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1. Introduction

The specification and estimation of consumer demand systems, defined as the re-
lationship between demands, prices and expenditures, presents many long-standing
problems in econometric theory. Recent work has focused on the inclusion of highly
nonlinear relationships between demand and total expenditure into empirical mod-
els of consumer demand. Since typical consumer demand microdata have a large
amount of variation in total expenditure across consumers, complex relationships
between demand and expenditure might potentially be identified. Unfortunately,
because consumer demand models must satisfy a set of nonlinear cross-equation
rationality restrictions (see [4] and [22] for original references) also known as the
Slutsky symmetry restrictions, such complex relationships have been hard to in-
corporate. In this paper, we present a semiparametric approach to the consumer
demand problem which allows for the simple imposition of the Slutsky symmetry
restrictions. We use a flexible nonparametric estimation method in the total expen-
diture direction – where the data provide a lot of information – to get arbitrarily
flexible Engel curves. However, in the price directions – where the data are less rich
– we propose a parametric structure.

Nonparametric approaches to consumer demand started by considering the Engel
curve, defined as the relationship of expenditure-shares commanded by each good
to the total expenditure of the consumer, at fixed vectors of prices. That is, they
considered only 1 nonparametric direction and held the others fixed. Work by [3]
and [2] revealed considerable complexity in the shapes of Engel curves. A fully
nonparametric approach which consider both price and expenditure directions to-
gether and which allows for the imposition of rationality restrictions, has recently
been developed by [6]. Here, the shape of the demand curves is not restricted, but
curse of dimensionality rears its head: in a world with M price directions and 1
expenditure direction, the researcher faces an M + 1 dimensional problem. Even if
homogeneity, another rationality condition, is imposed, the researcher still faces an
M dimensional problem, which is still very high in typical applications.

On the other hand, parametric approaches like the popular Almost Ideal [4], Translog
[10] and Quadratic Almost Ideal [1] demand models typically impose strict limits
on the functional complexity of Engel curves. In these cases, Engel curves must be
linear, nearly linear, or quadratic, respectively, in the log of total expenditure. This
lack of complexity is driven by the need for these parametric models to satisfy the
Slutsky symmetry restrictions.

A major use of consumer demand systems is in policy analysis: demand systems
are used to assess whether or not indirect tax changes are desirable, and are used
to assess changes in the cost-of-living. In this regard, lack of complexity has costs:
in particular, if the Engel curve is wrong, then all consumer surplus calculations
(including cost-of-living calculations) are also wrong. For example, [1] and [12] show
that the false imposition of linear and quadratic Engel curves, respectively, can lead
to very misleading estimates of behavioural and welfare responses to indirect tax
changes.

In between the fully nonparametric and the fully parametric approaches, we have
the realm of semiparametric econometrics. Two recent papers have explored this
area, accommodating the need for the structural model to satisfy Slutsky symmetry.
[12] propose a fully parametric approach which satisfies rationality restrictions and
for which Engel curves can be arbitrarily complex. Because their model allows for
arbitrarily complex, i.e. nonparametric, Engel curves but parametrically restricted
dependence of expenditure shares on prices, it may be interpreted as semiparamet-
ric. However, their approach relies critically on a particular interpretation of the
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’error term’ in the regression: it must represent unobserved preference heterogeneity,
and thus cannot be measurement error or any other deviations from optimal choice
on the consumer’s part. [15] propose a semiparametric model which allows for these
latter interpretations of the role of the error term, does not restrict the shape of
Engel curves, and incorporates price effects either parametrically or semiparametri-
cally (via varying coefficients, cf. [19]). While potentially appealing, implementation
of their model requires numerical inversions of unknown functions. Both of these
semiparametric approaches address the curse of dimensionality: they each have just
1 nonparametric dimension rather than M + 1 nonparametric dimensions.

The present paper is a semiparametric contribution, similar in spirit to [15], but
does not require the researcher to undertake numerical inversions of unknown func-
tions. [15] write down a model in which expenditure-shares are nonparametric in
utility—an unobserved regressor—and parametric in log-prices. The familiarity of
this partially linear form makes the model appealing, but the unobserved regressor
(utility) must be constructed under the model via numerical inversion of the (un-
known) cost function. In the present paper, we write down a model in which utility
is nonparametric in log-expenditure and parametric in log-prices. This results in a
model of expenditure-shares with only 1 nonparametic dimension which is locally
nonlinear but has no unobserved or generated regressors.

The local nonlinearity of our model of expenditure-shares is driven by the fact that
we start by modeling indirect utility as partially linear, and since Roy’s Identity
gives expenditure shares as the ratio of derivatives of indirect utility, expenditure
shares in our model are given by a ratio. This ratio has model parameters in both
the numerator and denominator. In particular, the ratio which characterises expen-
diture shares has nonparametric functions in the numerator and their derivatives in
the denominator. Because local estimators have to be evaluated locally at a large
number of points, a locally nonlinear model, which may take a long time to evaluate
at each point, is typically not very useful. Our basic insight is if one models the
numerator as a local polynomial, the denominator – which is comprised of deriva-
tives of the numerator – is just a lower-order local polynomial. This fact suggests a
natural iterative procedure to estimate the model. Our algorithm is computation-
ally efficient and numerically robust. Furthermore, large data sets can be handled
in acceptable time, and the results are readily interpreted.

For the nonparametric part of the model we use an univariate local linear smoother
on transformed data, a method that can be easily applied in empirical research.
To accommodate the parametric part of the model, we use a restricted (to meet
the Slutsky symmetry) least squares estimator. Profiled methods (see e.g. [20] or
[18]) are applicable here, but not neccessary in practise due to the extremely low
correlation between the covariates, i.e. between relative prices and total expendi-
tures. In the applied part of the paper we show the power of our method in a short
simulation study, and implement the model with Canadian price and expenditure
data.

The paper is organised as follows. In section 2 we introduce the model specification.
In section 3 we discuss the basic estimation idea and give the associated algorithm.
The empirical part of the paper can be found in section 4, where we present the
estimation results of the Canadian microdata and the simulation study. Here, we
find that some expenditure–share equations show quite a lot of nonlinearity, i.e.
these are S-shaped or even more complex. Section 5 concludes the present work
and discusses some possible extensions.
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2. A Semiparametric Model for Indirect Utility

Define the indirect utility function V (p, x) to give the maximum utility attained
by a consumer when faced with a vector of log–prices p = (p1, . . . , pM ) and log–
total expenditure x. Let the expenditure share of a good be defined as the ex-
penditure on that good divided by the total expenditure available to the con-
sumer. Denote w = (w1, . . . , wM−1) as the vector of expenditure share func-
tions and note that since expenditure shares sum to 1, wM = 1 − ∑M−1

j=1 wj .
Let {W 1

i , . . . , WM
i , P 1

i , . . . , PM
i , Xi}N

i=1 be a random vector giving the expenditure
shares, log–prices and log–total expenditure of a population of N individuals.

2.1. A Partial Linear and Varying Coefficient Model for Indirect Utility

We consider two semiparametric specifications of the indirect utility function. First,
we consider a partially linear (or, fixed-coefficient) specification of the form

V (p, x) = x−
M∑

k=1

fk(x)pk − 1
2

M∑

k=1

M∑

l=1

aklpkpl, (1)

or, in matrix notation,

V (p, x) = x− f(x)′p− 1
2
p′Ap, (2)

where f = (f1, . . . , fM )′ are unknown differentiable functions of log–total expendi-
ture and A = {akl}M

k,l=1 are symmetric parameters satisfying akl = alk. Second, we
consider the varying-coefficient extension of this model:

V (p, x) = x−
M∑

k=1

fk(x)pk − 1
2

M∑

k=1

M∑

l=1

akl(x)pkpl, (3)

or, in matrix notation,

V (p, x) = x− f(x)′p− 1
2
p′A(x)p. (4)

The motivation for these models is as follows. In real-world applications, there is
typically a large amount of observed variation in total expenditures, so one may
reasonably hope to identify a nonparametric component in that direction. How-
ever, typical micro-data sources do not have nearly as much variation in the price
direction, which suggests that partially linear modelling might describe these effects
sufficiently well. If additionally, the researcher feels that more may be identified on
the strength of observed variation, the varying-coefficients model allows price effects
in the model (3) to be different at different expenditure levels. This would seem to
be a pure advantage of the varying coefficients approach. However, in practise, this
extension seriously increases the variance and computational cost of the estimates.
In particular, the algorithm for model (3) is about five times slower than the one
for model (1). The important feature here is that nonparametric dimensionality is
kept to 1 in both models.

2.1.1. Rationality Restrictions: Homogeneity

Rationality is comprised of three conditions: homogeneity, symmetry and concavity.
As is common in this literature, we will deal only with homogeneity and symmetry.
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First consider homogeneity, which is sometimes referred to as ’no money illusion’.
If consumers do not suffer from money illusion, then scaling prices and expendi-
tures by the same factor cannot affect utility. This requires that indirect utility
is homogeneous of degree zero in (unlogged) prices and expenditure, which implies
V (p, x) = V (p + λ, x + λ) for all λ. This can be achieved by dividing all prices
and expenditure by the price of the M -th expenditure category. Note that we use
logarithms, so we subtract pM :

V (p, x) = (x−pM )−
M−1∑

k=1

fk(x−pM ) ·(pk−pM )− 1
2

M−1∑

k=1

M−1∑

l=1

akl(pk−pM )(pl−pM )

in model (1) and analogously in model (3). The sums go only to M − 1 because
the M -th element of the sums is zero. Using x̃ = x − pM , p̃j = pj − pM and
p̃ = (p̃1, . . . , p̃M−1) we may write

V (p̃, x̃) = x̃−
M−1∑

k=1

fk(x̃) · p̃k − 1
2

M−1∑

k=1

M−1∑

l=1

aklp̃kp̃l. (5)

Given an indirect utility function, Marshallian (uncompensated) expenditure share
equations may be recovered via the logarithmic version of Roy’s Identity: wj(p, x) =[
∂V (p, x)/∂pj

]
/ [∂V (p, x)/∂V x]. In the following we will only think in vectors of

length (M−1), because the last budget share is defined by the ’adding up’ condition:

wM (p̃, x̃) = 1−
M−1∑

i=1

wi(p̃, x̃),

guaranteeing that
∑M

j=1 wj = 1 for all (p̃, x̃).

Applying Roy’s identity to our indirect utility function, we get the uncompensated
expenditure share equations

w(p̃, x̃) =
f(x̃) + Ap̃

1−∇x̃f(x̃)′ p̃
, (6)

for the fixed-coefficients model (1), and

w(p̃, x̃) =
f(x̃) + A(x̃)p̃

1−∇x̃f(x̃)′p̃− 1
2 p̃

′∇x̃A(x̃)p̃
, (7)

for the varying-coefficients model (3). Here, ∇x̃f(x̃) is the (M − 1) vector of the
derivatives of f(x̃), and ∇x̃A(x̃) is the (M − 1)× (M − 1) matrix function equal to
the derivatives of A.

These expressions for budget shares have a nice feature in comparison to [15].
Whereas their model for expenditure shares uses a nonparametric function of a
generated regressor, the expression above uses only observed regressors. However,
in comparison to [15], which is a partially linear model, the above expression is
partially linear only in the numerator. The presence of the denominator makes it
seem difficult to implement. However, as we show below, use of local polynomial
estimators makes this problem manageable.

2.1.2. Rationality Restrictions: Slutsky Symmetry

The imposition of Slutsky symmetry requires that alk = akl (alk (x) = akl (x)) for
all k, l, or equivalently, that A = A′ (A (x) = A (x)′). To see this, start with the
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definition of the Slutsky matrix, whose elements are given by

sij =
∂hi

∂bj
=

∂gi

∂y
· qj +

∂gi

∂bj
, (8)

where hi denotes the Hicksian demand, gi the Marshallian demand, y total expendi-
ture, bj the price, and qj the quantity of good/category j. With qi = gi = wi · y/bi,
where gi and wi are functions of y, b1, . . . , bM , we get

∂gi

∂y
=

∂wi

∂y
· y

bi
+

wi

bi
and

∂gi

∂bj
=

∂wi

∂bj
· y

bi
. (9)

Using the equations in (8) and (9) we can write the difference of sij − sji, for
i, j = 1, . . . , M − 1, as

sij − sji =
(

∂wi

∂y
· wj − ∂wj

∂y
· wi

)
y2

bibj
+

(
∂wi

∂bj
· y

bi
− ∂wj

∂bi
· y

bj

)
. (10)

With the abbreviations T i =
∑

aikp̃k, S = 1 −∑
∂fk/∂x̃ · p̃k and f i = f i(x̃), we

can rewrite (6) in the following way

wi =
f i + T i

S
, (11)

but note that wi depends on x̃ = log y − log bM , log-total expenditure, and p̃j =
log bj − log bM the log-prices for j = 1, . . . , M − 1. Now we can differentiate (11)
w.r.t. total expenditure and the j-th price, and obtain with U =

∑
∂2fk/∂x̃2 · p̃k

∂wi

∂y
=

∂fi

∂x̃ · S + (f i + T i) · U
yS2

and
∂wi

∂bj
=

aijS + (f i + T i) · ∂fj

∂x̃

bjS2
.

Plugging-in these results and equation (11) in (10), we get immediately that sij −
sji = 0 if aij = aji.

3. Estimation of the Models

The main advantage of the above models is the enormous dimension reduction
for the nonparametric part of the estimation procedure. Instead of M + 1 or M
dimensions for a fully nonparametric model, we face only functions which are one
dimensional in total–expenditure. Thus, we circumvent the curse of dimensionality.

In the following sections, we show how to estimate the M −1 vector w(p̃, x̃) under
the model. Such estimates satisfy ”adding-up” by construction, since wM (p̃, x̃) =
1−∑M−1

i=1 wi(p̃, x̃). They satisfy homogeneity (”no money illusion”) by construction,
due to the use of normalised prices and expenditures as regressors. Finally, they
satisfy Slutsky symmetry by construction, because the matrix A (or A(x̃)) can
easily be restricted to be a symmetric matrix.

A more difficult problem is to restrict the estimated budget shares to be everywhere
in the range [0, 1]. This problem is referred to as the ”global regularity” problem
in the literature on consumer demand. Roughly speaking, demand systems that
are not homothetic – that is, those which have budget shares which respond to
total expenditure – cannot typically be globally regular without restricting either
the domain of p, x or the domain of model error terms in ad hoc ways. See [17] for
a discussion of the former, and [12] for discussion of the latter. We will judge our
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estimates in terms of ”local regularity”, that is, in terms of whether or not estimated
budget shares are in the range [0, 1] in a p, x domain of interest. In particular, when
p = 0M , we have in both the fixed-coefficients and varying-coefficients model that

w(p, x) = w(p̃, x̃) = f(x̃) = f(x).

Thus, the estimated functions f(x) characterise budget shares over a domain spanned
by x with log-prices fixed at 0M . If these estimated functions lie within [0, 1], then
we say that our estimates are ”locally regular” in this sense. Note also that the
vast majority of the parametric literature on estimating expenditure systems does
not tackle this problem due to its complexity in practice. In the context of non-
and semiparametric modeling, we are only aware of [13] who estimate censored
expenditures in a single equation context.

3.1. Basic Ideas

The basic idea of estimating the unknown nonparametric functions f j and the (po-
tentially varying) coefficients ajk, j, k = 1, . . . , M − 1, consists of iteratively solving
minimization problems, where the iteration is necessary only for the nonparametric
part of the model. We use local linear kernel estimators for the nonparametric part,
and, in case of the fixed-coefficients model (1), least squares for the parametric co-
efficients. Obtaining estimates consistent with Slutsky symmetry is via the use of
(linearly) restricted least squares for the parametric part.

Keeping the dependence on x̃, we may approximate

f(t) ≈ f(x̃) +∇x̃f(x̃)(t− x̃) (12)
≈ α(x̃) + β(x̃)(t− x̃), (13)

where α(x̃) and β(x̃) are the local level and derivative of f(t). Then, for the partial
linear model the local problem is

min
α(x̃),β(x̃),A

N∑

i=1

e′iΩei,

ei ≡ wi − α(x̃) + (x̃i − x̃) β(x̃) + Ap̃i

1− β(x̃)′p̃i
,

where Ω is an (M − 1)× (M − 1) weighting matrix.

Similarly, for the varying coefficient model (7), the local problem in the neighbour-
hood of each given x̃ is

min
α(x̃),β(x̃), Γ(x̃),∆(x̃)

N∑

i=1

e′iΩei,

ei ≡ wi − α(x̃) + (x̃i − x̃) β(x̃) + Γ(x̃)p̃i + (x̃i − x̃)∆(x̃)p̃i

1− β(x̃)′p̃i − 1
2 p̃

′
i∆(x̃)p̃i

,

where Ω is now a different (M − 1)× (M − 1) weighting matrix.

Here, the imposition of homogeneity is via the use of normalised prices and expendi-
tures (tilda’d quantities). The imposition of Slutsky symmetry is via the restriction
that A = A′, or in the varying-coefficients case, that A (x) = A (x)′ which is
achieved by restricting Γ(x̃) = Γ(x̃)′ and ∆(x̃) = ∆(x̃)′.

We could also use higher order approximations (and thus higher-order local poly-
nomials), but for this we would need stronger assumptions on data and model (e.g.
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higher order smoothness of functions and densities). The local linear approach how-
ever nests the parametric linear model for any smoothing bandwidth without a bias.
Therefore we confine ourselves to the local linear approximation. We will now be
more specific but we will see that the steps are easily generalised.

3.2. The Estimation Algorithm

Denote ∆i = X̃i − x̃, Ki = K((X̃i − x̃)/h)/h and d = M − 1, where K is some
symmetric kernel function with the usual properties and h a bandwidth that controls
the smoothness of the estimate.

Let us start with the minimization problem for the partial linear model (1). As
above, the αj are related to the functions f j at point x̃ and the parameters βj to
its first derivatives, while the parameters ajk are fixed for all x̃:

min
αj ,βj

d∑

j=1

N∑

i=1


W j

i −
αj + ∆iβ

j +
d∑

k=1

ajkP̃ k
i

1−
d∑

k=1

βkP̃ k
i




2

Ki. (14)

In order to minimize, we set the first derivative equal to zero. Taking the derivative
of (14) with respect to αj , and using the notations Si = 1 − ∑d

k=1 βkP̃ k
i and

T j
i =

∑d
k=1 ajkP̃ k

i , we solve

0 =
N∑

i=1

(
W j

i −
αj + ∆iβ

j + T j
i

Si

)
Ki

Si
. (15)

This gives immediately (for j = 1, . . . , d)

αj =

N∑
i=1

W j
i Ki/Si − βj

N∑
i=1

Ki∆i/S2
i −

N∑
i=1

KiT
j
i /S2

i

N∑
i=1

Ki/S2
i

. (16)

On the other hand, by differentiating (14) with respect to βj (again for j = 1, . . . , d),
we get the equations

0 =
N∑

i=1

(
W 1

i −
α1 + ∆iβ

1 + T 1
i

Si

)
Ki · (α1 + ∆iβ

1 + T 1
i )P̃ j

i

S2
i

+ · · ·+

N∑

i=1

(
W j

i −
αj + ∆iβ

j + T j
i

Si

)
Ki · ∆iSi + (αj + ∆iβ

j + T j
i )P̃ j

i

S2
i

+ · · ·+

N∑

i=1

(
W d

i −
αd + ∆iβ

d + T d
i

Si

)
Ki · (αd + ∆iβ

d + T d
i )P̃ j

i

S2
i

.

This is equivalent to

0 =
d∑

k=1

N∑

i=1

(
W k

i −
αk + ∆iβ

k + T k
i

Si

)
Ki · (αk + ∆iβ

k + T k
i )P̃ j

i

S2
i

+

N∑

i=1

(
W j

i −
αj + ∆iβ

j + T j
i

Si

)
Ki

∆i

Si
. (17)
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Unfortunately, we can not solve equation (17) analytically for βj . But, for our
iterative purpose it is enough to consider the following implicit representation:

βj =
[ d∑

k=1

N∑

i=1

(
W k

i −
αk + ∆iβ

k + T k
i

Si

)
Ki · (αk + ∆iβ

k + T k
i )P̃ j

i

S2
i

+

N∑

i=1

(
W j

i −
αj + T j

i

Si

)
Ki

∆i

Si

]/ N∑

i=1

Ki∆2
i

S2
i

. (18)

We use the implicit representation (18) to calculate new values for βj . With them
we get new Si so that we can find new αj :

βj
new =

[ d∑

k=1

N∑

i=1

(
W k

i −
αk

old + ∆iβ
k
old + T k

i,old

Si,old

)
Ki

(αk
old + ∆iβ

k
old + T k

i,old)P̃
j
i

S2
i,old

+
N∑

i=1

(
W j

i −
αj

old + T j
i,old

Si,old

)
Ki

∆i

Si,old

]/ N∑

i=1

Ki∆2
i

S2
i,old

, (19)

Si,new = 1−
d∑

k=1

βk
newP̃ k

i , (20)

αj
new =

N∑
i=1

W j
i Ki/Si,new − βj

new

N∑
i=1

Ki∆i/S2
i,new −

N∑
i=1

KiT
j
i,old/S2

i,new

N∑
i=1

Ki/S2
i,new

.

We repeat these steps until convergence. The optimal A will be the one that
minimizes the least squares problem. In practice, at the end of each iteration step,
we solve the restricted least squares problem resulting from equation (6). With
some algebra, the problem is given by

W j
i · (1−

d∑

k=1

βk
i P̃ k

i )− αj
i =

d∑

k=1

ajkP̃ k
i . (21)

Details are given in the Appendix. Here, we see why we need A to be symmetric for
identification: we can only identify the sum of the symmetric effects. As noted, one
could think of extending this procedure using profiled estimators (calculating the
α̂(·), β̂(·) for any possible A, and afterwards estimating A from (21) with α̂A(·),
β̂A(·)), this is computationally rather cumbersome but needless in our context due
to the low dependence between prices and total expenditures.

The modification of the algorithm to take the varying coefficients A(x̃) into account
is one along ideas of [5], though it is more complex in our context. With the same
local linear approximation arguments as above, we get the local problem in the
neighbourhood of x̃ as

min
θ

d∑

j=1

N∑

i=1


W j

i −
αj + ∆iβ

j +
d∑

k=1

(γjk + ∆iδ
jk)P̃ k

i

1−
d∑

k=1

βkP̃ k
i − 1

2

d∑
k=1

d∑
l=1

δklP̃ k
i P̃ l

i




2

Ki (22)

with θ denoting αj , βj , γjk and δjk. Note that γjk and δjk are symmetric since we
consider a symmetric matrix of functions akl(x̃). The minimization of (22) in the
usual way gives the extended algorithm in analogy to the first step of 3.2. For αj
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and βj we proceed as before but with Si = 1 −∑
βkP̃ k

i − 1/2
∑∑

δklP̃ k
i P̃ l

i and
T j

i =
∑

(γjk + ∆iδ
jk)P̃ k

i . Furthermore, we obtain

γst =

∑N
i=1

[(
W s

i − Cs
i

Si

)
P̃ t

i +
(
W t

i − Ct
i

Si

)
P̃ s

i 1Is 6=t

]
Ki

Si

∑N
i=1

[
(P̃ t

i )2 + (P̃ s
i )21Is 6=t

]
Ki

S2
i

with Cs
i = αs + ∆iβ

s + T s
i − γstP̃ t

i and

δst =

[
d∑

k=1

N∑

i=1

(
W k

i −
αk + ∆iβ

k + T k
i

Si

)
Ki

S2
i

(αk + ∆iβ
k + T k

i )P̃ t
i P̃ s

i +

N∑

i=1

{(
W s

i −
αs + ∆iβ

s + T s,−t
i

Si

)
P̃ t

i +

(
W t

i −
αt + ∆iβ

t + T t,−s
i

Si

)
P̃ s

i

}
Ki∆i

Si

]

×
[

N∑

i=1

{
(P̃ t

i )2 + (P̃ s
i )21Is 6=t

} ∆2
i Ki

S2
i

]−1

with T s,−t
i = T s

i −∆iδ
stP̃ t

i .

3.3. Practical Considerations

One issue in an such iterative procedure is the question of adequate initial values
for the nonparametric part. Here we have a convenient model feature to exploit:
when we normalise prices in the sample such that P̃i = (0, . . . , 0) for some group of
consumers, equation (14) reduces to the well-known local linear case. That is, since
Si = 1, we get the objective function

min
αj ,βj

d∑

j=1

N∑

i=1

(
W j

i − αj + ∆iβ
j
)2

Ki.

Solving this problem on the sample of consumers where P̃i = (0, . . . , 0) gives us con-
sistent estimates (though with a possibly large variance due to the small subsample
size) that we can use as starting values for αj and βj . For the varying coefficient
model we need additionally starting values for the γjk and δjk. As a natural choice
for we use the results of the algorithm in Section 3.2 and zero for all δjk (i.e. starting
in the first iteration with a simpler model but still more flexible than our partial
linear one).

For the bandwidth choice, we use the same bandwidth h for all expenditure cate-
gories because the functions refer to the same expenditure data in all equations. As
bandwidth choice criterion one may use the usual cross–validation or plug-in rules
like Silverman’s (although this was constructed for density estimates rather than
regression).

Recall that the M th equation and its Engel curve is simply a result of the ho-
mogeneity and the summing-up condition

∑M
j= W j

i = 1. In practice one might
therefore choose the item for which less variation in the shares is observed over the
households, and in which one is less interested.

Note finally in the fixed-coefficients model (1), it is often recommended running
the whole algorithm twice: first with an undersmoothing bandwidth in the non-
parametric part to keep the possible smoothing bias small. The resulting estimate
for the coefficient matrix A is kept, and used in the second run which uses a larger
bandwidth for the nonparametric part to get reasonably smooth function estimates.
This is of course unnecessary in the varying coefficients model (3) where we face
only nonparametric functions.

10



4. Empirical Analysis

To get an idea about the finite sample performance of the method, before we analyse
household expenditures in Canada, we start with a brief simulation study. After-
wards, we also introduce a wild bootstrap procedure for further inference like the
construction of confidence intervals. In particular, we introduce an original condi-
tionally asymmetric bootstrap to guarantee that bootstrap shares are in [0, 1].

4.1. A Simulation Study

First, to generate some artificial data, we generated 33 distinct price vectors, nor-
mally distributed in each dimension, for each of 6 expenditure categories (i.e. we
have 6 items with different prices in 33 regions). As in typically observed micro-
data, we did not allow for a wide price variety, see [11]. Summary values for these
price vectors can be found in Table 1.

Table 1: Summary of used price vectors in simulation

1 2 3 4 5
Min 3.905 3.449 3.763 0.880 2.794
Max 4.130 3.585 3.919 1.121 3.010
Mean 4.018 3.517 3.841 1.002 2.901
Std. 0.030 0.020 0.020 0.030 0.030

For 32 regions (i.e. price vectors) we uniformly draw 30 log–total expenditure values
from the interval [1, 2]. For the reference region (number 33) we draw 40 uniformly
distributed values between one and two. In total, this gives us N = 1000 observa-
tions. These are used to generate expenditure shares using the expenditure functions
shown in Figure 1 (solid lines), price parameters given in Table 2, and normal error
terms with mean zero and standard deviation 0.01. In order to get shares which
fulfill the conditions W j ∈ [0, 1] and

∑
j W j = 1 we applied the rejection method

(that is, we dropped and replaced values outside [0, 1]).

Next, we estimate the functions αj and the price parameters using our estimation
algorithm introduced in Section 3.2. This is repeated 250 times (using the same
functions, price parameters, and range of log–total expenditure values) to get an
idea of the mean squared errors of our estimators. For the nonparametric part of the
estimation procedure we used the Gaussian kernel and a data-adaptive bandwidth
of h ≈ 0.034.

In Figure 1 we have plotted the true functions (solid lines) together with intervals
of 90% coverage probabilities for the estimates (dashed lines) as a result of the 250
simulation runs. On the one hand, we see pretty narrow bands which accurately
capture even those functions with flat plateaus in the intermediate range (category
3) and with bumps (category 2). Such functions are often hard to estimate in
practise. However, we also see the limits of the method: for example, boundary
effects seem important. Not surprisingly, the local linear smoother can estimate
perfectly, and without any bias the linear function (category 5).

In Table 3 are given the estimated parameter means, together with the standard
deviations. The exactness of our simulation results in a very small total MSE of
only 6.83 · 10−6.
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Figure 1: Simulation of 6 different budget share functions (solid line) with 90% coverage probability
(dashed lines)
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Table 2: Price parameters used in the simulation

1 2 3 4 5
1 −0.150 −0.100 0.150 0.100 0.280
2 0.250 0.100 −0.250 0.170
3 0.320 −0.220 −0.190
4 −0.200 0.150
5 −0.180

Table 3: Estimated price parameters and standard deviations (in brackets)

1 2 3 4 5
1 −0.1515 −0.1006 0.1494 0.0997 0.2799

(0.0140) (0.0106) (0.0103) (0.0090) (0.0087)

2 0.2494 0.0999 −0.2497 0.1699
(0.0176) (0.0129) (0.0102) (0.0102)

3 0.3200 −0.2208 −0.1891
(0.0170) (0.0096) (0.0100)

4 −0.1992 0.1490
(0.0117) (0.0079)

5 −0.1803
(0.0117)

4.2. Bootstrap Inference

The “wild bootstrap” draws new artificial responses based on the estimated model
(1) with given sample {Wi, X̃i, P̃i}N

i=1 and estimates α̂j , β̂j and âjk, k, j = 1, . . . , d.
Denote an oversmoothed bandwidth g with g > h (obeying the needs of asymptotic
theory), and let h be the bandwidth giving us the desired smoothness in the original
sample. The basic idea is now (cf. [7]) to use the estimated residuals from an
estimate with bandwidth g,

ε̂j
i = W j

i −
α̂j(X̃i) +

d∑
k=1

âjkP̃ k
i

1−
d∑

k=1

β̂k(X̃i)P̃ k
i

. (23)

to get wild bootstrap residuals εj∗
i . Given them we create bootstrap samples

{W ∗
i , X̃i, P̃i}N

i=1 by

W j∗
i =

α̂j(X̃i) +
d∑

k=1

âjkP̃ k
i

1−
d∑

k=1

β̂k(X̃i)P̃ k
i

+ εj∗
i (24)

for i = 1, . . . , N and j = 1, . . . ,M − 1. Here, εj∗
i are bootstrap residuals that

replicate desired properties of the distribution(s) of ε̂j
i . The WM∗

i are generated via∑M
j=1 W j∗

i = 1. We can repeat this many times, estimate functions and parameter
of interest for each bootstrap sample and use the bootstrap quantiles to construct
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point wise confidence bands for our estimates. Although it is well known that these
bands can suffer from smoothing biases, and the proper choice of g for a particular h
is problematic, they give a pretty good idea of the estimator’s statistical behaviour.

There exist several strategies to obtain wild bootstrap residuals εj∗
i . Typically,

when no problem of censoring or other restrictions is faced, one may use

εj∗
i = ui · ε̂j

i ,

with ui being a standard normal random scalar. Under the additional assumption of
homoscedasticity, this can even be simplified to εj∗

i = ui · σ̂j
ε, where σj

ε is estimated
from the residuals (23).

In our case, one may argue that such bootstrap errors may cause the bootstrap
values of W j∗

i to lie outside the admissible range of [0, 1] for budget shares. On the
one hand, this may not matter much because the estimation algorithm does not
control or force the constraint that Ŵ j

i ∈ [0, 1]. However, given that some items are
censored at zero expenditures, the bootstrap residuals may poorly reflect the true
error distribution and misrepresent the confidence intervals, for example putting
them outside [0, 1].

To address the possibility that the bootstrap inference is hampered by bootstrap
budget-shares lying outside [0, 1], we introduce an alternative formulation of the
wild bootstrap. Obviously, for the items with censored expenditures, we are faced
with a conditionally asymmetric (to the right) error distribution. We thus consider
an asymmetric distribution for εj∗

i given ε̂j
i as follows. Generate bootstrap errors

via
χ2

k√
k
· |ε̂

j
i |√
2
− |ε̂j

i |√
2
·
√

k ≤ |Ŵ j
i |, (25)

where k ≤ b(W j
i /ε̂j

i )
2 · 2c. In the case that k is less than one, we draw the boot-

strap residual εj∗
i from χ2

1 · |Ŵ j
i | − |Ŵ j

i |. Note that this fulfills E[εj∗
i ] = 0 and

E[(εj∗
i )2] = E[(ε̂j

i )
2] for all i and j. From (25), we have that, for positive Ŵ j

j , its
bootstrap analog is always positive, too. This method leads automatically to confi-
dence bands that hardly jut out of [0, 1] and are consequently narrower than those
based on a simple normal bootstrap described above. In the empirical work below,
we present confidence intervals based on this asymmetric wild bootstrap, and con-
fidence intervals based on the regular wild bootstrap are available on request from
the authors.

4.3. Analysing Household Expenditures in Canada

In our empirical study we use the same Canadian data as in [12] and [15] which come
from public sources, see also [14]. The price and expenditure data are available for
12 years in 5 regions: Atlantic, Quebec, Ontario, Prairies and British Columbia.
This yields 60 distinct price vectors, where prices are normalised in a way that all
prices of the categories from Ontario in 1986 are one, i.e. p̃O,86 = (0, . . . , 0), so these
189 observations define the base price vector and we use them to get the starting
values. Note further, to achieve homogeneity we subtracted pM , the price of the
left–out expenditure category, from all other prices and total expenditure.

We use 6952 observations of rental–tenure unattached individuals aged between 25
and 64 with no dependants to minimise demographic variation in preferences. Our
analysis includes annual total–expenditure in nine categories: food–in, food–out,
rent, clothing, household operations, household furnishing and equipment, private
transportation, public transportation and personal care. The left–out category is
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personal care, so that we get a system of eight expenditure share equations which
depend on eight (normalised) log–prices and (normalised) log–total expenditure.
These expenditure categories account for about three-quarters of the current con-
sumption of the households in the sample. Summary statistics of the observations
are given in Table 4.

Table 4: The Data

Min Max Mean Std.
expenditure shares food–in 0.00 0.63 0.17 0.09

food–out 0.00 0.64 0.08 0.08
rent 0.01 0.95 0.40 0.13
operations 0.00 0.64 0.08 0.04
furnishing 0.00 0.65 0.04 0.06
clothing 0.00 0.53 0.09 0.06
private trans 0.00 0.59 0.08 0.09
public trans 0.00 0.34 0.04 0.04

log–prices food–in −0.39 0.07 −0.03 0.09
food–out −0.42 0.25 0.05 0.12
rent −0.35 0.14 −0.12 0.15
operations −0.28 0.10 −0.04 0.08
furnishing −0.16 0.21 −0.03 0.09
clothing −0.07 0.44 0.10 0.11
private trans −0.51 0.30 −0.09 0.18
public trans −0.59 0.40 0.01 0.25

log–total expenditure 3.03 6.26 4.61 0.45

We note that this choice of commodities is arbitrary: one could divide these goods
into subcategories, or aggregate them up into larger categories. We choose these
categories because they offer the finest gradation consistent with largest possible
time span for the price data (finer gradations of price data are available, but for
shorter periods of time). Another advantage of this choice of commodities is that
they are directly comparable with [15].

As noted above, when p̃ = (0, . . . , 0) (as it does for observations in Ontario 1986),
the price effects in expenditure shares amount to zero, yielding

w(p, x) = w(p̃, x̃) = f(x̃) = f(x),

which we will refer to as the vector of Engel curves. The estimated Engel curves of
all expenditure categories can be found in Figure 2 and 3 as solid lines, where the
horizontal axes refer to x̃, i.e. the log total expenditures minus pM , the log-prize of
item M .

We include pointwise 90% confidence intervals which we calculated as described in
Section 4.2 with heteroscedastic error terms and 500 bootstrap iterations using our
new conditionally asymmetric wild bootstrap procedure. To generate the bootstrap
samples we used the bandwidth g = 1.2h (giving rather smooth confidence bands)
and in the estimation of the functions αj the bandwidth h = 0.1725. The non-
parametric part is estimated over a grid of 30 equispaced points using the Gaussian
kernel, and it converged in our setting after about 15 iterations. In all figures, the
estimates are compared to the parametric estimators of [1] and the semiparametric
estimators (assuming a partial linear cost function with Slutsky symmetry) of [15].

15



Table 5: Estimated symmetric price effects ajk (with bootstrap generated standard deviations in
brackets)

food–in food–out rent oper furn clothing priv tr pub tr

food–in −0.026 0.013 −0.006 −0.008 0.009 0.006 0.037 −0.058
(0.036) (0.018) (0.012) (0.019) (0.014) (0.015) (0.007) (0.006)

food–out −0.035 0.047 0.012 −0.002 −0.069 0.001 −0.045
(0.014) (0.007) (0.012) (0.010) (0.009) (0.005) (0.005)

rent 0.186 0.023 −0.026 −0.021 −0.036 0.087
(0.017) (0.007) (0.005) (0.008) (0.006) (0.005)

oper 0.040 0.010 −0.016 −0.029 0.023
(0.017) (0.011) (0.011) (0.004) (0.005)

furn −0.038 0.026 −0.017 −0.024
(0.016) (0.009) (0.004) (0.004)

clothing 0.005 −0.002 −0.014
(0.010) (0.005) (0.004)

priv tr 0.002 0.006
(0.006) (0.003)

pub tr −0.011
(0.003)

The estimated Engel curves in the figures hold no surprises relative to other semi-
parametric work. In terms of local regularity, the estimated values of budget-shares
lie entirely within [0, 1]. Although we do not assess the global regularity of our
estimates or estimator, it is comforting that estimated budget shares satisfy this
condition locally.

Food-at-home and food-out are strong necessities and luxuries, respectively, with
nearly linear Engel curves in both cases. The near-linearity of these Engel curves
has been observed in a large number of empirical investigations, including [1]. Some
curvature is observed in the rent and clothing equations, especially near the bottom
of the distribution. This curvature is noted in semiparametric work, such as [15]
and [12]. The most curvature is noted in smaller budget shares like household oper-
ation, private transportation and public transportation. Although the curvature in
the latter equation does not seem very statistically significant given the confidence
intervals (shown with black dots), the curvature in household operation seems quite
strong, and that in private transportation seems decidedly non-quadratic.

Thus, the estimated Engel curves are plausible and have some evidence of com-
plexity beyond the quadratic form of [1]. In comparison with [15], the present
approach has an important computational advantage: it is based entirely on ob-
served regressors, and so does not require any numerical inversions to generate a
latent regressor. In comparison with [12], the present approach has an important
interpretational difference: whereas [12] must interpret model error terms as unob-
served preference heterogeneneity parameters, the present approach is based on the
more standard view of error terms as measurement or other non-behavioural error.

Table 5 gives the estimated symmetric price parameters and in brackets the boot-
strapped standard deviations. These estimated price effects are in the plausible
range, and are similar to those found in [15].

The varying-coefficients extension is similarly easy to implement. We use the same
bandwidths (which are driven in the main by the fit for f(x̃)) as in the fixed-
coefficients case. The estimated Engel curves are almost identical to those found
in the fixed-coefficients case, with some small deviations in the tails. For the sake
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Figure 2: Estimates of food-in, food-out, rent, and clothing (solid line) with 90% pointwise confi-
dence bands, together with estimates using [1] (blue with triangles) and [15] (green with circles).
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Figure 3: Estimates of household operations, furnishing and equipment, private and public trans-
portation (solid line) with 90% pointwise confidence bands, together with estimates using [1] (blue
with triangles) and [15] (green with circles).
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of brevity, we do not present those results here, but they are available on request
from the authors. Depending on the bandwidth, the estimated price parameters
evaluated at median log-expenditure are statistically indistinguishable from those
of the fixed-coefficients model, but their estimated variance is much greater. In
particular, we see approximately twice the standard errors for estimated parameters
evaluated at median expenditures relative to their fixed-coefficients counterparts.

5. Conclusions

We propose a model which starts with the indirect utility function and implies a
consumer demand system that has parametric log–price effects and nonparametric
log–total expenditure effects. Furthermore, we avoid the curse of dimensionality
typically associated in fully nonparametric estimation of consumer demand since the
nonparametric part of the model is only one dimensional in log–total expenditure.
The model is easily restricted to satisfy the rationality conditions of homogeneity
and Slutsky symmetry.

A detailed explanation of the estimation procedure shows the working of the method,
and a simulation shows finite sample performance. We provide a new wild bootstrap
procedure that allows for conditional asymmetries and guarantees positive shares.
We then show the finite sample performance of our estimators in a simulation study,
and finally apply our method to Canadian expenditure data. Extensions to tackle
with possibly endogenous expenditures are possible via the approach proposed in
[21].

The application of this model to Canadian price and expenditure data shows not
only the potential of the model but also suggests that some expenditure shares more
complex than the linear ones in the popular AID [4] and Translog [10] demand
models. The simulation study reveals further that it is also possible to estimate
functions which are difficult to estimate [9], such as those with flat plateaus in the
intermediate range or with bumps.

6. Appendix: Restricted Least Squares for a Symmetric Matrix A

Recall that to estimate the symmetric parameters ajk, j, k = 1, . . . , d, we use equa-
tion (6) and get, with some algebra, for a single individual i

W j
i · (1−

d∑

k=1

βk
i P̃ k

i )− αj
i =

d∑

k=1

ajkP̃ k
i . (26)

Here, the parameters αj
i = αj(X̃i) are related to the functions f j at the point

X̃i and the parameters βj
i = βj(X̃i) to its first derivatives. Defining (W )ij :=

W j
i · (1 − ∑d

k=1 βk
i P̃ k

i ) − αj
i , (P )ik := P̃ k

i and (A)kj := akj we can formulate
equation (26) using matrix notation:

W = P ·A, (27)

where W , P are N × d matrices and A a d× d symmetric matrix. Note that it is
not necessary to start in the model description (1) with symmetric parameters ajk.
However, when we start with arbitrary parameters we will end nevertheless in (27)
with a symmetric parameter matrix. More specific, we get for (26):

W j
i · (1−

d∑

k=1

βk
i P̃ k

i )− αj
i = 1/2

d∑

k=1

(ajk + akj)P̃ k
i
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and in matrix notation
W =

1
2

P (A + At).

Obviously, A + At is symmetric and we would have an identification problem for
nonsymmetric A. In other words, even if one does not require symmetry from the
beginning, only symmetry of A makes the estimation problem identifiable.

Next, to calculate the unknown matrix A in equation (27) we should not use the
standard least square method but want directly make use of the symmetry of A.
Denote wij = (W )ij and wj the j–th column of W , pij = (P )ij , pi the i–th row
and pj the j–th column of the price–matrix P and aj also the j–th row of A. Note
that the symmetric matrix A obtains only (d2 + d)/2 different parameters which
are found for example in the lower triangular part, including the diagonal elements

A =




a1 a2 . . . ad

a2 ad+1 . . . a2d−1

. . . . . . . . . . . .
ad a2d−1 . . . a(d2+d)/2


 =




a11 a12 . . . a1d

a21 a22 . . . a2d

. . . . . . . . . . . .
ad1 ad2 . . . add


 .

Let ap be the one–dimensional array formed by these parameters,

ap = (a1, . . . , a(d2+d)/2),

then we have to find the vector ap that minimises

S :=
d∑

j=1

N∑

i=1

(wij − 〈 pi, a
j 〉)2 −→ min

ap

. (28)

We obtain by differentiation of (28) with respect to all elements of ap the linear
equation system Bap = c which can be solved by standard methods. In detail, we
construct the coefficient matrix B and the constant vector c in the following way.
For the diagonal elements of A we get

∂S

∂all
= −2

N∑

i=1

(wil − 〈 pi, a
l 〉)pil != 0

for l = 1, . . . , d. This is equivalent to

N∑

i=1

wilpil =
N∑

i=1

〈 pi, a
l 〉 pil

=
N∑

i=1

d∑

j=1

pijajlpil =
d∑

j=1

N∑

i=1

pijpilajl,

what gives

〈wl, pl 〉 =
d∑

j=1

〈 pj , pl 〉 ajl. (29)

For the off–diagonal elements we obtain

∂S

∂akl
= −2

N∑

i=1

(wil − 〈 pi, a
l 〉)pik − 2

N∑

i=1

(wik − 〈 pi, a
k 〉)pil != 0

for k, l = 1, . . . , d and k > l. This is equivalent to

〈wl, pk 〉+ 〈wk, pl 〉 =
d∑

j=1

〈 pj , pk 〉 ajl +
d∑

j=1

〈 pj , pl 〉 ajk. (30)
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The t–th entry in c we get now by the left hand side of (29), when ap(t) corresponds
to a diagonal element of A, or by the left hand side of (30) otherwise. Note that
t = k + (2d − l)(l − 1)/2 for k ≥ l and t = 1, . . . , (d2 + d)/2. The t–th row of
B we obtain by the right hand side of (29) or (30), where obviously the factors of
the ajk are our searched coefficients. So an explicit solution is available such that
no iteration is necessary for estimating A in the partial linear model case. This is
exactly the reason for both, the much smaller variance of the resulting estimates
in practice and the much higher speed of the algorithm for estimating model (1)
compared to the one for estimating the varying coefficients model (3).

Example For the simple case d = 3 we get the linear equation system Bap = c
with ap = (a11, a21, a31, a22, a32, a33), the coefficient matrix B




〈 p1, p1 〉 〈 p2, p1 〉 〈 p3, p1 〉 0 0 0
〈 p1, p2 〉 〈 p2, p2 〉+ 〈 p1, p1 〉 〈 p3, p2 〉 〈 p2, p1 〉 〈 p3, p1 〉 0
〈 p1, p3 〉 〈 p2, p3 〉 〈 p3, p3 〉+ 〈 p1, p1 〉 0 〈 p2, p1 〉 〈 p3, p1 〉

0 〈 p1, p2 〉 0 〈 p2, p2 〉 〈 p3, p2 〉 0
0 〈 p1, p3 〉 〈 p1, p2 〉 〈 p2, p3 〉 〈 p3, p3 〉+ 〈 p2, p2 〉 〈 p3, p2 〉
0 0 〈 p1, p3 〉 0 〈 p2, p3 〉 〈 p3, p3 〉




and vector c as



〈w1, p1 〉
〈w1, p2 〉+ 〈w2, p1 〉
〈w1, p3 〉+ 〈w3, p1 〉

〈w2, p2 〉
〈w2, p3 〉+ 〈w3, p2 〉

〈w3, p3 〉




.
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