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a b s t r a c t

The efficiency loss due to varying cluster sizes in trials where treatments induce clustering
of observations in one of the two treatment arms is examined. Such designs may arise
when comparing group therapy to a condition with only medication or a condition not
involving any kind of treatment. For maximum likelihood estimation in a mixed effects
linear regression, asymptotic relative efficiencies (RE) of unequal versus equal cluster sizes
in terms of the D-criterion and Ds-criteria are derived. A Monte Carlo simulation for small
sample sizes shows these asymptoticREs to be very accurate for theDs-criterion of the fixed
effects and rather accurate for theD-criterion. Taylor approximations of the asymptotic REs
turn out to be accurate and can be used to predict the efficiency loss when planning a trial.
The RE usually will be more than 0.94 and, when planning sample sizes, multiplying both
the number of clusters in one arm and the number of persons in the other arm by 1/RE is
the most cost-efficient way of regaining the efficiency loss.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Trials evaluating the effect of an intervention are often characterized by observations being correlated within clusters.
A well-known case is group or cluster randomized trials (Donner and Klar, 1994; Raudenbush, 1997), where groups
(e.g. schools or general practices) are assigned to one of the several treatment conditions. In these designs groups are
the units of assignment. Observations may also be clustered when individuals are the units of assignment. This may occur
when the treatment itself induces clustering, such as in individually randomized group treatment trials (Pals et al., 2008),
where treatments are given to groups of individuals. In such trials interactions between persons within a group may lead
to observations being correlated (Bauer et al., 2008; Roberts and Roberts, 2005). It is quite common that the clustering
occurs in only one of the treatment arms, such as when group therapy is compared to a condition involving no kind of
intervention (e.g. Bauer et al., 2008; Heller-Boersma et al., 2007; Pisinger et al., 2005) or to a condition involving only
medication (e.g. Dannon et al., 2004; Haugli et al., 2001).
Even if the treatment is given on an individual basis, instead of groupwise, the treatment may induce clustering. This

may occur if several patients are treated by the same therapist. Since it is likely that patients of the same therapist will be
treated in a more similar way than patients treated by different therapists (Pals et al., 2008; Roberts, 1999), observations
within each therapist will be clustered. Also in this case clustering may occur in only one of the two treatment arms, such as
when treatment is contrasted with a waiting-list condition (e.g. Ladouceur et al., 2000; Thompson et al., 1987; Van Minnen
et al., 2003) or with a pharmacological or placebo condition (e.g. Jarrett et al., 1999).
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Starting from a particular cost function Moerbeek and Wong (2008) examined optimal designs and derived sample size
formulas in case there is clustering in one of two treatment arms. The present study extends their study by examining
clusters that are of unequal size. Unequal cluster sizes may be due to variation in actual cluster size, but also due to
nonresponse or dropout of subjects, and therefore is a common situation. The efficiency loss due to variation in cluster sizes
when focussing on the estimation of the treatment effect has already been examined (Candel and Van Breukelen, 2009). The
present study will examine the efficiency loss when considering the ensemble of all model parameters involved. Also the
efficiency loss for the subset of all fixed parameters, among which the treatment effect, and the efficiency loss for the subset
of all variance components, will be considered. In randomized trials the fixed parameters are usually of primary interest. The
standard errors of the fixed effect estimators, however, are a function of the variance components. Furthermore, variance
component estimation in itself may be relevant, such as in quality control studies where the variance in health outcomes
between clusters (e.g. general practices, therapists or therapy groups) is examined (e.g. Van Berkestein et al., 1999). This
motivates studying the efficiency loss also for the variance components. The efficiency criteria that are examined in this
paper, are known as the D-criterion and, in case of a subset of parameters, as the Ds-criterion (Atkinson et al., 2007). For
each criterion the issue is how much efficiency is lost due to varying cluster sizes and how to compensate for this loss.
In deriving the efficiency loss we assume that the data within each treatment arm are (approximately) normally

distributed and are analyzed with mixed effects linear regression. The relative efficiency of unequal versus equal cluster
sizes will be derived for the asymptotic case when the model parameters are estimated through maximum likelihood.
Furthermore, Taylor approximations of the asymptotic relative efficiencies, that can be of practical use when planning a
trial, will be derived. Since in relevant studies (e.g. Calzone et al., 2005; Haugli et al., 2001; Pals et al., 2008; Roberts and
Roberts, 2005; Wampold and Serlin, 2000), the number of clusters as well as the cluster sizes themselves are rather small,
the asymptotic relative efficiencies and their Taylor approximationswill be checked for small samples by an extensiveMonte
Carlo simulation study, both formaximum likelihood and restrictedmaximum likelihood estimation. Finally,wewill address
how to optimally regain the efficiency loss. If we want to minimize the costs involved with a study, should we additionally
sample relatively more clusters for one arm or more persons for the other?
The paper is structured as follows. Section 2 presents the mixed effects linear regression model for trials comparing a

treatment arm with clustering to a control arm without clustering. In Section 3 the criteria for evaluating the efficiency
loss due to varying cluster sizes will be presented. Section 4 will provide explicit expressions for the asymptotic relative
efficiencieswhen comparing equal to unequal cluster sizes, andwill also present Taylor approximations for these asymptotic
expressions. Section 5 will discuss the design and results of a Monte Carlo simulation that examines the relative efficiency
for various cluster size distributions with realistic sample sizes. The accuracy of both the asymptotic relative efficiencies
and the Taylor approximations will be discussed. Section 6 explains how to regain the efficiency loss such that the costs
of a design are minimized. Section 7 illustrates for an empirical example how to determine sample sizes in case of the
Ds-criterion for fixed effects and how to adjust these to repair the efficiency loss that is expected due to varying cluster
sizes. The paper closes with some implications for the planning phase of trials.

2. The mixed effects linear regression model

Suppose in a randomized trial cognitive behavioural group therapy is given to patients with a panic disorder, and its
effectiveness in terms of anxiety reduction is compared to only receiving medication (e.g. paroxetine) (cf. Dannon et al.,
2004). Within the treatment arm we then have K therapy groups, or, more generally, K clusters. In cluster j (j = 1, . . . , K )
there are nj persons, with all persons receiving the treatment. The total number of persons in the treatment arm therefore
amounts to N =

∑K
j=1 nj. In the control arm medication is given and there is no clustering. This condition is denoted as the

K + 1th cluster, consisting of nK+1 persons. If the cluster sizes are equal, we have nj = n for j = 1, . . . , K , but in general not
for j = K + 1 (e.g. when nK+1 = N).
Let the outcome variable be some quantitative measure of anxiety, such as the Hamilton rating scale for anxiety

(cf. Dannon et al., 2004), which is denoted as yij, for person i in cluster j (j = 1, . . . , K + 1). If yij is (approximately) normally
distributed, mixed effects linear regression is an appropriate tool for data analysis. The corresponding analysis model is then
as follows (cf. Bauer et al., 2008; Moerbeek and Wong, 2008; Roberts, 1999):

yij = β0 + (β1 + u0j + εij)Tij + δij(1− Tij), (1)

where Tij denotes the treatment condition for person i in cluster j, and is coded as 1 for persons in the treatment arm and
0 for persons in the control arm. With this coding scheme, β0 represents the mean anxiety score of the control condition
(i.e. pharmacological treatment) and β1 represents the treatment effect of group therapy versus medication on anxiety.
The terms εij and u0j represent a random person and random cluster effect in the treatment arm, which are assumed to be
independently normally distributed with variances σ 2ε and σ

2
0 respectively. The random person effect in the control arm,

δij, is also independently normally distributed, with a possibly different variance σ 2δ . So the model has five parameters that
have to be estimated: two fixed regression weights, β0 and β1, and three variance components, σ 20 , σ

2
ε and σ

2
δ . Estimates of

these parameters can be obtained throughmaximum likelihood (ML). A relevant concept is the intraclass correlation, which
is the correlation between outcomemeasures for two randomly drawn persons from the same cluster in the treatment arm.
The intraclass correlation, denoted as ρ, can be expressed in terms of the variance components as: ρ = σ 20 /(σ

2
0 + σ

2
ε ).
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3. Efficiency criteria

A commonly used criterion for evaluating estimators of parameters is the determinant of the variance–covariancematrix
of these estimators (see e.g. Kessels et al., 2008; Moerbeek, 2005; Ortega-Azurduy et al., 2008; Tekle et al., 2008). This
is known as the generalized variance of the parameter estimators and denoted as the D-criterion (Atkinson et al., 2007).
Although the D-criterion originally was defined for the fixed parameters of the model (Atkinson et al., 2007), in this study,
similar to Candel et al. (2008), we will consider the determinant of all model parameters involved, also including the
variance components. The determinant of a subset of the parameters is denoted as the Ds-criterion (cf. Atkinson et al.,
2007), and more specifically as Ds(fixed) for the fixed parameters and as Ds(random) for the variance components. As
explained in the introduction, variance components are also considered since they are part of the standard errors of the
fixed effect estimators, and since their estimation is important in, for instance, quality control studies. Optimal designs that
minimize these three criteria, that is, the D-criterion, Ds(fixed) or Ds(random), can be shown to be invariant under linear
transformations of the independentmodel variables (see Appendix A for a proof). Moreover, designs thatminimizeDs(fixed)
have been shown to minimize the area of the confidence region for the fixed parameters (Anderson, 1958). To examine the
efficiency loss due to varying cluster sizes, we compare unequal to equal cluster sizes for each of these three criteria.
Let θf denote the vector of the f fixed parameters, let θr denote the vector of r variance components. Then θT = [θTf , θ

T
r ]

is the vector of all, that is p = f + r , model parameters. For the model in Eq. (1), we have p = 2 + 3 = 5. Let ξ denote
the design of a study. The variance–covariance matrix of the estimators θ̂ given a design ξ is denoted as Var(θ̂ | ξ). Let
Det(Var(θ̂ | ξ)) denote the determinant of this variance–covariance matrix of the estimators θ̂. In what follows, ξ ∗ denotes
a design with equal cluster sizes: nj = n for j = 1, . . . , K , but not necessarily nK+1 = n. Further, ξ denotes a design with
unequal cluster sizes, but with the same number of clusters, K , the same sample size N of the treatment arm and the same
sample size nK+1 in the control arm as ξ ∗. The relative efficiency (RE) of design ξ compared to design ξ ∗ in terms of the
D-criterion is:

RE(D) =

(
Det(Var(θ̂ | ξ ∗))

Det(Var(θ̂ | ξ))

)1/p
. (2)

The RE in terms of the Ds-criterion can be defined for the fixed parameters, θf , and for the variance components, θr , as
follows respectively:

RE(Ds(fixed)) =

(
Det(Var(θ̂f | ξ ∗))

Det(Var(θ̂f | ξ))

)1/f
and RE(Ds(random)) =

(
Det(Var(θ̂r | ξ ∗))

Det(Var(θ̂r | ξ))

)1/r
. (3)

Since asymptotically there are no correlations between ML estimators of the fixed parameters and the variance
components (see e.g. McCulloch and Searle, 2001, p. 176), for ML estimation the relation between the relative efficiencies
for the D-criterion and the Ds-criteria can be shown to be as follows:

RE(D) = [RE(Ds(fixed))]2/5 × [RE(Ds(random))]3/5 . (4)

For given relative efficiencies in terms of Ds(fixed) and Ds(random), Eq. (4) yields the relative efficiencies in terms of the
D-criterion. In what follows we will therefore focus on Ds(fixed) and Ds(random).

4. Asymptotic relative efficiencies and their Taylor approximations

To present the asymptotic relative efficiencies of the ML estimators in terms of the Ds-criteria, we need some further
notation. Let n̄ denote the average cluster size of the K clusters in the treatment arm and let wj be defined as: wj = (σ 20 +
σ 2ε /nj)

−1. For equal cluster sizes, we have nj = n̄, j = 1, . . . , K , and the weightwj is denoted aswe. The expressions for the
relative efficiencies (RE) based on the Ds-criteria can be shown to be as follows (see Appendices B and C for proofs):

RE(Ds(fixed)) =

√√√√√ K∑
j=1
wj

Kwe
=

√√√√n+ (1− ρ)/ρ
n

×
1
K

K∑
j=1

(
nj

nj + (1− ρ)/ρ

)
, and (5)

RE (Ds(random)) =


N
K∑
j=1
w2j −

(
K∑
j=1
wj

)2
(N − K)Kw2e


1/3

. (6)

The following properties hold for RE(Ds(fixed)) (see Eq. (5)):
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1. The relative efficiencies do not depend on the number of clusters K , but do depend on the intraclass correlation ρ and
the distribution of cluster sizes.

2. Whenwemultiply each nj by a factor c > 0 and (1−ρ)/ρ by the same factor, this does not affect the relative efficiencies.
As a consequence, the minimum of the RE will not depend on n, but will only be achieved at another value of ρ.

3. When ρ → 0 or ρ → 1, we have RE → 1. For 0 < ρ < 1, we can show that the RE ≤ 1 (as a result of the Jensen
inequality; see Mood et al., 1974, p. 72), and RE = 1 if and only if nj is constant (and thus nj = n), implying that equal
cluster sizes are most efficient.

Note that if β0 in Eq. (1) is known from other studies, it need not be estimated and only one treatment arm is needed in
a trial. In this case the one-variance component model (Demidenko, 2004, p. 66) results and the relative efficiency for the
single fixed parameter can be shown to be the same as the relative efficiency in terms ofDs(fixed) of a linearmixedmodel for
cluster randomized trials. The latter has already been studied extensively (Candel et al., 2008; Van Breukelen et al., 2007).
For Ds(random) in Eq. (6), the relative efficiencies also satisfy property 1. Property 2 holds for n̄ large enough such that

N/(N − K) ≈ 1. Property 3 does not hold, in that, when ρ → 0, the asymptotic RE may become larger than 1. However
when ρ → 1, RE → 1. That asymptotic REsmay become larger than 1 for the variance component estimators, was found for
cluster randomized trials and multicentre trials (Van Breukelen et al., 2008). A Monte Carlo simulation study also showed
this to be the case for the simulated REs for small samples (Candel et al., 2008).
The relative efficiencies relate to those of cluster randomized trials (Van Breukelen et al., 2007, 2008) as follows. When

the expression for RE(Ds(fixed)) in Eq. (5) is squared, it is equal to RE(Ds(fixed)) for cluster randomized trials. When the
expression for RE(Ds(random)) in Eq. (6) is taken to the power 1.5, it is equal to RE(Ds(random)) for cluster randomized
trials. This implies that the REs in terms of Ds(fixed) and Ds(random) are closer to one than the corresponding REs for cluster
randomized trials. So, asymptotically, the efficiency loss for a trial where clustering only occurs in one of the treatment
arms is equal to or smaller than the efficiency loss for trials where clustering occurs in both treatment arms. The intuitive
explanation is that with clustering in one of the treatment arms, variation in cluster sizes will only affect the statistical
information in one of the arms, and thus the efficiency loss will be smaller compared to when there is clustering in both
arms.
For planning the sample sizes of a study it will be useful to have an approximation of the relative efficiency without

having to specify the exact distribution of cluster sizes. For cluster randomized trials second-order Taylor approximations
have been derived for the REs in Eq. (3) (see Van Breukelen et al., 2007, 2008). Since the REs for cluster randomized trials are
simply related to the REs for the partially clustered designs that we consider here, Taylor approximations for Eqs. (5) and (6)
immediately follow from these studies.
Consider nj in Eqs. (5) and (6) for j = 1, . . . , K as independent realizations of a random variable with expectationµn and

standard deviation σn. Let CV = σn/µn be the coefficient of variation of cluster sizes. Furthermore, let λ = (µn/(µn + α))
with α = σ 2ε /σ

2
0 = (1 − ρ)/ρ. The following second-order Taylor approximation of the RE in Eq. (5) can be given (cf. Van

Breukelen et al., 2007):

RET (Ds(fixed)) =
√
1− CV 2λ(1− λ). (7)

According to this approximation the relative efficiency depends on the coefficient of variation of the cluster sizes, CV , and,
through λ, on the mean cluster size and the intraclass correlation. If ρ → 0 or ρ → 1, then RET (Ds(fixed)) → 1. For 0 <

ρ < 1 it holds that RET (Ds(fixed)) ≤ 1, with its minimum
√
1− CV2

4 being achieved at ρ = 1/(µn + 1). Furthermore,
RET (Ds(fixed)) decreases as CV increases.
For Eq. (6) the second-order Taylor approximation also follows from previous results (Van Breukelen et al., 2008):

RET (Ds(random)) =
(
1+ CV 2(1− λ)(1− 3λ)

)1/3
. (8)

From Eq. (8) it follows that as ρ → 0, that RET (Ds(random)) → (1 + CV 2)1/3, which is its maximum, and as ρ → 1 that

RET (Ds(random)) → 1. The minimum value of RET (Ds(random)) is
(
1− CV2

3

)1/3
and occurs at ρ = 2

µn+2
. Also, when CV

increases the minimum of RET (Ds(random)) decreases.
Finally, the second-order Taylor expression for the D-criterion follows from Eqs. (4), (7) and (8):

RET (D) =
(
1− CV 2λ(1− λ)

)1/5 (
1+ CV 2(1− λ)(1− 3λ)

)1/5
. (9)

FromEq. (9) it follows that ifρ → 0, thenRET (D)→ (1+CV 2)1/5, which is itsmaximum, and ifρ → 1 thenRET (D)→ 1. The
minimumofRET (D) turns out to have a rather complicated expression.However, itsminimum is higher than theminimumof
theminima of RET (Ds(fixed)) and RET (Ds(random)), and, since theminimum of RET (Ds(fixed)) is the smallest, when interest
is in the D-criterion, taking the minimum of RET (Ds(fixed)) in planning a trial would be a safe strategy. As can be shown by
numerical evaluation, taking theminimum of RET (Ds(fixed)) also is nearly correct, since, for CV ≤ 1, the difference between
the minima of RET (Ds(fixed)) and RET (D) is smaller than 0.01.
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Table 1
Overview of the conditions of the Monte Carlo simulation.

Factor Levels

Distribution of cluster sizesa Unimodal, uniform, bimodal, positively skewed, negatively skewed distribution
Range of cluster sizesb 4, 12
Intraclass correlation ρ = 0.01 up to 0.30, with steps of 0.01
Estimation method ML, REML

a More details on the different cluster size distributions are given in Table 2.
b The exception is the negatively skewed distribution. Similar to other distributions, for n = 6 the range is 4, but, since we require cluster sizes≥3, for
n = 10 the range is 8 instead of 12.

5. Monte Carlo investigation of the relative efficiencies

We will examine to what extent the asymptotic results on RE as well as the corresponding Taylor approximations hold
for numbers of clusters and cluster sizes that are representative of realistic samples through an extensive Monte Carlo
simulation study. In the context of comparing group to individual treatments, the number of clusters as well as the cluster
sizes are typically small (e.g. Calzone et al., 2005; Haugli et al., 2001; Pals et al., 2008; Roberts, 1999). This also holds for
clinical trials where clustering is induced by the therapist (e.g. Jarrett et al., 1999; Ladouceur et al., 2000; Wampold and
Serlin, 2000).

5.1. Design of the simulation study

For all simulations we assumed 50%–50% allocation, that is, 50% of the subjects are assigned to the treatment arm and
50% to the control arm. The error variance for the treatment and the control arm (σ 2ε and σ

2
δ ) were taken to be equal.

Other allocation ratios and variance ratios were also examined, but gave similar results and will therefore not be discussed
here. The following factors influence the asymptotic relative efficiencies and were systematically varied: (1) the frequency
distribution of the cluster sizes, (2) the range of cluster sizes, (3) the size of the intraclass correlation,ρ, and (4) the estimation
method. Table 1 displays the choices made for these factors, the motivation is given in what follows.

5.1.1. Frequency distribution
Five different cluster size distributions were studied: (1) a unimodal, (2) a uniform, (3) a bimodal, (4) a positively skewed

and (5) a negatively skewed distribution. Three different cluster sizes, ga, gb, gc , with respective frequencies fa, fb and fc were
employed. Details of the cluster size distributions can be found in Table 2.

5.1.2. Range of the cluster sizes
We chose an average cluster size n = 6, with a range of 4. Since larger ranges of cluster sizes are not realistic for such

small cluster sizes, also a larger average cluster size of n = 10, was examined, the range of cluster sizes then being 12 for
most distributions. Since we are interested in how well the asymptotic relative efficiencies describe the efficiency loss, and
this is especially relevant for large losses, rather extreme ranges were chosen. The average cluster sizes are representative of
cluster sizes commonly encountered in trials comparing group to individual interventions (e.g. Bauer et al., 2008; Calzone
et al., 2005; Dannon et al., 2004; Haugli et al., 2001; Heller-Boersma et al., 2007; Pals et al., 2008; Roberts, 1999), and in
trials with therapist-induced clustering in one of the treatments arms (e.g. Jarrett et al., 1999; Roberts, 1999; Thompson
et al., 1987; Wampold and Serlin, 2000).
The number of clusterswas fixed at K = 12. Aswas shown in Section 4, the asymptotic relative efficiencies do not depend

on K , and choosing a larger n gives the same RE at a smaller value of the intraclass correlation ρ. However, K and n were
deliberately chosen to be small to check the accuracy of the asymptotic REs.

5.1.3. Intraclass correlation
The intercept variance σ 20 varied from 1 to 30, with the error variance in the treatment condition σ

2
ε simultaneously

varying from 99 to 70, to keep the total variance in the treatment arm at 100. As a result, the intraclass correlation in the
treatment arm, ρ, varied by steps of size 0.01 between 0.01 and 0.30, which represents the range of intraclass correlations
as commonly encountered in cross-sectional studies (Parker et al., 2005; Smeeth and Siu-Woon, 2002).

5.1.4. Estimation method
Two different estimation methods were considered: Maximum Likelihood (ML) estimation and REstricted Maximum

Likelihood (REML) estimation. For both methods negative estimates of the variance components were truncated to 0.
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Table 2
Distributions of the cluster sizes in the treatment arm as examined in the Monte Carlo simulation.

Distributiona,b,c Cluster sizes Range of cluster sizes CV
ga gb gc

Uniform (fa = 4, fb = 4, fc = 4) 4 10 16 12 0.49
4 6 8 4 0.27

Unimodal (fa = 3, fb = 6, fc = 3) 4 10 16 12 0.42
4 6 8 4 0.24

Bimodal (fa = 5, fb = 2, fc = 5) 4 10 16 12 0.55
4 6 8 4 0.30

Positively skewed (fa = 6, fb = 4, fc = 2) 7 10 19 12 0.42
5 6 9 4 0.24

Negatively skewed (fa = 2, fb = 4, fc = 6) 4 10 12 8 0.28
3 6 7 4 0.24

a fa = number of clusters of size ga (small), fb = number of clusters of size gb (medium), fc = number of clusters of size gc (large).
b Cluster sizes and cluster frequencies are chosen such that the total number of clusters in the treatment arm is equal to K = 12, the average cluster
size n = 6 or n = 10, gb is equal to the average cluster size, the smallest group size ga ≥ 3 and the range of the cluster sizes (=gc − ga) varies between 12
and 4.
c CV = coefficient of variation of the cluster size distribution.

5.2. Simulation procedure

For each of the 300 simulation conditions (=5distributions×2 ranges of cluster sizes×30 intraclass correlations) 10,000
data sets were generated. Each data set represents the data for 12 clusters in the treatment arm consisting, on the average,
of 6 or 10 persons and for the control arm consisting of either 72 or 120 persons respectively. The simulations as well as
the estimation of the model parameters were performed in version 1.10.0007 of MLwiN (Rasbash et al., 2000). To obtain
ML and REML estimates of the parameters, the ‘‘Iterative Generalized Least Squares’’ and ‘‘Restricted Iterative Generalized
Least Squares’’ algorithms were employed. In model estimation, the convergence criterion was set to 0.001 and there was
no limit on the number of iterations. From the obtained estimates, the REs as defined in Section 3, were calculated.

5.3. Results on the asymptotic relative efficiency and Taylor approximation

Results are shown for n = 10 and a range of 12. In Fig. 1 the relative efficiencies in terms of the D-criterion are displayed.
Cluster size distributions are shown that give the highest and the lowest values for theminimum RE: a unimodal and a posi-
tively skewed distribution on the one hand and a bimodal distribution on the other. For the unimodal and positively skewed
distribution, the asymptotic REs are rather close to the simulated REs (discrepancy <2%). For the bimodal distribution the
discrepancy between asymptotic and simulated REs is larger and for small intraclass correlations (ρ < 0.05) can become as
large as 4%. For most distributions the asymptotic REs overestimate the simulated REs. In case of the bimodal distribution
the minimum RE approaches 0.94. For most distributions however, similar to the results for the unimodal distribution, the
relative efficiency exceeds 0.96. For a positively and a negatively skewed distribution (the latter is not shown) theminimum
RE even exceeds 0.97.
For a smaller cluster size n = 6, the asymptotic REs generally are somewhat closer to the simulated REs (discrepancy

<1.5% for most distributions). Since the coefficient of variation was smaller for n = 6, this indicates that the asymptotic RE
is closer to the simulated RE in case the CV is lower. Also here for most distributions the asymptotic REs overestimate the
simulated REs. Since the coefficient of variation was smaller, the REs were larger. Table 3 gives an overview of minimum
values for the RE, also for the uniform distribution, for which the minimum RE takes an intermediate position between the
bimodal and unimodal distribution. For n = 6, the minimum REs for skewed distributions (not shown) are close to those
for the unimodal and uniform distribution.
The relative efficiencies in terms of Ds(fixed) are shown in Fig. 2. For the fixed effects, the asymptotic REs describe the

simulated REs very adequately (discrepancy<1%). In the extreme case of the bimodal distribution, the RE still exceeds 0.94.
For the other distributions, similar to the unimodal distribution, the RE always exceeds 0.96. In case of a positively and
negatively skewed distribution (not shown) the RE even exceeds 0.97.
For the relative efficiencies in terms of Ds(random), Fig. 3 shows that the asymptotic REs describe the simulated REs less

adequately: the discrepancy may become as large as 3% (and for REs larger than 1 even more than 3%). For the bimodal
distribution, the RE always exceeds 0.94, for the other distributions it exceeds 0.95.
Also for n = 6 the asymptotic REs are very close to the simulated REs in case of fixed effects (discrepancy <1%), while

the discrepancymay be larger for variance components (up to 3%). An overview of theminimum values for RE in case n = 6,
is given in Table 3. For this smaller cluster size, the skewed distributions have minimum REs close to those for the unimodal
distribution.
If n = 10 and the RE is defined in terms of the D-criterion or Ds(random), the ML estimator has a somewhat higher

RE than the REML estimator. If n = 10 and the RE is defined in terms of Ds(fixed), or if n = 6, then there are hardly any
differences between both estimation methods.
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Fig. 1. The relative D-criterion for a unimodal (top), a positively skewed (middle) and a bimodal (bottom) distribution of cluster sizes, with n = 10 and
gc − ga = 12. Displayed is also the asymptotic relative D-criterion for the ML estimators and its second-order Taylor approximation.

Table 3
Overview of the minimum relative efficiencies based on the Monte Carlo simulations for ML and REML, specified for the bimodal, uniform and unimodal
distribution of cluster sizes, both for a range of the cluster sizes (=gc − ga) 4 and 12.

Features of the cluster size distribution K = 12, n = 6, gc − ga = 4 K = 12, n = 10, gc − ga = 12
Efficiency criterion Bimodal Uniform Unimodal Bimodal Uniform Unimodal

D 0.97 0.98 0.98 0.94 0.96 0.96
Ds(fixed) 0.98 0.98 0.98 0.94 0.95 0.96
Ds(random) 0.97 0.97 0.98 0.94 0.95 0.96

Comparing the same distributions for small and large ranges of cluster sizes (and thus for small and large coefficients of
variation) in Table 3, shows that the simulated REs, in line with the Taylor approximations, have a lower minimum value for
larger ranges of cluster sizes. As illustrated by Figs. 1–3, the Taylor approximations are close to the asymptotic REs. This also
is true for distributions that are not displayed. In cases that the asymptotic REs are close to the simulated REs, the Taylor
approximations therefore are useful in planning a trial.

6. Regaining the efficiency loss due to varying cluster sizes

From Eq. (3) it follows that the efficiency loss for the Ds-criteria can be restored by changing the sample sizes such
that Ds(fixed) and Ds(random) for unequal group sizes become RE(Ds(fixed))f and RE(Ds(random))r as large respectively.
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Fig. 2. The relative Ds-criterion of the fixed parameters for a unimodal (top), a positively skewed (middle) and a bimodal (bottom) distribution of cluster
sizes, with n = 10 and gc−ga = 12. Displayed is also the asymptotic relativeDs-criterion for theML estimators and its second-order Taylor approximation.

By Eq. (4) this also implies restoring the efficiency loss in terms of the D-criterion. Note that for the model under study (see
Eq. (1)), we have f = 2 and r = 3.
For the three efficiency criteria, let RE be the shorthand notation of the relative efficiencies RE(Ds(fixed)), RE(Ds(random))

or RE(D), depending on the context. Let f1 and f2 denote the replication factors of the number of persons in the control arm
and the number of groups in the treatment arm respectively. We will see that in case one wants to minimize the costs
involved in a study, f1 = f2 = 1/RE is the optimal choice for all three efficiency criteria. So nK+1 and K have to be multiplied
by the same factor.
We first define a cost function. Let ct be the costs for each person in the treatment condition, and let cc be the costs

attached to each person in the control condition. Furthermore, let cg be the extra costs attached to each of the groups in the
treatment condition. The total costs of the design, C , can then be given as:

C = nK+1cc + nKct + Kcg . (10)

This cost function can also be used if one is interested in minimizing the total number of subjects, that is nK+1 + nK , simply
by setting ct = cc = 1 and cg = 0 in Eq. (10). Since often there is an ideal group size for the treatment condition, we may
consider n fixed and Eq. (10) can be rewritten as:

C = nK+1cc + K(nct + cg) = nK+1cc + Kc∗t , (11)

where c∗t denotes nct + cg , the costs of one group in the treatment condition.
When compensating for the efficiency loss due to varying group sizes in the treatment condition, one would like to

replicate the design, minimizing this cost function. Appendix D shows that for each of the D-criteria the efficiency loss can
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Fig. 3. The relative Ds-criterion of the variance components for a unimodal (top), a positively skewed (middle) and a bimodal (bottom) distribution of
cluster sizes, with n = 10 and gc − ga = 12. Displayed is also the asymptotic relative Ds-criterion for the ML estimators and its second-order Taylor
approximation.

be restored at the lowest costs by replicating the number of groups and the number of persons in the control condition each
1/RE times (i.e. f1 = f2 = 1/RE). Although these replication factors are not optimal for restoring the efficiency loss in terms
of var(β̂1), they have been shown to be highly efficient for that criterion, in that costs differ from the costs for the optimal
replication factors by less than 1% in almost all cases (Candel and Van Breukelen, 2009).

7. Empirical illustration

We will first illustrate how to calculate the number of clusters, K , and the size of the ungrouped condition, nK+1, for a
trial where the cluster sizes are equal. Next, we will show how to adapt K and nK+1 to compensate for the efficiency loss
resulting from varying cluster sizes.
As an example, suppose we would like to replicate the Reconnecting Youth prevention programme discussed by Bauer

et al. (2008). The programme is meant for high-risk adolescents, defined as those adolescents who had a low grade point
average and a high level of truancy. In the treatment arm this programme is given to groups of adolescents, aiming, amongst
others, at the reduction of deviant peer bonding. In the control condition (ungrouped) high-risk adolescents will receive no
treatment. In estimating the mean post-treatment levels of deviant peer bonding for each of the two arms, a certain level of
precision is required. For this purpose, we can reformulate the analysis model in Eq. (1) as:

yij = (β∗0 + δij)(1− Tij)+ (β
∗

1 + u0j + εij)Tij, (12)
where Tij denotes the treatment condition for person i in cluster j, and is coded as 1 for persons in the treatment arm and 0 for
persons in the control arm. In this alternative formulation, β∗0 represents the mean score of the control condition and β

∗

1 the
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mean score of the treatment condition. Asymptotically, the ML estimators of β∗0 and β
∗

1 in Eq. (12) are normally distributed
and the surface of their 100(1− α)% confidence ellipse, S, is given by (Johnson and Wichern, 2002, p. 127):

S = πχ2df=2;αDs(fixed)
1/2, (13)

where χ2df=2;α is the 100(1− α)% percentile of a chi-square distribution with two degrees of freedom.
In determining the sample size, we require the surface of the 100(1−α)% confidence ellipse not to exceed some criterion

value (cf. Rosner, 2006, p. 259). The reparameterization in Eq. (12) simplifies the derivation of sample sizes, in that, as we
will see, it simplifies establishing a criterion value for the surface of the confidence ellipse of the fixed parameters. It can be
shown that Eq. (B.2) for Ds(fixed) holds for the model in Eq. (12) as well as for the model in Eq. (1) (see Appendices A and B
for a proof). As a consequence, the reparameterization in Eq. (12) does not affect the asymptotic relative efficiency, and, by
Eq. (13), also not the surface of the confidence ellipse and hence the calculation of sample sizes.
For the case of equal cluster sizes Eq. (B.2) reduces to

Ds(fixed) =
σ 2δ

nK+1
×
σ 20 + σ

2
ε /n

K
, (14)

yielding the following expression for the surface of the 100(1− α)% confidence ellipse:

S = πχ2df=2;α

(
σ 2δ

nK+1
×
σ 20 + σ

2
ε /n

K

)1/2
. (15)

Since the ML estimators of β∗0 and β
∗

1 in Eq. (12) (as opposed to the ML estimators of β0 and β1 in Eq. (1)) are independent
(compare Eqs. (B.1) and (B.3)), the criterion value for the surface in Eq. (15) is proportional to the maximum width of the
confidence ellipse for the population mean in the treatment condition, Lt , times the maximum width of the confidence
ellipse for the population mean in the control condition, Lc . More precisely, the criterion value can be expressed as

πχ2df=2;α

(
σ 2δ

nK+1
×
σ 20 + σ

2
ε /n

K

)1/2
≤ π ×

Lt
2
×
Lc
2
. (16)

Since it may be difficult to specify clinically meaningful values for Lt and Lc , it is useful to rewrite Eq. (16) as:

4χ2df=2;α

(
σ 2δ

L2c
×
σ 20 + σ

2
ε /n

L2t

)1/2
≤ (nK+1K)1/2 , or equivalently as

(
4χ2df=2;α

)2 (σ 2δ
L2c
×
σ 20 + σ

2
ε /n

L2t

)
≤ nK+1K , (17)

which can be rewritten further as(
4χ2df=2;α

)2 (σ 2δ
L2c
×
σ 20 + σ

2
ε

L2t
×
σ 20 + σ

2
ε /n

σ 20 + σ
2
ε

)
≤ nK+1K , or

(
4χ2df=2;α

)2 ( 1
ES2c
×
1
ES2t
×

[
n− 1
n

ρ +
1
n

])
≤ nK+1K . (18)

The terms ESc and ESt represent the maximum allowable estimation errors for the fixed parameters of the control and
treatment condition respectively, relative to the variance in each of these conditions. These are commonly used effect sizes,
and what are large or small values for Lc and Lt , may be guided by a well-known classification of Cohen (1992): 0.2 is
considered a small effect, 0.5 a medium effect and 0.8 a large effect.
In the treatment arm of our example, the Reconnecting Youth prevention programme is given to groups of size 9 and

furthermore ρ = 0.06 (cf. Bauer et al., 2008). For a 95% confidence region of the fixed parameters, starting from medium
effect sizes for both the control and treatment arm, that is, ESc = ESt = 0.5, by Eq. (18) it is required that nK+1K ≥ 1510.47.
For the cost function in Eq. (11) the costs are minimized for a given Ds(fixed) whenever nK+1 = K ×

c∗t
cc
(see Eq. (D.6)).

Assuming that the costs of a group in the treatment condition, c∗t , are 10 times the cost of a person in the control condition,
cc , we obtain as values that minimize the costs: K = 12 groups (each of size n = 9) and nK+1 = 126.
The present simulation study shows that variation in group sizes leads to some efficiency loss. To restore the efficiency

in a cost-efficient way, the number of persons in the control arm as well as the number of groups in the treatment arm have
to be multiplied by a factor 1/RE, where RE is the relative efficiency. Since the exact cluster size distribution is unknown,
one may start from a pessimistic scenario, assuming a bimodal distribution with cluster sizes ga = 5, gb = 10, gc = 15 and
cluster frequencies fa = 25, fb = 0 and fc = 17, for which the average group size is 9, the range of cluster sizes is 10 and
the CV is 0.55. Based on the Taylor approximation the RE in terms of Ds(fixed) (Eq. (7)) may become 0.96 at worst. However,
according to the simulation study it is safer to lower theminimum RE by 1%, leading to aminimum RE of 0.95. The efficiency
loss can thus be restored in a cost-optimal way by replicating the number of adolescents in the control arm and the number
of treatment groups in the other arm 1/RE = 1/0.95 = 1.05 times. This yields K = 13 and nK+1 = 133, which is a modest
extension of the original design.
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8. Conclusions and discussion

In analyzing the data from trials in which treatments have clustering effects, care has to be taken of the dependency
between observations within clusters. For outcomes that are (approximately) normally distributed, mixed effects linear
regression is a way of capturing this clustering. When comparing group therapy to pharmacological treatment or to no
treatment at all, or when comparing an individual treatment condition where therapists each treat several patients to a
waiting-list condition, clustering occurs in only one of two treatment arms. When planning such a trial one should consider
the efficiency loss due to varying cluster sizes. Efficiency in terms of the D-criterion and in terms of the Ds-criteria for fixed
effects and variance componentswere considered. The efficiency losswas studied by deriving expressions for the asymptotic
relative efficiency of unequal versus equal cluster sizes.
To incorporate the loss of efficiency in planning a trial, second-order Taylor approximations of the asymptotic relative

efficiencies were derived, of which the minima turn out to depend on the coefficient of cluster size variation only. The
second-order Taylor approximations rather adequately described the asymptotic REs. To the extent that the asymptotic REs
give an adequate description of the REs for realistic sample sizes, these Taylor approximations may therefore be useful in
planning trials.
In an extensive Monte Carlo simulation study, the asymptotic RE for fixed effects rather adequately approximated the

simulated RE. For fixed effects, when calculating the minimum RE according to the Taylor approximation, it would however
be more safe to lower the minimum RE by 1%. For the D-criterion, the minimum RE according to the Taylor approximation
should best be lowered by 2%.
The simulated RE clearly depends on the coefficient of variation of the cluster sizes. The bimodal distribution and largest

cluster size range yields the lowest RE for any of the criteria considered. The difference between ML and REML estimation
was negligible for n = 6 and also for n = 10 in case the RE is defined in terms of the Ds-criterion for the fixed parameters. In
other cases there was a consistent advantage of ML over REML. In these cases ML estimation thus appears to be more robust
to varying cluster sizes, but note thatML estimators of the variance components aremore biased (Brown and Prescott, 2006).
The simulated REs show that the loss of efficiency was modest. This is to be expected, since the asymptotic relative

efficiencies for the partially nested designs turned out to be larger than those for cluster randomized trials, and theminimum
asymptotic relative efficiencies for cluster randomized trials have been shown to be rather high (Van Breukelen et al., 2007,
2008). For all threeD-criteria the relative efficiency of unequal versus equal cluster sizes exceeds 0.94. If efficiency is defined
in terms of var(β̂1) only, the relative efficiency has been shown to become 0.90 at worst (Candel and Van Breukelen, 2009).
This implies a larger efficiency loss for this criterion and thus a larger replication of the original design to regain the efficiency.
However for all criteria considered, including the efficiency in terms of var(β̂1), when planning sample sizes the (al)most
cost-efficient way of regaining the efficiency loss is multiplying the number of clusters in the treatment arm as well as the
number of persons in the control arm by a factor 1/RE.
Simulations for other cluster size distributions, involvingmore than 3 cluster sizes and larger numbers of clusters (K = 15

and K = 16), as well as simulations involving other values for the model parameters were done. Furthermore, since ratios
of the error variance in the control versus the treatment arm appear to vary between 1 and 2 (Haugli et al., 2001; Heller-
Boersma et al., 2007; Roberts and Roberts, 2005), also the ratios 0.5 and 2 were examined. Since the allocation ratios for
the treatment versus the control arm appear to vary between 0.4 and 1.5 in various studies (Calzone et al., 2005; Dannon
et al., 2004; Haugli et al., 2001; Heller-Boersma et al., 2007; Ladouceur et al., 2000; Thompson et al., 1987; VanMinnen et al.,
2003), in addition the allocation ratios 1/4 and 4 were examined. The results for these cases were in line with the results of
the present Monte Carlo simulation, thereby supporting the generalizability of our conclusions.
In some intervention studies a categorical (e.g. nominal or ordinal) outcome measure is used. A useful extension of

the present study would therefore involve mixed effects nominal or ordinal logistic regression. It has to be examined
whether (approximate) formulas for the asymptotic relative efficiencies can be derived. Similarly to the present study, these
asymptotic relative efficiencies could then be tested for their practical utility through a Monte Carlo simulation study.

Appendix A. Invariance of optimal designs under linear transformation of independent variables and ML estimation
of the model parameters

Step 1: Linear transformation of independent variables.
The mixed effects linear regression model can be defined as (cf. Verbeke and Molenberghs, 2000) y = Xβ+ Z1u+ Z2ε,

where y is anM-dimensional response vector of all subjects, X, Z1 and Z2 are (M × P1), (M × P2) and (M × P3)matrices of
known covariates or independent variables. Further, β is a P1-dimensional vector of fixed parameters, u is a P2-dimensional
vector of random effects and ε is a P3-dimensional vector of residual components.
Non-degenerate linear transformations of X, Z1 and Z2 can be represented by X∗ = XQ−1, Z∗1 = Z1Q−11 and Z

∗

2 = Z2Q−12
respectively. Note that Q,Q1 and Q2 are square matrices that are non-singular. The mixed effects regression model can be
written as:

y = XQ−1Qβ+ Z1Q−11 Q1u+ Z2Q−12 Q2ε = X∗β∗ + Z∗1u
∗
+ Z∗2ε

∗, (A.1)
where β∗, u∗ and ε∗ are the fixed effects, random effects and residual components after transformation, more precisely,
β∗ = Qβ, u∗ = Q1u and ε∗ = Q2ε.
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Step 2: Covariance matrix of the ML estimators after transformation.
We will focus on the ML estimators of the fixed effects, the proof for the variance components is similar. Since

ML estimators are invariant under linear transformation (Mood et al., 1974) and premultiplication by Q is a linear
transformation, we have for the ML estimators of the fixed effects before, β̂, and after the transformation, β̂

∗

, β̂
∗

= Qβ̂ and
thus Var β̂

∗

= QVar β̂QT . As an example, to transform themodel in Eq. (1) into themodel in Eq. (12), we haveQ−1 =
[
1 0
−1 1

]
and thus Q =

[
1 0
1 1

]
. For the ML estimators of the fixed parameters in Eq. (12), β̂

∗

, we then obtain:

Var β̂
∗

=

[
1 0
1 1

]
Var β̂

[
1 1
0 1

]
. (A.2)

Step 3: Determinant of ML estimators of the fixed effects after transformation.
Let θ̂

∗

f denote the ML estimators of the fixed effect estimators after transformation (i.e. β̂
∗

). Furthermore, let |A| denote
the determinant of matrix A and let T (ξ) denote the design ξ after transformation of the matrices X, Z1 and Z2. We then
have (see e.g. Harville, 1997):

Det(Var(θ̂
∗

f | T (ξ))) =
∣∣∣Var(β̂∗ | T (ξ))∣∣∣ = |Q| ∣∣∣Var(β̂ | ξ)∣∣∣ ∣∣QT ∣∣ . (A.3)

Step 4: Relative efficiency of two designs for the fixed effects after transformation.

If we consider the relative efficiency
(
Det(Var(θ̂

∗

f |T (ξ1)))

Det(Var(θ̂
∗

f |T (ξ2)))

)
for two different designs ξ1 and ξ2 after linear transformation,

then, making use of the result in Eq. (A.3), we obtain:

|Q|
∣∣∣Var(β̂ | ξ1)∣∣∣ ∣∣QT ∣∣

|Q|
∣∣∣Var(β̂ | ξ2)∣∣∣ ∣∣QT ∣∣ =

∣∣∣Var(β̂ | ξ1)∣∣∣∣∣∣Var(β̂ | ξ2)∣∣∣ , (A.4)

which is the same as the relative efficiency
(
Det(Var(θ̂f |ξ1))

Det(Var(θ̂f |ξ2))

)
before transformation. So, the order of designs in terms of

Ds(fixed), and thus also the optimal design does not change after transformation.
A similar proof can be given to show that the optimality of a design in terms of Ds(random) does not change after

linear transformation. Finally, note that, since the ML estimators of fixed effects and variance components asymptotically
are independent (McCulloch and Searle, 2001), the determinant of all parameter estimates factorizes into Ds(fixed) and
Ds(random). The ratio of the D-criterion for two different designs is thus the product of two efficiency ratios in terms of
Ds(fixed) and Ds(random), and therefore will also not change after linear transformation. Hence, the optimality of a design
in terms of the D-criterion also is invariant under linear transformations of the independent variables.

Appendix B. Derivation of the RE for ML estimators of the fixed parameters

Let the mixed effects linear regression model be defined by Eq. (1). Furthermore, define wj =
nj

njσ 20+σ
2
ε
. As shown by

Candel and Van Breukelen (2009), the variance–covariance matrix for the ML-estimators β̂0 and β̂1 is given by:

Var
[
β̂0

β̂1

]
=

σ 2δ

nK+1


1 −1

−1 1+
nK+1

σ 2δ

K∑
j=1
wj

 . (B.1)

The determinant of the Var matrix is:

Det
(
Var

[
β̂0

β̂1

])
=

σ 2δ

nK+1
K∑
j=1
wj

. (B.2)

Applying the transformation in Eq. (A.2) and employing Eq. (B.1), we obtain the variance–covariance matrix for the ML-
estimators β̂∗0 and β̂

∗

1 in Eq. (12) as:

Var
[
β̂∗0
β̂∗1

]
=

[
1 0
1 1

]
σ 2δ

nK+1


1 −1

−1 1+
nK+1

σ 2δ

K∑
j=1
wj

[1 1
0 1

]
=

σ 2δ

nK+1


1 0

0
nK+1

σ 2δ

K∑
j=1
wj

 . (B.3)

The determinant of the variance–covariance matrix in Eq. (B.3) also is given by Eq. (B.2).
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Let we = n
nσ 20+σ

2
ε
, with n the average cluster size of the clusters in the treatment condition. The relative efficiency as

defined by Eq. (3), keeping N and nK+1 constant, can now be established, both for the model in Eqs. (1) and (12), as:

RE(Ds(fixed)) =

√√√√√ K∑
j=1
wj

Kwe
=

√√√√n+ (1− ρ)/ρ
n

×
1
K

K∑
j=1

(
nj

nj + (1− ρ)/ρ

)
. (B.4)

Employing the Jensen inequality (see e.g. Mood et al., 1974, p. 72), it can be seen that Eq. (B.4) does not exceed 1. This implies
that unequal cluster sizes are less efficient than equal cluster sizes for the fixed effect estimators. Also, the relative efficiency
in Eq. (B.4) is larger than the corresponding relative efficiency for cluster randomized trials (see Van Breukelen et al., 2007).

Appendix C. Derivation of the RE for ML estimators of the variance components

The variance components of the treatment arm and the control arm, are estimated from separate parts of the sample,
and therefore are independent. Let 0T = [0, 0], we then have:

Ds(random) = Det

Var
σ̂

2
0

σ̂ 2ε

σ̂ 2δ


 = Det

Var
[
σ̂ 20

σ̂ 2ε

]
0

0T Var(σ̂ 2δ )

 = Det(Var[σ̂ 20
σ̂ 2ε

])
× Var(σ̂ 2δ ). (C.1)

The determinant of the asymptotic variance–covariance matrix of ML estimators of the variance components for the
treatment condition is given by (see Candel et al., 2008, p. 236):

Det

(
Var

[
σ̂ 20

σ̂ 2ε

])
=

4σ 2ε

N
K∑
j=1
w2j −

(
K∑
j=1
wj

)2 . (C.2)

The ML estimator of the error variance in the control condition without clusters, that is, σ 2δ , is given by (see e.g. Mood et al.,
1974, p. 281):

σ̂ 2δ =

nK+1∑
i=1
(yiK+1 − ȳK+1)2

nK+1
, with ȳK+1 =

nK+1∑
i=1
yiK+1

nK+1
. (C.3)

It is known that, if yiK+1 (i = 1, . . . , nK+1) is independently normally distributed with the samemean and variance σ 2δ , then
σ̂ 2δ ×

nK+1
σ 2δ
is chi-square distributed, with degrees of freedom equal to nK+1−1 (Mood et al., 1974, p. 245). Since the variance

of such a chi-square distributed variable is equal to 2(nK+1 − 1), the variance of σ̂ 2δ is equal to:

Var
(
σ̂ 2δ
)
=
2(nK+1 − 1)σ 4δ

n2K+1
, which for nK+1 →∞ equals

2σ 4δ
nK+1

. (C.4)

This implies that asymptotically (see Eq. (C.1)):

Ds(random) =


4σ 4ε

N
K∑
j=1
w2j −

(
K∑
j=1
wj

)2
×

2σ 4δ
nK+1

. (C.5)

For the relative efficiency, keeping N and nK+1 constant, we then have

RE (Ds(random)) =


N
K∑
j=1
w2j −

(
K∑
j=1
wj

)2
(N − K)Kw2e


1/3

, (C.6)

which, if taken to the power 3/2, is the same as RE(Ds(random)) for cluster randomized trials (see Van Breukelen et al.,
2008).
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Appendix D. Derivation of cost-efficient replication to regain the efficiency loss due to varying cluster sizes

Let f1 and f2 denote the replication factors of the number of persons in the control arm and the number of groups in the
treatment arm, respectively. We will first consider Ds(fixed). Let RE denote the relative efficiency of unequal versus equal
group sizes for this criterion. As can be seen in Eq. (B.2), to restore the relative efficiency in terms of Ds(fixed), the replication
factors should satisfy f1 × f2 = 1/RE2, or f2 = 1/(f1 × RE2). We have to choose f1 and f2 such that the cost function, as
defined in Eq. (11), that is

f1nK+1cc + f2Kc∗t = f1nK+1cc + Kc
∗

t /(f1 × RE
2), (D.1)

is minimized. Setting the first derivative with respect to f1 equal to 0 yields:

nK+1cc − Kc∗t /(f
2
1 × RE

2) = 0, or f 21 =
Kc∗t
nK+1cc

1
RE2

. (D.2)

In case of equal group sizes with nj = n for all j = 1, . . . , K , one can rewrite Eq. (B.2) as:

Ds(fixed) = σ 2δ /(nK+1Kwe), (D.3)

and the cost function (see Eq. (11)) can then be rewritten as

C =
cc

Ds(fixed)
×

σ 2δ

Kwe
+ Kc∗t . (D.4)

Setting the derivative of Eq. (D.4) with respect to K equal to 0 yields

−
cc

Ds(fixed)
×

σ 2δ

K 2we
+ c∗t = 0, (D.5)

or equivalently, by substituting Eq. (D.3) for Ds(fixed), c∗t /cc = nK+1/K which yields a minimum for the costs C . To summa-
rize, when planning a design with equal group sizes so as to minimize the costs for a given value of Ds(fixed), the ratio of the
number of persons in the control arm versus the number of groups in the treatment arm will satisfy:

nK+1
K
=
c∗t
cc
. (D.6)

Combining Eqs. (D.2) and (D.6) yields the optimal replication factors to restore the efficiency loss for such a design:
f1 = 1/RE, and thus f2 = 1/(f1 × RE2) = 1/RE.
To restore the relative efficiency in terms of Ds(random) and the D-criterion, the replication factors should satisfy

f1 × f 22 = 1/RE
3 (see Eq. (C.5)) and f 21 × f

3
2 = 1/RE

5, with RE denoting the relative efficiencies for Ds(random) and the
D-criterion respectively. By similar derivations as given for Ds(fixed), we can show that these efficiencies are restored at the
lowest costs, again by choosing f1 = f2 = 1/RE.
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