a
hieve an

ora
le inequality in this setting. Moreover, we have empiri
ally 
he
ked that θ̃ performs almost as

well as the ora
le model sin
e the ora
le ratio E[l(θ̃, θ)]/E[l(θ̂m∗ , θ)] remains 
lose to one.

The strength of this neighborhood sele
tion pro
edure lies in the fa
t it easily extends to non-

toroidal latti
es. We have illustrated that our method often outperforms variogram-based estimation

methods in terms of the mean-squared predi
tion error. Moreover, the pro
edure behaves almost as

well as the ora
le. In 
ontrast, variogram-based pro
edures may perform well for some 
ovarian
es

stru
ture but also yield terrible results for other 
ovarian
e stru
tures. These results illustrate the

adaptivity of the neighborhood sele
tion pro
edure.

In many statisti
al appli
ations, Gaussian �elds (or Gaussian Markov random �elds) are not

dire
tly observed. For instan
e, Aykroyd [Ayk98℄ or Dass and Nair [DN03℄ use 
ompound Gaussian

Markov random �elds to a

ount for non stationarity and steep variations. The wavelet transform

has emerged as a powerful tool in image analysis. The wavelet 
oe�
ients of an image are sometimes

modeled using hidden Markov models [CNB98, PSWS03℄. More generally, the su

ess of the GMRFs

is mainly due to the use of hierar
hi
al models involving latent GMRFs [RMC09℄. The study and the

implementation of our penalization strategy for sele
ting the 
omplexity of latent Markov models

is an interesting dire
tion of resear
h.

8 Proofs

Let us introdu
e some notations that shall be used throughout the proofs. For any 1 ≤ k ≤ n, the
ve
tor X

v
k denotes the ve
torialized version of the k-th sample of X . Moreover, X

v
is the matrix
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of size p1p2 × n of the n realisations of the ve
tor X
v
k. Throughout these proofs, L,L1, L2 denote


onstants that may vary from line to line. The notation L(.) spe
i�es the dependen
y on some

quantities. Finally, the γ(.) fun
tion stands for an in�nite sampled version of the CLS 
riterion

γn,p1,p2
(.): γ(.) := E[γn,p1,p2

(.)].

8.1 Proof of Lemma 2.1

Let us provide an alternative expression of γn,p1,p2
(θ′) in term of the fa
tor C(θ′) and the empiri
al


ovarian
e matrix XvXv∗
.

γn,p1,p2
(θ′) =

1

np1p2
tr

[
(Ip1p2

− C(θ′))XvXv∗(Ip1p2
− C(θ′))

]
. (17)

This is justi�ed in [Ver09℄ Se
t.2.2.

Lemma 8.1. There exists an orthogonal matrix P whi
h simultaneously diagonalizes every p1p2 ×
p1p2 symmetri
 blo
k 
ir
ulant matri
es with p2 × p2 blo
ks. Let θ be a matrix of size p1 × p2 su
h

that C(θ) is symmetri
. The matrix D(θ) = P ∗C(θ)P is diagonal and satis�es

D(θ)[(i−1)p2+j,(i−1)p2+j] =

p1∑

k=1

p2∑

l=1

θ[k,l] cos [2π(ki/p1 + lj/p2)] , (18)

for any 1 ≤ i ≤ p1 and 1 ≤ j ≤ p2.

This lemma is proved as in [RH05℄ Se
t.2.6.2 to the pri
e of a slight modi�
ation that takes

into a

ount the fa
t that P is orthogonal and not unitary. The di�eren
e 
omes from the fa
t

that 
ontrary to Rue and Held we also assume that C(θ) is symmetri
. Lemma 8.1 states that

all symmetri
 blo
k 
ir
ulant matri
es are simultaneously diagonalizable. Observe that for any

1 ≤ i ≤ p1 and 1 ≤ j ≤ p2, it holds that D(θ)[(i−1)p2+j,(i−1)p2+j] = λ[i,j](θ) sin
e θ[k,l] = θ[p1−k,p2−l].

Hen
e, Expression (17) be
omes

γn,p1,p2
(θ′) =

1

np1p2

{ p1∑

i=1

p2∑

j=1

[1− λ[i,j](θ)]
2

[ n∑

k=1

[P ∗
X

v
k(X

v
k)

∗P ] [(i−1)p2+j,(i−1)p2+j]

]}
,

where X
v
k is the ve
torialized version of the k-th observation of the �eld X . Straightforward


omputations allow us to prove that the quantities

(P ∗
X

v
k(X

v
k)

∗P ) [(i−1)p2+j,(i−1)p2+j] + (P ∗
X

v
k(X

v
k)

∗P ) [(p1−i−1)p2+p2−j,(p1−i−1)p2+p2−j]

and

1√
p1p2

λ[i,j](Xv
k)λ[i,j](Xv

k) +
1√
p1p2

λ[p1−i,p2−j](Xv
k)λ[p1−i,p2−j](Xv

k)

are equal for any 1 ≤ i ≤ p1 and 1 ≤ j ≤ p2. Here, the entries of the matrix λ(.) are taken

modulo p1 and p2 and the entries of [P ∗
X

v
k(X

v
k)

∗P ] are taken modulo p1p2. The result of Lemma

2.1 follows.
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8.2 Proof of Proposition 4.1

Proof of Proposition 4.1. We only 
onsider the anisotropi
 
ase, sin
e the proof for isotropi
 esti-

mation is analogous. For any model m ∈ M1, we de�ne

∆(m,m′) := γn,p,p

(
θ̂m,ρ

)
+ pen(m)− γn,p,p

(
θ̂m′,ρ

)
− pen(m′) .

We aim at showing that with large probability, the quantity ∆(m,m′) is positive for all small

dimensional models m. Hen
e, we would 
on
lude that the dimension of m̂ is large. In this regard,

we bound the deviations of the di�eren
es

γn,p,p

(
θ̂m,ρ

)
− γn,p,p

(
θ̂m′,ρ

)
=

[
γn,p,p

(
θ̂m,ρ

)
− γn,p,p (θm,ρ)

]
+

[
γn,p,p (θm,ρ)− γn,p,p (θ)

]

+
[
γn,p,p(θ) − γn,p,p

(
θ̂m′,ρ

)]
.

Lemma 8.2. Let K2 be some universal 
onstant that we shall de�ne in the proof. With probability

larger than 3/4,

γn,p,p(θ)− γn,p,p(θm,ρ) ≤
K2

2
ρ2ϕ

max

(Σ)
dm ∨ 1

np2

and

γn,p,p (θm,ρ)− γn,p,p

(
θ̂m,ρ

)
≤ K2

2
ρ2ϕ

max

(Σ)
dm
np2

for all models m ∈ M1.

Lemma 8.3. Assume that p is larger than some numeri
al 
onstant p0. With probability larger

than 3/4, it holds that

γn,p,p(θ)− γn,p,p(θ̂m′,ρ) ≥ K3σ
2
{
ϕ
min

(
Ip2 − C(θ)

)
∧
[
ρ− ϕ

max

(
Ip2 − C(θ)

)]} dm′

np2
,

where K3 is a universal 
onstant de�ned in the proof.

Let us take K1 to be exa
tly K3. Gathering the two last lemma with Assumption (15), there

exists an event Ω of probability larger than 1/2 su
h that

∆(m,m′) ≥
σ2

np2

{
K1ηdm′

[
ϕ
min

(
Ip2 − C(θ)

)
∧
[
ρ− ϕ

max

(
Ip2 − C(θ)

)]]
−K2

(dm∨1)ρ2

ϕ
min

(Ip2−C(θ))

}
,

for all models m ∈ M1. Thus, 
onditionally to Ω, ∆(m,m′) is positive for all models m ∈ M1 that

satisfy

dm ∨ 1

dm′

≤ K3η

K2ρ2
ϕ
min

(
Ip2 − C(θ)

) {
ϕ
min

(
Ip2 − C(θ)

)
∧
[
ρ− ϕ

max

(
Ip2 − C(θ)

)]}
.

By Lemma 8.7 in [Ver09℄, the dimension dm′
is larger than 0.5[

√
np2 ∧ (p2 − 1)]. We 
on
lude that

dbmρ
∨1 ≥

[√
np2 ∧ p2 − 1

] K3η

K2ρ2
ϕ
min

(
Ip2 − C(θ)

) {
ϕ
min

(
Ip2 − C(θ)

)
∧
[
ρ− ϕ

max

(
Ip2 − C(θ)

)]}
,

with probability larger than 1/2.
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Proof of Lemma 8.2. In the sequel, γn,p,p(.) denotes the di�eren
e γn,p,p(.) -γ(.). Given a model

m, we 
onsider the di�eren
e

γn,p,p (θ)− γn,p,p (θm,ρ) = γn,p,p (θ)− γn,p,p (θm,ρ)− l(θm,ρ, θ) .

Upper bounding the di�eren
e of γn,p,p therefore amounts to bounding the di�eren
e of γn,p,p. By

de�nition of γn,p,p and γ, it expresses as

γn,p,p (θ)− γn,p,p (θm,ρ) =
1

p2
tr
{[
(Ip2 − C(θ))2 − (Ip2 − C(θm,ρ))

2
] (

XvXv∗ − Σ
)}

.

The matri
es Σ, (Ip2 − C(θ)), and (Ip2 − C(θm,ρ)) are symmetri
 blo
k 
ir
ulant. By Lemma 8.1,

they are jointly diagonalizable in the same orthogonal basis. If we note P an orthogonal matrix

asso
iated to this basis, then C(θm,ρ), C(θ), and Σ respe
tively de
ompose in

C(θm,ρ) = P ∗D(θm,ρ)P , C(θ) = P ∗D(θ)P and Σ = P ∗D(Σ)P ,

where the matri
es D(θm,ρ), D(θ), and D(Σ) are diagonal.

γn,p,p (θ) − γn,p,p (θm,ρ) =

1

p2
tr

{
(D(θm,ρ)−D(θ))

[
2Ip2 −D(θ)−D(θm,ρ)

]
DΣ

(
YY∗ − Ip2

)}
, (19)

where the matrix Y is de�ned as P
√
Σ−1X

vP ∗
. Its 
omponents follow independent standard

Gaussian distributions. Sin
e the matri
es involved in (19) are diagonal, Expression (19) is a

linear 
ombination of 
entered χ2
random variables. We apply the following lemma to bound its

deviations.

Lemma 8.4. Let (Y1, . . . , YD) be i.i.d. standard Gaussian variables. Let a1, . . . , aD be �xed num-

bers. We set

‖a‖∞ := sup
i=1,...,D

|ai|, ‖a‖22 :=
D∑

i=1

a2i

Let T be the random variable de�ned by

T :=

D∑

i=1

ai
(
Y 2
i − 1

)
.

Then, the following deviation inequality holds for any positive x

P
[
T ≥ 2‖a‖2

√
x+ 2‖a‖∞x

]
≤ e−x .

This result is very 
lose to Lemma 1 of Laurent and Massart in [LM00℄. The only di�eren
e

lies in the fa
t that they 
onstrain the 
oe�
ients ai to be non-negative. Nevertheless, their proof

easily extends to our situation. Let us de�ne the matrix a of size n× p2 as

ai[j] :=
DΣ[i,i] (D(θm,ρ)[i,i] −D(θ)[i,i]) (2−D(θ[i, i]−D(θm,ρ)[i, i])

np2
,
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for any 1 ≤ i ≤ n and any 1 ≤ j ≤ p2. Sin
e the matri
es I − C(θ) and I − C(θm,ρ) belong to

the set Θ+
ρ , their largest eigenvalue is smaller than ρ. By De�nition (11) of the loss fun
tion l(., .),

‖a‖2 ≤ 2ρ
√
ϕ
max

(Σ)l(θm,ρ, θ)/(np2) and ‖a‖∞ ≤ 4ρ2ϕ
max

(Σ)/(np2). By Applying Lemma 8.4 to

Expression (19), we 
on
lude that

P

[
γn,p,p (θ)− γn,p,p (θm,ρ) ≥ l(θm,ρ, θ) + 12ρ2

ϕ
max

(Σ)

np2
x

]
≤ e−x ,

for any x > 0. Consequently, for any K > 0, the di�eren
e of γn,p,p(.) satis�es

γn,p,p(θ) − γn,p,p(θm,ρ) ≤
K

2
ρ2ϕ

max

(Σ)
dm ∨ 1

np2
,

simultaneously for all models m ∈ M1 with probability larger than 1−∑
m∈M1\∅ e

−K(dm∨1)/24
. If

K is 
hosen large enough, the previous upper bound holds on an event of probability larger than

7/8. Let us 
all K ′
2 su
h a value.

Let us now turn to the se
ond part of the result. As previously, we de
ompose the di�eren
e of

empiri
al 
ontrasts

γn,p,p (θm,ρ)− γn,p,p

(
θ̂m,ρ

)
= γn,p,p (θm,ρ)− γn,p,p

(
θ̂m,ρ

)
− l

(
θ̂m,ρ, θm,ρ

)

Arguing as in the proof of Theorem 3.1 in [Ver09℄, we obtain an upper bound analogous to Eq.(49)

in [Ver09℄

γn,p,p (θm,ρ)− γn,p,p

(
θ̂m,ρ

)
≤ l(θ̂m,ρ, θm,ρ) + ρ2

{
sup

R∈BH′

m2,m2

1

p2
tr

[
RDΣ

(
YY∗ − Ip2

)]}2

.

The set BH′

m2,m2 is de�ned in the proof of Lemma 8.2 in [Ver09℄. Its pre
ise de�nition is not really

of interest in this proof. Coming ba
k to the di�eren
e of γn,p,p(.), we get

γn,p,p (θm,ρ)− γn,p,p

(
θ̂m,ρ

)
≤ ρ2



 sup

R∈BH′

m2,m2

1

p2
tr
[
RDΣ

(
YY∗ − Ip2

)]




2

.

We 
onse
utively apply Lemma 8.3 and 8.4 in [Ver09℄ to bound the deviation of this supremum.

Hen
e, for any positive number α,

γn,p,p (θm,ρ)− γn,p,p

(
θ̂m,ρ

)
≤ L1(1 + α/2)ρ2ϕ

max

(Σ)
dm
np2

. (20)

with probability larger than 1−exp[−L2

√
dm( α√

1+α/2
∧ α2

1+α/2 )]. Thus, there exists some numeri
al


onstant α0 su
h that the upper bound (20) with α = α0 holds simultaneously for all models

m ∈ M1 \ ∅ with probability larger than 7/8. Choosing K2 to be the supremum of K ′
2 and

2L1(1 + α0/2) allows to 
on
lude.
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Proof of Lemma 8.3. Thanks to the de�nition (17) of γn,p,p(.) we obtain

γn,p,p(θ)− γn,p,p(θ̂m′,ρ) =
1

p2
sup

θ′∈Θ+

m′,ρ

tr
[
(C(θ′)− C(θ))

(
2Ip2 − C(θ)− C(θ′)

)
ΣZZ∗] ,

where the p2 × n matrix Z is de�ned by Z :=
√
Σ

−1
X

v
. We re
all that the matri
es Σ, C(θ) and

C(θ′) 
ommute sin
e they are jointly diagonalizable by Lemma 8.1. Let (Θ+
m′,ρ − θ) be the set

Θ+
m′,ρ translated by θ. Sin
e C(θ) +C(θ′) = C(θ+ θ′), we lower bound the di�eren
e of γn,p,p(.) as

follows

γn,p,p(θ)− γn,p,p(θ̂m′,ρ) =
1

p2
sup

θ′∈
“
Θ+

m′,ρ
−θ

” 2σ
2tr

[
C(θ′)ZZ∗]− tr

[
C(θ′)2ΣZZ∗]

≥ σ2

p2
sup

θ′∈
“
Θ+

m′,ρ
−θ

”
{
2tr

[
C(θ′)ZZ∗]− ϕ−1

min

[
Ip2 − C(θ)

]
tr

[
C(θ′)2ZZ∗]} .

Let us 
onsider Ψi1,j1 , . . . ,Ψid
m′

,jd
m′

a basis of the spa
e Θm′
de�ned in Eq.(14) of [Ver09℄. Let α

be a positive number that we shall de�ne later. We then introdu
e θ′ as

θ′ := ϕ
min

[
Ip2 − C(θ)

] α

p2

dm′∑

k=1

tr
[
C (Ψik,jk)ZZ

∗]Ψik,jk .

Sin
e θ is assumed to belong to Θ+
m′,ρ, the parameter θ′ belongs to (Θ+

m′,ρ − θ) if

ϕ
max

[C(θ′)] ≤ ϕ
min

(
Ip2 − C(θ)

)
and ϕ

min

[C(θ′)] ≥ −ρ+ ϕ
max

(
Ip2 − C(θ)

)
.

. The largest eigenvalue of C(θ′) is smaller than ‖θ′‖1 whereas its smallest eigenvalue is larger than

−‖θ′‖1. Let us upper bound the l1 norm of θ′:

‖θ′‖1 = 2ϕ
min

[
Ip2 − C(θ)

] α

p2

dm′∑

k=1

∣∣tr
[
C (Ψik,jk)ZZ

∗]∣∣

≤ 2

√
α

p2
ϕ
min

[
Ip2 − C(θ)

]
dm′tr

[
C(θ′)ZZ∗] . (21)

Hen
e, θ′ belongs to (Θ+
m′,ρ − θ) if

‖θ′‖1 ≤ ϕ
min

(
Ip2 − C(θ)

)
∧
[
ρ− ϕ

max

(
Ip2 − C(θ)

)]
. (22)

Thus, we get the lower bound

γn,p,p(θ) − γn,p,p(θ̂m′,ρ) ≥ σ2

p2
{
2tr

[
C(θ′)ZZ∗]− ϕ−1

min

[
Ip2 − C(θ)

]
tr
[
C(θ′)2ZZ∗]} , (23)

as soon as Condition (22) is satis�ed.

Let us now bound the deviations of the two random variables involved in (21) and (23) by

applying Markov's and T
heby
hev's inequality. For the sake of simpli
ity, we assume that dm′
is
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smaller than (p2 − 2p)/2. In su
h a 
ase, all the nodes in m′
are di�erent from their symmetri
 in

Λ. We omit the proof for dm′
larger than (p2 − 2p)/2 be
ause the approa
h is analogous but the


omputations are slightly more involved. Straightforwardly, we get

E
[
tr

(
C(θ′)ZZ∗)] = 4αϕ

min

[
Ip2 − C(θ)

] dm′

n
,

sin
e the neighborhood m′
only 
ontains points (i, j) whose symmetri
 (−i,−j) is di�erent. A


umbersome but pedestrian 
omputation leads to the upper bound

var

[
tr

(
C(θ′)ZZ∗)] ≤ L1α

2ϕ2
min

[
Ip2 − C(θ)

] dm′

n2
,

where L1 is a numeri
al 
onstant. Similarly, we upper bound the expe
tation of tr
[
C(θ′)2ZZ∗]

E
[
tr
(
C(θ′)2ZZ∗)] ≤ L2α

2ϕ2
min

[
Ip2 − C(θ)

] dm′

n
.

Let us respe
tively apply T
heby
hev's inequality andMarkov's inequality to the variables tr
[
C(θ′)ZZ∗]

and tr
[
C(θ′)2ZZ∗]

. Hen
e, there exists an event Ω of probability larger than 3/4 su
h that

2tr
[
C(θ′)ZZ∗]− ϕ−1

min

[
Ip2 − C(θ)

]
tr
[
C(θ′)2ZZ∗] ≥

ϕ
min

[
Ip2 − C(θ)

] dm′

n

{
8α

(
1−

√
L′
1

dm′

)
− α2L′

2

}

and

tr
[
C(θ′)ZZ∗] ≤ 4αϕ

min

[
Ip2 − C(θ)

] dm′

n

(
1 +

√
L′
1

dm′

)
.

In the sequel, we assume that p is larger than some universal 
onstant p0, whi
h ensures the

dimension dm′
to be larger than 4L′

1. Gathering (21) with the upper bound on tr
[
C(θ′)ZZ∗]

yields

‖θ′‖1 ≤ 2
√
2αϕ

min

[
Ip2 − C(θ)

] dm′√
np2

≤ 2
√
2αϕ

min

[
Ip2 − C(θ)

]
,

sin
e dm′ ≤ p
√
n. If 2

√
2α is smaller than 1 ∧

{[
ρ− ϕ

max

(
Ip2 − C(θ)

)}
ϕ−1
min

[
Ip2 − C(θ)

]]
, then

Condition (22) is ful�lled on the event Ω and it follows from (23) that

P

{
γn,p,p(θ)− γn,p,p(θ̂m′,ρ) ≥ 4σ2ϕ

min

[
Ip2 − C(θ)

] dm′

np2
[
α− α2L′

2/4
]}

≥ 3

4
.

Choosing α = 2
L′

2

∧
√
2
4 ∧

√
2
ρ−ϕ

max

(Ip2−C(θ))
4ϕ

min

(Ip2−C(θ))
, we get

P

{
γn,p,p(θ)− γn,p,p(θ̂m′,ρ) ≥ K3σ

2
{
ϕ
min

[
Ip2 − C(θ)

]
∧
[
ρ− ϕ

max

(
Ip2 − C(θ)

)]} dm′

np2

}
≥ 3

4
,

where K3 is an universal 
onstant.
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