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Abstract

The cross-validation deletion–substitution–addition (cvDSA) algorithm is based on data-adaptive 

estimation methodology to select and estimate marginal structural models (MSMs) for point 

treatment studies as well as models for conditional means where the outcome is continuous or 

binary. The algorithm builds and selects models based on user-defined criteria for model selection, 

and utilizes a loss function-based estimation procedure to distinguish between different model fits. 

In addition, the algorithm selects models based on cross-validation methodology to avoid “over-

fitting” data. The cvDSA routine is an R software package available for download. An alternative 

R-package (DSA) based on the same principles as the cvDSA routine (i.e., cross-validation, loss 

function), but one that is faster and with additional refinements for selection and estimation of 

conditional means, is also available for download. Analyses of real and simulated data were 

conducted to demonstrate the use of these algorithms, and to compare MSMs where the causal 

effects were assumed (i.e., investigator-defined), with MSMs selected by the cvDSA. The package 

was used also to select models for the nuisance parameter (treatment) model to estimate the MSM 

parameters with inverse-probability of treatment weight (IPTW) estimation. Other estimation 

procedures (i.e., G-computation and double robust IPTW) are available also with the package.
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1. Introduction

In recent years, epidemiologists’ knowledge about the theory and application of marginal 

structural models (MSMs) to examine causal effects in observational studies has grown 
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substantially. MSMs provide unbiased estimates of marginal effects in the presence of both 

causal intermediates in point treatment (exposure) studies and time-dependent confounding 

in longitudinal studies (Robins et al., 2000). Conventional (conditional) association models 

provide stratum-specific effects which are typically biased in these situations. MSMs 

eliminate the need to adjust for confounding in the models themselves. Instead, nuisance 

parameter models (e.g. treatment models) are used to address confounding, so that with 

MSMs one obtains a direct, unconditional assessment of the exposure on the response. 

While model selection procedures for nuisance parameters have been addressed in the 

published literature (Mortimer et al., 2005; Brookhart and van der Laan, 2006), procedures 

for the selection of MSMs have not. The recent development of a general cross-validated 

data-adaptive model selection procedure represents an important methodological 

advancement to better characterize the causal effects of interest through MSM selection and 

a more flexible examination of the exposure–response causal curve.

The cross-validation deletion–substitution–addition (DSA) algorithm selects models 

adaptively for MSMs and nuisance parameter models for point treatment studies (Wang et 

al., 2004). The approach is derived from a general methodology that provides data-adaptive 

machine learning type algorithms based on user-supplied criteria (e.g., maximum model 

size) (van der Laan and Dudoit, 2003; Sinisi and van der Laan, 2004). Specifically, the 

algorithm builds a model space of candidate models based on so-called deletion, substitution 

and addition moves and utilizes a loss function-based estimation procedure to distinguish 

between different models with respect to model fit (van der Laan and Dudoit, 2003). The 

goal is to select a model that results in the best estimate of a given data distribution. 

Moreover, the algorithm selects models based partly on V-fold cross-validation (Efron and 

Tibshirani, 1993; Wang et al., 2004) and, thus, avoids the problem of “over-fitting” data that 

can occur with other data-adaptive model selection algorithms (e.g., StepAIC function, R-

Software, current version, R Foundation for Statistical Computing).

This paper discusses methodological aspects of the algorithm and compares it with other 

model selection criteria. An illustrative analysis demonstrates how the algorithm works. 

Two R-packages are available which implement the algorithm: one is a well-developed 

package (DSA) for the selection of conditional models (e.g., nuisance parameter models); 

the second is for MSM selection for point treatment studies (cvDSA), and includes 

components for the selection of nuisance parameter models (cvGLM) and selection of 

MSMs (cvMSM). The second package (cvDSA) is less developed than the first in terms of 

ease of use and speed. We advise selection of the treatment model with the DSA package, 

and submission of this model to the cvMSM procedure for MSM selection. The discussion 

of the algorithm is in the context of its selection of MSMs, but it provides an overall view of 

the DSA algorithm as a general tool for model selection. Both packages are available for 

download from http://stat-www.berkeley.edu/~laan/Software/index.html. Additional 

background and technical details about the algorithm are available (Dudoit et al., 2003; van 

der Laan and Dudoit, 2003; Sinisi and van der Laan, 2004; Wang et al., 2004).
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2. Background on MSMs

MSMs are used to define causal parameters of interest for exposure–response relations 

based on the concept of counterfactuals (Robins et al., 2000). This concept permits 

assessment of observational data in a hypothetical framework in which, contrary to fact, 

subjects were exposed to all possible levels of an exposure and had outcomes associated 

with those exposures. With counterfactual data, one can evaluate whether differences in the 

outcome are attributable to causal differences in the level of the exposure. To recreate the 

conditions under which observed data can be evaluated as counterfactual data requires 

several assumptions.

First, the observed data for any given subject represent one realization of his/her 

counterfactual data that correspond with the exposure actually received (consistency 

assumption) (Robins, 1999). In a point treatment study, the observed data can be represented 

as O = (W, A, Y = Y (A)), where W represents the baseline covariates, A the treatment 

(exposure) assignment, and Y (A) the outcome under observed treatment A. The observed 

data O = (W, A, Y ) on a randomly sampled subject represent one realization/component of 

the counterfactual “full” data X = ((Y (a), a ∈ A), W ) when exposure a = A.

A second assumption is the no “unmeasured confounders”, or “randomization assumption”: 

Y (a) ⊥ A|W – i.e., the treatment of interest is “randomized” with respect to the outcome 

within strata of the measured covariates, W (Robins, 1999). To satisfy this assumption, one 

conditions on all the measurable confounders of the exposure and outcome through a 

nuisance parameter model. Estimation of nuisance parameters can occur either by a model 

of a regression of the outcome on treatment (exposure) and all potential confounders (W ) 

(G-computation estimation, double robust inverse probability of treatment weight (DR-

IPTW) estimation), or a model of the conditional probability of treatment given W (inverse 

probability of treatment weight (IPTW) estimation). Correct characterization of one of these 

nuisance parameter models is required to assess properly the effect of treatment on outcome 

without regard to potential extraneous factors.

Lastly, an additional assumption (experimental treatment assignment, or ETA) is required to 

provide unbiased estimates with IPTW estimation. This assumption states that all exposures 

have a positive probability of occurrence, given baseline covariates.

The parameter of interest in an MSM is the treatment-specific mean E(Y (a)|V ), possibly 

conditional on some baseline covariates V that are a subset of W (V ⊂ W ). When V = W, the 

MSM represents a traditional multiple regression model, where the effect of a is a fully 

adjusted causal parameter. Classical MSMs define a model for E(Y (a)|V ) such as a linear 

model m(a, V |β), so that the parameter of interest is the regression parameter β in this 

assumed model. The goal of the cross-validation DSA algorithm is to achieve a correct 

characterization (i.e., fit) of the nuisance models and MSMs to evaluate causal effects for 

point treatment studies.

Additional details of the theory and application of MSMs are available (Robins, 1999; 

Hernán et al., 2000; van der Laan and Robins, 2002; Yu and van der Laan, 2002; Haight et 

al., 2003; Neugebauer and van der Laan, 2003; Bryan et al., 2004; Mortimer et al., 2005).
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3. Overview of the cross-validation deletion–substitution–addition 

algorithm

A possible estimator of the treatment-specific mean (MSM) minimizes the empirical risk – a 

statistical criterion of model fit defined below – over all candidate treatment-specific means. 

However, since the model space of possible treatment-specific means is infinite 

dimensional, given the different parameterizations of the treatment variable and the baseline 

covariates possible in the MSM, this minimization would simply result in an over-fit model. 

A general solution to deal with this problem is to construct a sequence or collection of 

subspaces (e.g., model categories of varying size and complexity) that approximate the 

whole model space, a so-called sieve; then, to compute the minimizers of the empirical risk 

for each of these subspaces. Application of V-fold cross-validation and a defined cross-

validation risk criterion (described below) can be used to select the actual (optimal) 

subspace whose corresponding minimum empirical risk estimator minimizes the cross-

validation risk (Fig. 1). Given that the process described above occurs in the framework of 

cross-validation, with the data subset into training/test data for purposes of selecting the 

optimal subspace, the process is repeated, and the construction of subspaces occurs based on 

a whole dataset. The minimizer of the empirical risk in the optimal subspace selected with 

cross-validation becomes the final selected model.

4. Key methodological aspects of the cross-validation DSA algorithm

Briefly, we describe some of the key aspects of the theory and methodology behind the 

cross-validation DSA algorithm in four areas: (1) loss functions as a measurement tool of 

model competency (e.g., model fit) for fitting the causal parameter of interest in the 

counterfactual world, and the basis by which these functions are applied to the observed data 

with the use of available mapping options for counterfactual data (e.g., G-computation, 

IPTW, DR-IPTW estimators); (2) two methods to estimate the loss function: empirical risk 

and cross-validation risk; (3) generation of candidate models; and (4) selection of nuisance 

parameter models. A detailed description of the mechanics of the DSA algorithm is provided 

in Appendix 1 and 2 (Appendix 1, 2 and 3 are included in the web version).

4.1. Loss functions and mapping of counterfactual data

Loss functions are criteria used in statistics to evaluate and to compare models based on fits 

of candidate estimators to data (Bickel and Doksum, 2001). With these criteria, and under 

the assumption that the class of models is an appropriate summary of the data, the goal of 

selection of a well-fit model occurs by minimization of the expectation of the loss function, 

or empirical risk, that can be represented generically as

with observations Oi on which a candidate model ψn is fit. A simple example of a loss 

function is the squared residual of an observed outcome and the predicted value that has the 
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property that its expectation is minimized by the true conditional mean of the outcome, 

given the covariates. This loss function is thus suitable for regression. In fact, our nuisance 

parameter model selection for fitting the conditional mean of the outcome, given exposure 

and baseline covariates, and for fitting a regression of the exposure on the baseline 

covariates, is based on this loss function. Another example of a loss function is the minus 

log likelihood function that has the property that its expectation is minimized by the true 

density of the data. This is a loss function for model selection for the conditional distribution 

of a binary outcome, given baseline covariates. These two loss functions are simple in that 

they are known functions of the data structure and a candidate model for the parameter of 

interest.

The cross-validation DSA algorithm is based on the estimation of the expectation of loss 

functions (i.e., risk) where the loss function is a function of the observed data structure O = 

(W, A, Y ) and a candidate MSM for the causal parameter of interest. These loss functions 

are selected such that their expectation measures the discrepancy between a candidate fit of 

the causal parameter of interest for different models to the observed data and the true causal 

parameter (i.e., a perfect fit of a true model to the data).

The true causal parameter is the “absolute” minimizer of the expectation of the loss function 

(i.e., the risk function). However, in the real world, the true causal parameter is unknown. 

The goal of selection of the best estimator (i.e., the best candidate model) is to find the 

estimator closest to the true causal parameter. Since the unknown, true causal parameter 

gives a fixed risk (which is also unknown), the goal is simply to minimize the risk over all 

candidate model-specific fits of the causal parameter of interest. This can be achieved 

approximately by minimization of the empirical risk (i.e., the empirical mean of the loss 

function).

Another characteristic of loss functions particular to MSMs is the uniqueness of the data 

structure (i.e., counterfactual as compared with observational data) with which they are 

computed. If we could observe the counterfactual data X on each subject, we could choose 

as the loss function for the treatment-specific mean (MSM), possibly conditional on some 

baseline covariates V, the summed (over all possible exposures, (a), squared residuals 

between the counterfactual outcomes under treatment a and a candidate fit of the treatment-

specific mean: L(X, ψ) = Σa∈A(Y (a) − ψ (a, V ))2. This loss function is the standard loss 

function for repeated measures regression in which each subject has multiple possible 

outcomes. Indeed, the expectation of this loss function is minimized at the true treatment-

specific mean of the outcome (i.e., the causal parameter of interest). However, this loss 

function is not appropriate for the data we typically observe (i.e., a single counterfactual 

outcome that corresponds to a one-time exposure for a given individual).

van der Laan and Robins have presented a method to map counterfactual data-estimating 

functions to observed data-estimating functions with the same expectation; this method has 

direct implications for mapping counterfactual data loss functions to loss functions for 

observed data that can be carried out with any one of the three MSM estimators: G-

2Selection criterion submitted to the cvDSA algorithm allowed the procedure to select models up to six terms with 2-way interactions.
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Computation, IPTW, and DR-IPTW (van der Laan and Robins, 2002; Wang et al., 2004). 

For example, mapping of the loss functions based on the IPTW estimator is formulated as

where g(A|W ) and g(A|V ) are models for the treatment (exposure). The expected values of 

this IPTW loss function and the loss function for the counterfactual data are equivalent when 

we assume no unmeasured confounders. The DR-IPTW loss function not only provides a 

correct model specification for the treatment-specific mean (as the IPTW loss function), but 

it does so with minimum variance (van der Laan and Robins, 2002). Thus, the loss functions 

that are used typically in conventional analyses to evaluate models can be extended to 

evaluate and compare MSMs by mapping them into observed data loss functions with the G-

computation, IPTW or DR-IPTW estimators. The details of the G-computation and DR-

IPTW loss functions are provided in Appendix 1.

As stated above, given that the model space of potential candidate models is infinite 

dimensional, selection of these models based on minimization of the empirical risk alone 

would result in over-fit models. Fine-tuning parameters that describe the size and 

complexity of the model need to be based on the so-called cross-validation risk. Details of 

the formulation and application of cross-validation risk as a model selection criterion, in 

connection with empirical risk, in the cross-validation DSA algorithm are given below.

4.2. Comparison of empirical risk and cross-validation risk used in the cross-validation 
DSA algorithm

The algorithm uses a combination of both empirical risk and cross-validation risk criteria 

that operate jointly to evaluate and select models for the nuisance parameters (appropriate 

estimators of the MSM–i.e., controls for confounding) and the MSMs themselves. The 

process by which models are built, compared, and selected, based on minimization of the 

empirical risk, is done in the framework of V-fold cross-validation. After models are 

selected (based on empirical risk) that are representative of the different subspaces 

(approximate the whole model space) based on training data subsets of the entire data, they 

are fit with the remainder of the data (corresponding validation data of those training data 

subsets). The model corresponding to one of the subspaces (e.g., a model with five terms 

and no interactions) that minimizes the empirical mean over the different validation datasets 

– i.e., cross-validation risk average – is used to select the optimal subspace. The following 

description elaborates more on this process.

4.2.1. Cross-validation risk—Candidate models of the causal parameter of interest are 

selected by the DSA algorithm based on lowest empirical risk estimated from training data 

for different model size-complexity combinations. These different size-complexity 

combinations are referred to as subspaces. Since a model of optimal size and complexity 

cannot be selected based on the empirical risk (i.e., a model of maximum size-complexity 

would be selected), the cross-validation risk is used to select the size and complexity, within 

bounds set by the user. Cross-validation risk estimates are obtained for these selected 
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models, indexed by size and complexity, based on validation data. For example, a candidate 

model is estimated with the observations in the training set; then, the empirical mean is 

taken over the validation set of the loss function at the candidate fit. This consecutive 

process can be described as a “one-step cross-validation risk”, which we define as the 

empirical mean (average) of the loss function over a validation sample. In the 5-fold cross-

validation process, five one-step cross-validation risks are calculated for the different 

training–validation dataset combinations. A final cross-validation risk is calculated from an 

average of the five one-step cross-validation risks. It is well known that V-fold cross-

validation provides a better estimate of true risk than a single split of the data.

In summary, the cross-validation DSA algorithm maps a training dataset into a set of models 

that are the optimal models of the subspaces in which these models occur. These models, in 

turn, are applied to a validation dataset to assess the cross-validation risk for each subspace 

that each model represents. The process is repeated for V-fold divisions of the whole dataset. 

At the end, the subspace with the lowest average cross-validation risk is selected as the 

optimal subspace. The final implementation of the cross-validation DSA algorithm on the 

whole dataset provides a set of best models that correspond to each subspace. The final 

optimal model is the one among these best models that occurs in the optimal subspace (see 

Fig. 1).

5. Generation of candidate estimators with the DSA algorithm

In the DSA algorithm, the whole model space is parameterized as a transformation (e.g., 

identity or logit function) of linear combinations of basis functions. The choices of the basis 

functions include the polynomial powers (i.e., 1, x, x2, …), and spline functions of fixed 

degree with corresponding fixed set of knot points and wavelets functions. This choice of a 

class of basis functions can itself be chosen with cross-validation. The current approach of 

the DSA algorithm is focused on use of the polynomial powers as the basis function.

Given this parameterization, the subspaces are obtained by restrictions on different 

conditions, i.e., the number of terms that a model contains (k1), maximum order of 

interactions (k2), etc. An example of such a subspace might be models that are polynomial 

functions of five terms and up to 3-way interactions. The best subspace, indexed by {k1, k2}, 

is selected with V-fold cross-validation. The final model fit is the one that minimizes the 

empirical risk, based on all the sample data over the subspace selected with V-fold cross-

validation.

The minimization in the sequence of subspaces is accomplished with the DSA algorithm. 

The intuitive idea is that the algorithm searches for a better model in the ‘neighborhood’ of a 

‘current best model’–e.g., A + AV1 + V2. This ‘neighborhood’ is defined as the deletion, 

substitution and addition sets of the current best model. Given the current best model above 

with k = 3 terms, the deletion set contains models of size k − 1 terms, by deletion of one of 

the k terms from the current model and keeping the other terms (e.g., AV 1 + V2). The 

substitution set contains models of the same size k (e.g., A2 + AV1 + V2), where each of the k 

terms is replaced by a new term, respectively. The addition set contains models of size k + 1, 
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by adding a new term (a single variable or a new term generated by substitution) to the 

current model (e.g., A + AV1 + V2 + V1).

To evaluate models, the algorithm starts with an intercept model of size k = 0. Then the 

algorithm performs an addition move, where only a main effect term is added each time (the 

addition set of the current intercept model only includes main effect terms). The best model 

of size k = 1 is the one that has the minimal empirical risk (mean squared residual) among 

all the univariate models. The minimal empirical risk and the best model of size k = 1 are 

then saved.

Next, since there is only one term in the model, the algorithm carries out a substitution 

move. At this point, the algorithm is not interested in the deletion set that returns to the 

intercept model, and may conduct additional substitutions with interaction terms depending 

on the number of n-way interactions specified by the user. Within the substitution set, the 

substitution move finds the minimal empirical risk and its corresponding model and 

compares this minimal empirical risk with the previously saved minimal empirical risk of 

size k = 1. If the empirical risk of the substitution move is less, the minimal empirical risk 

and the best model of size k = 1 will be updated and a new round of substitution begins. If 

the empirical risk of the substitution move is not less than the saved empirical risk, the 

algorithm will keep the previous model and go to an addition move by adding a second term.

Once there is more than one term (exclusive of the intercept) in the model, the algorithm 

will perform a deletion move first. The deletion move finds the minimal empirical risk and 

its corresponding model within the deletion set and compares this minimal empirical risk 

with the previously saved minimal empirical risk of size k = 1. If the empirical risk of the 

deletion move is less, the minimal empirical risk and the best model of size k − 1 will be 

updated and the algorithm goes back to a new round of deletion moves (i.e., if there are at 

least two terms left in the model) or substitution moves (if only one term is left in the 

model). If the empirical risk of the deletion move is not less than the saved empirical risk of 

k − 1, the algorithm will keep the previous model and go to a substitution move. Addition 

moves will be considered up to a maximum model size as specified by the user. The DSA 

algorithm reports the best model for each size k.

If the subspace also is restricted by maximal order of interactions (e.g., 2-way interaction or 

3-way interaction), the deletion, substitution and addition sets are generated under this 

additional restriction. For example, if the allowed maximal interaction is 3-way interaction, 

then the DSA algorithm will be carried out three times; first, for models with no 

interactions; second, for models that include 2-way interactions; finally, for models that 

include 2-way and 3-way interactions. The DSA algorithm returns the best models for all 

possible combinations of size and level of interaction allowed by the user.

6. Data-adaptive estimation of nuisance parameter models

Since the estimation of MSMs depends on nuisance parameter models, it should be 

emphasized that the cross-validation DSA algorithm needs to be applied to select these 

models as well, if they are unknown. Selection of a model (i.e., estimator) can occur by a 

number of different approaches. In each case, the selection of the model precedes the fit of 
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the MSM. One approach to selection of the model (e.g., IPTW estimator) is through an 

integrated step within the cvMSM component of the cvDSA procedure, described in Section 

1. Specifically, the training sample that is used to fit a candidate MSM is treated as a whole 

sample and is split into a number of subsets. Each of these subsets represents training and 

validation datasets at the level of the fit and selection of the treatment model. Once a 

candidate treatment model is selected through this process, it is used to estimate the 

candidate MSM. Other approaches to the selection of the IPTW treatment model, as well as 

other estimators, are the cvGLM procedure, available with the cvDSA package, or the 

alternative R-package (DSA) which is used to fit conditional models exclusively. These 

models would be submitted directly to the cvMSM.

In practice, when one considers treatment models, one examines the association of the 

outcome variable with each covariate that one considers a potential confounder of the causal 

effect. Only those variables that are associated with the outcome (e.g., p < 0.2) are included 

in the selection of the treatment model.

Different criteria can be used to select treatment models. For example, a model selection 

criterion was proposed to select the treatment model by minimizing the mean-squared error 

of the estimator of the MSM (Brookhart and van der Laan, 2006). However, this joint 

selection of the treatment and MSMs is not implemented in the current cvDSA R-package. 

Instead, the criterion used to select treatment models is based on a simpler set of 

computations which involve minimization of the cross-validated mean-squared error of the 

treatment model itself.

Ultimately, selection of one of the available estimators depends on which among them can 

provide consistent MSM estimates. Also, the fit of the MSM will depend on the fit of the 

nuisance model given the extent of the data to address the ‘no unmeasured confounders’ 

assumption and the selection criteria provided by the user to the algorithm.

7. Assessment of the cross-validation DSA algorithm for model selection

7.1. Overview

Simulations were carried out to assess the performance of the cross-validation DSA 

algorithm for the selection of both conditional models and MSMs under a variety of 

controlled conditions. Data were typically generated based on a random model (e.g., Y ~ X), 

where the set of covariates X (e.g., x1−x4) was comprised of random uniform variables, and 

the parameter values in front of the Xs were generated randomly from the uniform 

distribution. Random error was incorporated as part of the model as well. The DSA 

algorithm was utilized to select models closest to the models that generated the data – i.e., to 

select the model Y ~ X, for several replicates of data. The bias and mean square error (MSE) 

were determined for the different DSA-selected models to assess the model proficiency for 

each of these replicates.

A similar approach was taken to assess the DSA selection of MSMs; however, in addition, a 

binary treatment variable was generated, and the data were simulated to invoke confounding 

between this treatment variable and the outcome Y. In addition, this latter simulation 
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included comparisons of the bias and MSE between MSMs selected by DSA and arbitrary, 

assumed MSMs, for the different simulated data.

Modifications were made to this overall scheme to assess the cross-validation DSA 

algorithm. Details that pertain to each of the different simulations are given below. Results 

of the simulations are provided in Tables 1a and 1b, and Figs. 2–5. The results are explained 

in Section 7.3.

7.2. Simulation methods

7.2.1. Simulation study 1—This simulation evaluated DSA model selection in the 

presence of varying sample size and random noise (error). The simulated data were based on 

four covariates x1−x4, all random uniform, and a fixed data-generating model for Y : − 1 + x1 

+ x2 + x1x3 (see Table 1a, Study 1). Datasets of different sizes N (i.e., 500, 1000, 5000) were 

generated, and random error was added to the outcome Y based on the standard normal 

distribution with standard deviation σ (i.e., 0.25, 0.5, and 1.0), in separate instances.

The DSA algorithm for selection of conditional models was used, and the selection criteria 

that were submitted included 5-fold cross-validation; a maximum model size = 4; orders of 

interaction = 2; and maximum sum of polynomial order or interaction = 2. An illustration of 

how these selection criteria are submitted to the algorithm is provided in Appendix 3.

The bias of each selected model was estimated based on the difference E(θ) – E(θ′), where θ 

represents the vector of predicted values based on the data-generating (‘true’) model and θ′ 

represents the vector of predicted values based on the DSA-selected model. The MSE was 

calculated as Bias2 + variance, where the variance was estimated as Σ(Y – θ′)2/(n – p), where 

Y represents the vector of observed responses, n is equal to the number of observations, and 

p is equal to the number of parameters in the DSA-selected model.

7.2.2. Simulation study 2—This particular simulation assessed DSA model selection 

where random models were used to generate the simulated data. Again, DSA model 

selection was evaluated given different sample sizes and random error imposed on Y. The 

simulated data were based on four covariates x1−x4, as in the previous simulation, except the 

data-generating model for Y was not fixed but random for each simulated dataset (see Table 

1a, Study 2). Values of the coefficients in the random models were generated from the 

uniform distribution, and the signs in front of the coefficients (−1, 0, 1) were randomized. 

Datasets based on different sample sizes (i.e., 500, 1000) were generated, and random error 

σ (i.e., 0.25, 1) was assigned. The selection criteria submitted to the algorithm were the same 

as those used in the previous simulation. The bias and MSE were determined for each of the 

models selected as described above.

7.2.3. Simulation study 3—This next simulation assessed the specificity and sensitivity 

of DSA model selection. The simulated data were based on additional covariates x1−x10, 

where some of these covariates were random binary variables. The data-generating model 

for Y was not fixed but random for each simulated dataset (see Table 1a, Study 3). In 

addition, the data-generating model consisted of 4 terms or 10 terms, in separate instances, 

to determine how well the DSA algorithm selected a smaller model (specificity) or a larger 
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model (sensitivity) given the additional covariates that were added as part of the simulation. 

The simulation was evaluated in the context of varying sample sizes (i.e., 500, 1000), with 

the same random error (i.e., σ = 1) assigned to Y. One model selection criterion was 

modified from the previous simulations by an increase in the maximum model size from 4 to 

10. The bias and MSE were calculated as previously described for each of the selected 

models.

7.2.4. Simulation study 4—This last simulation examined the performance of the cross-

validation DSA algorithm to select MSMs. The simulated data were based on a few 

covariates (x1−x4), and a binary treatment variable whose values (A = 0, 1) were assigned 

based on a linear combination of covariates (i.e., 0.9 + x1 + 0.5x2 − 1.3x1x3), to invoke 

confounding between A and Y. Random error was incorporated also as part of the treatment 

assignment. The data-generating model for Y (an MSM) was not fixed but random for each 

simulated dataset that was generated (see Table 1b). Each model consisted of the binary 

treatment variable, and two covariates (x1, x2) to represent V in the MSM. Parameter values 

of the different model terms were based on values generated at random from the uniform 

distribution. The simulation was designed so that x1 appeared randomly in the model as 

either a square term or as part of an interaction with A (i.e., , Ax1, respectively). The cross-

validation DSA algorithm was used to choose models closest to those used to generate data. 

By way of comparison with the DSA-selected MSMs, we fit fixed, misspecified (i.e., 

assumed) MSMs to the data which included the treatment variable, and x1 and x2 as singular, 

first-order terms only.

All datasets in this simulation were of equal sample size (N = 500), and constant random 

error (σ = 0.25) was added to the outcome Y. Different situations characteristic of MSM 

analyses were incorporated to assess the adaption of the DSA algorithm to these different 

circumstances. For example, confounding (i.e., 0.9 + 3x1 + 1.5x2 − 1.3x1x3), and random 

error (σ = 1) were increased in separate simulations. Given the additional time required to 

select MSMs with the DSA algorithm, 200 rather than 500 replicates of data employed in 

the previous simulations were used to examine the distribution of bias and MSE for the 

different selected models.

The model selection criteria used as part of cvMSM() included 5-fold cross-validation; a 

maximum model size = 4; orders of interaction = 2; and maximum polynomial order of the 

different terms = 2. The model for A given the covariates (e.g., A ~ X) provided above was 

submitted to the algorithm, as well as a model A ~ V, where V = x1, x2. The models were fit 

with IPTW estimation which included the option for stabilized weights.

7.3. Simulation results

Tables 1a and 1b contain representative models from the different simulations and illustrate 

the extent to which models selected by the DSA algorithm approximate those that were used 

to generate the actual data. Measures of bias and mean square error (MSE) summarize the 

differences based on the models selected by the DSA algorithm and the true models of the 

data. Particular conditions are shown (Tables 1a and 1b, far left column) to illustrate how 

model selection depends on the sample size and random variability of the data. Tables 1a 
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and 1b provide single instances of model selection based on single replicates of data, and the 

corresponding bias/MSE of the selections in question. Figs. 2–5, on the other hand, provide 

distributions of bias and MSE corresponding to models selected by the DSA algorithm based 

on multiple replicates of data, where data were generated repeatedly, and fit with models, for 

each of the simulations.

Overall, there was a tendency among selected models toward more bias and variance given 

more random error in the data (Fig. 2, σ increased from 0.25 to 1). This result is not 

unexpected given that it is difficult to select and fit models given variable data in practice. 

However, the results showed also that increased bias/variance given increased random 

variability was mitigated by increased sample size.

The convergence of bias to 0 and the MSE to σ 2, the level of variance in the data which was 

due to random noise, suggest that the model estimates returned by the DSA algorithm are 

both consistent and efficient.

Comparable results were shown for selected models based on data that were generated based 

on random models of Y given X (Table 1a, Study 2; Fig. 3).

Results were likely similar, given: (1) the DSA method of selection was unchanged between 

simulations 1 and 2; and (2) the random models used in simulation 2 could, in theory, have 

been represented by the same fixed model used to generate the data in simulation 1.

The DSA algorithm was tested also to determine the specificity/sensitivity with which it 

selected models (Table 1a, Study 3; Fig. 4), based on an enlarged model space–i.e., 

additional covariates and increased maximum model size.

Given the opportunity to apply several models for given data distributions, the algorithm 

returned models that approximated the true representative models for a majority of the 

replicates, whether large or small (see representative models and corresponding bias (Table 

1a) to get a sense of the relative effect of bias on the model results). Moreover, the pattern of 

bias and MSE of the models in this simulation – i.e., smaller with increased sample size – 

was similar to that of previous results.

The results of the simulation with DSA-selected MSMs demonstrated that these models 

were similar to the true MSMs that were used to simulate the data (Table 1b; Fig. 5); 

however, the results indicated, also, that the models returned by the DSA could be 

susceptible to additional bias under given conditions.

The results showed that increased random error and confounding, respectively, contributed 

toward greater bias of the selected MSMs (see Fig. 5). These sources of bias can be 

mitigated by increased sample size, in the case of random error, and alternative estimators of 

MSMs (e.g. G-computation), in the case of confounding. Compared with the fixed 

(assumed) MSM, the DSA-selected models had more bias but significantly smaller MSE. 

Based on the selection criteria submitted to the DSA algorithm for MSM selection (i.e., 

square terms, 2-way interactions between covariates), the gain in terms of the models was 

decreased variance but at some cost in bias. Additional bias was observed for the DSA-

Haight et al. Page 12

Comput Stat Data Anal. Author manuscript; available in PMC 2014 December 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



selected MSMs given greater confounding. The DSA-selected models were based on IPTW 

estimation, and, for several of the replicates, were biased most likely because of ETA 

violation. An examination of data for some of the replicates revealed that the predicted 

probabilities of treatment were correlated with observed treatment levels, thus violating a 

key assumption for identification of causal effects: all treatment levels are observed given 

covariates (data not show). ETA violation can occur as the result of increased confounding, 

and is known to lead to biased IPTW estimates (van der Laan and Robins, 2002; 

Neugebauer and van der Laan, 2003). Both increased bias and variance were observed for 

the DSA-selected and fixed MSMs when additional random error was imposed on the data. 

However, the sample size on which these results were based was 500. The bias and variance 

of the DSA models, due to random error, would be mitigated with a larger sample.

In summary, the findings from the simulations indicate that the cross-validation DSA 

algorithm is a highly effective tool for model selection, and provides models with consistent 

estimates and minimal variance. Moreover, the simulation based on MSM selection clearly 

demonstrated the advantages of the cross-validation DSA algorithm for explaining 

underlying variability that could not be achieved with an assumed model–even in the ideal 

situation, as represented in this simulation, where the terms of the assumed model were 

known to be close to those of the true models of the data.

8. Illustrative real-data analysis with the cross-validation DSA algorithm for 

selection of MSMs

8.1. Overview

The cvDSA algorithm was used to select MSMs to answer the following question: does a 

population-level 1-liter increase in FEV1 (forced expiratory volume in 1 s), a continuous 

measure of lung function, reduce the hazard of cardiovascular mortality, given age and sex 

in subjects 55 years and older with no history of active smoking? The objective of the 

analysis was to use a point treatment study to demonstrate the use of the DSA and cvDSA 

packages for the selection of treatment models and MSMs, respectively, and to compare the 

models selected by these routines with those models that might otherwise be assumed by an 

investigator for this type of analysis. The portion of the analysis that involved the selection 

of treatment models represented the application of the DSA package, given available data, 

for satisfaction of the no unmeasured confounders assumption–one of the assumptions that 

is required for the identification of the causal effect of interest.

8.2. Subject characteristics

Data were from a study population of 1053 subjects (716 women, 337 men) with no history 

of active smoking from a larger longitudinal study of older adults (Satariano et al., 1998; 

Tager et al., 1998), which were examined in a previous analysis (Eisner et al., 2007). 113 

cardiovascular deaths occurred in this group, for which the average length of follow-up time 

was approximately 8.5 years. FEV1 was measured at the study baseline at the ages 

participants entered the study. Various covariates were collected for the study, and 

distributions of these are provided in Table 2.
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8.3. Model comparisons

For the purposes of the comparison, the following were examined: (1) an assumed MSM 

based on an assumed treatment model; (2) assumed MSMs based on DSA-selected treatment 

models; and (3) DSA-selected MSMs based on DSA-selected treatment models. The 

assumed MSM throughout the analysis was a Cox proportional hazards MSM:

to evaluate the effect of a population-level 1-liter increase in baseline FEV1 on the 

subsequent underlying baseline hazard of cardiovascular mortality λ0(t) over an 8-year 

period, given age and sex. The model is similar in form to one applied previously (Hernán et 

al., 2000).

8.4. Nuisance parameter ‘‘treatment’’ model selection

Different candidate covariates from Table 2 were considered for the treatment models, 

which were used to derive weights and identify the causal parameters of the various MSMs 

based on IPTW estimation (Robins, 1999). Given that age, sex, cardiovascular disease, and 

second-hand smoke (SHS) exposure were associated with the outcome, and potentially 

associated with FEV1, these variables were included in an assumed model (see Table 3, 

Treatment Model I). These variables were submitted to the DSA procedure (see the 

formulation in Appendix 3, Part A) which fit a model with up to eight terms that could 

consist of second-order polynomial terms and 2-way interactions (Table 3, Treatment Model 

II). The list of covariates was expanded to include body mass index (BMI) and measures of 

serum cholesterol (i.e., HDL, LDL) that one might want to consider, although these were not 

associated with cardiovascular mortality in these data. Based on this adjusted list, the DSA 

procedure selected a different treatment model (Table 3, Treatment Model III). Diabetes, an 

important cause of cardiovascular disease, was considered as a potential confounder, but 

was not included in the models that were selected.

8.5. MSM selection

To select and estimate MSMs, the various treatment models above were specified as 

parameters in the cvDSA algorithm (see ‘gaw’ in Appendix 3, Part B). Other parameters that 

were specified as part of the algorithm included: (1) variables that were potential covariates 

in the various nuisance parameter models (W ); the baseline covariates – age and sex – 

included in the MSMs (V ); and the model formulation based on age and sex (gav), used by 

the algorithm, in conjunction with the specified treatment models, for the development of 

stabilized IPTW weights.

All MSMs were fit with weighted pooled logistic regression to approximate a Cox 

proportional hazard regression (D’Agostino et al., 1990), where each subject contributed 

data for each 6-month interval that she/he was in the study up to the time of death or loss to 

follow-up. In addition to a fixed IPTW weight calculated for each person by the algorithm, 

each subject contributed a censoring weight based on the likelihood of being observed for 

the time she/he was in the study. These censoring weights were developed based on separate 
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models used to estimate each subject’s probability of missing FEV1 and/or serum 

cholesterol, which were systematically missing variables, and each subject’s probability of 

loss to follow-up. These models were not selected with the algorithm; rather, models that 

included covariates from the treatment models which were significant predictors (p < 0.05) 

of censoring were retained. A more formal analysis would have selected censoring models 

based on the algorithm, since consistent estimation of causal parameters depends on the 

proper specification of both the treatment and censoring models. The cvDSA algorithm was 

then used to fit MSMs with up to six terms (i.e., a saturated model of FEV1, age, and sex) 

that could consist of second-order polynomials and 2-way interactions. An added 

specification partitioned data at the subject level, rather than at the record level, for purposes 

of cross-validation, given that repeated observations occurred for each subject.

Standard errors (SEs) were calculated for some selected models based on a non-parametric 

bootstrap (i.e., 1000 samples) (Efron and Tibshirani, 1993). For each bootstrap sample, the 

data were refit with the treatment model and MSM selected in the original data analysis, and 

the IPTW estimator was recalculated. Thus, the SEs obtained were ‘true’ to the extent that 

these models were the ‘true’ models for each bootstrap sample.

9. Results of data analysis with the cross-validation DSA algorithm

Representations of assumed models and models selected by the DSA algorithm, for both the 

treatment models and the MSMs themselves, are given in Tables 3 and 4, respectively. The 

cross-validated (cv) risk estimates listed next to the models represent the associated average 

“risk” of each of these models, based on size and complexity (i.e., interaction terms), as 

predictors of different partitions of the data with cross-validation. The cv risk represents the 

criterion by which models are selected by the DSA algorithm, with the lowest cv risk 

representative of the best possible model given user-defined search criteria (e.g., maximum 

size, levels of interaction).

In Table 3, the differences between the various treatment models that were selected were 

apparent, given the differences in cv risk and the models themselves. The DSA-selected 

model that included BMI was the best predictor of the “treatment”, FEV1. Estimated 

coefficients based on this model indicated that FEV1 was lower for women than men, and 

was lower with increased age and BMI, albeit these effects varied with respect to the levels 

of other variables in the model.

By contrast, differences between the assumed and DSA-selected MSMs shown in Table 4 

were smaller in terms of these models’ cv risk estimates. The assumed MSMs reflect the 

hypothesis that differences in FEV1 have an overall population effect on the hazard of 

cardiovascular mortality. However, the smaller models selected by the DSA indicated 

otherwise. In particular, the MSM selected by the DSA (Table 4, MSM Model 8), based on 

the best IPTW estimator of the data (Table 3, Treatment Model III), suggested that age alone 

provided a sufficient fit of the data.

A comparison of the results based on the optimal IPTW estimator (Treatment Model III) 

suggested that a model with age alone fit the data best (Age: β (SE) = 0.14 (0.02); cv risk = 

0.0119013), followed by a model with age and sex, which was estimated with less precision 
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(Age: β (SE) = 0.16 (0.02); Sex: −0.92 (0.37); cv risk = 0.0119224). By comparison, the 

assumed MSM which included FEV1 was fit with even less precision (FEV1: β (SE) = −0.35 

(0.43); Age: 0.14 (0.03); Sex: −1.25 (0.44); cv risk = 0.0119274).

Plots of cv risk estimates against model size and complexity provide a graphical 

representation of the relative differences of the models considered in the DSA MSM 

selection process (see Fig. 6). For example, the two points with the lowest cv risk estimates 

in Fig. 6 (right side) are representative of the DSA models where FEV1 was excluded as a 

main effect.

Separate results compare estimates of an assumed MSM based on an assumed treatment 

model (Table 4, model 2) with other assumed MSMs that were based on DSA-selected 

treatment models (Table 4, models 4 and 7). The differences in the results are indicative of 

the sensitivity of MSM estimates to the choice of treatment models.

In summary, this analysis demonstrates the utility of the DSA algorithm for selection of 

treatment models and MSMs that would not likely be considered as potential models in 

practice. Moreover, it highlights the importance of selection of appropriate treatment models 

for proper estimation of MSM causal parameters.

10. Discussion

The cross-validation DSA algorithm is one of the first model selection procedures written to 

identify and to estimate causal models for given data distributions and represents an 

important advancement in the application of MSMs for epidemiologic research. 

Development of the algorithm represents the combination of (1) a set of theoretical results 

that showed that, with cross-validation, an intensive data-adaptive model search can be 

conducted with finite sample data and that a model, closest in approximation of a true model 

of the data, can be selected from among many candidate models that might be considered 

(van der Laan and Dudoit, 2003; van der Laan et al., 2004); and (2) the development of the 

deletion–substitution–addition (DSA) algorithm used to generate and select models, and, 

thus, approximate the model space for a given data distribution, based on cross-validation 

(Sinisi and van der Laan, 2004).

The performance of the algorithm to select models relative to true models of given data was 

examined with simulations. The algorithm returned consistent models with minimal 

variance, and returned better representative models of the underlying data than the fixed 

MSMs that were evaluated. This finding clearly points to the advantages and practical uses 

of the algorithm with regard to model interpretability and precision. Still, there is the 

potential for bias, as suggested by the simulation that included increased levels of 

confounding. Biased IPTW estimates in particular can occur as the result of large subject-

specific weights, and reflect a violation of the ETA assumption necessary for the 

identification of causal effects (Cole and Hernán, 2008). Different methods can be employed 

to address this assumption (Hernán et al., 2000; Robins et al., 2000; van der Laan and 

Robins, 2002; Haight et al., 2003; Bembom and van der Laan, 2007). Other estimators are 

available, too, that can provide consistent and potentially more efficient estimates than 
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IPTW (van der Laan and Robins, 2002; van der Laan and Rubin, 2006; Robins et al., 2007; 

Tan, 2007; Cao et al., 2009; Goetgeluk et al., 2009).

The real-data analysis provided the opportunity to compare models the algorithm selected 

with hypothetical assumed models, i.e., a priori models. The treatment models selected by 

the cross-validation DSA algorithm demonstrated the algorithm’s capacity to identify 

variables and relationships between those variables that were not originally assumed. 

Similarly, the algorithm’s selection of an MSM that excluded FEV1 as a causal effect 

demonstrated the algorithm’s choice of a model that was more representative of the 

underlying data; i.e., FEV1 in the assumed model was measured with imprecision; therefore, 

there was no clear evidence that it represented a causal effect with the given data. Although 

the analysis was oversimplified, it illustrated the use of algorithm to examine and recast the 

modeling assumptions that are applied in data analyses.

The cross-validation DSA algorithm represents an important methodological advancement 

with important statistical and subject matter implications for model selection and MSM 

analyses. It provides for exploration of a wide assortment of possible models, beyond what 

current forward/selection procedures can explore, and from these obtain a model closest to 

the true model of the given data. Consequently, one can have greater confidence in the 

inferences one derives from analyses, given that the models selected do not depend entirely 

on a priori assumptions (they still depend on chosen variables used in the selection process), 

but are more likely to represent underlying patterns in data. The algorithm is intended as a 

tool to augment the search of potential causal mechanisms, but is not expected to replace 

one’s discretion in terms of one’s knowledge of potential underlying causal mechanisms.

The DSA algorithm has additional functions that were not developed for the cvDSA 

procedure: (1) selection of models based on different numbers of observations, depending on 

the number of terms with missing values included in the model search; (2) random 

partitioning of data into training and validation subsets for cross-validation, rather than 

generating fixed partitions only; and (3) extension of the machine-learning approach where 

user-supplied models are assessed with respect to model fit, and if necessary, augmented by 

the algorithm to provide more reasonable fits of given data. Both the DSA and cvDSA 

packages are based on an integrated data-adaptive estimation procedure, which enable 

model searches that are concurrently intensive and robust.

In summary, this paper was intended to illustrate the motivation behind the development of 

the cross-validation DSA algorithm, examine the mechanisms by which the algorithm 

selects models, and explore various aspects of the algorithm through simulation and data 

analysis to inform the researcher who decides to include it among his/her analytical tools.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Overview of the cross-validation deletion–substitution–addition algorithm for model 

selection.
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Fig. 2. 
Bias and MSE of DSA-selected models based on 500 replicates of simulated data given 

varying conditions (sample size: N = 500 (top left); 1000 (top right); 5000 (bottom) and 

underlying variance σ ) where the data-generating model was a fixed model (Simulation 

Study 1).
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Fig. 3. 
Bias and MSE of DSA-selected models based on 500 replicates of simulated data given 

varying conditions (sample size: N = 500 (left); 1000 (right); and underlying variance σ ) 

where the data-generating model was random for each replicate (Simulation Study 2).
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Fig. 4. 
Bias and MSE of DSA-selected models based on 500 replicates of simulated data to 

examine specificity (left) and sensitivity (right) of DSA-selected models for sample sizes N 

= 500 (top) and 1000 (bottom), given additional candidate variables used in model search 

(Simulation Study 3).
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Fig. 5. 
Bias and MSE of DSA-selected MSMs (left) and fixed (user-specified) MSMs (right) based 

on 200 replicates of data for varying conditions: baseline levels of confounding and random 

error (first row); increased confounding (second row); and increased random error (third 

row)).

Haight et al. Page 24

Comput Stat Data Anal. Author manuscript; available in PMC 2014 December 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 6. 
Comparison of cross-validation risk, model size, and model complexity (i.e., interactions) 

based on DSA-selected MSMs #5 (left) and #8 (right).
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Table 1b

Representative comparison of DSA-selected and fixed (assumed) MSMs and measures of model proficiency 

based on Simulation Study 4 with varying conditions.

Conditiona Model Bias MSE

Baseline levels of confounding and random noiseb

True MSMc 7.56 + 9.68A + 9.10x2 + 2.87Ax1

DSA-selected 7.56 + 9.67A + 9.12x2 + 2.85Ax1 −0.006 0.064

Fixed MSM 6.85 + 11.11A + 1.41x1 + 9.12x2 −0.004 0.242

Increased confounding and baseline random noised

True MSM

DSA-selected −0.003 0.055

Fixed MSM 0.94 + 2.05A + 3.05x1 + 4.62x2 0.014 0.118

Baseline confounding and increased random noisee

True MSM

DSA-selected 2.00 + 2.02A + 4.26x2 + 0.46Ax1 0.019 1.012

Fixed MSM 1.85 + 2.22A + 0.35x1 + 4.27x2 0.004 1.010

a
Results are based on N = 500 with varying conditions (levels) of confounding and random error.

b
Baseline levels of confounding represented by g(A|X) = 0.9 + x1 + 0.5x2 − 1.3x1x3 and random error σ = 0.25 were incorporated in simulated 

data.

c
MSM used to generate the simulated data.

d
Increased levels of confounding represented by g(A|X) = 0.9 + 3x1 + 1.5x2 − 1.3x1x3 were incorporated in simulated data.

e
Increased levels of random error defined by σ = 1.
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Table 3

Assumed and cross-validation DSA-selected treatment modelsa for FEV1 in 1053 subjects from the Study of 

Physical Performance and Age-Related Changes, Sonoma, 1993–2003.

Treatment Modelb Type Model formula Cross-validated riskc

I Assumed FEV1 ~ 3.1 − 0.04 Age − 1 Sex + 0.008 CVD − 0.002 SHS 0.201501

II DSA FEV1 ~ 3.02 − 0.06 Age − 0.96 Sex + 0.02 Age * Sex 0.194245

III DSA FEV1 ~ 3.52 − 0.06 Age − 1.76 Sex − 0.0007 BMI2 + 0.02 Age* Sex + 0.03 
BMI* Sex

0.184641

a
Selection criterion submitted to the DSA algorithm allowed the procedure to select models up to eight terms, with second-order polynomials and 

2-way interactions.

b
Model II was based on candidate covariates that included age, sex, cardiovascular disease (CVD) and second-hand smoke exposure (SHS). Model 

III was based on an expanded list of candidate covariates that included body mass index (BMI) and measures of serum cholesterol (HDL, LDL).

c
Results can vary if the V-fold splits used in the estimation procedure of the DSA algorithm are not fixed.
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Table 4

Assumed and cross-validation DSA-selected MSMsa for the causal effects of FEV1, age, gender on the hazard 

of cardiovascular mortality in 1053 subjects from the Study of Physical Performance and Age-Related 

Changes, Sonoma, 1993–2003.

MSMb Type Model formula Cross-validated risk

1 Assumed Intercept only 0.0127950

2 Assumed −5.13 − 0.18 FEV1 + 0.15 Age − 1.10 Sex 0.0126576

3 Assumed Intercept only 0.0147159

4 Assumed −4.55 − 0.33 FEV1 + 0.14 Age − 1.35 Sex 0.0144916

5 DSA −6.07 + 0.08 FEV1 *Age 0.0144237

6 Assumed Intercept only 0.0119989

7 Assumed −4.59 − 0.35 FEV1 + 0.14 Age − 1.25 Sex 0.0119274

8 DSA −6.13 + 0.144 Age 0.0119013

a
Selection criterion submitted to the cvDSA algorithm allowed the procedure to select models up to six terms with 2-way interactions.

b
MSMs based on the application of different treatment models for FEV1 (see previous table): Models 1–2 (Assumed Treatment Model I); Models 

3–5 (DSA-selected Treatment Model II); Models 6–8 (DSA-selected Treatment Model III).
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