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Abstract
Gibbs sampler has been used exclusively for compatible conditionals that converge to a unique
invariant joint distribution. However, conditional models are not always compatible. In this paper,
a Gibbs sampling-based approach — Gibbs ensemble —is proposed to search for a joint
distribution that deviates least from a prescribed set of conditional distributions. The algorithm can
be easily scalable such that it can handle large data sets of high dimensionality. Using simulated
data, we show that the proposed approach provides joint distributions that are less discrepant from
the incompatible conditionals than those obtained by other methods discussed in the literature. The
ensemble approach is also applied to a data set regarding geno-polymorphism and response to
chemotherapy in patients with metastatic colorectal

Keywords
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1. Introduction
Since Besag (1974), the majority of the modeling for spatial observations has taken the
conditional approach. For a finite system of random variables (X1, · · ·, XJ), the conditional
likelihood is defined as

(1)
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where θ is the model parameter. The product of all such conditional likelihoods, ΠLi(θ),
called the pseudolikelihood, is used to replace the conventional likelihood in inference.
Interestingly, maximum pseudolikelihood has developed into a franchise of its own, even
though it was originally proposed as an expedient objective function for spatial data (Besag,
1974). The alteration of the likelihood function is partially motivated by the fact that
conventional likelihood often contains an intractable partition function, whereas Li(θ) can be
modeled in a rather simple form such as a regression or a classifier. The main disadvantage
of maximum pseudolikelihood estimator is that it can be biased and is an inefficient
estimator — with a reported efficiencies (ratios of variances) ranging from 100% for models
with weak dependence to 10% for models with strong dependence (Besag, 1977; Jensen and
Künsch, 1994; Jensen and Møller, 1991). A good approximation of the conventional
likelihood derived from Li(θ), 1 ≤ j ≤ J can improve the efficiency and reduce the bias.

Similar formulations of likelihood occur in network models. Conditional models are
individually created and fitted to the observed data with the objective of computing
predictive probabilities. Heckerman et al. (2000) call the collection of such conditional
models a dependence network and propose using a (random scan) Gibbs sampler to learn a
joint distribution p̂(x1, · · ·, xJ; θ) from Li(θ), 1 ≤ j ≤ J. An important motivation of the
dependency networks is to address the possible high dimensionality of data and to reduce
the inference problem associated with univariate conditional distributions.

For several discrete variables, a statistical model may be formulated either as a joint model
or via a system of conditional models such as (1). In general, when a joint distribution is to
be recovered from a collection of conditional distributions the joint is said to be
conditionally specified or conditionally modeled. Moreover, the conditional models are said
to be compatible when there exists a joint distribution capable of generating all of the
conditional distributions. Nevertheless conditional models are not always compatible when
conditional models are non-saturated; usually no mutual consistency criteria are
incorporated in the models for the individual conditional distributions. In fact, unlike joint
models, mutually consistent conditional models are rather difficult to articulate. A “remedy”
for incompatibility is to search for a joint distribution that deviates least from — however
defined — the prescribed set of conditional distributions. One of the hurdles of conditional
modeling is to calculate a reasonable joint from conflicting conditional distributions.

Arnold and Gokhale (1998) and Arnold et al. (2002) are among the first making efforts to
find the most nearly compatible (or the minimally incompatible) joint distributions given a
family of conditionals. Arnold and Gokhale (1998) considered Kullback-Leibler divergence
and the L2-distance as the measures of incompatibility, while Arnold et al. (2002) used
absolute deviations as the criterion. Understandably, constrained optimization algorithms
using different objective functions are involved. Under such circumstances, two issues need
to be considered. First, the constrained optimization becomes more difficult as the number
of conditional models or the number of variables (the dimension of the problem) increases.
Arnold et al. (2002, p. 251) expressed their concern in the statement that “In practice, the
number of equations, constraints and variables will limit consideration to cases in which the
coordinated random variables have very few values.” For example, in a joint distribution of
4 variables, each with 3 categories, a constrained optimization formulation (linear
programming) would involve 162 variables, 648 inequalities, and one equality. Second, the
performance measures that had been documented are rather limited and may not be
generally applicable to all problems. Some divergence measures can further complicate the
algorithm in searching for an optimal solution. For example, Arnold and Gokhale (1998, p.
386) noted that switching divergence away from Kullback-Leibler divergence “clearly leads
to a much less tractable objective function.”
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The goal of this paper is to propose an algorithm — the Gibbs ensemble (GE) —that
overcomes both difficulties. The algorithm has two important properties: (a) ability to scale
up to handle large data sets of high dimensionality, and (b) ability to accommodate different
performance measures. The algorithm first uses Gibbs sampler to formulate a collection of
joint distributions, which is termed an ensemble (Bühlmann, 2004). Then a weighted
average of all the distributions in the ensemble is taken as a solution. The combination
weights are inversely proportional to the divergences of the members in the ensemble. Using
the ubiquitous Gibbs sampler as the base procedure is highly suitable for this application
because the procedure is robust, scalable, and relatively easy to program. To illustrate the
ensemble approach, consider the following example.

Example 1.1 Arnold, Castillo, and Sarabia (2002, Example 10) considered

Here  and  respectively correspond to L1(x1|x2) and L2(x2|x1). The odds ratios of  and
 are 2/3 and 9/2, respectively, and they are not compatible. Arnold et al. (2002) obtained

the following optimal joint distribution via linear programming (LP):

Table 1 compares selected divergences of the different joint distributions obtained through
several different methods: linear programming (LP), π̂LP, random scan Gibbs, π̂HC, equal-
weight Gibbs ensemble, π̃EQ, and differentially weighted Gibbs ensembles, π̃L, π̃I, π̃X, and
π̃F. The definitions of these divergences are given in Section 2. Relative to π̂LP, the
differentially weighted Gibbs ensemble reduces the L2 and F 2 divergences by 20% and
11%, respectively. The random scan Gibbs sampler and the equally weighted Gibbs
ensemble are more or less on par with π̂LP.

The remainder of this paper is organized as follows. The idea of generating an ensemble
from incompatible Gibbs sampler is discussed in Section 2. In Section 3, we present
numerical comparisons of several methods using both examples in the literature and
simulation data. In Section 4, the algorithm is applied to a data set regarding geno-
polymorphism and response to treatment in patients with metastatic colorectal cancer. A
brief conclusion is provided in Section 5.

2. Gibbs Ensemble
Consider a system of J discrete random variables {x1, · · ·, xJ} whose conditional model is
specified by  = {  = παi|ᾱi, 1 ≤ i ≤ m}, with αi ∩ ᾱi = ∅ and αi ∪ ᾱi =  = {x1, · · ·, xJ}.
Here, , is called a full conditional because all J variables are involved. Hence Li(θ) = πi|ī, 1
≤ i ≤ J is a special case. In practice, both Besag (1974) and Heckerman et al. (2000) used the
conditional model πα|β, β ⊂ ᾱ, but this change does not affect the Gibbs samplers as long as

.

Let Sm be the symmetric group of all possible permutations of (1, · · ·, m) and |Sm| = m!. For
every (k1, · · ·, km) ∈ Sm, arrange the given conditional distributions of  in the following
sequence:
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and generate simulations using Gibbs sampler in the above order. Every (k1, · · ·, km) ∈ Sm
represents a scan pattern. Often, this is called a deterministic scan (Liu, 1996) or fixed scan,
in contrast to scanning  in a random order with prescribed probabilities, which is called a
random scan in Levine and Casella (2006).

Let  = (x1, · · ·, xJ) and Xαi = (xj, j ∈ αi). When i = kj, we replace subscript αkj with kj and
subscript ᾱkj with k̄j to avoid triple subscripts. Begin with a randomly selected

. Conditioned on , draw an  from  and

update  to . Next, conditioned on , draw  from  and form

. Successive sampling steps from  to  are called a cycle, and after

one cycle every  of  will be updated at least once, due to ∪αi = . Let

 be the result at the end of the first cycle. After w burn-in cycles,  is
harvested at the end of the next cycle as the first qualified simulation, and the process is

repeated l times. Let the empirical distribution of { , 1 ≤ h ≤ l} be π̂(k1, · · ·, km),
where the superscript indicates the scan pattern. Every π̂(k1, · · ·, km) is called a Gibbs
distribution (Geman and Geman, 1984; Israel, 2005). The collection of m! such Gibbs
distributions, {π̂(k1, · · ·, km), (k1, · · ·, km) ∈ Sm}, assuming that they all converge, is named
Gibbs ensemble after its base procedure. To compute the error, convert each π̂(k1, · · ·, km) to

{ , 1 ≤ i ≤ m}, and measure the separation of  from the corresponding  via
a divergence measure. The sum of m divergences is the error of π̂(k1, · · ·, km). In theory, the
error is zero if and only if  is compatible; but in simulation, such errors will not be exactly
zero due to Monte Carlo variation.

There are several commonly used divergences for measuring the closeness between two
distributions π̂ and p (e.g., Bishop et al., 1975, p. 348–9). The divergences adopted in this

study are: L2 := Σ(π̂i − pi)2 (Euclidean);  (Freeman-Turkey); X2 :=
Σ(π̂i − pi)2/π̂i (Pearson’s chi-square); N2 := Σ(π̂i − pi)2/pi (Neyman’s chi-square); I2:= Σπ̂i
log(π̂i/pi) (Information); and G2:= Σpi log(pi/π̂i) (Kullback-Leibler). To calculate the
divergence between two distributions that are represented by multidimensional matrices,
each matrix is cast into a row vector, and the formula listed above is applied.

Let D represent one of the divergence measures, and  measure
the D-error between π̂(k1, · · ·, km) and . The sum of D-errors over the entire ensemble is

. Also, let  be the weight assigned to
π̂(k1, · · ·, km). The differentially weighted Gibbs ensemble is

(2)

which is shortened to Gibbs solution. For example, Gibbs solution π̃L is weighted by the L2-
divergence. In addition, we use π̃EQ and π̂HC, respectively, for the equally weighted Gibbs
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solution (ε(k1, · · ·, km) = 1/m!) and the random scan Gibbs distribution (Heckerman et al.,
2000). Figure 1 illustrates the process for obtaining the Gibbs solution.

For J = 2, let  and  correspond to the conditional distributions (x1|x2) and (x2|x1),
respectively. The Gibbs ensemble has two distributions: π̂(1,2) is the empirical distribution of

{ , 1 ≤ h ≤ l} sampled in the following manner:

and π̂(2,1) is derived from { , 1 ≤ h ≤ l}, which are sampled from  → 

→ · · ·  →  → · · ·. The Gibbs solution is .

For J = 3 and  = {πi|{ī}}, there are six Gibbs distributions. Let , , and  respectively
denote (x1|x2, x3), (x2|x1, x3), and (x3|x1, x2). For permutation (1, 3, 2), the sampling scheme
runs as follows:

Then, π̂(1,3,2) is the empirical distribution of { , 1 ≤ h ≤ l}, and the
three-dimensional Gibbs solution is the following weighted average of six Gibbs
distributions:

3. Numerical Comparisons and Simulations
We use both numerical examples and simulated data to compare the performances of LP and
GE. First, we consider a 3 × 4, two-dimensional, conditional models and its incompatible
variations. Using divergence measures as criteria, we compare GE and LP for this example.
The second example compares the errors of GE and of LP on a 3 × 3 × 3 conditional model
and its incompatible variations. Finally, we report results from a simulation study. One
hundred pairs { , } of 3×4 two-dimensional conditional distributions are randomly
generated. The reported means and standard deviations of the divergences are based on 100
replications of Monte Carlo simulations, each of sample size 100, 000. The programs for
simulation and analysis are developed in Matlab and can be download from the link
(provided upon publication).

Chen et al. Page 5

Comput Stat Data Anal. Author manuscript; available in PMC 2012 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



3.1 A Two-Dimensional Example
This example is taken from Ip and Wang (2009). The conditional distributions (c, d) and

(a, b) are defined as follows:

When a = b = c = d = 0,  and  are compatible. The perturbation parameters a, b, c, and d
are used to locate and control the degree of incompatibility. We study the following cases:

Case (i) a = −1/12, b = c = d = 0;

Case (ii) c = −1/7, d = 1/7, a = b = 0;

Case (iii) c = −1/7, d = 1/7, a = −1/12, b = 0; and

Case (iv) c = −1/7, d = 1/7, a = −1/12, b = 1/12.

Case (i) and Case (ii) represent incompatibility arising from deviations in (x2|x1 = 1) and
deviations in (x1|x2 = 3, 4), respectively. Case (iii) represents the situation when Case (i)
and Case (ii) occur simultaneously. Case (iv) represents the situation in which  of Case
(iii) deviates further from compatibility. Our purpose is to access the performance of GE as

, and  increasingly depart from compatibility.

We follow the LP method described in Arnold et al. (2002) to compute the joint probability
pij with minimum εij such that |pij − aijp.j| ≤ εij, |pij − bijpi.| ≤ εij and Σi,j pij = 1. Here,  =
(aij),  = (bij), pi. = Σj pij, and p.j = Σi pij. Because the LP formulation contains many
unknowns to be solved, the restrictions εij = ε are imposed. After such restrictions, there are
48 inequalities, 1 equality, and 13 unknowns.

We first consider the compatible case, which has a unique solution, to validate our
programs. We found that the joint distribution of LP optimization, denoted as π̂LP, indeed
had zero divergence, as expected. Table 2 shows the more interesting results regarding the
accuracy of Gibbs sampler, which is subject to simulation variations. Gibbs samplers, both
fixed scan and random scan, were run with 5, 000 burn-in cycles, and retain the subsequent
100, 000 pairs of (x1, x2). The resulting joint distributions are denoted as π̂(1,2) and π̂(1/2,1/2),
respectively, whereas π̃F is the GE solution of (2), with D being the Freeman-Tukey
divergence. To assess the Monte Carlo errors, the same Gibbs samplers are repeated 100
times so that the means and standard deviations of the divergences can be computed. From
Table 2 we observe that the π̃F has considerably smaller mean divergences than both π̂(1,2)

and π̂(1/2,1/2). For example, the mean in L2 is reduced by more than 50% from 1.81E-4 to
7.44E-5. All divergence measures are computed with respect to the unique joint distribution.
It is also observed that while the fixed scan and random scan have similar accuracies, GE
solutions reduce all of the divergences by more than one half.

For the incompatible Case (i) to Case (iv), Table 3 lists the divergences of two fixed scans
and the GE solution weighted by L2, G2, and F2, respectively. In general, GE solutions
achieve significant reductions of divergence, while the performance of LP is slightly worse
than π̂(2,1). For Case (i), the F -divergence of π̃F is 40.8% of that of π̂(2,1); the L2-divergence
of π̃L is only 33.5% of that of π̂(2,1). For Case (iv), π̃F and π̃L reduce the F2 and L2 of π̂(2,1)

by 31.6% and 39.8%, respectively, while the reductions of F2 and L2 of π̂(1,2) are 60.1% (by
π̃F) and 39.8% (π̃L), respectively. Moreover, the F2 of π̂LP is 148.1% of that of π̃F, and the
L2 of π̂LP is 152.2% of that of π̃L. Later, we will show that such reductions are generally
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observed in randomly generated, two-dimensional — and incompatible — conditional
models.

3.2 A Three-Dimensional Example
The three conditional distributions, , , and , are listed in Table 4. We summarize the
comparison of the compatible case plus cases (i) and (iv) in Table 5. Besides listing the L2

and F2, the percentages of reduction relative to π̂(1,2,3) are used to demonstrate the
performance of GE. The compatible case allows us to examine the Monte Carlo simulation
variations and to explore ways to reduce such variations. For the six supposedly identical
Gibbs distributions, their L2 ranges from 1.466E-3 to 1.551E-3. Here, π̃EW denotes the
equally weighted average of three Gibbs distributions: π̂(1,2,3), π̂(2,3,1), and π̂(3,1,2). From
Table 5, π̃EW reduces the L2 and F2 of π̂(1,2,3) by 65.6% and 64.5%, respectively, and π̂EQ,
which uses all six Gibbs distributions, further reduces L2 and F2 of π̃EW by an additional
51.4%. The best GE, π̃F, reduces the L2 and F2 of π̂EQ by another 7%. In summary,
combining six Gibbs distributions is better than combining only three, and the use of
different kinds of weights seems to play a relatively minor role. Case (i) to Case (iv)
represent gradual departure from compatibility. The reductions of L2 for π̃F over π̂(1,2,3) are
around 38% to 52% for Case (i) and Case (iv), respectively. In all four cases, the divergence
of π̂LP is considerable larger than that of π̂(1,2,3) (except L2 in Case (iv)).

3.3 Simulation Experiments
In both Examples 3.1 (four cases) and 3.2 (another four cases), we further conducted 100
replications of Gibbs sampler. We try to address the question: Is it possible that LP
outperforms GE in some of the replications? We found that for all eight different conditional
models, GE outperformed LP in every replication. This implies that even the worst-case GE
— due to Monte Carlo variation — still has smaller divergences than LP. Furthermore, in
Example 11 of Arnold et al. (2002) (details not reported here), for a 3 × 4 models with two
structural zeros, we also observed that out of 100 replications, GE, without exception, had
smaller divergence than LP.

To confirm that the superiority of GE over LP and Gibbs distributions is not just an artifact
of the examples we selected, we randomly generate pairs of 3 × 4 matrices with positive
integers between 1 and 100 as entries. Then we normalize one matrix so that its column
entries sum to 1, and we use it as . The other matrix is similarly normalized (in rows) into

. For every randomly generated pair, LP, fixed scan Gibbs distribution and GE solution
with different weights are computed. The mean and standard deviation of the percentages of
reduction of the LP and GE solutions with respect to π̂(1,2) and π̂(2,1) are summarized in
Table 6. In the course of the simulation, we noticed that the LP approach sometimes
produced unreasonable joint distributions when there were multiple optimal solutions.
Because the randomly generated conditional models do not contain any zero entry, their
joint distribution is not expected to contain a zero entry. However, LP produces 11 joints
(out of 100) with some zero entries, and one of the joints has an entire column of zeros.
Those with any zero entry are excluded from comparison.

The results in Table 6 indicate that the GE approach outperforms the LP approach and that
the GE solutions enjoy substantial divergence reduction with respect to both π̂(1,2) and π̂(2,1).
For example, the average percentages of reductions in L2 are 63.9% and 36.2% relative to
the fixed scan π̂(1,2) and π̂(2,1), respectively, while the same averages for LP are 38.1% and
−15.1%, respectively. Figure 2 shows the two boxplots of percentages of reductions in L2 of
π̃L and π̂LP relative to π̂(1,2) (left panel), and to π̂(2,1) (right panel). The other distributions are
similar and not shown because of space limitation. These simulation results give us
confidence that the weighted average of ensembles can produce a joint distribution that fits

Chen et al. Page 7

Comput Stat Data Anal. Author manuscript; available in PMC 2012 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



the conditional models significantly better than LP and the Gibbs sampler. When we
compare the coefficients of variation using values in Table 6, we find that the percentages of
reduction for the LP approach is far less predictable than those of GE, whose coefficients of
variation range from 8.0% to 26.3%.

4. A Real Example
Table 7 is taken from Toffoli et al. (2006), which constitutes one of the largest prospective
studies conducted to date to investigate the relationship between polymorphism in the gene
region UGT1A1*28 and response to irinotecan for metastatic colorectal cancer patients.
Toffoli et al. (2006) observed a significant increased risk of developing severe hematologic
toxicity among patients carrying the TA7 allele. The hypothesis is that genetic testing for
UGT1A1*28 polymorphism may have utility as a predictor of response to irinotecan. In
Table 7, the row variable X1 represents polymorphism in gene region UGT1A*28 with three
genotypes, TA6/TA6, TA6/TA7, and TA7/TA7. These genotypes are known to be associated
with the response to treatment of a combination of irinotecan flourourail and leucovorin,
which is represented by the column variable X2. The four categories of X2 are complete
response, partial response, stable disease, and progressive disease, respectively coded as 1–
4.

Clinicians commonly use two conditional models for such data: the diagnostic model (x1|
x2) and the treatment model (x2|x1). Of practical interest are the following sets of
parameters: the diagnostic odds dij = P(x1 = i|x2 = j)/P(x1 = i|x2 = j + 1), 1 ≤ i ≤ 3, 1 ≤ j ≤ 3,
and the response odds tij = P (x2 = j|x1 = i)/P (x2 = j|x1 = i + 1), 1 ≤ i ≤ 2, 1 ≤ j ≤ 4. We
consider the following conditional models for  and  in terms of dij and tij:

Model A dij/dij+1 = δ and tij/ti+1,j = ξ for all permissible i, j;

Model B dij/dij+1 = δi and tij/ti+1,j = ξj for all permissible i, j; and

Model C Logistic regression for both  and .

Using maximum-likelihood methods, we estimated the conditional distributions for all three
models. Specifically, in Model C, (x1|x2) was estimated by applying multinomial logistic
regression of x1 on x2, and (x2|x1) was estimated by applying ordinal logistic regression of
x2 on x1. Model A produces compatible  and , while Models B and C do not. Ip and
Wang (2009) show that when the odds ratios across the conditional distributions are
identical, as in the case of Model A, then there exists a unique joint distribution. Table 8
shows the three pairs of respective conditional distributions under Models A, B, and C. For
every conditional pairs, we compute the joint distributions of LP (π̂LP), fixed scan (π̂(1,2),
and π̂(2,1)), and GE solutions via different weights (π̃L, π̃F, and π̃G). Table 9 compares the
means and standard deviations of G2 divergence between the observed joint distribution
(Table 7) and the estimated joint distributions out of 100 Monte Carlo replications.

Because Model A is compatible, both LP and Gibbs sampler converge to the same joint
distribution, and GE offers no advantage over π̂LP and π̂(1,2), as expected. For incompatible
Model B, every GE-based joint distributions outperforms both LP and fixed scan solutions.
The coefficients of variation in G2 for π̃L, π̃F, and π̃G were all below 7%, suggesting that the
divergences of GE-based distributions are consistent over Monte Carlo replications.

For Model C (Table 9), GE also outperforms LP and fixed scan. Several observations can be
made. First, the standard deviations of the replications are slightly smaller than the standard
deviations under Model B. The coefficients of variation for both Model B and Model C are
less than 5%, again suggesting that GE are quite robust to Monte Carlo variations. Second,
the divergences of LP in Model C are 20% to 70% larger than those in Model B across
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different divergence measures. Note that the observed values of the conditional distribution
for P (x1|x2 = 2) are (0.400, 0.4706, 0.1294), which is close to the estimated values for the
corresponding cell (0.3877, 0.5008, 0.1115) under Model C.

If only π̂LP were computed and we had adopted the G2 divergence of π̂LP as the sole
criterion for selecting model, then Model B would hands-down win over Model C.
However, we have computed GE solution and according to their G2 divergence, the
advantage of Model B over Model C is only marginal (Table 9). This shows that goodness-
of-fit indices can be quite different when using LP and GE.

The G2-statistic for Model A, B and C are respectively 6.5069, 2.4119 and 2.5780; whereas
the Akaike’s information criterion (AIC) value are respectively 10.5069, 12.4119 and
12.5780. The G2-statistic is the G2-divergence multiplied by twice the sample size, here 2 ×
238. Model A has the smallest value of AIC, which suggests that model A is more efficient
(adjusted for model complexity) than models B and C. Using Model A as the basis, the
diagnostic odds (dij) and response odds (tij) matrices calculated from its joint distribution are
as follows:

Matrix (dij) is partitioned horizontally by genotype along the line of locus TA7; the values of
dij in the row of TA6/TA6 are all less than 1, while the rows corresponding to TA6/TA7 and
TA7/TA7 are all larger than 1. Moreover, matrix (tij) is partitioned vertically between
patients who respond positively to irinotecan versus those who do not benefit from the
treatment. That is, the response odds are less than 1 for x2 = 1 and 2 and larger than 1 for x2
= 3 (no response) and x2 = 4 (worsening response).

An interesting thought from examining the goodness-of-fit indices is the possibility of using
the Gibbs solution to replace the pseudolikelihood in inference. Under Model C of Table 8,
the G2-statistic for (x1|x2) is 4.03 (p-value = 0.2578) and the G2-statistic for (x2|x1) is
6.31 (p-value = 0.0426). Therefore, the combined G2-statistic for pseudolikelihood (x1|x2)

(x2|x1) is (4.03 + 6.31)/2 = 5.17, where the averaging is to compensate for using the
observed table twice. The G2-statistic of π̃G under Model C is 2.578 (p-value = 0.7647),
which is less than half of 5.17. Hence, the estimated joint distribution π̃G is a closer
representation of the observed table than the pseudolikelihood. The pros and cons of these
two approaches deserve further study.

5. Discussions
For high-dimensional data, a reduced model may be formulated in at least two ways: as an
undirected graphical model in which all variables are considered jointly or as a system of
univariate conditional models, which can be depicted as a cyclic, directed graph (Heckerman
et al., 2000). In the second approach, as observed by Dobra et al. (2004), the conditionally
specified models almost surely do not cohere to a proper joint distribution. It is therefore
important to study and compare the joint distributions obtained through different methods of
estimation. In this paper, we compare the Gibbs distribution, LP, and GE when conditional
models are not compatible.

Our results have been primarily based on empirical studies. Liu (1996) provided several
observations about the behavior of Gibbs distributions that are consistent with our empirical
work. As long as the transition matrix corresponding to (1) is irreducible and aperiodic, the
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Gibbs sampler has a recurrent joint distribution. For two-dimensional conditional models
that are not compatible, the two fixed scanned Gibbs (recurrent) distributions π̂(1,2) and π̂(2,1)

are known to be the two extreme points in the space of all the Gibbs distributions. The usual
random scan Gibbs distribution has two characteristics: (a) any of its odds ratios will be
sandwiched between the corresponding odds ratios of π̂(1,2) and π̂(2,1), and (b) its one-
dimensional marginal distributions are identical to those of π̂(1,2). Briefly, the space of all the
Gibbs distributions consists of joints having the same marginals and having odds ratios that
are confined to ranges determined by π̂(1,2) and π̂(2,1).

In this paper, we use divergences to compute the proper weights for combining the extreme
Gibbs distributions. Thus, the GE solutions represent mixtures of the Gibbs distributions.
For three variables with (xi|xj, j ≠ i), the space of all Gibbs distributions is more
complicated: (a) only the invariant interactions (Ip and Wang, 2009), not all of the odds
ratios, can reoccur in the Gibbs distributions; (b) there are four different two-dimensional
marginal distributions; and (c) there are three different one-dimensional marginal
distributions shared by 3! = 6 distinct fixed scan Gibbs distributions. Every GE solution is a
mixture of π̂(i,j,k) and (i, j, k) ∈ S3, and its combination weights can be computed via the
selected divergence.

Two observations can be made about the mixture distributions. First, the number of odds
ratios are (K1 − 1)(K2 − 1) and (K1 − 1)(K2 − 1)(K3 − 1)+ Σ(Ki − 1)(Kj − 1) for (X1, X2) and
(X1, X2, X3), respectively, where Xi assumes Ki values. The optimization problem becomes
more challenging because the number of parameters grows quickly with the number of
variables. GE reduces the optimizations to one-dimensional problems instead of searching
for optimal odds ratios in every range. Second, the marginal distributions of GE are confined
to those that can be generated by the Gibbs samplers. It is possible that some perturbations
of the marginal distributions could reduce the divergence. However, we observe that in the
two-dimensional case the marginals of LP are always close to the marginals of GE. For the
example in Section 4, the three π̃’s under Model A, Model B, and Model C produce nearly
identical X1-marginal and X2-marginal distributions. Thus, we conjecture that the marginals
of Gibbs distributions are not far from optimal.

The GE offers a computationally feasible approach in obtaining optimal or nearly optimal
solutions for conditionally specified models. Unlike methods based on LP, the GE approach
described here can be generalized to high-dimensional problems in straightforward ways.
The computational burden is also more manageable than with LP. Furthermore, we provide
evidence that the performance of GE is at least comparable, if not better, than LP. Finally,
we show that Gibbs distributions can be improved upon by using ensembles. By varying
scan patterns to generate ensembles of Gibbs distributions, we believe that the power of GE
can be further expanded. Instead of using pre-determined probabilities to perform random
scan, one may be able to further refine the search in the space of a Gibbs distribution for a
better solution for nearly compatible and incompatible conditional models.
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Figure 1.
Flow diagram for Gibbs ensemble
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Figure 2.
Box plots for the percentages of reductions in L2 of π̃L and π̂LP relative to π̂(1,2) (left panel),
and to π̂(2,1) (right panel)
The outliers of π̂LP relative to π̂(1,2) (3 models with percentages of reductions less than −1)
and to π̂(2,1) (3 models with percentages of reductions less than −87) are not shown in figure.
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Table 9

Mean and standard deviation of G2 divergence across 100 replications for the conditional models of genetic
data

G2 divergence

Model A Model B Model C

π̂(1,2) 1.367E-2 (4.626E-4) 1.021E-2 (4.449E-4) 6.733E-3 (3.671E-4)

π̂L 1.367E-2 (3.175E-4) 5.037E-3 (2.253E-4) 5.892E-3 (2.107E-4)

π̃F 1.367E-2 (3.290E-4) 5.144E-3 (2.190E-4) 5.566E-3 (1.997E-4)

π̃G 1.367E-2 (3.291E-4) 5.067E-3 (2.221E-4) 5.416E-3 (2.020E-4)

π̂LP 1.369E-2 7.899E-3 1.213E-2
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