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A comparative study of Monte Carlo methods for

efficient evaluation of marginal likelihood

David Ardia∗ Nalan Baştürk† Lennart F. Hoogerheide‡ Herman K. van Dijk‡

June 2010

Abstract

Strategic choices for efficient and accurate evaluation of marginal likelihoods by means
of Monte Carlo simulation methods are studied for the case of highly non-elliptical
posterior distributions. A comparative analysis is presented of possible advantages and
limitations of different simulation techniques; of possible choices of candidate distri-
butions and choices of target or warped target distributions; and finally of numerical
standard errors. The importance of a robust and flexible estimation strategy is demon-
strated where the complete posterior distribution is explored. Given an appropriately
yet quickly tuned adaptive candidate, straightforward importance sampling provides
a computationally efficient estimator of the marginal likelihood (and a reliable and
easily computed corresponding numerical standard error) in the cases investigated in
this paper, which include a non-linear regression model and a mixture GARCH model.
Warping the posterior density can lead to a further gain in efficiency, but it is more
important that the posterior kernel is appropriately wrapped by the candidate distri-
bution than that is warped.

Keywords: marginal likelihood; Bayes factor; importance sampling; bridge sampling;
adaptive mixture of Student-t distributions.
JEL codes: C11, C15, C52

1 Introduction

This paper provides a comparative study on the efficiency of some commonly used Monte

Carlo estimators of marginal likelihood in the context of highly non-elliptical posterior dis-

tributions. As the key ingredient in Bayes factors, the marginal likelihood lies at the heart of

model selection and model discrimination in Bayesian statistics, see e.g., Kass and Raftery

(1995). In several cases of scientific analysis, e.g., in non-linear regression models, mixture
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models, and instrumental variables models, one deals with target distributions that may have

very non-elliptical contours and that are not members of a known class of distributions.

The focus is on the situation in which one uses either Importance Sampling (IS; due to

Hammersley and Handscomb (1964), introduced in econometrics and statistics by Kloek and

Van Dijk (1978)), or the independence chain Metropolis-Hastings algorithm (MH; Metropolis

et al. (1953), Hastings (1970)) for posterior simulation. That is, our analysis is especially

relevant for those cases where the model structure implies that Gibbs sampling (Geman and

Geman (1984)) is not feasible; e.g., non-linear models like the example model of Ritter and

Tanner (1992) that we will consider in Section 4. Obviously, the Griddy-Gibbs sampler of

Ritter and Tanner (1992) is still feasible in such cases, but we discard this approach due to

the computational efforts that it requires. For the Griddy-Gibbs sampler the computing time

required for obtaining results with a high precision is typically enormously larger than for

the IS and MH approaches.

The marginal likelihood is given by

p(y) =

∫

θ∈Θ

k(θ | y)dθ =

∫

θ∈Θ

p(y | θ)p(θ)dθ, (1)

where θ denotes the set of parameters of interest, typically a scalar, a vector, a matrix, or

a set of these mathematical objects; Θ is the parameter space; k(θ | y) = p(y | θ)p(θ) is the

kernel function of the joint posterior p(θ | y); p(y | θ) is the likelihood function of θ for the

vector of observations y = (y1 · · · yT )′; p(θ) is the exact prior density of θ, i.e., not merely a

prior kernel. This marginal likelihood (sometimes also referred to as model likelihood; see

e.g., Frühwirth-Schnatter (2001)) is equal to the normalizing constant of the joint posterior

density. The estimation of p(y) can be a difficult task in practice, especially for complex

statistical models.

The aim of this paper is to investigate the effect that strategic choices may have on the

results when estimating a marginal likelihood. We argue that these choices are important for

the following issues:

(i) the sensitivity to the choice of the particular sampling procedure (either IS or MH);

(ii) the sensitivity to the choice of the candidate distribution (e.g., a Student-t distribution

or a mixture of Student-t distributions);

(iii) the impact of aiming at the posterior density kernel or aiming at a ‘warped’ version of

it;

(iv) the reliability of different types of numerical standard errors (NSE’s) as signals for the

uncertainty on the respective estimators.

The analysis of the robustness and efficiency of these estimators in the context of non-elliptical

posteriors has not been much investigated so far. Frühwirth-Schnatter (2004) provides an

2



excellent survey but it is restricted to the special case of mixture models. Our results demon-

strate the importance of a robust and flexible estimation strategy which explores the full

joint posterior. A poor choice of the importance density may lead to a huge loss of efficiency,

where the numerical standard error may be highly unreliable. On the other hand, given an

appropriately chosen candidate density, the straightforward IS approach provides the most ef-

ficient marginal likelihood estimator (with a reliable numerical standard error). The approach

of Hoogerheide et al. (2007) that constructs an adaptive mixture of Student-t distributions

(AdMit) is particularly useful for automatically obtaining an appropriate candidate density.

This article proceeds as follows. Section 2 provides a summary of some commonly used

Monte Carlo estimators of the marginal likelihood. Section 3 gives a brief overview of the

AdMit approach. In Section 4 we investigate the robustness and efficiency of these estimators

in the case of a three-dimensional highly non-elliptical example distribution, a posterior

distribution in a non-linear regression model. In Section 5 we consider the reliability of

numerical standard errors. In Section 6 we analyze the performance in a mixture GARCH

model. Section 7 concludes.

2 Some Monte Carlo methods for marginal likelihood

estimation

We first summarize some of the most commonly used Monte Carlo estimators of marginal

likelihood. For more details, see Ardia, Hoogerheide and Van Dijk (2009). We extend the

overview of Frühwirth-Schnatter (2004) on Monte Carlo estimators of marginal likelihoods

by including the approach of Chib and Jeliazkov (2001), and addressing some more details

on implementation, advantages and drawbacks of alternative methods. We especially pay

attention to the case of the one-block independence chain MH approach. Further review

papers that deal with a comparative review of marginal likelihood estimation methods are

Han and Carlin (2001) and Miazhynskaia and Dorffner (2006).

Importance sampling (IS) The IS estimator estimator (Hammersley and Handscomb

(1964), Kloek and Van Dijk (1978), Van Dijk and Kloek (1980), Geweke (1989)) is given by

p̂IS(y) =
1

L

L∑

l=1

k(θ[l] | y)

q(θ[l])
, (2)

where {θ[l]}L
l=1 are i.i.d. draws from the exact importance density q which should approximate

the joint posterior density p(θ | y). The IS approach of marginal likelihood estimation is a

globally oriented method that aims at directly evaluating the integral
∫

θ∈Θ
k(θ | y)dθ over the

whole parameter space Θ. An importance density which globally matches the joint posterior

closely will lead to efficient estimation. For this purpose, the tails of q should not be thinner
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than the tails of the posterior. That is, q should ‘wrap’ the posterior density in the sense

that all areas of the parameter space Θ that contain substantial posterior probability mass

must be ‘wrapped’ with a reasonable amount of candidate probability mass.

Reciprocal importance sampling (RIS) The RIS estimator (Gelfand and Dey (1994))

is given by

p̂RIS(y) =

[
1

M

M∑
m=1

qaux(θ
[m])

k(θ[m] | y)

]−1

, (3)

where {θ[m]}M
m=1 are (correlated) posterior draws from an MCMC sampler. qaux is an exact

auxiliary density from which we do not require draws. That is, even if the MCMC draws

{θ[m]}M
m=1 are simulated using a candidate density, then this candidate density should gen-

erally not be qaux. The RIS approach makes use of the fact that for each θ ∈ Θ there holds

p(y) = k(θ | y)/p(θ | y). High efficiency is most likely to result if qaux roughly matches the

posterior density. However, the RIS estimator is still consistent if qaux only covers a small

part of the parameter space Θ. For stability of the estimator, the tails of qaux(θ) should

not be fatter than those of the posterior in order to keep the ratio qaux(θ)/k(θ | y) bounded.

Van Dijk and Kloek (1980), Hop and Van Dijk (1992) and Gelfand and Dey (1994) propose

a multivariate Gaussian or Student-t density whose mean vector and covariance matrix are

estimated from the joint posterior sample. Geweke (1999) proposes the use of a multivariate

Gaussian density, truncated to a subspace of Θ.

An advantage of the RIS estimator is that the auxiliary density qaux does not have to cover

the whole posterior. Still, we do require that the MCMC draws {θ[m]}M
m=1 are representative

of the whole posterior distribution: otherwise the RIS estimator is no longer consistent.

A special case of (3) is the harmonic mean estimator by Newton and Raftery (1994), in

which the prior p(θ) is used as the auxiliary density. However, it is well-known that this

estimator is unstable. Therefore, we do not investigate the version of the harmonic mean.

(Optimal) bridge sampling (BS) The BS estimator (Meng and Wong (1996)) is obtained

as the limit of the sequence

p̂
(t)
BS(y) = p̂

(t−1)
BS (y) ·

1
L

∑L
l=1

p̂(θ[l] | y)

Lq(θ[l])+Mp̂(θ[l] | y)

1
M

∑M
m=1

q(θ[m])

Lq(θ[m])+Mp̂(θ[m] | y)

, (4)

where p̂(θ | y) = k(θ | y)/p̂
(t−1)
BS (y) and the initial value p

(0)
BS(y) is set to (2), for instance.

The {θ[m]}M
m=1 are (correlated) posterior draws from an MCMC sampler and {θ[l]}L

l=1 are

i.i.d. draws from the importance density q. Usually, we set M = L. Convergence of the

bridge sampling technique requires few steps in practice (i.e., typically less than ten itera-

tions). Moreover, these steps do not require many additional computational efforts: no extra

draws or evaluations of candidate or target densities are needed. The BS estimator provides
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(asymptotically) the optimal combination of draws {θ[m]}M
m=1 and {θ[l]}L

l=1 for the estimation

of a (ratio of) normalizing constant(s). That is, the BS estimator gives the optimal bridge

between the posterior kernel and the candidate density q. The original BS estimator in (4)

is optimal if the draws {θ[m]}M
m=1 are i.i.d. We refer to this estimator as the BS1 estimator.

A simple correction for correlated draws is proposed by Meng and Schilling (2002). This

correction means that one substitutes M by an ‘effective number of draws’ M̃ , defined as

M̃ = M(1−ρ1)/(1+ρ1) with ρ1 the first order serial correlation of the likelihood evaluations

of the {θ[m]}M
m=1. We refer to this estimator as the BS2 estimator.

In general, an advantage of the BS estimator is that its variance depends on a ratio that

is bounded regardless of the tail behavior of the importance density q, which renders the

estimator robust. A disadvantage is that we require both a set of draws from the posterior

and a set of independent candidate draws. Further, it requires some implementation cost.

It has been investigated by Frühwirth-Schnatter (2004) in the context of mixture models,

where it has shown a good performance.

The optimal bridge sampling estimator is a special case of the general bridge sampling

(GBS) estimator

p̂GBS(y) =
1
L

∑L
l=1 α(θ[l])k(θ[l] | y)

1
M

∑M
m=1 α(θ[m])q(θ[m])

. (5)

The IS and RIS estimators are also members of this class of GBS estimators: these correspond

to the choices of αIS(θ) = 1/q(θ) and αRIS(θ) = 1/k(θ | y), respectively. The BS1 estimator

corresponds to the choice

αBS1(θ) ∝ 1

L q(θ) + M p(θ | y)
,

that asymptotically minimizes the relative error of the GBS estimator p̂GBS(y) if the posterior

draws {θ[m]}M
m=1 are independent.

Chib and Jeliazkov (2001) (CJ) The CJ estimator for marginal likelihood estimation

on the basis of MH draws is given by

p̂CJ(y) =
k(θ∗ | y)

p̂(θ∗ | y)
, (6)

where θ∗ is a certain point in the parameter space Θ with p(θ∗ | y) > 0. In the case of the

independence chain MH algorithm, the estimated density p̂(θ∗ | y) of the CJ estimator is given

by

p̂(θ∗ | y) = q(θ∗)
1
M

∑M
m=1 αMH(θ[m], θ∗)

1
L

∑L
l=1 αMH(θ∗, θ[l])

, (7)

with αMH(θ, θ′) the probability that a transition from θ to θ′ is accepted in the MH algorithm,

αMH(θ, θ′) = min

{
1,

k(θ′ | y)

k(θ | y)

q(θ)

q(θ′)

}
.
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The CJ approach can be applied for each θ∗ ∈ Θ with p(θ∗ | y) > 0. However, for efficiency,

the point θ∗ must be taken to be a high-density point in Θ, typically the posterior mode. In

the case of a highly non-elliptical posterior distribution it may be a bad strategy to use the

(estimated) posterior mean, as this may have a low (or even zero) posterior density value.

The CJ estimator is another member of the class of GBS estimators, corresponding to

the choice of

αCJ,θ∗(θ) = min

{
q(θ∗)
q(θ)

,
k(θ∗ | y)

k(θ | y)

}
.

See Meng and Schilling (2002) and Mira and Nicholls (2004) who show that also other vari-

ations proposed by Chib and Jeliazkov (2001) are individual cases of bridge sampling. This

suggests that the CJ approach should always be dominated by the optimal BS method. How-

ever, BS1 is only optimal: (i) asymptotically; and (ii) if the posterior draws were i.i.d.. For

the BS2 estimator, the optimality is also asymptotical and the ‘effective number of draws’

may provide a crude correction. Therefore, it still makes sense to compare the performance

of the CJ and BS methods.

Of the approaches that we consider, the CJ method is the most local method: we only

estimate the posterior density in one point θ∗. This is in sharp contrast with the IS approach

where the whole posterior is ‘wrapped’ by a fat-tailed candidate. In between we have the

RIS method, where (possibly a subspace of) the parameter space is covered by a thin-tailed

auxiliary density. A graphical overview of these methods is given by Figure 1.

The Gibbs sampler is a special case of the MH approach, so that the method of Chib (1995)

that estimates the marginal likelihood from Gibbs draws, is a special case of the CJ method.

In the case of IS we can in principle use the prior as the importance density. However, we do

not consider this option in this paper, as this approach is typically very inefficient; see Van

Dijk (1999). In general, the prior has much higher variance than the posterior, so that the

IS estimate would then be based on only a few IS weights (i.e., likelihood evaluations), with

most likelihood values being close to zero.

Warping The methods above can be used in combination with another technique: warping

the target posterior (see Meng and Schilling (2002)). If we assume that the parameter space

of θ is Θ = Rd, then

p(y) =

∫

θ∈Θ

k(θ | y)dθ =

∫

θ∈Θ

1

2
[k(θ | y) + k(−θ + 2θ0 | y)] dθ . (8)

This implies that application of the aforementioned methods to the warped posterior kernel

k̃(θ | y) =
1

2
[k(θ | y) + k(−θ + 2θ0 | y)] , (9)

rather than to the posterior kernel k(θ | y), also yields an estimator of the marginal likelihood.

The warped posterior kernel k̃(θ | y) is point symmetric around θ0, where one typically chooses

θ0 as the (estimated) posterior mean. This gain in symmetry may substantially improve

the approximation of the target density by the candidate density, typically a symmetric
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importance globally oriented approach:

sampling
(IS) evaluate integral
prior p(y) =

∫
p(θ)p(y | θ)dθ

general sampling over whole parameter space
bridge optimal

sampling bridge
(GBS) sampling evaluate inverse

reciprocal (BS1,BS2) integral p(y) = non-globally

importance 1/
∫ f(θ)p(θ | y)

p(θ)p(y | θ)dθ oriented

sampling over (possibly approach:

(RIS) subspace of)
harmonic mean parameter make use

space of the fact
that for
each value

locally of θ∗

Chib & oriented there
Jeliazkov approach: holds the

(CJ, from MH equality
output) estimate for one

value of θ∗: p(θ∗ | y) =
Chib (from

Gibbs output) p(y) = p(θ∗)p(y | θ∗)
p(y)

p(θ∗)p(y | θ∗)
p(θ∗ | y)

Figure 1: Classification of some well-known methods for estimating marginal likelihoods. All estimators are
members of the class of general bridge sampling estimators.
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density (e.g., Gaussian and Student-t). This may yield a substantial increase in efficiency.

However, a disadvantage is that for each candidate draw we now require two evaluations

of the posterior density kernel instead of one. We refer to the transformation in (9) as the

Warp1 transformation.

In the two terms of the Warp 1 transformation in (9) we either take the original parameter

vector θ or the ‘mirror image’ of all elements. A further gain in symmetry is obtained by

taking an average over all 2d combinations where individual elements of θ may be ‘mirrored’.

Obviously, a disadvantage is that for increasing values of the dimension d, the number of

posterior kernel evaluations per candidate draw increases exponentially. We refer to this

transformation as the Warp2 transformation.

Meng and Schilling (2002) use the name Warp-III for both these Warp1 and Warp2

transformations: Warp-I and Warp-II correspond to adapting the location and variance of

the target density to the candidate. We always use candidate distributions of which the

location and variance are adapted to the target, so that we only explicitly make use of the

Warp-III type transformation that eliminates asymmetries via mixtures of the target.

Table 1 provides an overview of the number of candidate draws and function evaluations

that are required by different methods. The candidate distributions that we will consider

are Student-t distributions and mixtures of Student-t distributions. The auxiliary densities

(of RIS) will be truncated Gaussian. Evaluations of these densities and the simulation of

pseudo-random draws from these distributions is done easily and quickly. Therefore, the

computational efforts mainly depend on the number of posterior kernel evaluations. For a

fair comparison between methods, we apply these in such a way that the numbers of posterior

kernel evaluations are equal. The IS and RIS estimators are members of the general bridge

sampling (GBS) class of which the BS2 estimator is (approximately, asymptotically) optimal.

However, this result holds for L and M taken equal in IS, RIS and BS. In this paper the

equal numbers of posterior kernel evaluations imply that we take LIS and MRIS twice as large

as LBS = MBS, so that IS and RIS could very well outperform BS.

We focus on the cases of IS and the independence chain MH algorithm. So, we compare

the following strategies:

(IS) use all candidate draws in the IS estimator (2);

(RIS, CJ) transform all candidate draws to a sequence of MH draws (plus a burn-in) and use

these in the RIS estimator (3) or the CJ estimator (6);

(BS) transform 50% of the candidate draws to a sequence of MH draws (plus a burn-in) and

combine these with the other 50% of the candidate draws in the BS1 estimator (4) –

with M substituted by the ‘effective number of draws’ M̃ for the BS2 estimator.

In Sections 4, 5 and 6 the methods will be applied to several target distributions. In the

next section we briefly review the method of Hoogerheide et al. (2007) that uses an adaptive

mixture of Student-t distributions (AdMit) as the importance or candidate distribution.
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Table 1: Computations required by different marginal likelihood estimation approaches, in case we make
use of IS or the independence chain MH algorithm. L is the number of candidate draws that are not used
in the MH algorithm. M is the number of independence chain MH draws from the posterior. Warp1 and
Warp2 refer to the Warp transformations of Meng and Schilling (2002) where one aims at a mixture of 2 or
2d ‘mirror images’ of the posterior density that is typically more symmetric than the posterior itself. Further
explanations are given in Section 2.

number of number of number of number of
posterior kernel candidate candidate auxiliary

evaluations draws density evaluations density evaluations

IS L L L -
RIS M M M M

BS L + M L + M L + M -
CJ L + M L + M L + M -
Warp1 IS 2L L L -
Warp1 BS 2(L + M) L + M L + M -
Warp2 IS 2dL L L -
Warp2 BS 2d(L + M) L + M L + M -

3 The Adaptive Mixture of Student-t method

The Adaptive Mixture of Student-t (AdMit) approach (Hoogerheide et al. (2007)) consists

of two steps. First, it constructs a mixture of Student-t distributions which approximates

a target distribution of interest. The fitting procedure relies only on a kernel of the target

density, so that the normalizing constant is not required. In a second step, this approximation

is used as an importance function in IS (or as a candidate density in the independence chain

MH algorithm) to estimate characteristics of the target density. The estimation procedure

is fully automatic and thus avoids the difficult task, especially for non-experts, of tuning a

sampling algorithm. In a standard case of IS the candidate density is unimodal. Then a

multimodal target distribution may lead to some draws having huge importance weights or

some modes may even be completely missed. Thus, an important problem is the choice of

the importance density, especially when little is known a priori about the shape of the target

density. The importance density should be close to the target density, and it is especially

important that the tails of the candidate should not be thinner than those of the target.

Hoogerheide et al. (2007) mention several reasons why mixtures of Student-t distributions

are natural candidate densities. First, they can provide an accurate approximation to a wide

variety of target densities, with substantial skewness and high kurtosis. Furthermore, they

can deal with multi-modality and with non-elliptical shapes due to asymptotes. Second, this

approximation can be constructed in a quick, iterative procedure and a mixture of Student-t

distributions is easy to sample from. Third, the Student-t distribution has fatter tails than

the Gaussian distribution; especially if one specifies Student-t distributions with few degrees
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of freedom, the risk is small that the tails of the candidate are thinner than those of the

target distribution. Finally, Zeevi and Meir (1997) showed that under certain conditions any

density function may be approximated to arbitrary accuracy by a convex combination of

basis densities; the mixture of Student-t distributions falls within their framework.

The AdMit approach determines the number of mixture components, the mixing prob-

abilities, the modes and scale matrices of the components in such a way that the mixture

density approximates the target density p(θ | y) of which we only know a kernel function

k(θ | y). The AdMit strategy consists of the following steps:

(0) Initialization: computation of the mode and scale matrix of the first component (typ-

ically the posterior mode and minus the inverse Hessian of the log-posterior evaluated

at the mode), and drawing a sample from this Student-t distribution.

(1) Iterate on the number of components: add a new component that covers a part of

the space of θ where the previous mixture density was relatively small, as compared

to k(θ | y). The new component is based on the ratio of the target density kernel

k(θ | y) and the previous mixture of Student-t densities. It is located where this ratio

is relatively high, which does not depend on the normalizing constant of the target

density.

(2) Optimization of the mixing probabilities: the mixing probabilities are chosen such that

the coefficient of variation, i.e., the standard deviation divided by the mean, of the IS

weights is minimized. This coefficient of variation does not depend on the normalizing

constant of the target density.

(3) Drawing a sample from the new mixture.

(4) Evaluation of IS weights: if the coefficient of variation of the IS weights has converged,

then stop. Otherwise, go to step (1).

For more details on the AdMit procedure we refer to Hoogerheide et al. (2007), Ardia et

al. (2009a) and Ardia et al. (2009b). The package AdMit (Ardia et al. (2008)), an R imple-

mentation (R Development Core Team 2008), is available from the Comprehensive R Archive

Network (CRAN) at http://cran.r-project.org/package=AdMit.

The AdMit approach has been successfully applied to the simulation of posterior draws

from non-elliptical posterior distributions, where the reason for non-elliptical shapes is typ-

ically local non-identification of certain parameters. Examples are the IV model with weak

instruments, or mixture models where one component has weight close to zero. This pa-

per provides the first analysis of the AdMit method’s performance in the case of marginal

likelihood estimation.
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4 Application 1: non-linear regression model

In this section we apply our methods in order to estimate the marginal likelihood in a non-

linear regression model. We consider the biochemical oxygen demand (BOD) data from

Marske (1967) that are analyzed by Bates and Watts (1988) and Ritter and Tanner (1992).

We consider the non-linear model of Bates and Watts (1988)

yi = θ1(1− exp(−θ2 xi)) + εi , (10)

with independent errors εi ∼ N (0, σ2), where yi is the BOD at time xi (i = 1, . . . , 6).

Following Ritter and Tanner (1992), we specify a flat prior. However, we use a flat prior on

a bounded domain: (θ1, θ2, σ) ∈ [−20, 50]× [−2, 6]× [0, 20]. Ritter and Tanner (1992) do not

restrict the interval of σ; for the identification of a marginal likelihood we make this choice in

order to have a proper prior. Obviously, the marginal likelihood will crucially depend on the

prior specification. We consider the model and data from Ritter and Tanner (1992) in order

to compare the efficiency of alternative estimation methods and illustrate the results in the

case of a well-known, three-dimensional highly non-elliptical posterior distribution for a very

small data set. In Section 6 we will consider a marginal likelihood and posterior distribution

for a large data set.

The top-left panel of Figure 2 gives an illustration of the shapes of this posterior distri-

bution of θ = (θ1, θ2, σ)′; it shows a Highest Posterior Density (HPD) credible set. Note the

bimodality and the curved shapes of the larger mode. The sets {θ : θ1 > 0, θ2 > 0} and

{θ : θ1 < 0, θ2 < 0} correspond to concave and convex increasing functions (through the

origin) in (10), respectively. The smaller mode reflects the small posterior probability of a

convex function.

For the IS and independence chain MH algorithms we consider three candidate distribu-

tions:

1. the mixture of Student-t distributions resulting from the AdMit procedure;

2. an ‘adaptive’ Student-t distribution where the mode and scale have been iteratively

updated by several IS steps (starting with the posterior mode and iteratively using the

estimated posterior mean and covariance as the mode and scale in the next iteration);

3. a so-called ‘naive’ Student-t distribution around the posterior mode.

In order to minimize the risk that the candidate ‘misses’ parts of the posterior, we specify

very fat-tailed candidates: we choose one degree of freedom (i.e., Cauchy tails). Figure 2

shows the shapes of the three candidate distributions. Notice that the AdMit candidate

nicely ‘wraps’ the relevant areas of the parameter space with candidate probability mass.

Figure 3 illustrates how the AdMit approach has constructed this ‘wrapping’ distribution.

Starting with the naive Student-t distribution around the mode, it finds that a Student-t

distribution parallel with the θ2 axis must be added, yielding a cross shape. After that, a
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target posterior
distribution

AdMit candidate
(= mixture of four

Student-t distributions)

Student-t candidate
(around posterior mode)

Student-t candidate
(location and scale adapted to target)

Figure 2: Non-linear regression model (10): Highest Posterior Density credible region of θ = (θ1, θ2, σ)′ (top
left) and ‘Highest Candidate Density regions’ for mixture of Student-t (AdMit, top right), ‘naive’ Student-t
(bottom left) and adaptive Student-t (bottom right) candidate distributions.
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third Student-t distribution parallel with the θ1 axis is added, leading to a wrapping of the

whole larger posterior mode. Finally, the fourth Student-t distribution in the mixture wraps

the smaller posterior mode, so that the resulting mixture of four Student-t distributions

covers the whole posterior distribution. This whole procedure took merely 11 seconds on a

2006 Intel (R) Centrino Duo Core processor.

Student-t component 1

→

candidate 1
(= component 1)

↙

Student-t component 2

→

candidate 2
(= mixture of components 1, 2)

↙

Student-t component 3

→

candidate 3
(= mixture of components 1, 2, 3)

↙

Student-t component 4

→

candidate 4
(= mixture of components 1, 2, 3, 4)

Figure 3: Non-linear regression model (10): The AdMit algorithm (automatically and) iteratively approxi-
mates the non-elliptical posterior shapes of θ = (θ1, θ2, σ)′ by a mixture of Student-t distributions.
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We will now use these three candidate distributions in combination with the marginal

likelihood estimators of Section 2. For the IS estimator we generate L = 100000 candidate

draws. For the RIS and CJ estimators we take M = 100000 independence chain MH draws;

we use a burn-in of 1000 draws, so that we actually generate 101000 draws. The reason for

not including the burn-in in the 100000 draws is that a burn-in of fewer than 1000 draws

may suffice. For the BS estimators we use L = 50000 candidate draws and M = 50000 MH

draws, again not counting a burn-in of 1000 draws.

For the RIS estimator we use a truncated Gaussian auxiliary density around the posterior

mode. For the CJ estimator we choose θ∗ as the posterior mode.

For each estimator, we repeat the simulation 500 times. Simulation results are reported

in Table 2. Boxplots of the 500 marginal likelihood estimates are given in Figures 4. The

real value of the marginal likelihood is (rounded to two digits) 12.79 · 10−10. This real value

is computed by deterministic integration which is still feasible (but quite time-consuming) in

this three-dimensional example.

Table 2: Non-linear regression model (10): Estimation of the marginal likelihood (ML) based on 100000
draws from AdMit mixture of four Student-t distributions, adaptive Student-t or naive Student-t distribution.
Mean and standard deviation of 500 estimates of 1010· ML from 500 simulation runs. True value is ML=
12.79 · 10−10.

1010· ML AdMit adaptive naive
mean st.dev. mean st.dev. mean st.dev.

IS 12.7906 0.0962 12.7899 0.1791 12.7317 1.0945
RIS 13.1803 0.3435 12.8792 0.9456 12.8846 2.5144
BS1 12.7621 0.1984 12.8348 0.4238 13.0995 4.3776
BS2 12.7636 0.1405 12.7890 0.2739 13.0877 4.2780
CJ 12.7816 0.2568 12.7814 0.2841 13.1030 4.4004

First, notice the very inefficient estimators that make use of the naive Student-t candidate

distribution. Even though this naive Student-t distribution is chosen very fat-tailed (one

degree of freedom), the resulting estimators have much higher variance than the estimators

based on the AdMit and adaptive candidates. The boxplots show that the naive Student-t

candidate may result in extreme outliers for all marginal likelihood estimators. This stresses

the importance of wisely specifying an appropriate candidate distribution.

Second, the AdMit candidate clearly outperforms the adaptive Student-t candidate: iter-

atively adding Student-t distributions to the mixture candidate distribution leads to far more

precise estimators than merely iteratively adapting the location and scale of the Student-t

candidate.

Third, the IS estimator is the best, whereas the RIS estimator is clearly the worst. The

BS2, BS1 and CJ are typically ranked second to fourth, although in case of the adaptive

candidate the CJ estimator outperforms the BS1 estimator. In that case, the difference

between the ‘i.i.d. optimal’ BS1 estimator and the ‘serial correlation corrected’ BS2 estimator

14
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Figure 4: Non-linear regression model (10): Estimates of 1010· marginal likelihood based on 100000 draws
from AdMit mixture of four Student-t distributions, adaptive Student-t or naive Student-t distribution (500
simulation runs).
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is substantial, reflecting the high serial correlation in the MH chain.

In this example, the winner is clearly the AdMit-IS estimator, the IS estimator based on

the AdMit candidate. It outperforms the alternative estimators (including the BS estimators)

that make use of the same number of candidate draws and function evaluations.

Simulating draws from a mixture of Student-t distributions takes hardly more time than

generating draws from a Student-t distribution. The AdMit approach does require the eval-

uation of multiple Student-t densities, in our case four, instead of one; but the little extra

computing time required for this is typically very small compared to the time required for

evaluation of the posterior density kernel. Further, the ‘victory’ of the IS estimator over

alternative estimators is actually slightly larger than represented by the tables: the burn-in

of the MCMC draws is neglected and the implementation of the IS estimation of the marginal

likelihood and its numerical standard error are relatively straightforward.

In this example, one comparison is still to be made: the comparison with methods aimed at

the ‘warped’ target density. Figure 5 shows the shapes of the warped posterior kernels. These

are more symmetric than the posterior kernel itself; especially the Warp2 distribution looks

‘closer to’ a Student-t distribution than the original posterior distribution. This illustrates

the elimination of asymmetries by using mixtures of the posterior distribution. Table 3

shows the results of IS, BS1 and BS2 (the three best performing algorithms) for Warp1 and

Warp2 transformations in combination with an adaptive Student-t candidate. The rows with

100000 posterior kernel evaluations correspond to IS with 50000 and 12500 draws (BS with

25000+25000 and 6250+6250 draws) for Warp1 and Warp2, respectively. The Warp1-IS

results are comparable to the regular IS results with an adaptive Student-t candidate. The

Warp1-BS estimators are somewhat better than the ‘unwarped’ BS estimators. The Warp2

results are worse than their ‘unwarped’ counterparts; the obvious reason is that the number

of candidate draws is now much smaller in order to keep the number of posterior kernel

evaluations equal to 100000.

Table 3: Non-linear regression model (10): Marginal likelihood estimation making use of Warp1 or Warp2
transformations in combination with an adaptive Student-t candidate distribution. Standard deviation of
500 estimates of 1010· ML from 500 simulation runs.

st.dev. 1010· ML IS BS1 BS2

Warp1 (100000 posterior kernel evaluations) 0.1750 0.3535 0.2250
Warp2 (100000 posterior kernel evaluations) 0.3097 0.5813 0.4054
Warp1 (100000 candidate draws) 0.1250 0.2575 0.1623
Warp2 (100000 candidate draws) 0.1182 0.2131 0.1522

Even if we use the same number of candidate draws, thereby requiring two or eight times

more posterior kernel evaluations in the Warp1 and Warp2 approach, the resulting estimators

do not outperform the AdMit-IS estimator. This confirms that the AdMit-IS estimator

is clearly the winner. In this example, warping may provide a slight improvement, but
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Warp1 (mixture of 2
posterior transformations)

Warp2 (mixture of 8 = 23

posterior transformations)

Figure 5: Non-linear regression model (10): Warping of posterior density kernel. A mixture of the posterior
density and its ‘mirror images’ (that naturally have the same normalizing constant) can have shapes that are
much closer to an elliptical distribution than the original posterior.

appropriately wrapping the posterior yields a much larger gain in computational efficiency

than warping it!

We now briefly pay attention to the implications that an unreliable marginal likelihood

estimator may have. Suppose we face the choice between the non-linear regression model (10)

and the linear regression model

yi = β1 + β2 xi + εi , (11)

with independent errors εi ∼ N (0, σ2). The linear model ignores that for x = 0 we should

have y = 0: the purpose of considering these two models is purely illustrative. Suppose we

specify a conjugate prior that is approximately as ‘non-informative’ as the prior we used for

the non-linear regression model (10), the Normal-Gamma prior

β
∣∣σ−2 ∼ N (

β, σ2 V
)

σ−2 ∼ G (
s−2, ν

)
,

with

β =

(
8

4

)
V =

1

100

(
16 0

0 4

)
s2 = 100 ν = 3 .

Under the Normal-Gamma prior the marginal likelihood can be analytically computed, see

e.g., Koop (2003); here it equals 12.40·10−10. The Bayes factor in favor of the non-linear model

is 1.0315, so that under equal prior probabilities the posterior model probabilities for the non-

linear and linear models are 0.5078 and 0.4922, respectively. Figure 4 shows that only for the

AdMit-IS estimator all 500 repetitions of the simulation yield marginal likelihood estimates

above 12.40 ·10−10, leading (under equal prior probabilities) to a ‘correct’ model choice. Here

we use the term ‘correct’ to denote that the model choice is optimal given our data and prior

assumptions, and not determined by simulation ‘noise’. For all other approaches, estimates

smaller than 12.40 · 10−10 are observed, resulting in an ‘incorrect’ model choice. Arguably,
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in this situation one should consider Bayesian model averaging (BMA) rather than model

choice. Under equal prior probabilities, appropriate model weights are 0.5078 and 0.4922.

The extreme overestimation of the non-linear model’s marginal likelihood that may occur for

estimators using the naive candidate distribution, would result in highly ‘incorrect’ model

weights. This simple example illustrates that an appropriate marginal likelihood estimator

(using a suitable candidate distribution) is important, both for model selection and for model

combination.

Until now we have considered the standard deviations of the estimators, when the sim-

ulation process is repeated 500 times. In practice, we usually do not compute standard

deviations in such a time consuming way. Instead, we estimate the standard deviation by a

numerical standard error based on a single simulation run. In the next section we consider

the reliability of numerical standard errors.

5 Numerical standard errors

For the IS estimator, the computation of a numerical standard error (NSE) is particularly

straightforward. One simply divides the standard deviation of the terms k(θ[l] | y) / q(θ[l])

(l = 1, . . . , L) by
√

L. However, for the RIS, BS1, BS2 and CJ estimators we make use of the

usual delta rule. Moreover, the latter four estimators make use of correlated MCMC draws

where we need to take into account serial correlation. In this section we will consider three

methods for computing the standard error of a sample mean of such correlated series; that

is an estimate of the standard deviation of

ĝ =
1

M

M∑
m=1

g(θ[m]) , (12)

where {θ[m]}M
m=1 is a series of MCMC draws.

The first estimate of the variance var(ĝ) that we consider, is the estimate of Newey and

West (1987)

v̂arNW(ĝ) =
1

M

[
γ̂0 + 2

b∑
i=1

(
1− i

b + 1

)
γ̂i

]
, (13)

where b is a constant that should represent the lag at which the autocorrelation tapers off, γ̂0 is

the sample variance of the series {g(θ[m])}M
m=1, and γ̂i is its i-th order sample autocovariance.

This Newey-West (NW) estimate is used by Chib (1995) and Chib and Jeliazkov (2001), who

set b equal to 10 and 40, respectively. We choose a bandwidth of b = 40.

The second and third estimate we consider are from Geyer (1992): the initial positive

sequence estimator and the initial monotone sequence estimator. These are specialized for

reversible Markov chains such as the series of MH draws. Theorem 3.1 of Geyer (1992) states

the following. For a stationary, irreducible, reversible Markov chain with autocovariance γi
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let Γt = γ2t + γ2t+1 be the sums of adjacent pairs of autocovariances. Then Γt is a strictly

positive, strictly decreasing, strictly convex function of t.

The initial positive sequence estimator (IPSE) estimator is now given by

v̂arIPSE(ĝ) =
1

M

[
γ̂0 + 2

2h+1∑
t=0

γ̂t

]
=

1

M

[
−γ̂0 + 2

h∑
t=0

Γ̂t

]
, (14)

where Γ̂t = γ̂2t + γ̂2t+1 and where h is chosen to be the largest integer such that Γ̂t > 0 for

t = 1, . . . , h.

In the initial monotone sequence estimator (IMSE) the value of h is chosen to be the

largest integer such that Γ̂t−1 > Γ̂t and such that Γ̂t > 0 for t = 1, . . . , h. Therefore, the

resulting estimates satisfy: v̂arIMSE(ĝ) ≤ v̂arIPSE(ĝ). For derivations of NSE’s for normalizing

constants we refer to Chen, Shao, and Ibrahim (2000).

We now inspect the NSE in the example from the previous section. Figure 6 shows

boxplots, comparing the numerical standard errors to the standard deviations for the three

candidate distributions. For the naive Student-t candidate distribution the NSE is often

unreliable: huge underestimation of the uncertainty in the marginal likelihood estimator

often occurs. For the adaptive Student-t candidate distribution the NSE is more reliable

than in the naive case. However, for all estimators a substantial underestimation of the

uncertainty may still occur. The NSE based on the IPSE should be preferred over the NSE

from the IMSE and NW formula. For the AdMit candidate distribution the NSE is more

reliable than for the other candidates. Especially for the AdMit-IS estimator, the ‘winner’

of Section 4, the NSE seems reliable. For the BS1, BS2 and CJ estimators, the NSE from

the IPSE should again be preferred over the NSE from the IMSE or NW approach. Only

for the RIS estimator, which anyway performs poorly in this example, the IMSE provides a

NSE that yields a huge overestimation of the uncertainty.

Another way of assessing the performance of the numerical standard errors is to inspect

the coverage rate of estimated 90% intervals

(p̂(y)− 1.645 · NSEp̂(y), p̂(y) + 1.645 · NSEp̂(y)) .

Table 4 gives these coverage rates. In (approximately) 90% of the simulations, the interval

should include the true value p(y), whereas the situations with too low or too high intervals

should both occur in (about) 5% of the simulations. For the naive candidate distribution,

significant deviations from the correct rates can be found for the intervals of all estimators.

For the adaptive Student-t candidate, the coverage rates are incorrect for all but the IS

estimator. This confirms the unreliable character of the NSE for the naive or adaptive

candidate distributions. For the AdMit-IS estimator the coverage rates are correct, whereas

for the BS1, BS2 and CJ estimators using AdMit draws only the IPSE and IMSE provide

(approximately) correct rates.
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Figure 6: Non-linear regression model (10): Boxplots of 500 numerical standard errors (NSE’s) for estimates
of 1010· marginal likelihood based on 100000 candidate draws from the ‘naive’ Student-t, adaptive Student-t
and AdMit (mixture of four Student-t) candidate distribution. The standard deviation of the 500 marginal
likelihood estimates is shown as the horizontal line in the first column. NSE’s are computed using the
delta rule, where NW, IMSE, IPSE refer to the approach of Newey and West (1987), the initial monotone
sequence estimator and the initial positive sequence estimator (Geyer (1992)) for taking into account the
serial correlation in the MH draws.
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Table 4: Non-linear regression model (10): Coverage rate of estimated 90% interval for p(y) based on
different NSE’s (in 500 repetitions). For the IS estimators there is no serial correlation in the series of draws,
so that only one (straightforward) NSE formula is used.

90% interval from 90% interval from 90% interval from
Newey-West NSE IMSE NSE IPSE NSE

too low ok too high too low ok too high too low ok too high

AdMit candidate
IS 0.056 0.902 0.042 0.056 0.902 0.042 0.056 0.902 0.042
RIS 0.002 0.730 0.268 0.002 0.836 0.162 0.000 1.000 0.000
BS1 0.106 0.824 0.070 0.068 0.886 0.046 0.052 0.912 0.036
BS2 0.102 0.844 0.054 0.082 0.884 0.034 0.072 0.900 0.028
CJ 0.092 0.834 0.074 0.058 0.880 0.062 0.038 0.908 0.054

adaptive Student-t candidate
IS 0.052 0.902 0.046 0.052 0.902 0.046 0.052 0.902 0.046
RIS 0.440 0.312 0.248 0.412 0.360 0.228 0.338 0.532 0.130
BS1 0.128 0.728 0.144 0.080 0.846 0.074 0.068 0.872 0.060
BS2 0.118 0.772 0.110 0.082 0.864 0.054 0.080 0.874 0.046
CJ 0.092 0.834 0.074 0.086 0.866 0.048 0.086 0.866 0.048

naive Student-t candidate
IS 0.258 0.740 0.002 0.258 0.740 0.002 0.258 0.740 0.002
RIS 0.440 0.312 0.248 0.412 0.360 0.228 0.338 0.532 0.130
BS1 0.548 0.220 0.232 0.490 0.316 0.194 0.354 0.546 0.100
BS2 0.578 0.172 0.250 0.450 0.416 0.134 0.368 0.536 0.096
CJ 0.518 0.266 0.216 0.484 0.314 0.202 0.342 0.564 0.094
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We conclude that also in terms of the reliability of the NSE and confidence intervals the

AdMit-IS approach performs best. For other AdMit estimators (BS1, BS2 and CJ) the initial

monotone sequence estimator of Geyer (1992) provides a useful NSE. For the adaptive (and

naive) candidate we find that all three types of NSEs may be (highly) unreliable. The reason

for the failure of the NSE based on the Newey-West formula is partly that the ‘bandwidth’

b = 40 is simply a too small value. Still, also the IPSE and IMSE that automatically adapt

the ‘bandwidth’ to the autocorrelation in the given series of MCMC draws (slightly) fail in

case of the naive (and adaptive) candidate distribution. Therefore, the fixed value of b = 40

is arguably not always the only reason for its failure.

6 Application 2: mixture GARCH model

In this section we apply our methods in order to estimate the marginal likelihood in a two-

component Gaussian mixture GARCH(1,1) model, a model with six parameters. Auśın and

Galeano (2007) propose a Griddy-Gibbs sampler for Bayesian estimation of this model, and

note that MH algorithms could improve the efficiency of this method despite the drawback

of the effort required to calibrate the candidate distribution in the latter case. We provide

an additional estimation method for the model and show that given an appropriately tuned

candidate density, straightforward IS provides an efficient method for parameter estimation.

We extend the study of Auśın and Galeano (2007) by providing an efficient estimation method

for the marginal likelihood. The data consist of 1859 daily closing prices of the SMI, for the

period 1/Jul/1991 - 14/Aug/1998. Daily nominal log-returns are expressed in percentages.

A two-component Gaussian mixture GARCH(1, 1) model for the series yt is defined by

yt = µ +
√

ht εt,

ht = ω + α (yt−1 − µ)2 + βht−1, (15)

εt ∼




N (0, σ2) with probability ρ,

N (0, σ2/λ) with probability 1− ρ,

where ht is the conditional variance of yt given previous information It−1 = {yt−1, yt−2, . . . },
0 < λ < 1 and σ2 = 1/ (ρ + (1− ρ) /λ), so that var (εt) = 1. Similar to Auśın and Galeano

(2007), we assume that the initial variance h0 is a known constant, εt ∼ mixture Gaussian (λ, ρ),

and the following parameter restrictions hold: ω > 0, α ≥ 0, 0.5 ≤ ρ < 1, β ≥ 0 and

α + β < 1. Notice that these parameter restrictions ensure positivity of ht, and that there

is a higher prior probability that an observation falls into the state with smaller variance.

Following Auśın and Galeano (2007), we specify a flat prior. However, we truncate the

domain for µ and ω to finite (wide) intervals to have a proper (non-informative) prior:

(ρ, λ, µ, α, β, ω) ∈ [0.5, 1]× [0, 1]× [−1, 1]× [0, 1]× [0, 1]× (0, 1] with α + β < 1.

For the IS and independence chain MH algorithms, we consider three candidate distribu-

tions based on Student-t densities with Cauchy tails: the mixture of Student-t distributions
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resulting from the AdMit procedure, an ‘adaptive’ Student-t distribution where the mode and

scale have been iteratively updated by several IS steps and a ‘naive’ Student-t distribution

around the posterior mode.

Figure 7 shows the shapes of the three candidate distributions, together with the con-

ditional posterior density of (λ, ρ); parameters (ω, β, α, µ) are fixed at their posterior mean

values. Figure 7 illustrates that the AdMit candidate outperforms both adaptive and naive

Student-t candidates: the relevant subdomain of the posterior density is wrapped by the Ad-

Mit candidate. In particular, the naive Student-t candidate is quite inadequate for wrapping

the posterior.

In order to illustrate the local non-identification in the model and the corresponding irreg-

ularity in the posterior density, we consider the posterior density of (1/λ, ρ). The posterior

density for (1/λ, ρ) is shown in Figure 8, where the other parameters are fixed at posterior

means.

For ρ → 1, 1/λ becomes unidentified since the corresponding large variance regime disap-

pears from the model. For λ → 1, the conditional variances in both states are identical, hence

the mixing probability ρ cannot be identified. This explains why the shapes of the posterior

density are far from elliptical, and wisely choosing a candidate that can approximate this

non-elliptical shape can provide considerable efficiency gains.

We will now use these three candidate distributions, using 100000 draws for IS and in-

dependence chain MH, where we use a burn-in of 1000 draws for the latter. Parameter

estimates and NSE’s for all cases, together with Auśın and Galeano (2007) estimates are

reported in Table 5. Notice that Auśın and Galeano (2007) consider log-returns instead of

log-returns in percentages, hence the parameter estimates for ω and µ are scaled differently

in our estimation. Estimates under the adaptive and AdMit approaches are similar to Auśın

and Galeano (2007). Further, we find two main results. First, the naive Student-t density

has the worst performance among the candidate densities we compare. Both IS and MH

estimates under the naive Student-t candidate are biased for 100000 draws. This shows that

both IS and independence chain MH fail to provide accurate results using a poor candidate

density. Hence, in the rest of our analysis, we compare the performances of only the adap-

tive Student-t and AdMit candidates. Second, the AdMit candidate clearly outperforms the

adaptive Student-t candidate: NSE’s obtained using the AdMit candidate are much smaller

than those obtained using the adaptive Student-t candidate. According to NSE’s, AdMit-IS

has the best performance.

The next step is to estimate the marginal likelihood for the mixture GARCH model. We

analyze the sensitivity of the marginal likelihood estimators in Section 2 to the choices of the

candidate distribution. For marginal likelihood estimation, we consider the IS, BS1, BS2 and

CJ estimators. We do not report results for RIS since this estimator already gave particularly

bad results in Section 4. Table 6 reports marginal likelihood estimates and the respective

NSE’s. For the IS, BS1 and CJ estimators, NSE’s are calculated by IPSE, as it was shown to

be the most accurate estimator in Section 5. First, the AdMit candidate yields more precise
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Figure 7: Mixture GARCH(1,1) model (15): Contour plots for (the logarithm of) the conditional posterior
density of (ρ, λ) given (µ, ω, α, β) equal to the posterior mean. Conditional posterior density (top left) and
candidate density contours for mixture of Student-t (AdMit, top right), adaptive Student-t (bottom left),
‘naive’ Student-t around the posterior mode (bottom right).
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Figure 8: Mixture GARCH(1,1) model (15): Contour plot for (the logarithm of) the conditional posterior
density of (ρ, 1/λ) given (µ, ω, α, β) equal to the posterior mean.

Table 5: Mixture GARCH(1,1) model (15): Estimated posterior means and corresponding NSE’s, obtained
by IS and independence chain MH algorithms under different candidate densities. NSE’s for MH algorithm
are calculated by Newey-West method, bandwidth 40.

IS estimates
Auśın & Galeano (2007) AdMit adaptive naive

mean mean NSE ·100 mean NSE ·100 mean NSE ·100

ω 1.130 ·10−3 0.08 0.02 0.07 0.08 0.33 2.20
λ 0.13 0.12 0.03 0.12 0.15 0.27 2.20
β 0.74 0.80 0.03 0.80 0.12 0.45 2.05
α 0.15 0.13 0.02 0.13 0.06 0.20 1.68
ρ 0.92 0.95 0.02 0.95 0.16 0.56 0.13
µ 1.13 0.11 0.01 0.11 0.03 0.08 0.45

independence chain MH estimates
Auśın & Galeano (2007) AdMit adaptive naive

mean mean NSE ·100 mean NSE ·100 mean NSE ·100
ω 1.130 ·10−3 0.08 8.00 0.07 10.24 0.15 32.34
λ 0.16 0.12 13.29 0.12 15.81 0.14 22.73
β 0.74 0.80 14.37 0.80 18.26 0.72 50.74
α 0.15 0.13 8.81 0.13 10.50 0.13 26.27
ρ 0.92 0.95 10.53 0.95 12.52 0.90 31.86
µ 1.13 0.11 5.59 0.11 6.37 0.12 12.96
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estimates than the adaptive Student-t candidate. This points out the importance of wisely

specifying an appropriate candidate both for IS and independence chain MH algorithms.

In particular for the IS estimator, this gain in efficiency is quite significant: NSE’s for IS

estimates decrease at least 50% when the posterior density is wrapped nicely by the AdMit

candidate. Second, the smallest NSE is achieved by the IS estimator using AdMit Student-t

candidate. Given a suitable candidate, IS performs better than the independence chain MH

algorithm.

Table 6: Mixture GARCH(1,1) model (15): NSE’s from IS and independence chain MH based on adaptive
Student-t and AdMit candidates in combination with the Warp1 method. Warp1∗ refers to 105 posterior
kernel evaluations (i.e., 0.5 · 105 candidate draws), whereas Warp1† refers to 105 candidate draws (i.e., 2 · 105

posterior kernel evaluations).

adaptive
IS BS1 BS2 CJ

10280· estimate ‘unwarped’ 3.96 3.95 3.90 3.96

10282· NSE ‘unwarped’ 11.12 11.88 12.07 10.95
Warp1∗ 4.97 12.19 12.28 14.11
Warp1† 4.20 8.77 8.52 10.11

AdMit
IS BS1 BS2 CJ

10280· estimate ‘unwarped’ 4.06 4.04 4.02 4.06

10282· NSE ‘unwarped’ 2.95 4.49 3.70 5.49
Warp1∗ 2.48 7.03 5.90 8.62
Warp1† 2.46 4.92 4.13 6.05

We now consider marginal likelihood estimates resulting from aiming at a ‘warped’ version

of the posterior kernel using the Warp1 method. We do not consider the Warp2 method

because of its computational cost: for this six-dimensional posterior each draw would require

26 = 64 posterior kernel evaluations. For the adaptive Student-t candidate, the NSE’s are

reported in the top panel of Table 6. For BS and CJ estimators, NSE’s are calculated by IPSE.

For the IS estimators, straightforward NSE calculation is used, as there is no serial correlation

between the draws. Considering BS1, BS2 and CJ estimators, warping the posterior density

leads to smaller NSE’s only when the number of candidate draws are constant. Hence this gain

in efficiency is related both to warping the posterior and the increased number of posterior

kernel evaluations. For the IS estimator on the other hand, Warp1 transformation does

provide efficiency gains, even when the number of kernel evaluations is the same as for the

‘unwarped’ counterpart. Notice that IS estimator provides the smallest NSE’s compared to

BS1, BS2 and CJ methods. Finally, IS estimates using the adaptive Student-t density in

combination with the Warp1 method are less precise than the ‘unwarped’ IS estimate using

the AdMit candidate, which is shown in the bottom panel of Table 6. Hence the gain from
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‘warping’ the posterior is smaller than that of ‘wrapping’ the posterior.

Until now, we have considered ‘warping’ and ‘wrapping’ the posterior kernel separately.

A natural extension would be to combine these methods. Hence we analyze the changes in

NSE’s when the posterior kernel is both ‘warped’ and ‘wrapped’. The bottom panel in Table 6

shows the NSE’s estimated by IS, BS1, BS2 and CJ algorithms making use of the AdMit

candidate and the Warp1 method, together with the ‘unwarped’ counterparts. For the BS1,

BS2 and CJ, reported NSE’s are achieved by IPSE. Warp1 transformation does not lead to

efficiency gains in BS1, BS2 and CJ estimators according to IPSE. The Warp1 transformation

leads to a small decrease in NSE for the IS algorithm, given the same number of posterior

kernel evaluations. Therefore we conclude that ‘warping’ and ‘wrapping’ the posterior at the

same time increases the efficiency of the IS algorithm, but most of this efficiency gain stems

from constructing an appropriate candidate density.

We make a final comparison for the NSE’s achieved by the independence chain MH

algorithms according to Newey-West estimator, IPSE and IMSE of Section 5. Table 7 reports

NW, IPSE and IMSE standard errors for the independence chain MH sampler under adaptive

and AdMit candidates, without or with a Warp1 transformation (105 candidate draws). For

the NW estimator, we choose a bandwidth of 40. NSE’s using all estimators are still larger

than those of IS using the AdMit candidate. Hence the victory of AdMit-IS is not related to

the choice of the NSE estimators. Furthermore, NW estimates are quite different from IMSE

and IPSE values. Notice that this result is in line with Section 5 where we show that the

NW estimator is less reliable than the IPSE and IMSE.

Table 7: Mixture GARCH(1,1) model (15): numerical standard errors based on the Newey-West, IPSE and
IMSE methods for independence chain MH sampler under adaptive and AdMit candidates, without or with
Warp1 transformation (105 candidate draws).

adaptive adaptive, Warp1 combination

10282· NSE 10282· NSE
BS1 BS2 CJ BS1 BS2 CJ

NW 7.20 6.07 7.30 NW 4.39 3.65 4.23
IPSE 11.88 12.07 10.95 IPSE 8.77 8.52 10.11
IMSE 11.88 12.07 10.95 IMSE 8.77 8.52 10.11

AdMit AdMit, Warp1 combination

10282· NSE 10282· NSE
BS1 BS2 CJ BS1 BS2 CJ

NW 5.08 3.83 5.43 NW 4.13 3.88 4.23
IPSE 4.49 3.70 5.49 IPSE 4.92 4.13 6.05
IMSE 4.32 3.70 5.49 IMSE 3.65 4.13 4.38
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7 Concluding remarks

We have considered two very different model structures (for data sets with different sample

sizes), a non-linear regression model (for a very small data set) and a mixture GARCH model

(for a large data set), with clearly different non-elliptical posterior shapes. Still, we obtain

roughly the same findings. Given a suitable candidate distribution, which can be obtained by

the AdMit method, the IS algorithm delivers a computationally efficient marginal likelihood

estimator (and a reliable, easily computed numerical standard error), which outperforms the

RIS, BS1, BS2 and CJ estimators. Warping the posterior density can lead to a further gain in

efficiency, but it is more important that the posterior kernel is appropriately wrapped by the

(AdMit) candidate distribution than that is warped. Moreover, warping requires evaluations

of the warped posterior density kernel which are only used for marginal likelihood estimation.

For the straightforward IS estimator of the marginal likelihood only computations are required

that are typically already performed for parameter estimation or forecasting; usually no extra

computations are required for marginal likelihood estimation.

If one uses a marginal likelihood estimator on the basis of serially correlated MCMC

draws, the IPSE of Geyer (1992) performs best among the considered methods for computing

numerical standard errors.

In further research, we intend to consider different empirical applications. We will further

compare the performance of different types of bridge sampling estimators with the approach

of Chib (1995) in cases of non-elliptical posteriors where the Gibbs sampler is applicable. We

will also consider the quality of the estimators when these are applied in combination with

the radial-based transformation of Bauwens et al. (2004). Another possibility is to consider

the path sampling method of Gelman and Meng (1998), which extends the bridge sampling

approach.
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