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Abstract
Generalized additive models (GAMs) have distinct advantages over generalized linear models as
they allow investigators to make inferences about associations between outcomes and predictors
without placing parametric restrictions on the associations. The variable of interest is often smoothed
using a locally weighted regression (LOESS) and the optimal span (degree of smoothing) can be
determined by minimizing the Akaike Information Criterion (AIC). A natural hypothesis when using
GAMs is to test whether the smoothing term is necessary or if a simpler model would suffice. The
statistic of interest is the difference in deviances between models including and excluding the
smoothed term. As approximate chi-square tests of this hypothesis are known to be biased,
permutation tests are a reasonable alternative. We compare the type I error rates of the chi-square
test and of three permutation test methods using synthetic data generated under the null hypothesis.
In each permutation method a distribution of differences in deviances is obtained from 999 permuted
datasets and the null hypothesis is rejected if the observed statistic falls in the upper 5% of the
distribution. One test is a conditional permutation test using the optimal span size for the observed
data; this span size is held constant for all permutations. This test is shown to have an inflated type
I error rate. Alternatively, the span size can be fixed a priori such that the span selection technique
is not reliant on the observed data. This test is shown to be unbiased; however, the choice of span
size is not clear. A third method is an unconditional permutation test where the optimal span size is
selected for observed and permuted datasets. This test is unbiased though computationally intensive.
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1. Introduction
The Generalized Additive Model (GAM) is a semiparametric extension of a Generalized Linear
Model (GLM) that allows nonlinear functions of covariates to be included in regression
equations. GAMs require an additive combination of functions of covariates but otherwise
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avoid stringent restrictions imposed by parametric assumptions. A general formula for a GAM
is:

where g(μ) is a link function, α is the intercept, and fj(·) are functions of the covariates, Xj.
(Hastie and Tibshirani, 1990) A distinct advantage of GAMs is the ability to include smoothing
terms taking the form of nonparametric functions of predictors in a model.

GAMs using univariate or bivariate smoothers are popular in current literature. Recent
applications of GAMs have spanned may fields including public health (Hoffman et al.,
2010, Vieira et al., 2005, Vieira et al., 2009), marine studies (Maravelias et al., 2000), and
ecology (Guisan et al., 2002). In one example, markedly different results were observed when
GAMs were compared to a logistic regression analysis when studying whether infant age and
weight were associated with survival after cardiac surgery (Williams et al., July 1990). Where
Williams et al. found a linear association between infant age and logodds of survival, Efron
and Tibshirani display a roughly parabolic curve when a univariate smooth was applied. Lowest
risk was found for subjects who were around 200 days old while substantially increased risk
was found for those who were much younger or much older than that age, a trend that was
missed by logistic regression. (Efron and Tibshirani, 1991) In spatial environmental
epidemiology, a bivariate smoothing term is applied to the longitude of a subject's location of
residence. Investigators map the study region to visually display areas of increased and
decreased risk and test for spatial variation in disease risk across the region. (Webster et al.,
2006) Many different smoothing techniques can be applied to covariates in a GAM (Hastie
and Tibshirani, 1990); discussed here are GAMs with locally weighted regression smoothes
(LOESS) (Cleveland, 1979), a popular and widely available method of smoothing.

When applying a GAM with a LOESS smooth, investigators determine the span, or
neighborhood, size to apply to the model, assigning the proportion of the data given non-zero
weights by the tri-cube weight function. (Hastie and Tibshirani, 1990) Often, spans are selected
through the minimization of Akaike's information Criterion (AIC) (Hurvich et al., 1998), a
measure of goodness of fit that can be used to balance the bias-variance trade-off.

where D(y; μ) is the deviance of the observed data from the fitted values, df are the degrees of
freedom of the model, and n is the sample size. Small span sizes correspond to low bias with
fitted values near observed values while large span sizes have increased bias and smaller
variation across the fitted surface. (Hastie and Tibshirani, 1990) The minimal AIC statistic
optimizes the fitted values to the observed data while also prioritizing less complex models. A
GAM is applied to data using a series of possible span sizes. The AIC statistic for each span
size is recorded and the “optimal” span corresponds to the minimal AIC statistic (Hurvich et
al., 1998; Webster et al., 2006)

While often used as an exploratory data analysis method, a natural hypothesis when applying
GAMs is whether the smoothing term is necessary or if a simpler model, applied with GLM
techniques, would suffice. In the GLM framework, hypotheses testing nested models are
evaluated with a likelihood ratio test to compare model deviances. For GLMs, the likelihood
ratio statistic has an asymptotic chi-square distribution and the computation of degrees of
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freedom is straightforward. For GAMs, the likelihood ratio statistic does not follow a chi-
square distribution and as a result, p-values are only approximate. (Hastie and Tibshirani,
1990) That said, an approximate chi-square statistic, degrees of freedom, and p-value are
produced when GAMs are applied using statistical software R v2.8.0 (2008) and S-Plus v8.0
(2007). An alternative method to perform the hypothesis test is based on a permutation test
applied after determining the optimal span. (Webster et al., 2006) The statistic of interest is the
difference in deviance of GAMs including and excluding a smooth term. After obtaining the
difference in deviance statistic from the observed data, investigators permute the values of the
covariate(s) smoothed, otherwise maintaining relationships between the outcome and non-
smoothed predictors. GAMs are applied to each of 999 permuted datasets, using the optimal
span for the observed data. A conditional distribution of differences in deviance statistics is
generated from the permuted datasets, given the selected span size. (Webster et al., 2006)
Hypotheses are tested based on the rank of the observed difference in deviance statistic
compared to the conditional permutation distribution. The Conditional Permutation Test is
used to reduce the computational complexity required when the optimal span size is determined
for each permuted dataset.

In their application of GAMs, Kelsall and Diggle selected the appropriate span size through a
cross validation technique and applied a Monte Carlo test to evaluate overall departure from
the null hypothesis. Using a statistic measuring the squared differences of observed
probabilities of disease and probabilities under a null distribution, the authors determine the
p-value as the rank of the observed statistic when compared to data under the null hypothesis,
a method not unlike the Conditional Permutation Test described above. (Kelsall and Diggle,
1998)

Permutation tests are unbiased and appropriately sized, given that the observed statistic is
compared to an appropriate permutation distribution. In this application, the span size is
selected based on the observed dataset and a goodness of fit statistic, the AIC. The permutation
distribution of differences in deviances is generated, conditioned on a now fixed span size that
does not necessarily minimize the AIC for a given permuted dataset. Due to the different
assumptions made during the application of the GAM to the observed and permuted datasets,
the permutation distribution as described may not be an appropriate distribution to make
inferences about the observed statistic.

It is unclear whether the Approximate Chi-Square and the Conditional Permutation Tests
described above are of the correct size when span selection is based on the observed data. To
investigate this we use synthetic data and compare the size of the Approximate Chi-Square
Test, the Conditional Permutation Test, and two alternative permutations tests: a Fixed Span
Permutation Test where the span size is determined a priori and an un Conditional Permutation
Test where the optimal span is determined for each observed and permuted dataset. We show
that the Approximate Chi-Square Test and the Conditional Permutation Test have inflated type
I error rates while the fixed span and un Conditional Permutation Tests do not. We discuss
mechanisms causing the inflated type I error rates and make recommendations for when each
method is most appropriate.

2. Simulated Data
Data were simulated to examine the type I error rate of hypothesis tests using GAMs. Simulated
data were created under the null hypothesis of no association between the outcome and
predictor(s). There was no correlation between predictors of interest and the outcome and the
outcome and predictors were generated independently. For each set of parameters, 1000
datasets were simulated, each with 1000 observations. The sample size was chosen to reflect
the size of previous analyses that examined the Cape Cod Family Health Study data and
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employed GAMs as a statistical analysis technique. (Aschengrau et al., June 2008; Vieira et
al., 2009; Webster et al., 2003)

2.1 Univariate Smooth under Null Hypothesis
Data were simulated to evaluate tests when a LOESS smooth was applied to a single variable.
The outcome was dichotomous to reflect common outcomes of interest, such as cancer and
low birth weight, examined in environmental epidemiology studies that used GAMs as a
statistical analysis method. (Aschengrau et al., June 2008; Vieira et al., 2009; Webster et al.,
2003) Three sets of simulations were performed with outcome probabilities equal to 0.05, 0.10,
and 0.20. These probabilities were chosen to reflect data likely to be seen in epidemiologic
studies with outcomes such as breast cancer (Webster et al., 2008), children living with a
substance-abusing parent (SAMHSA) (2009), and age and sex-adjusted childhood obesity
(Anderson and Whitaker, 2009). The predictor was uniformly distributed between ±1,
representing some exposure of interest. While it is unlikely that a covariate will be uniformly
distributed in practice, we simulated data under an optimal scenario where the distribution of
the covariate was not expected to affect the type I error rate.

Data were also simulated with a Gaussian outcome. Results were similar to those obtained with
a dichotomous outcome and are not presented here. Further information is available upon
request.

2.2 Bivariate Smooth under Null Hypothesis
Data were simulated to evaluate the null hypothesis of no association between a dichotomous
outcome and a bivariate smooth applied to two uniformly distributed predictor variables,
perhaps representing geographic location. Again, three sets of simulations were performed
with outcome probabilities equal to 0.05, 0.10, and 0.20.

3. Hypothesis Testing Methods
3.1 Approximate Chi-Square Test

The Approximate Chi-Square Test was based on the likelihood ratio test and assumed that the
deviance had an asymptotic chi-square distribution, an assumption known to be approximate.
(Hastie and Tibshirani, 1990) GAMs were applied to datasets using the R v2.8.0 (2008)
function gam() from the gam package (Hastie, 2008) across a range of span sizes. The optimal
span was selected as that which minimized the AIC statistic. For the model corresponding to
the optimal span size, the approximate chi-square statistic p-value was recorded. The type I
error was estimated as the proportion of data sets for which the p-value fell below 0.05.

3.2 Conditional Permutation Test
For each of the 1000 datasets, the optimal span size was selected as described for the
Approximate Chi-Square Test and was subsequently held constant for the remainder of the
analysis. As described in the introduction, the difference in deviance between the model
including and excluding the smooth term was computed. Through permutation of the smoothed
variable(s), 999 permuted datasets were created. Larger numbers of permutations were
considered; however computing time became unwieldy and critical values obtained from
permutation distributions were not substantially altered when reduced numbers of permutations
were used. GAMs were applied using the span size previously selected for the observed data
and the differences in deviance for these datasets were recorded. The differences in deviance
were ranked and the null hypothesis of no association between the outcome and smoothed term
was rejected if the observed difference in deviance fell in the upper 5% of the conditional
permutation distribution. (Webster et al., 2006)
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3.3 Fixed Span Size Permutation Test
As a general comment with respect to non-parametric methods, Hart suggests authors
determine smoothing parameters prior to performing hypothesis tests to ensure appropriate test
size. (Hart, 1997) We apply his suggestion to determine if there was some influence of a
predetermined span size on the type I error rate, analyses were performed conditioning on a
preset span size of 0.10, 0.30, 0.50, 0.70, and 0.90 in place of the optimal span. The test was
otherwise performed as described for the Conditional Permutation Test.

3.4 Unconditional Permutation Test
We selected the optimal span size for the observed data as previously described. For each of
the 999 permuted datasets we applied GAMs with a range of span sizes and selected the span
that minimized the AIC. We computed the differences in deviance from models that used the
permuted dataset optimal spans and created a permutation distribution from these statistics.
The null hypothesis was rejected if the observed difference in deviance statistic fell in the upper
5% of the permutation distribution.

3.5 Applying Methods to Simulated Data
The four GAM hypothesis testing methods were applied to data simulated under the null
hypothesis. Results from the Fixed Span Size Permutation Test for probabilities of success of
0.10 and 0.20 are not presented. Similar results were observed and are available upon request.
The results from the Conditional Permutation Test and Unconditional Permutation Test are
displayed for all three probabilities of success. All tests were performed with a nominal α of
0.05.

4. Results
4.1 Type I Error Rate

Application of the Approximate Chi-Square Test to simulated data verified that the type I error
rate for this test was inflated. The results showed that for GAMs applied with both univariate
and bivariate smoothes, the type I error rate exceeded three times the nominal α of 0.05. (Table
1)

The Conditional Permutation Test displayed an inflated type I error rate when applied to
simulated data including both the univariate and bivariate LOESS smoothing terms. (Table 1)
Figures 1a-1e display the observed difference in deviance statistic compared to the permuted
distribution of the statistics for a subset of five possible span sizes. When a small span size
was selected based on the observed data, the observed difference in deviance statistic tended
to be inflated when compared to the distribution of statistics from the permuted data. (Figure
1) Of note, the null hypothesis was rejected over 25% of the time when the selected span size
was less than 0.90 and was rejected less than 5% of the time for spans of at least 0.90. (Table
2)

The Fixed Span Size Permutation Test showed a type I error rate close to 0.05. When the test
was conditioned on a predetermined span size, it was unbiased. (Table 3) The effect of small
spans for the Conditional Permutation Test was not observed here as the span sizes were not
selected based on artifacts in the data. Instead they were determined a priori and, as a result,
the observed statistics were compared to appropriate permutation distributions. Investigators
may use the Fixed Span Size Permutation Test to test for association using multiple spans. We
suggest choosing three or five span sizes for this comparison to obtain information from the
data across the range of possible spans. When examining multiple spans, investigators must
adjust the nominal α level to avoid multiple testing biases. One adjustment is to divide α by
the number of spans evaluated. We would reject the null hypothesis if any statistic corresponds
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to a p-value at or below the reduced cut-off. Only one statistically significant value would be
required to reject the null hypothesis. With this adjustment the test is unbiased, if slightly
conservative. (Table 4)

When the Unconditional Permutation Test was applied, type I error rates were observed near
0.05, the correct nominal level. (Table 1)

4.2 Span Size and Difference in Deviance Distribution
The marginal distribution of selected span sizes across 1000 simulated datasets was unimodal
and skewed toward smaller spans. (Figure 2) Under the null hypothesis, there is association
between the outcome and predictor and the most appropriate span is equal to 1. In other words,
100% of the data are assigned non-zero weights. Our range of possible spans was between 0.05
and 0.95 with 0.95 being the most appropriate value. A “large” span, equal to 0.9 or 0.95, was
selected near 65 and 75% of the time for the univariate and bivariate smooths, respectively.
(Table 2)

Increasing span sizes corresponded to decreasing difference in deviance statistics. (Figure 3,
Figure 4) As displayed in Table 5, the mean and median difference in deviance statistic
decreases substantially as the span size increases.

5. Discussion
We begin by noting that the Approximate Chi-Square Test had an inflated type I error rate, a
result of inappropriate assumptions regarding the asymptotic distribution of the difference in
deviance statistic. The error rate was over three times the nominal 5% level. The Conditional
Permutation Test also displayed an inflated type I error rate: there was approximately twice
the probability of falsely rejecting the null hypothesis. In practice, when observed p-values are
extreme, say in the upper 2.5%, investigators may feel confident with the study results.

A negative association was observed between span size and difference in deviance statistics.
In general, smaller span sizes more accurately fit the data, at the cost of added complexity, an
added penalty when computing the AIC statistic. As a result, datasets with a small optimal
span size will have larger difference in deviance statistics than datasets with a large optimal
span. When a small span was selected based on the minimal AIC statistic, only a very small
proportion of permuted datasets would have minimal AIC statistics corresponding to this same
span size. As a result, the observed difference in deviance statistic fell in the upper tail of the
distribution obtained from the permuted datasets. The result was an inflated statistic and a
deflated p-value, as observed in Figure 1.

The inflated type I error rate of the Approximate Chi-Square Test was due to the use of an
approximate asymptotic distribution for evaluation of the statistic while the inflated rate for
the Conditional Permutation Test was due to the inappropriate permutation distribution. The
observed p-values for these tests should not be used as conclusive evidence of an association

unless they are very small, i.e., less than  for the Approximate Chi-Square Test and  or

 for the Conditional Permutation Test with univariate and bivariate smoothes, respectively.

When we conditioned on a span size, selected a priori, and subsequently held the span constant
for the observed and permuted data, the difference in deviance statistic from the observed data
was compared to an inappropriate permutation distribution. The test was unbiased. In practice,
if investigators have some prior knowledge of an appropriate span, this may guide the choice
of span. This method has advantages as the test is unbiased and computationally inexpensive.
However without prior information it is not clear how to choose an appropriate span size
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independent of the observed data. If investigators simply guess they may bias study result by
influencing the model's ability to detect different magnitudes of variation in risk. (Hastie and
Tibshirani, 1990) Furthermore, maps using a small versus large span size can visually differ
greatly. (Webster et al., 2006) It may be desirable for an investigator to perform multiple tests
using different span sizes. With an appropriate adjustment to the nominal α, the tests appear
to be unbiased.

When we performed an Unconditional Permutation Test where the span size was selected for
the observed and the permuted datasets, the permutation distribution for the difference in
deviance statistic was appropriate. As a result, we observed an unbiased hypothesis test. Span
sizes less than 0.9 were observed in over 25% of datasets. Despite this, the statistics were not
inflated when compared to the unconditional distribution. Span selection for the 999 permuted
datasets produced a permutation distribution to which the observed data was appropriately
compared.

Here we considered a single span size selection technique based on minimal AIC and GAMs
applied with LOESS smoothing terms. Many other methods of span size selection and
smoothing techniques are available. Many span selection criteria rely on a measure of goodness
of fit, such as the AIC, Bayesian Information Criteria, or Cross Validation techniques. (Hastie
and Tibshirani, 1990) We hypothesize that, as these methods are based on the deviance of
models, they too will lead to inflated type I error rates when the Approximate Chi-Square or
Conditional Permutation Tests are applied. We leave the evaluation of this hypothesis for future
research. A popular alternative to LOESS smoothing is the application of penalized splines.
Here, the number of knots included in the model is selected in place of the span size. Again,
selection is based on goodness of fit or Cross Validation. (Hastie and Tibshirani, 1990) We
hypothesize that the Conditional Permutation Test applied with splines will also suffer from
inflated type I error rates though we leave this investigation to future research. Multiple
covariates were not included in this study. The impact of the inclusion of other variables in
GAM models is left for future research.

The Unconditional Permutation Test is the most appropriate method mathematically but is
computationally intensive. When applied using the statistical program R v2.8.0 (2008) using
a desktop personal computer with 504MB RAM to a single dataset with 1000 observations,
the Unconditional Permutation Test analysis computed for 3 hours with a univariate smooth.
When applied with a bivariate smooth, the analysis was completed after 5.5 hours of computing
time. For comparison, a GAM applied with a bivariate smoothing term, a sample size of 1000,
and a fixed span size of 0.9 was completed in about 15 minutes, as was the Conditional
Permutation Test for the same scenario. Increased sample size corresponds to an increase in
computing time. Applying the Unconditional Permutation Test to a sample of 5000
observations with a univariate smooth, the analysis was completed after 16.5 hours of
computing time, 5.5 times longer than the analysis with 1000 observations.

While the extent of this simulation study was limited in choice of span selection and smoothing
techniques and the distribution of covariates, we suggest a rule of thumb when performing such
hypothesis tests with GAMs. The decision of which permutation method to apply should be
based on the resources and goals of the study. Investigators must consider their computing
capabilities in relation to the study sample size prior to method selection. With adequate
computing power, if investigators are performing an exploratory analysis to obtain a general
understanding of the data, the Approximate Chi-Square Test and Conditional Permutation Test
are appropriate. Investigators must be aware of inflated type I error rates for these methods.
Reduced significance levels based on the results of this study could be applied for the
Approximate Chi-Square and Conditional Permutation Tests using a significance level of 0.05.
We have not examined type I error rates at other significance levels and other adjustments may
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need to be made in order to obtain appropriately sized tests. Conclusive findings cannot be
made with either method unless observed p-values are extremely small. If researchers are
interested in testing for variation at different levels of smoothing, the Fixed Span Size
Permutation Test is most appropriate as it provides an accurate type I error rate with limited
computational expense. The use of multiple span sizes requires an adjustment for multiple
testing. When investigators are interested in obtaining the most accurate p-values with an
appropriately sized test without preconceived notions of cluster size, the Unconditional
Permutation Test should be performed.
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Figures 1a-e.
Difference in Deviance Distributions for Observed Statistics from CPT and Corresponding
Permutation Distributions
Figure 1a: CPT Observed Statistics and Permutation Distribution for Optimal Span of 0.1
Figure 1b: CPT Observed Statistics and Permutation Distribution for Optimal Span of 0.3
Figure 1c: CPT Observed Statistics and Permutation Distribution for Optimal Span of 0.5
Figure 1d: CPT Observed Statistics and Permutation Distribution for Optimal Span of 0.7
Figure 1e: CPT Observed Statistics and Permutation Distribution for Optimal Span of 0.9
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Figure 2.
Marginal Distribution of Selected Span for GAM with a Univariate Smooth

Young et al. Page 12

Comput Stat Data Anal. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Joint Distribution of Selected Span and Difference in Deviance for GAM with a Univariate
Smooth
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Figure 4.
Difference in Deviance Distributions across Span Sizes
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Table 1

Type I Error Rates for Approximate Chi-square, Conditional and Unconditional Permutation Tests

Approximate X2 Method Conditional Permutation Test Unconditional Permutation Test

Univariate Smooth

    P(Success)=0.05 0.192 0.132 0.038

    P(Success)=0.10 0.178 0.141 0.050

    P(Success)=0.20 0.187 0.135 0.055

Bivariate Smooth

    P(Success)=0.05 0.161 0.095 0.060

    P(Success)=0.10 0.161 0.095 0.042

    P(Success)=0.20 0.151 0.090 0.045
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Table 2

Type I Error and Span Selection for Conditional Permutation Test

Span < 0.90 Span ≥ 0.90

# Datasets # Rejecting Ho # Datasets # Rejecting Ho

Univariate Smooth

    P(Success)=0.05 332 101 (30.4%) 668 31 (4.6%)

    P(Success)=0.10 331 111 (33.5%) 669 30 (4.5%)

    P(Success)=0.20 350 116 (33.1%) 650 19 (2.9%)

Bivariate Smooth

    P(Success)=0.05 255 67 (26.3%) 745 28 (3.8%)

    P(Success)=0.10 241 65 (27.0%) 759 30 (4.0%)

    P(Success)=0.20 244 68 (27.9%) 756 22 (2.9%)
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Table 3

Type I Error Rates for Fixed Span Size Permutation Test

Univariate Smooth* Bivariate Smooth*

Span = 0.1 0.045 0.046

Span = 0.3 0.052 0.048

Span = 0.5 0.056 0.044

Span = 0.7 0.049 0.051

Span = 0.9 0.052 0.047

*
P(Success) = 0.05
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Table 4

Type I Error Rates for Testing Multiple Fixed Span Sizes with Adjusted Nominal α Level‡

Spans Evaluated Univariate Smooth* Bivariate Smooth*

5 Spans 0.024 0.026

3 Spans

    0.1,0.5,0.9 0.031 0.037

    0.3,0.5,0.7 0.027 0.021

    0.5,0.7,0.9 0.024 0.027

‡
Null hypothesis rejected if one or more statistics fall in upper  of permutation distribution

*
P(Success) = 0.05
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Table 5

Mean and Median Difference in Deviance Statistics across 1000 Simulated Datasets

Univariate Smooth* Bivariate Smooth*

Mean Median Mean Median

Span = 0.1 24.51 23.81 52.33 51.91

Span = 0.3 6.91 6.35 17.01 16.71

Span = 0.5 4.00 3.50 10.28 9.89

Span = 0.7 2.80 2.34 7.14 6.65

Span = 0.9 2.06 1.47 5.30 4.86

Optimal Span 5.38 2.39 7.87 4.98

*
P(Success) = 0.05
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