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Abstract: Ordering of regression or classification coefficients occurs in many real-world applications.
Fused Lasso exploits this ordering by explicitly regularizing the differences between neighboring co-
efficients through an ℓ1 norm regularizer. However, due to nonseparability and nonsmoothness of the
regularization term, solving the fused Lasso problem is computationally demanding. Existing solvers
can only deal with problems of small or medium size, or a special case of the fused Lasso problem in
which the predictor matrix is identity matrix. In this paper, we propose an iterative algorithm based
on split Bregman method to solve a class of large-scale fused Lasso problems, including a generalized
fused Lasso and a fused Lasso support vector classifier. We derive our algorithm using augmented
Lagrangian method and prove its convergence properties. The performance of our method is tested
on both artificial data and real-world applications including proteomic data from mass spectrometry
and genomic data from array CGH. We demonstrate that our method is many times faster than the
existing solvers, and show that it is especially efficient for large p, small n problems.
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1. Introduction

Regularization terms that encourage sparsity in coefficients are increasingly being used in regression and clas-
sification procedures. One widely used example is the Lasso procedure for linear regression, which minimizes
the usual sum of squared errors, but additionally penalizes the ℓ1 norm of the regression coefficients. Because
of the non-differentiability of the ℓ1 norm, the Lasso procedure tends to shrink the regression coefficients
toward zero and achieves sparseness. Fast and efficient algorithms are available to solve Lasso with as many
as millions of variables, which makes it an attractive choice for many large-scale real-world applications.

The fused Lasso method introduced by Tibshirani et al. [1] is an extension of Lasso, and considers the
situation where there is certain natural ordering in regression coefficients. Fused Lasso takes this natural
ordering into account by placing an additional regularization term on the differences of “neighboring” coef-
ficients. Consider the linear regression of {(xi, yi)}

n
i=1, where xi = (xi1, . . . , xip)

T are the predictor variables
and yi are the responses. (We assume xij , yi are standardized with zero mean and unit variance across dif-
ferent observations.) Fused Lasso finds the coefficients of linear regression by minimizing the following loss
function

Φ(β) =
1

2

n
∑

i=1



yi −

p
∑

j=1

xijβj





2

+ λ1

p
∑

i=1

|βi|+ λ2

p
∑

i=2

|βi − βi−1|, (1)

where the regularization term with parameter λ1 encourages the sparsity of the regression coefficients, while
the regularization term with parameter λ2 shrinks the differences between neighboring coefficients toward
zero. As such, the method achieves both sparseness and smoothness in the regression coefficients.

Regression or classification variables with some inherent ordering occur naturally in many real-world
applications. In genomics, chromosomal features such as copy number variations (CNV), epigenetic modifi-
cation patterns, and genes are ordered naturally by their chromosomal locations. In proteomics, molecular
fragments from mass spectrometry (MS) measurements are ordered by their mass-to-charge ratios (m/z).
In dynamic gene network inference, gene regulatory networks from developmentally closer cell types are
more similar than those from more distant cell types [2]. Fused Lasso exploits these natural ordering, so,
not surprisingly, it has found applications in these areas particularly suitable. For example, Tibshirani and
Wang successfully applied fused Lasso to detect DNA copy number variations in tumor samples using array
comparative genomic hybridization (CGH) data [3]. Tibshirani et al. used fused Lasso to select proteomic
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features that can separate tumor vs normal samples [1]. In addition to the application areas mentioned
above, fused Lasso or the extension of it has also found applications in a number of other areas, including
image denoising, social networks [2], quantitative trait network analysis [4], etc.

The loss function in (1) is strictly convex, so a global optimal solution is guaranteed to exist. However,
finding the optimal solution is computationally challenging due to the nondifferentiability of Φ(β). Existing
methods circumvent the nondifferentiability of Φ(β) by introducing 2p−1 additional variables and converting
the unconstrained optimization problem into a constrained one with 6p − 1 linear inequality constraints.
Standard convex optimization tools such as SQOPT [5] and CVX [6] can then be applied. Because of the
large number of variables introduced, these methods are computationally demanding in terms of both time
and space, and, in practice, have only been able to solve fused Lasso problems with small or medium sizes.

Component-wise coordinate descent has been proposed as an efficient approach for solving many l1 regu-
larized convex optimization problems, including Lasso, grouped Lasso, elastic nets, graphical Lasso, logistic
regression, etc [7]. However, coordinate descent cannot be applied to the fused Lasso problem because the
variables in the loss function Φ(β) are nonseparable due to the second regularization term, and as such,
convergence is not guaranteed [8].

For a special class of fused Lasso problems, named fused Lasso signal approximator (FLSA), where the
predictor variables xij = 1 for all i = j and 0 otherwise, there are algorithms available to solve it efficiently.
A key observation of FLSA first noticed by Friedman et al. is that for fixed λ1, increasing λ2 can only
cause pairs of variables to fuse and they become unfused for any larger values of λ2. This observation allows
Friedman et al. to develop a fusion algorithm to solve FLSA for a path of λ2 values by keeping track of
fused variables and using coordinate descent for component-wise optimization. The fusion algorithm was
later extended and generalized by Hoefling [9]. However, for the fusion algorithm to work, the solution path
as a function of λ2 has to be piecewise linear , which is not true for the general fused Lasso problem [10]. As
such, these algorithms are not applicable to the general fused Lasso case.

In this paper, we propose a new method based on the split Bregman iteration for solving the general
fused Lasso problem. Although the Bregman iteration was an old technique proposed in the sixties [11, 12],
it gained significant interest only recently after Osher and his coauthors demonstrated its high efficiency for
image restoration [13, 14, 15]. Most recently, it has also been shown to be an efficient tool for compressed
sensing [16, 17, 18], matrix completion [19] and low rank matrix recovery [20]. In the following, we will show
that the general fused Lasso problem can be reformulated so that split Bregman iteration can be readily
applied.

The rest of the paper is organized as follows. In Section 2, we derive algorithms for a class of fused Lasso
problems from augmented Lagrangian function including SBFLasso for general fused Lasso, SBFLSA for
FLSA and SBFLSVM for fused Lasso support vector classifier. The convergence properties of our algorithms
are also presented. We demonstrate the performance and effectiveness of the algorithm through numerical
examples in Section 3, and describe additional implementation details. Algorithms described in this paper
are implemented in Matlab and are freely available from the authors.

2. Algorithms

2.1. Split Bregman iteration for a generalized fused Lasso problem

We first describe our algorithm in a more general setting than the one described in (1). Instead of the
quadratic error function, we allow the error function to be any convex function of the regression coefficients.
In addition, we relax the assumption that the coefficients should be ordered along a line as in (1), and allow
the ordering to be specified arbitrarily, e.g., according to a graph. For the generalized fused Lasso, we find
β by solving the following unconstrained optimization problem

min
β

V (β) + λ1‖β‖1 + λ2‖Lβ‖1, (2)

where V (β) = V (β;X, y) is the error term, the regularization term with parameter λ1 encourages the sparsity
of β as before, and the regularization term with parameter λ2 shrinks the differences between neighboring
variables as specified in matrix L toward zero. We assume L is an m× p matrix. In the standard fused Lasso
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in (1), L is simply a (p− 1)× p matrix with zeros entries everywhere except 1 in the diagonal and −1 in the
superdiagonal. The unconstrained problem (2) can be reformulated into an equivalent constrained problem

min
β

V (β) + λ1‖a‖1 + λ2‖b‖1

s.t. a = β

b = Lβ. (3)

Although split Bregman methods originated from Bregman iterations [16, 13, 18, 21, 14, 15], it is more
convenient to derive the split Bregman method for the generalized Lasso using the augmented Lagrangian
method [22, 23].

Note that the Lagrangian function of (3) is

L̃(β, a, b, u, v) = V (β) + λ1‖a‖1 + λ2‖b‖1 + 〈u, β − a〉+ 〈v, Lβ − b〉, (4)

where u ∈ R
p is a dual variable corresponding to the linear constraint β = a, v ∈ R

m is a dual variable
corresponding to the linear constraint Lβ = b, 〈·, ·〉 denotes the standard inner product in Euclidean space.
The augmented Lagrangian function of (3) is similar to the (4) except for adding two terms µ1

2
‖β − a‖22 +

µ2

2
‖Lβ − b‖22 to penalize the violation of linear constraints β = a and Lβ = b. That is,

L(β, a, b, u, v) = V (β) + λ1‖a‖1 + λ2‖b‖1 + 〈u, β − a〉+ 〈v, Lβ − b〉+
µ1

2
‖β − a‖22 +

µ2

2
‖Lβ − b‖22, (5)

where µ1 > 0 and µ2 > 0 are two parameters.
Consider the problem of finding a saddle point (β∗, a∗, b∗, u∗, v∗) of the augmented Lagrangian function

L(β, a, b, u, v) such that

L(β∗, a∗, b∗, u, v) ≤ L(β∗, a∗, b∗, u∗, v∗) ≤ L(β, a, b, u∗, v∗) (6)

for all β, a, b, u and v. It can be shown that β∗ is an optimal solution of (2) if and only if (β∗, a∗, b∗, u∗, v∗)
solves the above saddle point problem for some a∗, b∗, u∗, and v∗.

We solve the saddle point problem through an iterative algorithm by alternating between the primal and
the dual optimization as follows

{

Primal : (βk+1, ak+1, bk+1) = argminβ,a,bL(β, a, b, u
k, vk)

Dual : uk+1 = uk + δ1(β
k+1 − ak+1), vk+1 = vk + δ2(Lβ

k+1 − bk+1)
(7)

where the first step updates the primal variables based on the current estimate of uk and vk, while the second
step updates the dual variables based on the current estimate of the primal variables. Since the augmented
Lagrangian function is linear in u and v, updating the dual variables are relatively easy and we use gradient
ascent algorithm with step size δ1 and δ2.

The efficiency of the iterative algorithm (7) lies on whether the primal problem can be solved quickly.
The augmented Lagrangian function L still contains nondifferentiable terms. But different from the original
objective function in (2), the ℓ1 induced nondifferentiability has now been transferred from terms involving β

to terms involving a and b only. Moreover, the nondifferentiable terms involving a and b are now completely
decoupled, and thus we can solve the primal problem by alternating minimization of β, a and b,











βk+1 = argminβ V (β) + 〈uk, β − ak〉+ 〈vk, Lβ − bk〉+ µ1

2
‖β − ak‖22 +

µ2

2
‖Lβ − bk‖22

ak+1 = argmina λ1‖a‖1 + 〈uk, βk+1 − a〉+ µ1

2
‖βk+1 − a‖22

bk+1 = argminb λ2‖b‖1 + 〈vk, Lβk+1 − b〉+ µ2

2
‖Lβk+1 − b‖22.

(8)

Minimization of a and b in (8) can be done efficiently using soft thresholding, because the objective
functions are quadratic and nondifferentiable terms are completely separable. Let Tλ be a soft thresholding
operator defined on vector space and satisfying

Tλ(w) = [tλ(w1), tλ(w2), . . . , . . .]
T , with tλ(wi) = sgn(wi)max{0, |wi| − λ}. (9)
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Using the soft thresholding operator, the optimal solution of a and b in (8) can be written as

ak+1 = Tµ−1

1
λ1
(βk+1 + µ−1

1 uk) and bk+1 = Tµ−1

2
λ2
(Lβk+1 + µ−1

2 vk). (10)

Therefore, the efficiency of the iterative algorithm depends entirely on whether the minimization of β in (8)
can be done efficiently. If V (β) is a quadratic function as in the standard fused Lasso, the optimal solution
βk+1 can be found analytically.

In theory, the alternate minimization between the primal variables needs to run multiple times until
convergence. However, we do not have to completely solve the primal problem since it is only one step of
the overall iterative algorithm. Our algorithm uses only one alternation. Overall, we propose Algorithm 1
for solving the saddle point problem (6), and consequently the problem (2).

Algorithm 1: Split Bregman method for the generalized Fused Lasso (2)

Initialize β0, a0, b0, u0, and v0.
repeat

1) βk+1 = argminβ V (β) + 〈uk, β − ak〉+ 〈vk , Lβ − bk〉+ µ1

2
‖β − ak‖2

2
+ µ2

2
‖Lβ − bk‖2

2

2) ak+1 = T
µ
−1

1
λ1

(βk+1 + µ−1
1

uk)

3) bk+1 = T
µ
−1

2
λ2

(Lβk+1 + µ−1

2
vk)

4) uk+1 = uk + δ1(βk+1 − ak+1)
5) vk+1 = vk + δ2(Lβk+1 − bk+1)

until

Convergence

The convergence property of Algorithm 1 is shown in the following theorem, which we prove in the
Supplementary Info.

Theorem 1. Suppose there exists at least one solution β∗ of (2). Assume V (β) is convex, 0 < δ ≤ µ1,
0 < δ2 ≤ µ2, and λ1 > 0, λ2 > 0. Then the following property for the split Bregman iteration in Algorithm
1 holds:

lim
k→∞

V (β) + λ1‖β
k‖1 + λ2‖Lβ

k‖1 = V (β∗) + λ1‖β
∗‖1 + λ2‖Lβ

∗‖1. (11)

Furthermore,
lim
k→∞

‖βk − β∗‖ = 0 (12)

whenever (2) has a unique solution.

Note that the condition for the convergence in Theorem 1 is quite easy to satisfy. λ1, λ2 are regularization
parameters and should always be larger than zero. So as long as 0 < δ1 ≤ µ1 and 0 < δ2 ≤ µ2, the algorithm
converges. In our implementation, we just choose δ1 = µ1 and δ2 = µ2.

2.2. Split Bregman for the standard fused Lasso (SBFLasso)

Next we apply Algorithm 1 to solve the standard fused Lasso problem (1), which constitutes a special case
of the generalized fused Lasso problem with

V (β;X, y) =
1

2
‖Xβ − y‖22

and
Lβ = (β2 − β1, β3 − β2, . . . , βp − βp−1)

T , (13)

where X = (xi,j)
n,p
i=1,j=1

and y = (y1, . . . , yn)
T .

The objective function on minimizing β in Algorithm 1 is now quadratic and differentiable, and thus the
optimal solution can be found by solving a set of linear equations:

(XTX + µ1I + µ2L
TL)βk+1 = XTy + µ1(a

k − µ−1

1 uk) + µ2L
T (bk − µ−1

2 vk), (14)
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while the other four steps in Algorithm 1 are easy to implement and can be computed quickly. So the
efficiency of the algorithm largely depends on how fast the linear equations can be solved. Matrix D =
XTX+µ1I +µ2L

TL is a p× p matrix, independent of the optimization variables. For small p, we can invert
D and store D−1 in the memory, so the linear equations can be solved with minimal cost. However, for large
p, we will need to numerically solve the linear equations at each iteration.

The matrix P = µ1I + µ2L
TL occurring in (14) is a tridiagonal positive definite matrix, and as such,

the linear equation (µ1I + µ2L
TL)x = g can be solved efficiently for any x,g ∈ R

p, requiring only order of
p operations. More specifically, there exists a matrix L̂ satisfying L̂ij = 0 for all i 6= j and i 6= j − 1 such

that (µ1 + 1)I + µ2L
TL = L̂L̂T . This decomposition can be achieved by using Cholesky factorization. Thus

solving equation (15) is equivalent to solving two systems of linear equations L̂z = XT y+µ1(a
k −µ−1

1 uk)+

µ2L
T (bk − µ−1

2 vk) and L̂Tβk+1 = z. These two equations can be easily solved due to the special structure

of L̂.
The linear system (2.3) is very special for large p, small n problems in that XTX will be a low rank

matrix with rank at most n. In combination of the special structure of matrix P mentioned above, we use
preconditioned conjugate gradient algorithm (PCG) to solve (2.3).

The PCG algorithm [24] computes an approximate solution of the linear equations Hx = g using a
preconditioner P , where both H,P ∈ R

p×p are symmetric positive definite. For the linear equation (14), we
use preconditioner P = µ1I+µ2L

TL and the PCG algorithm converges in less than n steps. In our numerical
implementation, we found that PCG converges in a few steps much smaller than n.

2.3. Split Bregman for FLSA (SBFLSA)

The fused Lasso signal approximator (FLSA) problem introduced by Friedman et al. corresponds to a special
case of the standard fused Lasso with the predictor variablesX being an identify matrix. Therefore, for FLSA,
the primal problem minimizing β is simply

((µ1 + 1)I + µ2L
TL)βk+1 = y + µ1(a

k − µ−1

1
uk) + µ2L

T (bk − µ−1

2
vk), (15)

while other iterations stay the same.
As mentioned in the preceding section, matrix (µ1+1)I+µ2L

TL is a tridiagonal positive definite matrix,
so (15) can be solved very efficiently, requiring only order of p operations. Therefore, we have a fast solver
for SBFLSA using the split Bregman iteration in Algorithm 1.

2.4. Iterative algorithm for fused Lasso Support Vector Classifier (SBFLSVM)

Next we derive a split Bregman algorithm for the fused Lasso support vector classifier (FLSVM) introduced
by [1]. FLSVM uses a hinge loss function [25] for two-label classification problems. It finds the optimal

classification coefficients (β̂0, β̂) that minimize

f(β0, β) =
1

n

n
∑

i=1

(1 − yi(β
Txi + β0))+ + λ1‖β‖1 + λ2‖Lβ‖1, (16)

where (u)+ = max{u, 0} for any u ∈ R and L is the difference operator defined in (13).
Because the hinge loss function (1− t)+ is not differentiable, the primal problem involving β is now more

difficult to solve. As a result, we will not directly apply Algorithm 1 to solve FLSVM. Instead, we introduce
additional variables to deal with the nondifferentiability of the hinge loss.

Let Y be a diagonal matrix with its diagonal elements to be the vector y. The unconstrained problem in

5



(16) can be reformulated into an equivalent constrained optimization problem

min
β,β0,a,b,c

1

n

n
∑

i=1

(ci)+ + λ1‖a‖1 + λ2‖b‖1

s. t. β = a

Lβ = b

1− Y Xβ − β0y = c, (17)

where 1 is an n-column vector of 1s.
The augmented Lagrangian function of (17) is

L(β, β0, a, b, c, u, v, w) =
1

n

n
∑

i=1

(ci)+ + λ1‖a‖1 + λ2‖b‖1 + 〈u, β − a〉+ 〈v, Lβ − b〉+

〈w,1− Y Xβ − β0 − c〉+
µ1

2
‖β − a‖22 +

µ2

2
‖Lβ − b‖22 +

µ3

2
‖1− Y Xβ − β0 − c‖22,

where u, v, w are dual variables corresponding to linear constraints β = a, Lβ = b, and 1 − Y Xβ − β0y = c

respectively. Positive reals µ1, µ2 and µ3 are the penalty parameters for the violation of the linear constraints.
Similar to the derivation of Algorithm 1, we find the saddle point of L by iteratively updating the primal

and dual directions


































































(βk+1, βk+1

0 ) = argminβ,β0
〈uk, β − ak〉+ 〈vk, Lβ − bk〉+ 〈wk,1− Y Xβ − β0y − ck〉

+µ1

2
‖β − ak‖22 +

µ2

2
‖Lβ − bk‖22 +

µ3

2
‖1− Y Xβ − β0y − ck‖22,

ak+1 = argmina λ1‖a‖1 + 〈uk, βk+1 − a〉+ µ1

2
‖βk+1 − a‖22,

bk+1 = argminb λ2‖b‖1 + 〈vk, Lβk+1 − b〉+ µ2

2
‖Lβk+1 − b‖22,

ck+1 = argminc
1

n

∑n
i=1

(ci)+ + 〈wk,1− Y Xβk+1 − βk+1

0
y − c〉

+µ3

2
‖1− Y Xβk+1 − βk+1

0 y − c‖22
uk+1 = uk + δ1(β

k+1 − ak+1),

vk+1 = vk + δ2(Lβ
k+1 − bk+1),

wk+1 = wk + δ3(1− Y Xβk+1 − βk+1

0 y − ck+1)

(18)

The update for ak+1, bk+1, uk+1, vk+1, wk+1 are almost the same as the one in Algorithm 1, so we focus on
the update for (βk+1, βk+1

0 ) and ck+1. In Supplementary Information we show that PCG can still be applied
to solve the updating of (βk+1, βk+1

0 ) with some modifications.
To update of ck+1 in 18, we use the following proposition, which is proven in the Supplementary Info.

Proposition 1. Let sλ(w) = argminx∈R λx+ + 1

2
‖x− w‖22. Then

sλ(w) =







w − λ, w > λ,

0, 0 ≤ w ≤ λ,

w, w < 0.
(19)

With Proposition 1, we can then update ck+1 in 18 according to

Corollary 1. ck+1 = S 1

nµ3

(1− Y Xβk+1 − βk+1

0 y + µ−1

3 wk) is the solution of equation (??), where

Sλ(w) = (sλ(w1), sλ(w2), . . . , sλ(wn)), ∀w ∈ R
n

with sλ defined by (19).

Proof. The equation (??) is equivalent to

ck+1 = argmin
c

1

nµ3

n
∑

i=1

(ci)+ +
1

2
‖1− Y Xβk+1 − βk+1

0 y − c+ µ−1

3 wk‖22. (20)
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Note that each element of c is independent of each other in (20), we can get the desired result by using
Proposition 1.

In summary, we derive Algorithm 2 to solve (16).

Algorithm 2: Split Bregman method for FLSVM

Initialize β0, β0
0
, a0, b0, c0, u0, v0, and w0.

repeat

1) Update βk+1, βk+1

0
by solving the linear equations:

(

µ1I + µ2L
TL+ µ3X

TY 2X µ3X
T Y y

µ3y
T Y X µ3y

T y

)(

βk+1

βk+1

0

)

= µ1

(

ak − µ−1

1
uk

0

)

+ µ2

(

LT

0

)

(bk − µ−1

2
vk) + µ3

(

XT Y

yT

)

(1− ck + µ−1

3
wk)

2) ak+1 = T
µ
−1

1
λ1

(βk+1 + µ−1

1
uk)

3) bk+1 = T
µ
−1

2
λ2

(Lβk+1 + µ−1

2
vk)

4) ck+1 = S 1

nµ3

(1− Y Xβk+1 − βk+1

0
y + µ−1

3
wk)

5) uk+1 = uk + δ1(Lβk+1 − ak+1)
6) vk+1 = vk + δ2(βk+1 − vk+1)

7) wk+1 = wk + δ3(1− Y Xβk+1 − βk+1

0
y − ck+1)

until

Convergence

The convergence property of Algorithm 2 is shown in the following theorem, which we prove in the
Supplementary Info.

Theorem 2. Suppose there exists at least one solution β∗ of (16). Assume 0 < δ1 ≤ µ1, 0 < δ2 ≤ µ2 and
λ1 > 0, λ2 > 0. Then the following property for Algorithm 2 holds:

lim
k→∞

1

n

n
∑

i=1

(1− yi(x
T
i β

k + βk
0 ))+ + λ1‖β

k‖1 + λ2‖Lβ
k‖1

=
1

n

n
∑

i=1

(1− yi(x
T
i β

∗ + β∗

0 ))+ + λ1‖β
∗‖1 + λ2‖Lβ

∗‖1. (21)

Furthermore,
lim
k→∞

‖βk − β∗‖ = 0 (22)

whenever (16) has a unique solution.

3. Experimental Results

Next we illustrate the efficiency of split Bregman method for fused Lasso using time trials on artificial data
as well as real-world applications from genomics and proteomics. All our algorithms were implemented in
Matlab, and compiled on a windows platform. Time trials were generated on an Intel Core 2 Duo desktop
PC (E7500, 2.93GHz).

As the regression form of the fused Lasso procedures is more frequently used, we will thus focus on testing
the performance of SBFLasso and SBFLSA. To evaluate the performance of SBFLasso, we compare it with
SQOPT and CVX. SQOPT [5] is used in the original fused Lasso paper by Tibshirani et al. [1]. It is a
two-phase active set algorithm, designed for quadratic programming problems with sparse linear constraints.
CVX is a general convex optimization package [6]. SQOPT and CVX solve the fused Lasso by introducing
additional variables and constraints to transform the nondifferentiable objective function into a smooth one.
Both solvers are implemented in Matlab, and thus are directly comparable to our implementation. SQOPT
allows warm start, so we will use it whenever possible. To evaluate the performance of SBFLSA for solving
FLSA, we mainly compare it with the path algorithm proposed by Hoefling [9].
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The stopping criterion of SBFLasso is specified as follows. Let Φ(βk) = 1

2
‖Xβk−y‖22+λ1‖β

k‖1+λ2‖Lβ
k‖1.

According to Theorem 1, limk→∞ Φ(βk) = Φ(β∗). Therefore, we terminate SBFLasso when the relative
change of the energy functional 1

2
‖Xβ − y‖22 + λ1‖β‖1 + λ2‖Lβ‖1 falls below certain threshold δ. We used

δ = 10−5 in our simulation, i.e., we stop the Bregman iteration whenever

RelE :=
|Φ(βk+1)− Φ(βk)|

Φ(βk)
≤ 10−5. (23)

Note that the convergence of Algorithm 1 is guaranteed no matter what values of µ1 and µ2 are used as
shown in Theorem 1. The speed of the algorithm can, however, be influenced by the choices of µ1 and µ2

as it would affect the number of iterations involved. In our implementation, we choose the parameter values
using a pretrial procedure in which we test the convergence rate for a set of parameter values and identify
the one that gives rise to the highest convergence rate. For regression problems, we always set µ1 = µ2 and
select values from the set {0.2, 0.4, 0.6, 0.8, 1} × ‖y‖2. The parameter selecting procedure can certainly be
further improved, but empirically we find it works well for all the problems we tested.

3.1. Artificial data

3.1.1. Solving fused Lasso

We generated Gaussian data with n observations and p predictors, with each pair of predictors Xi, Xj(i 6= j)
having the same population correlation ρ. The outcome values were generated by Y =

∑p
j=1

βjXj + ǫ, where
ǫ is the Gaussian noise with mean 0 and variance σ. The regression coefficient β = (β1, . . . , βp) is a sparse
vector with the values of βj are generated according to

βi =















2, i = 1, 2 . . . , 20, 121, 122, . . . , 125
3, i = 41
1, i = 71, 72, . . . , 85
0, else.

The design of β is motivated by the fact that fused lasso are especially suitable for coefficients that are
constant for an interval and change in jumps. An example plot of β of size p = 500 can be seen in Figure
1(a).

Table 1 shows the average CPU time for CVX, SQOPT and SBFLasso to solve the fused Lasso problems.
SBFLasso consistently outperforms CVX in all cases we tested with a speedup of at least ten fold. Note
that CVX fails to obtain results for large p problems due to out of memory errors. Although it has similar
performance to SQOPT for small size problems (p ∼ 200), SBFLasso is significantly faster than SQOPT
for large p problems. For problems of n = 200, p = 20000, SBFLasso is able to obtain the optimal solutions
within ∼ 30 seconds, while it takes about 800 seconds for SQOPT to obtain the similar results. Overall, our
algorithm is about twenty times faster than SQOPT for the large p problems.

To evaluate how the performance of SBFLasso scales with problem size, we plotted the CPU time that
SBFLasso took to solve the fused Lasso problem as a function of p and n. Figure 2 shows such a curve,
where CPU time is averaged over 500 runs with different parameters λ1, λ2 and different design matrix X .
We note that the CPU times are roughly linear in both n and p.

A key to the success of SBFLasso is that we split the regularization terms ‖β‖1 and ‖Lβ‖1 and make
the minimization problems separable. Due to the soft thresholding in the Bregman iteration, the solutions
obtained by SBFLasso are naturally sparse as we can see from Figure 1(b). This is contrast to solutions
obtained by CVX and SQOPT, because no thresholding steps are involved, solutions obtained by these
two algorithms are not sparse, and sparseness can only be achieved through a thresholding step in the
postprocessing.

3.1.2. Solving FLSA

Next we compare SBFLSA and the path algorithm (PATHFLSA) [9] for solving FLSA. PATHFLSA uses a
fusion algorithm to solve FLSA, taking advantage of the special structure of the error term. It represents
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Table 1

Run times (CPU seconds) for fused lasso problems of various sizes p and n, different correlation ρ between the features.
Methods are SQOPT, CVX and SBFLasso. The results are averaged over 100 runs (using 4 different predictor matrix X and

25 different values of regularization parameters λ1, λ2 (or s1, s2).

n=100 n=100 n=200 n=200 n=200 n=200
ρ Method p=200 p=1000 p=2000 p=5000 p=10000 p=20000

time(sec) time(sec) time(sec) time(sec) time(sec) time(sec)
CVX 0.496 2.646 18.148 64.453 - -

ρ = 0 SQOPT 0.0334 0.510 5.738 39.269 147.534 > 600
SBFLasso 0.0366 0.155 1.488 5.845 12.724 28.441

CVX 0.523 2.792 16.812 61.914 - -
ρ = 0.2 SQOPT 0.0323 0.572 6.812 47.196 205.365 > 600

SBFLasso 0.0352 0.323 2.831 9.716 18.249 34.061
CVX 0.518 2.719 16.504 63.456 - -

ρ = 0.4 SQOPT 0.0299 0.611 6.063 48.010 203.973 > 600
SBFLasso 0.0338 0.265 2.803 8.897 24.680 26.990

CVX 0.510 2.856 17.020 62.920 - -
ρ = 0.6 SQOPT 0.0312 0.519 6.508 45.339 197.794 > 600

SBFLasso 0.0286 0.143 2.190 8.947 20.586 36.157
CVX 0.511 2.995 19.379 68.425 - -

ρ = 0.8 SQOPT 0.0293 0.527 5.678 41.147 178.208 > 600
SBFLasso 0.0190 0.221 1.426 6.446 15.505 41.614
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Fig 1: (a) The figure of coefficient β in 500 dimension; (b) The blue line is the solution derived by SBFLasso with
λ1 = 16, λ2 = 20 and the red line is the original β in 500 dimension.
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Fig 2: CPU times for SBFLasso for the same problem as in Table 1, for different values of n and p. In each case the
times are averaged over 500 runs. (a) n is fixed and equals to 200; (b) p is fixed and equals to 5000.

the state of the art for solving the FLSA problem. We generate data according to y = β + ǫ, where ǫ is the
Gaussian noise with mean 0 and variance σ, and β is a sparse vector which has similar shape as the one
shown in Figure 1(a) with more nonzero entries. We vary p from 103 to 106 and the results for each p are
averaged over 10 runs.

Table 2 shows that the computational times of SBFLSA and PATHFLSA for solving the FLSA prob-
lems.We note that the performance of SBFLSA is similar to PATHFLSA in almost all cases we tested, and
both algorithms significantly outperforms SQOPT with thousands of times faster for large p problems.

Table 2

Run times (CPU seconds) for an 1-dimensional FLSA problems of various sizes p. Methods are SQOPT, SBFLSA and path
algorithm for FLSA(PATHFLSA). The results are averaged over 10 runs.

parameters Method p = 104 p = 105 p = 106

SQOPT 106.97 > 5 hours -
λ1 = 0.1, λ2 = 0.8 SBFLSA 0.053 0.754 8.681

PATHFLSA 0.050 0.651 8.685
SQOPT 107.74 > 5 hours -

λ1 = 0.2, λ2 = 1.0 SBFLSA 0.053 0.820 8.263
PATHFLSA 0.051 0.653 8.678
SQOPT 108.12 > 5 hours -

λ1 = 0.3, λ2 = 1.2 SBFLSA 0.053 0.798 9.289
PATHFLSA 0.049 0.654 8.657
SQOPT 106.13 > 5 hours -

λ1 = 0.4, λ2 = 1.5 SBFLSA 0.053 0.806 9.892
PATHFLSA 0.049 0.651 8.661

Although the performance of SBFLSA and PATHFLSA are similar for fixed λ1 and λ2, PATHFLSA has
an additional advantage of generating solutions for a path of the regularization parameters. However, because
PATHFLSA works by fusing variables, a necessary condition for it to work is that the solution path has to
be piece-wise linear when varying λ2. This condition is in general not true for both the fused Lasso and the
generalized fused Lasso. As such, it cannot be applied to these cases.

3.2. Mass spectrometry data

Mass spectrometry (MS) holds great promise for biomarker identification, and genome wide metabolic and
proteomic profiling. The protein mass spectroscopy application was used as a motivating example for fused
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Lasso in the paper by Tibshirani et al. [1]. Next we illustrate the efficiency of SBFLasso for solving the
fused Lasso problem for mass spectrometry data. The data we use is taken from [26]. It consists of MS
measurements of 95 normal samples and 121 samples taken from patients with ovarian cancer. The raw data
contains a total of 368, 750 mass-to-charge ratio (m/z) sites.

We first preprocessed the data using the procedure described in [26], consisting of the following three
steps: 1) re-sampling: Gaussian kernel reconstruction of the signal in order to have a set of d-dimensional
vectors with equally spaced mass/charge values; 2) baseline correction: removes systematic artifacts, usually
attributed to clusters of ionized matrix molecules hitting the detector during early portions of the experiment,
or to detector overload; 3) normalization: corrects for differences in the total amount of protein desorbed
and ionized from the sample plate. The average profiles from normal and cancer patients after preprocessing
are shown in Figure 3.

Table 3

Run times (CPU seconds) for SBFLasso, SQOPT and CVX on MS data for different values of the regularization parameters
λ1 and λ2.

parameters 10-CV error SBFLasso SQOPT CVX
λ1 = 2.0, λ2 = 3.5 6/216 2.9854 31.707 24.481
λ1 = 2.5, λ2 = 4.5 8/216 3.6612 30.310 23.456
λ1 = 3.0, λ2 = 1.0 6/216 3.2082 35.911 22.261
λ1 = 3.5, λ2 = 2.5 9/216 3.5080 32.094 21.130
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Fig 3: (a) Protein mass spectroscopy data:average profiles from normal (blue) and cancer patients (red); (b) Estimated
β from protein mass spectroscopy data with λ1 = 2, λ2 = 3.5 by CVX (blue) and SBFLasso (red).

We apply the fused Lasso (1) to the MS data to select features (m/z sites) that can be used to predict
sample labels. For each sample, the response variable is either 1 or −1, and the predictor variable is a
vector consisting of the intensity of p = 3000 sampled m/z sites. We used SBFLasso to solve the fused
Lasso problem, and compared its performance to CVX and SQOPT. The results are summarized in Table 3,
which shows the computational times spent by different solvers in a ten-fold cross-validation procedure for
different parameters λ1 and λ2. SBFLasso is consistently many times faster than CVX and SQOPT, with
an approximately ten-fold speedup in almost all cases. The coefficients derived by SBFLasso and the other
solvers are very similar (Figure 3b), but SBFLasso is able to achieve a sparser solution, and in addition a
slightly lower objective function than CVX.

11



3.3. Comparative genomic hybridization (CGH) data

In tumor cells, mutations often cause a large DNA segment to be deleted or inserted in a chromosome, in a
phenomena called copy number variation (CNV). Array CGH is a technique that is used to detect CNVs in
a genome by labeling DNA from a test sample and normal reference sample differently using fluorophores
and hybridizing to genomewide probes. The log ratio of the fluorescence intensity of the test DNA to the
reference DNA is then calculated for each probe. A value greater than zero indicates a possible gain in DNA
copies of the region around the probe, while a value less than zero suggests a possible loss. [3] demonstrated
the efficiency of the fused lasso signal approximator (FLSA) for detecting CVNs using array CGH data.
Next, we will show that SBFLSA is an efficient tool for solving the FLSA problem for array CGH data.

Table 4

Run times (CPU seconds) for SBFLSA on CGH data for different values of the regularization parameters λ1 and λ2.

parameters SBFLSA PATHFLSA SQOPT CVX
λ1 = 0.10, λ2 = 3.0 0.007 0.006 0.7273 0.7124
λ1 = 0.12, λ2 = 3.5 0.007 0.005 0.6193 0.6451
λ1 = 0.15, λ2 = 3.0 0.007 0.006 0.6161 0.6604
λ1 = 0.18, λ2 = 3.2 0.006 0.005 0.6370 0.6244
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Fig 4: Fused lasso applied to some GBM data. The data are shown in the left panel, and the solid red line in the
right panel represents the inferred copy number β̂ from SBFLSA. The gray line is for y = 0.

We used the glioblastoma multiforme (GBM) data from [27], which contains array CGN profiling of
samples from primary GBMs, a particular malignant type of brain tumor. Table 4 shows the CPU times
spent by SBFLSA to solve the FLSA problem for different regularization parameters λ1 and λ2. We observe
that our method is significantly faster than SQOPT and CVX, with a speed improvement of about 100 times.
The performance of SBFLSA is also comparable to the path algorithm, which is specially designed, the state
of the art for solving FLSA problems. Figure 4(b) plots the copy number variants detected by SBFLSA with
λ1 = 0.10 and λ2 = 3.5, clearly showing the gain of DNA segments in two nearby chromosomal regions in
GBM.

4. Discussion

Fused Lasso is an attractive framework for regression or classification problems with some natural ordering
occurring in regression or classification coefficients. It exploits this naturally ordering by explicitly regu-
larizing the differences between neighboring coefficients through an l1 norm regularizer. Solving the fused
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Lasso problem is, however, challenging because of the nondifferentiability of the objective function and the
nonseparability of the variables involved in the nondifferentiable terms of the objective function. Existing
solvers circumvent these difficulties by reformulating the fused Lasso problem into a smooth constrained
convex optimization problem by introducing a large number of auxiliary variables and constraints, and as
such, are only able to solve small or medium size fused Lasso problems.

We derived an iterative algorithm based on the split Bregman method to solve a class of fused Lasso
problems, including SBFLasso for the standard fused Lasso, SBFLSA for the fused Lasso signal approximator,
and SBFLSVM for fused Lasso support vector classifier, and proved their convergence properties. Preliminary
experimental results for SBFLasso and SBFLSA show their efficiency for large scale problems, especially for
problems with large p, small n, which occur in many real-world applications.

The iterative algorithm we propose is very easy to implement, involving only a few lines of code. It is
also very general and can be adapted to solve a variety of fused Lasso problems with minor modifications as
we have shown. In this aspect, it is very different from the path algorithm, which is specially designed for
FLSA and requires significant amount of domain specific knowledge. Because of its simplicity and generality,
we expect the split Bregman iterative algorithm would find its usage in a wide range of other ℓ1 related
regularization problems.
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Appendix

A.1. Convergence analysis of Algorithm 1

We use some similar ideas from Cai et al. [15] to prove Theorem 1. Different from the case of Cai et al. [15],
we do not require V (β) to be differentiable, and treat the nondifferentiability of V (β) explicitly by using its
subgradient vector h ∈ ∂V (β), see the proof for details.

Proof of Theorem 1: Since all the subproblems involved in (8) are convex, the first order optimality
condition of the Algorithm 1 gives































0 = hk+1 + uk + LT vk + µ1(β
k+1 − ak) + µ2L

T (Lβk+1 − bk),

λ1p
k+1 − uk + µ1(a

k+1 − βk+1) = 0,

λ1q
k+1 − vk + µ2(b

k+1 − Lβk+1) = 0,

uk+1 = uk + δ1(β
k+1 − ak+1),

vk+1 = vk + δ2(Lβ
k+1 − bk+1),

(24)

where hk+1 ∈ ∂V (βk+1), pk+1 ∈ ∂‖ak+1‖1 and qk+1 ∈ ∂‖bk+1‖1.
Since β∗ is a solution of (2), by the first order optimality condition, there exist h∗, p∗, q∗ such that

h∗ + λ1p
∗ + λ2L

T q∗ = 0 (25)

where h∗ ∈ ∂V (β), p∗ ∈ ∂‖β∗‖1, q
∗ ∈ ∂‖b∗‖1 with b∗ = Lβ∗. Introducing new variables a∗ = β∗, u∗ =

λ1p
∗, v∗ = λ2q

∗, we can formulate (25) as































0 = h∗ + u∗ + LT v∗ + µ1(β
∗ − a∗) + µ2L

T (Lβ∗ − b∗), with h∗ ∈ ∂V (β)

λ1p
∗ − u∗ + µ1(a

∗ − β∗) = 0, with p∗ ∈ ∂‖a∗‖1,

λ1q
∗ − v∗ + µ2(b

∗ − Lβ∗) = 0, with q∗ ∈ ∂‖b∗‖1,

u∗ = u∗ + δ1(β
∗ − a∗),

v∗ = v∗ + δ2(Lβ
∗ − b∗).

(26)

Comparing (26) with (24), we can see that β∗, a∗, b∗, u∗, v∗ is a fix point of Algorithm 1. Denote the errors
by

βk
e = βk − β∗, ake = ak − a∗, bke = bk − b∗, uk

e = uk − u∗ and vke = vk − v∗.

Subtracting the first equation of (24) by the first equation of (26), we obtain

0 = hk+1 − h∗ + uk
e + LTvke + µ1(β

k+1
e − ake) + µ2L

T (Lβk+1
e − bke).

Taking the inner product of the left and right hand sides with respect to βk+1
e , we have

0 = 〈hk+1 − h∗, βk+1 − β∗〉+ 〈uk
e , β

k+1
e 〉+ 〈vke , Lβ

k+1
e 〉

+µ1‖β
k+1
e ‖22 − µ1〈a

k
e , β

k+1
e 〉+ µ2‖Lβ

k+1
e ‖22 − µ2〈b

k
e , Lβ

k+1
e 〉 (27)

Similarly, we can get

λ1〈p
k+1 − p∗, ak+1 − a∗〉+ µ1‖a

k+1
e ‖22 − µ1〈a

k+1
e , βk+1

e 〉 − 〈uk
e , a

k+1
e 〉 = 0, (28)

λ2〈q
k+1 − q∗, bk+1 − b∗〉+ µ2‖b

k+1
e ‖22 − µ2〈b

k+1
e , Lβk+1

e 〉 − 〈vke , b
k+1
e 〉 = 0. (29)

Summing (27), (28) and (29) together, we get

〈hk+1 − h∗, βk+1 − β∗〉+ λ1〈p
k+1 − p∗, ak+1 − a∗〉+ λ2〈q

k+1 − q∗, bk+1 − b∗〉

+µ1(‖β
k+1
e ‖22 + ‖ak+1

e ‖22 − 〈βk+1
e , ake + ak+1

e 〉) + µ2(‖Lβ
k+1
e ‖22 + ‖bk+1

e ‖22

−〈Lβk+1
e , bke + bk+1

e 〉) + 〈uk
e , β

k+1
e − ak+1

e 〉+ 〈vke , Lβ
k+1
e − bk+1

e 〉 = 0 (30)
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Furthermore, by subtracting the fourth equation of (24) by the one of (26), we have

uk+1
e = uk

e + δ1(β
k+1
e − ak+1

e ).

Taking square of both sides of the above equation implies

〈uk
e , β

k+1
e − ak+1

e 〉 =
1

2δ1
(‖uk+1

e ‖22 − ‖uk
e‖

2
2)−

δ1

2
‖βk+1

e − ak+1
e ‖22. (31)

Similarly, we have

〈vke , Lβ
k+1
e − bk+1

e 〉 =
1

2δ2
(‖vk+1

e ‖22 − ‖vke ‖
2
2)−

δ2

2
‖Lβk+1

e − bk+1
e ‖22. (32)

Substituting (31) and (32) into (30) yields

1

2δ1
(‖uk

e‖
2
2 − ‖uk+1

e ‖22) +
1

2δ2
(‖vke ‖

2
2 − ‖vk+1

e ‖22)

= 〈hk+1 − h∗, βk+1 − β∗〉+ λ1〈p
k+1 − p∗, ak+1 − a∗〉+ λ2〈q

k+1 − q∗, bk+1 − b∗〉

+µ1(‖β
k+1
e ‖22 + ‖ak+1

e ‖22 − 〈βk+1
e , ake + ak+1

e 〉 −
δ1

2µ1

‖βk+1
e − ak+1

e ‖22)

+ µ2(‖Lβ
k+1
e ‖22 + ‖bk+1

e ‖22 − 〈Lβk+1
e , bke + bk+1

e 〉 −
δ2

2µ2

‖Lβk+1
e − bk+1

e ‖22) (33)

Note that for any x,y, z ∈ R
p, we have

‖x‖22 ± 〈x,y + z〉+ ‖y‖22 =
1

2
‖x± y‖22 +

1

2
‖x± z‖22 +

1

2
(‖y‖22 − ‖z‖22). (34)

Using this elementary equation, (33) can be transformed to

1

2δ1
(‖uk

e‖
2
2 − ‖uk+1

e ‖22) +
1

2δ2
(‖vke ‖

2
2 − ‖vk+1

e ‖22)

= 〈hk+1 − h∗, βk+1 − β∗〉+ λ1〈p
k+1 − p∗, ak+1 − a∗〉+ λ2〈q

k+1 − q∗, bk+1 − b∗〉

+
µ1

2

(

‖βk+1
e − ake‖

2
2 + ‖ak+1

e ‖22 − ‖ake‖
2
2 +

µ1 − δ1

µ1

‖βk+1
e − ak+1

e ‖22

)

+
µ2

2

(

‖Lβk+1
e − bke‖

2
2 + ‖bk+1

e ‖22 − ‖bke‖
2
2 +

µ2 − δ2

µ2

‖Lβk+1
e − bk+1

e ‖22

)

Summing the above equation from k = 0 to k = K yields

1

2δ1
(‖u0

e‖
2
2 − ‖uK+1

e ‖22) +
1

2δ2
(‖v0e‖

2
2 − ‖vK+1

e ‖22)

+
µ1

2
(‖a0e‖

2
2 − ‖aK+1

e ‖22) +
µ2

2
(‖b0e‖

2
2 − ‖bK+1

e ‖22)

=

K
∑

k=0

〈hk+1 − h∗, βk+1 − β∗〉+ λ1

K
∑

k=0

〈pk+1 − p∗, ak+1 − a∗〉

+λ2

K
∑

k=0

〈qk+1 − q∗, bk+1 − b∗〉+
µ1

2

K
∑

k=0

‖βk+1
e − ake‖

2
2 +

µ1 − δ1

µ1

K
∑

k=0

‖βk+1
e − ak+1

e ‖22

+
µ2

2

K
∑

k=0

‖Lβk+1
e − bke‖

2
2 +

µ2 − δ2

µ2

K
∑

k=0

‖Lβk+1
e − bk+1

e ‖22 (35)
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The fact that hk+1 ∈ ∂V (βk+1), h∗ ∈ ∂V (β∗) and V (β) is convex implies

〈hk+1 − h∗, βk+1 − β∗〉

= V (βk+1)− V (β∗)− 〈h∗, βk+1 − β∗〉+ V (β∗)− V (βk+1)− 〈hk+1, βk+1 − β∗〉

≥ 0 (36)

by the definition of subgradient. Similarly, 〈pk+1 − p∗, ak+1 − a∗〉 ≥ 0, 〈qk+1 − q∗, bk+1 − b∗〉 ≥ 0. Together
with the fact that 0 < δ1 ≤ µ1 and 0 < δ2 ≤ µ2, all terms involved in (35) are nonnegative. Therefore,

∞
∑

k=0

〈hk+1 − h∗, βk+1 − β∗〉 ≤
1

2δ1
‖u0

e‖
2
2 +

1

2δ2
‖v0e‖

2
2 +

µ1

2
‖a0e‖

2
2 +

µ2

2
‖b0e‖

2
2

which leads to
lim
k→∞

〈hk − h∗, βk − β∗〉 = 0.

Together with (36) leads to
lim
k→∞

V (βk)− V (β∗)− 〈h∗, βk − β∗〉 = 0. (37)

Similarly, we can prove
λ1 lim

k→∞

‖ak‖1 − ‖a∗‖1 − 〈ak − a∗, p∗〉 = 0, (38)

λ2 lim
k→∞

‖bk‖1 − ‖b∗‖1 − 〈bk − b∗, q∗〉 = 0, (39)

lim
k→∞

‖βk − ak‖2 = 0 and lim
k→∞

‖Lβk − bk‖2 = 0. (40)

Since ‖ · ‖1 is continuous, by (38),(39) and (40), we obtain

λ1 lim
k→∞

‖βk‖1 − ‖β∗‖1 − 〈βk − β∗, p∗〉 = 0, (41)

λ2 lim
k→∞

‖Lβk‖1 − ‖Lβ∗‖1 − 〈Lβk − Lβ∗, q∗〉 = 0. (42)

Summing (37),(41) and (42) yields

lim
k→∞

V (βk) + λ1‖β
k‖1 + λ2‖Lβ

k‖1 − (V (β∗) + λ1‖β
∗‖1 + λ2‖Lβ

∗‖1)

+〈βk − β∗, h∗ + p∗ + LT q∗〉 = 0

This together with (25) proves

lim
k→∞

V (βk) + λ1‖β
k‖1 + λ2‖Lβ

k‖1 = V (β∗) + λ1‖β
∗‖1 + λ2‖Lβ

∗‖1. (43)

Next, we prove that
lim
k→∞

‖βk − β∗‖2 = 0 (44)

whenever (2) has a unique solution.
It is proved by contradiction. Let Φ(β) = V (β) + λ1‖β‖1 + λ2‖Lβ‖1. Then Φ(β) is a convex, lower

continuous function. Since β∗ is the unique minimizer, we have Φ(β) > Φ(β∗) for all β 6= β∗. If (44) does
not hold, there exists a subsequence βki such that ‖βki − β∗‖ > ǫ for some ǫ > 0 and for all i. Then
Φ(βki) > min{Φ(β) : ‖β− β∗‖2 = ǫ}. Indeed, let γ be the intersection of the sphere {β : ‖β− β∗‖2 = ǫ} and
line segment from β∗ to βki , then there exists a positive number t ∈ (0, 1) such that γ = tβ∗ + (1 − t)βki .
By the convexity of Φ and the definition of β∗, we have

Φ(βki) > tΦ(β∗) + (1− t)Φ(βki ) ≥ Φ(tβ∗ + (1− t)βki )

= Φ(γ) ≥ min{Φ(β) : ‖β − β∗‖2 = ǫ}.

Denote β̃ = argmin{Φ(β) : ‖β − β∗‖2 = ǫ} . By applying (43), we have

Φ(β∗) = lim
i→∞∞

Φ(βki ) ≥ Φ(β̃) > Φ(β∗),

which is a contradiction.
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A.2. Convergence analysis of Algorithm 2

Now we give the proof of Theorem 2. The main idea is the same as the one in [15]. However, due to the extra
bias term β0 and the hinge loss, the terms involved in our proof are more complicated.

Since all the subproblems involved in (18) are convex, the first order optimality condition gives















































































(

µ1I + µ2L
TL+ µ3X

TY 2X µ3X
TY y

µ3y
TY X µ3y

T y

)(

βk+1

βk+1

0

)

= µ1

(

ak − µ−1

1 uk

0

)

+ µ2

(

LT

0

)

(bk − µ−1

2 vk) + µ3

(

XTY

yT

)

(1− ck + µ−1

3 wk)

λ1p
k+1 − uk + µ1(a

k+1 − βk+1) = 0,

λ2q
k+1 − vk + µ2(b

k+1 − Lβk+1) = 0,
1

n
sk+1 − wk + µ3(c

k+1 + Y Xβk+1 + βk+1

0 y − 1) = 0,

uk+1 = uk + δ1(β
k+1 − ak+1),

vk+1 = vk + δ2(Lβ
k+1 − bk+1),

wk+1 = wk + δ3(1− Y Xβk+1 − βk+1

0
y − ck+1),

(45)

where pk+1 ∈ ∂‖ak+1‖1, q
k+1 ∈ ∂‖bk+1‖1 and sk+1 ∈ ∂‖ck+1‖1. This simple observation will be used in our

proof for the convergence of SBFLSVM.
Proof of Theorem 2. Let (β∗, β∗

0) be an arbitrary minimizer of (16). By the first order optimality
condition, there exist p∗, q∗ and s∗ such that

{

− 1

n
XTY s∗ + λ1p

∗ + λ2L
T q∗ = 0,

yT s∗ = 0,
(46)

where s∗i ∈ ∂(c∗i )+ with c∗i = 1 − yi(x
T
i β

∗ + β∗

0), i = 1, . . . , n, p∗ ∈ ∂‖β∗‖1, q
∗ ∈ ∂‖b∗‖1 with b∗ = Lβ∗.

Introducing new variables a∗ = β∗, u∗ = λ1p
∗, v∗ = λ2q

∗ and w∗ = 1

n
s∗, we can formulate (46) as















































































(

µ1I + µ2L
TL+ µ3X

TY 2X µ3X
TY y

µ3y
TY X µ3y

T y

)(

β∗

β∗

0

)

= µ1

(

a∗ − µ−1

1 u∗

0

)

+ µ2

(

LT

0

)

(b∗ − µ−1

2 v∗) + µ3

(

XTY

yT

)

(1− c∗ + µ−1

3 w∗)

λ1p
∗ − u∗ + µ1(a

∗ − β∗) = 0, with p∗ ∈ ∂‖a∗‖1

λ2q
∗ − v∗ + µ2(b

∗ − Lβ∗) = 0, with q∗ ∈ ∂‖b∗‖1
1

n
s∗ − w∗ + µ3(c

∗ + Y Xβ∗ + β∗

0y − 1) = 0, with s∗ ∈ ∂(
∑n

i=1
(ci)+)

u∗ = u∗ + δ1(β
∗ − a∗),

v∗ = v∗ + δ2(Lβ
∗ − b∗),

w∗ = w∗ + δ3(1− Y Xβ∗ − β∗

0y − c∗).

(47)

Therefore, β∗, β∗

0 , a
∗, b∗, c∗, u∗, v∗, w∗ is a fixed point of (45). Denote the errors by

βk
e = βk − β∗, βk

0e = βk
0 − β∗

0 , a
k
e = ak − a∗, bke = bk − b∗,

cke = ck − c∗, uk
e = uk − u∗, vke = vk − v∗ and wk

e = wk − w∗

Subtracting the first equation of (45) by the first equation of (47), we obtain

(

µ1I + µ2L
TL+ µ3X

TY 2X µ3X
TY y

µ3y
TY X µ3y

T y

)(

βk+1
e

βk+1

0e

)

= µ1

(

ake − µ−1

1 uk
e

0

)

+ µ2

(

LT

0

)

(bke − µ−1

2 vke ) + µ3

(

XTY

yT

)

(−cke + µ−1

3 wk
e )
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Taking the inner product of the left and right hand sides with respect to ((βk+1
e )T , βk+1

0e )T , we have

〈(µ1I + µ2L
TL+ µ3X

TY 2X)βk+1
e + µ3X

TY yβk+1

0e , βk+1
e 〉+ µ3〈Y Xβk+1

e + yβk+1

0e , yβk+1

0e 〉

= µ1〈a
k
e , β

k+1
e 〉 − 〈uk

e , β
k+1
e 〉+ µ2〈b

k
e , Lβ

k+1
e 〉 − 〈vke , Lβ

k+1
e 〉

−µ3〈c
k
e , Y Xβk+1

e 〉+ 〈wk
e , Y Xβk+1

e 〉 − µ3〈c
k
e , yβ

k+1

0e 〉+ 〈wk
e , yβ

k+1

0e 〉. (48)

The same manipulations applied to the second (third, fourth) of equation (45) and the second (third, fourth)
of equation (47) lead to

λ1〈p
k+1 − p∗, ak+1 − a∗〉+ µ1‖a

k+1
e ‖22 − 〈uk

e , a
k+1
e 〉 − µ1〈β

k+1
e , ak+1

e 〉 = 0. (49)

λ2〈q
k+1 − q∗, bk+1 − b∗〉+ µ2‖b

k+1
e ‖22 − 〈vke , b

k+1
e 〉 − µ2〈Lβ

k+1
e , bk+1

e 〉 = 0. (50)

1

n
〈sk+1 − s∗, ck+1 − c∗〉+ µ3‖c

k+1
e ‖22 − 〈wk

e , c
k+1
e 〉+ µ3〈Y Xβk+1

e + βk+1

0e y, ck+1
e 〉 = 0. (51)

By summing equations (48), (49), (50) and (51), we get

λ1〈p
k+1 − p∗, ak+1 − a∗〉+ λ2〈q

k+1 − q∗, bk+1 − b∗〉+
1

n
〈sk+1 − s∗, ck+1 − c∗〉

+µ1(‖β
k+1
e ‖22 − 〈βk+1

e , ak+1
e + ake〉+ ‖ak+1

e ‖22)

+µ2(‖Lβ
k+1
e ‖22 − 〈bk+1

e + bke , Lβ
k+1
e 〉+ ‖bk+1

e ‖22)

+µ3(‖Y Xβk+1
e + yβk+1

0e ‖22 + µ3〈Y Xβk+1
e + yβk+1

0e , ck+1
e + cke〉+ ‖ck+1

e ‖22)

+〈uk
e , β

k+1
e − ak+1

e 〉+ 〈vke , Lβ
k+1
e − bk+1

e 〉 − 〈wk
e , Y Xβk+1

e + yβk+1

0e + ck+1
e 〉 = 0.

(52)

Furthermore, subtracting the fifth equation of (45) by the fifth equation of (47), we have

uk+1
e = uk

e + δ1(β
k+1
e − ak+1

e ).

which leads to

〈uk
e , β

k+1
e − ak+1

e 〉 =
1

2δ1
(‖uk+1

e ‖22 − ‖uk
e‖

2
2)−

δ1

2
‖βk+1

e − ak+1
e ‖22. (53)

Similarly, we can get

〈vke , Lβ
k+1
e − bk+1

e 〉 =
1

2δ2
(‖vk+1

e ‖22 − ‖vke‖
2
2)−

δ2

2
‖Lβk+1

e − bk+1
e ‖22 (54)

and

〈wk
e , Y Xβk+1

e + βk+1

0e y + ck+1
e 〉

= −
1

2δ3
(‖wk+1

e ‖22 − ‖wk
e‖

2
2) +

δ3

2
‖Y Xβk+1

e + βk+1

0e y + ck+1
e ‖22. (55)

Substituting (53),(54) and (55) into (52) yields

1

2δ1
(‖uk

e‖
2
2 − ‖uk+1

e ‖22) +
1

2δ2
(‖vke ‖

2
2 − ‖vk+1

e ‖22) +
1

2δ3
(‖wk

e‖
2
2 − ‖wk+1

e ‖22)

= λ1〈p
k+1 − p∗, ak+1 − a∗〉+ λ2〈q

k+1 − q∗, bk+1 − b∗〉+
1

n
〈sk+1 − s∗, ck+1 − c∗〉

+µ1

(

‖βk+1
e ‖22 − 〈βk+1

e , ak+1
e + ake〉+ ‖ak+1

e ‖22 −
δ1

2µ1

‖βk+1
e − ak+1

e ‖22

)

+ µ2

(

‖Lβk+1
e ‖22

−〈Lβk+1
e , bk+1

e + bke〉+ ‖bk+1
e ‖22 −

δ2

2µ2

‖Lβk+1
e − bk+1

e ‖22

)

+ µ3

(

‖Y Xβk+1
e + yβk+1

0e ‖22

+〈Y Xβk+1
e + yβk+1

0e , ck+1
e + cke〉+ ‖ck+1

e ‖22 −
δ3

2µ3

‖Y Xβk+1
e + βk+1

0e y + ck+1
e ‖22

)

.

(56)
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Using the elementary equality (34), (56) can be transformed to

1

2δ1
(‖uk

e‖
2
2 − ‖uk+1

e ‖22) +
1

2δ2
(‖vke ‖

2
2 − ‖vk+1

e ‖22) +
1

2δ3
(‖wk

e‖
2
2 − ‖wk+1

e ‖22)

= λ1〈p
k+1 − p∗, ak+1 − a∗〉+ λ2〈q

k+1 − q∗, bk+1 − b∗〉+
1

n
〈sk+1 − s∗, ck+1 − c∗〉

+
µ1

2

(

‖βk+1
e − ake‖

2
2 + ‖ak+1

e ‖22 − ‖ake‖
2
2 +

µ1 − δ1

µ1

‖βk+1
e − ak+1

e ‖22

)

+
µ2

2

(

‖Lβk+1
e − bke‖

2
2 + ‖bk+1

e ‖22 − ‖bke‖
2
2 +

µ2 − δ2

µ2

‖Lβk+1
e − bk+1

e ‖22

)

+
µ3

2

(

‖Y Xβk+1
e + yβk+1

0e + cke‖
2
2 + ‖ck+1

e ‖22 − ‖cke‖
2
2

+
µ3 − δ3

µ3

‖Y Xβk+1
e + βk+1

0e y + ck+1
e ‖22

)

.

(57)

Summing the above equation from k = 0 to k = K yields

1

2δ1
(‖u0

e‖
2
2 − ‖uK+1

e ‖22) +
1

2δ2
(‖v0e‖

2
2 − ‖vK+1

e ‖22) +
1

2δ3
(‖w0

e‖
2
2 − ‖wK+1

e ‖22)

+
µ1

2
(‖a0e‖

2
2 − ‖aK+1

e ‖22) +
µ2

2
(‖b0e‖

2
2 − ‖bK+1

e ‖22) +
µ3

2
(‖c0e‖

2
2 − ‖cK+1

e ‖22)

= λ1

K
∑

k=0

〈pk+1 − p∗, ak+1 − a∗〉+ λ2

K
∑

k=0

〈qk+1 − q∗, bk+1 − b∗〉

+
1

n

K
∑

k=0

〈sk+1 − s∗, ck+1 − c∗〉+
µ1

2

K
∑

k=0

‖βk+1
e − ake‖

2
2 +

µ1 − δ1

2

K
∑

k=0

‖βk+1
e − ak+1

e ‖22

+
µ2

2

K
∑

k=0

‖Lβk+1
e − bke‖

2
2 +

µ2 − δ2

2

K
∑

k=0

‖Lβk+1
e − bk+1

e ‖22

+
µ3

2

K
∑

k=0

‖Y Xβk+1
e + yβk+1

0e + cke‖
2
2 +

µ3 − δ3

2

K
∑

k=0

‖Y Xβk+1
e + βk+1

0e y + ck+1
e ‖22.

(58)

The fact pk+1 ∈ ∂‖ak+1‖1, p
∗ ∈ ∂‖a∗‖ and ‖ · ‖1 is convex implies 〈pk+1 − p∗, ak+1 − a∗〉 ≥ 0. Similarly,

〈qk+1 − q∗, bk+1 − b∗〉 ≥ 0, 〈sk+1 − s∗, ck+1 − c∗〉 ≥ 0. Therefore, all terms involved in (58) are nonnegative.
Now we can cheat each term in the right hand side of (58) separately by the same argument as the proof of
Theorem 1 and get the convergence result (21). The proof of (22) can also follows the same line as the one
of Theorem 1, we omit the details here.

A.3. Updates in SBFLSVM

A.3.1. Update of β

Due to the extra bias term of βk+1

0 , we need to solve the following linear system which is slightly different
from (14).

(

µ1I + µ2L
TL+ µ3X

TY 2X µ3X
TY y

µ3y
TY X µ3y

T y

)(

βk+1

βk+1

0

)

= µ1

(

ak − µ−1

1 uk

0

)

+ µ2

(

LT

0

)

(bk − µ−1

2 vk) + µ3

(

XTY

yT

)

(1− ck + µ−1

3 wk)

(59)
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Fortunately, this linear system can also be solved by PCG efficiently. Note that

(

µ1I + µ2L
TL+ µ3X

TY 2X µ3X
TY y

µ3y
TY X µ3y

T y

)

=

(

µ1I + µ2L
TL 0

0 µ3y
T y

)

+ µ3

(

XTY

yT

)

(Y X, y)−

(

0 0
0 µ3y

T y

)

.

It is easy to see that

(

µ1I + µ2L
TL 0

0 µ3y
T y

)

is still a tridiagonal matrix and

µ3

(

XTY

yT

)

(Y X, y)−

(

0 0
0 µ3y

T y

)

is a low rank matrix. So PCG is still a good solver for the linear system (59).

A.3.2. Proof of Proposition 1

Proof. The energy function λx+ + 1

2
‖x− w‖22 is strongly convex, hence has a unique minimizer. Therefore,

by the subdifferential calculus (c.f. [28]), sλ is the unique solution of the following equation with unknown w

0 ∈ λ∂(x+) + x− w, (60)

where ∂(x+) = {p ∈ R : y+ − x+ − (y − x)p ≥ 0, ∀y ∈ R} is the subdifferential of the function x+. If x 6= 0,
then x+ is differentiable, and its subdifferential contains only its gradient. If x = 0, then ∂(x+) = {p ∈ R :
y+ − yp ≥ 0, ∀y ∈ R}. One can check that ∂(x+) = {p : 0 ≤ p ≤ 1} for this case. Indeed, for any p ∈ [0, 1],
yp ≤ y+ by using the definition of y+. On the other hand, if there exists a number p ∈ (−∞, 0)∪(1,+∞) and
p ∈ ∂(x+), then we can easily get a contraction. Actually, the fact p ∈ (−∞, 0) ∪ (1,+∞) implies p2 > p+.
On the other hand, since ∂(x+) = {p ∈ R : y+ − yp ≥ 0, ∀y ∈ R} for x = 0, we have p2 < p+ by letting
y = p. In summary,

∂(x+) =







1, x > 0,
{p : p ∈ [0, 1]}, x = 0,
0, x < 0.

(61)

With (60) and (61), we can get the desired result.
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