
An Efficient Stochastic Search for Bayesian Variable Selection
with High-Dimensional Correlated Predictors

Deukwoo Kwon1,*, Maria Teresa Landi1, Marina Vannucci2, Haleem J. Issaq3, DaRue
Prieto3, and Ruth M. Pfeiffer1

1 Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
20852, U.S.A
2 Department of Statistics, Rice University, Houston, Texas 77251, U.S.A
3 Lab of Proteomics and Analytical Technologies, SAIC-Frederick, Inc., Frederick, Maryland
21702, U.S.A

Abstract
We present a Bayesian variable selection method for the setting in which the number of
independent variables or predictors in a particular dataset is much larger than the available sample
size. While most existing methods allow some degree of correlations among predictors but do not
consider these correlations for variable selection, our method accounts for correlations among the
predictors in variable selection. Our correlation-based stochastic search (CBS) method, the hybrid-
CBS algorithm, extends a popular search algorithm for high-dimensional data, the stochastic
search variable selection (SSVS) method. Similar to SSVS, we search the space of all possible
models using variable addition, deletion or swap moves. However, our moves through the model
space are designed to accommodate correlations among the variables. We describe our approach
for continuous, binary, ordinal, and count outcome data. The impact of choices of prior
distributions and hyper-parameters is assessed in simulation studies. We also examined
performance of variable selection and prediction as the correlation structure of the predictors
varies. We found that the hybrid-CBS resulted in lower prediction errors and better identified the
true outcome associated predictors than SSVS when predictors were moderately to highly
correlated. We illustrate the method on data from a proteomic profiling study of melanoma, a skin
cancer.
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1 Introduction
In genomic experiments and other molecular studies one frequently encounters very high-
dimensional data. Microarrays simultaneously monitor expression levels for several
thousands of genes. Expression levels of genes that are co-regulated or in the same pathway
are often correlated. Proteomic profiling studies in serum using mass spectrometry (MS)
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instruments measure size and charge of proteins, peptides and protein fragments and result
in up to 15,000 intensity levels at pre-specified mass-to-charge ratio (m/z) values for each
sample. Measurements on protein fragments and peptides arising from the same parent
protein also tend to be highly correlated. Even after an initial pre-screening step to reduce
dimensionality, investigators face large numbers of molecular measurements, often larger
than the number of available samples, and many or most of these variables do not provide
any information about the outcome measure. One key problem, termed feature or variable
selection, in high-dimensional settings is thus to identify the optimal set among all the
possible predictors.

In the Bayesian paradigm, variable selection can be formulated as a model selection
problem. When the number of variables, p, is small compared with the available sample
size, n, approaches based on the Bayes factor work well, since one can compute posterior
model probabilities for all possible 2p models (Hoeting et al., 1999; Ibrahim and Chen,
1999; Chen, Shao, and Ibrahim, 2000; Carlin and Chib, 1995). However, such computations
are not feasible when p is very large. For the setting of large p, stochastic search variable
selection (SSVS) methods that search over the model space have been suggested by George
and McCulloch (1993 and 1997) and Brown et al. (1998a and 1998b). Related approaches
for the large-p setting are Occam’s window and Markov chain Monte Carlo model
composition (MC3) methods for Bayesian model averaging (Madigan and York, 1995;
Hoeting et al., 1999), reversible jump Markov chain Monte Carlo methods (Green, 1995),
and the shotgun stochastic search method and its extensions (e.g., Hans et al., 2007).
Improved MCMC schemes have been proposed for a faster exploration of the posterior
space, such as the evolutionary Monte Carlo schemes combined with parallel tempering of
Bottolo and Richardson (2010).

Standard implementations of the approaches mentioned above however, do not account for
correlations between the predictors. This can result in the inclusion of highly correlated
variables into the model, at the cost of ignoring others that may improve the predictive
performance of a model. We therefore propose a correlation-based search (CBS) algorithm,
the hybrid-CBS algorithm, an extension of SSVS, to address the problem of variable
selection with highly correlated predictors. Our algorithm extends SSVS by incorporating
correlation information among the predictors in the search through the model space. The rest
of the paper is organized as follows: In Section 2.1 we describe the Bayesian framework for
the linear regression model and briefly review the SSVS method for the linear model in
Section 2.2. We then show how to incorporate correlation information among the predictor
variables in the model search and present the hybrid-CBS algorithm in Section 2.3. We use
data augmentation and data transformations to adapt the algorithm for binary, ordinal, and
count outcomes in Section 2.4. In Section 3 we assess the performance of the hybrid-CBS
search on simulated data for various correlation settings, study the impact of the choices of
prior distributions and hyperparameters and compare it to the performance of SSVS. We
illustrate our approach on data from proteomic profiles of samples from a melanoma case-
control study in Section 4. We close with a discussion in Section 5.

2 Methods
2.1 Bayesian Framework

For ease of exposition, we first present the Bayesian framework that is the basis of SSVS
and the hybrid-CBS for a univariate linear model. Let X = (X1, …, Xp)′ denote the predictor
values and Z the continuous outcome variable. Without loss of generality we assume the
columns of the matrix X and Z are centered. As p is large, we assume that only a small

subset of the predictors , with p* ≪ p, relates to the outcome through
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(1)

To aid the identification of the relevant predictors, X*, we define a latent binary vector γ =
(γ1, …, γp) that characterizes a specific submodel,

(2)

by letting γj = 1 if the j-th predictor variable Xj is included in model (2) and zero otherwise.
Our goal is to approximate model (1) by model (2), or equivalently X* by a set of predictors
Xγ ̂, for which γ ̂ has a large posterior probability.

A typical choice for a prior distribution on σ2 is an Inverse Gamma distribution,  (ν/2, νλ/
2), with shape and scale parameters ν/2 and νλ/2, respectively. Given σ2, the prior
distribution for α is a normal distribution, N(α0, hσ2), with hyperparameters h and α0. Given
σ2 and γ, a conjugate prior for βγ is N(β0, σ2Hγ). Common choices for Hγ are cIpγ and c(X
′X)−, independent prior and Zellner’s g-prior, respectively. Various choices for the
hyperparameters Hγ, h, ν, λ, α0, and β0 are discussed in Section 3. A commonly adopted
prior for γ assumes independent Bernoulli distributions,

(3)

where pγ denotes the number of selected variables ( ) and w the ratio of the
expected number of variables selected into the model to the total number of variables
(George and McCulloch, 1997; Brown et al., 1998a, 1998b). In most biomarker discovery
studies with a large number p of variables we expect a relatively small number of predictors
to be associated with outcome. We thus let w be a small number, for example, 10/p.

The choice of conjugate priors allows the calculation of the marginal posterior model
probability, p(γ |X, Z), by integrating out the nuisance parameters α, β, and σ2. This marginal
posterior probability distribution is

(4)

where  and .

2.2 Stochastic Search Variable Selection (SSVS)
For small p, the best model, defined by the corresponding vector γ with the largest posterior
probability p(γ|X, Z), can be selected by computing all 2p possible models. While George
and McCulloch (1993) used Gibbs sampling which works well for moderate p, Brown et al.
(1998b) sample γ from g(γ) in (4) by a Metropolis algorithm and show that one can find
good models by randomly exploring only a small fraction of the whole 2p model space for
large p. At any given iteration, their search method generates γ′ from the current γ by either
adding or deleting, with probability φ, a randomly chosen predictor from the model, or, with
probability 1 − φ, swapping two predictors, by randomly and independently selecting a 0
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and 1 in γ and exchanging them. The default choice of φ is 1/2. This leads to the proposal
distribution

Variable selection using γ can be based on two different criteria. One approach is to choose
variables based on the vector γ with the highest posterior probability, p(γ|X, Z), among all
visited models. Alternatively, one can select the predictor Xi if the corresponding posterior
probability of γi, p(γi|X, Z) exceeds a given threshold τ, for example τ = 0.5 (Barbieri and
Berger, 2004). We compare both approaches in the Simulation Section.

2.3 The Hybrid-Correlation-Based Search (hybrid-CBS)
Similarly to SSVS, our correlation-based search (CBS) method also searches the model
space using three moves, ‘addition’, ‘deletion’, and ‘swap’. However, while SSVS applies
the moves to randomly chosen predictors, CBS uses correlation information among the
variables to select predictors. This modification of SSVS is motivated as follows: if we wish
to add a predictor to the current model, i.e. we choose the addition move, a predictor that has
little correlation with variables already included in the model is preferable to one that is
highly correlated with current model predictors. Similarly, when we choose the deletion
move, the predictive performance of the model will not be impacted strongly if a variable
that is highly correlated with another one in the model is removed. Thus in the CBS method
the components of γ are no longer independent Bernoulli variables and we modify the prior
for γ accordingly and use

(5)

where the components of γ are exchangeable but not independent (Chipman et al., 2001).

Next, we describe the implementation of the moves through the model space. Let ϒX denote
the correlation matrix of the predictors X with entries (ϒX)ij = ρij. Let  = {i: γi = 1, i = 1,
…, p} denote the set of indices of the variables included in the current model characterized
by the vector γ, and let  = {i: γi = 0, i = 1, …, p} denote the set of indices of variables not
included in the current model. If the ‘addition’ move is selected we first randomly choose an
index i′ in . We then find the index j′ satisfying {j ∈ : |ρi′,j′| = min |ρi′,j|} and add the
corresponding predictor xj′ to the model. Similarly, for the ‘deletion’ move, we first
randomly choose an index i′ in . We then find the index j′ satisfying {j ∈ , j ≠ i′: |ρi′,j′| =
max |ρi′,j|} and exclude the xj′ from the next model. The swap move simply combines
addition and deletion moves. The proposal distribution q(γ′|γ) for our search method is

(6)

Since (6) is not symmetric we use a Metropolis-Hastings algorithm instead of a Metropolis
algorithm that is used in SSVS. To ensure irreducibility of the resulting chain, a requirement
for convergence, we combine CBS with SSVS into a hybrid-CBS, that is we randomly
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choose a CBS move with probability 0.9 and an SSVS move with probability 0.1. While we
want most of the moves to be based on CBS for computational efficiency, the choice of 0.9
is somewhat arbitrary. However, we found that results were not strongly impacted by the
choice of the mixing proportion, which we further address in the Simulation Section. One
technical difficulty in the setting of large p and small n is that the sample correlation matrix
ϒX can become unstable. To avoid this problem, we use a shrinkage estimator of the
correlation matrix, ϒλ = (1 − λ) ϒX + λI, based on an approach by Schäfer and Strimmer
(2005) that allows one to compute the optimal shrinkage parameter λ in closed form. As a
consequence of the shrinkage, ϒλ, will be close to the identity matrix when p is much larger
than n.

2.4 Extensions to Binary, Ordinal and Count Outcome Data
Our hybrid-CBS algorithm can be extended to other types of outcomes Y, including binary,
ordinal responses, and count data. While some of these model formulations have been
described previously for SSVS, we believe a concise summary will be helpful to
practitioners.

Binary Outcomes—We now treat Z, linearly associated to the predictors X via model (1),
as a latent variable and relate it to the binary outcome Y through Y = I(Z ≥ 0), leading to the
probit model P(Y = 1) = 1 − Φ(X′β) where Φ denotes the probability distribution for the
standard normal distribution (Albert and Chib, 1993). For the identifiability of this model we
set σ2 = 1 in (1). Bayesian methods for variable selection in this framework have been
proposed for example, by Sha et al. (2003) and Holmes and Held (2006). As Z is not
observed, the appropriate posterior distribution after integrating out all other nuisance
parameters is p(Z, γ |X, Y). Based on a Metropolis-Hastings algorithm we iteratively first
sample γ conditional on Z and then sample Z from the marginal posterior distribution

, where Pγ = In +h11′+ XγHγX′γ and   is a
multivariate truncated normal distribution with truncation at zero.

Ordinal Outcomes—The binary probit model can be extended by to accommodate
outcomes Y that take one of the ordered values {0, …, J − 1} (Kwon et al., 2007). The
relationship between Y and the latent variable Z in (1) with σ2 = 1, is given by Y = jI(δj < Z ≤
δj+1), j = 0, …, J − 1, leading to P(Y ≤ j) = Φ(δj+1 − X′β). The cutoff parameters δj are
estimated under the constraint −∞ = δ0 < δ1 < δ2 < … < δJ−1 < δJ = ∞ and δ1 = 0. The
marginal posterior distribution of δj for the Metropolis-Hastings algorithm is π(δj|γ, X, Z, Y,
δ(−j))

~ (max(max{Z: Y = j− 1}, δj−1), min(min{Z: Y = j}, δj+1)), where δ(−j) indicates the vector
δ excluding the j-th component. The marginal posterior distribution of Z is now a truncated
normal distribution that depends on δ.

Count Data—We transform the Poisson distributed outcome Y, where Y is the n × 1 vector
of counts, to obtain approximately normally distributed data that directly fit into the linear
setting (1). Using a Taylor series expansion with two terms, we linearize E[Y1/2|X, β] around
the point log(Ȳ1/2) (Clyde and DeSimone-Sasinowska, 1997) to obtain W, which has an
approximately normal distribution

(7)

Kwon et al. Page 5

Comput Stat Data Anal. Author manuscript; available in PMC 2012 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



This transformation works well for relatively large counts as seen in our melanoma example
(Clyde and DeSimone-Sasinowska, 1997). An alternative procedure appropriate for small
counts using data augmentation was proposed by Frühwirth and Wagner (2005).

3 Simulation Study
We assessed the performance of the hybrid-CBS algorithm for continuous, binary, and count
responses and compared it with the performance of the SSVS method. For each simulation,
we used n = 100 observations and p = 1000 predictors X generated from a multivariate
normal distribution with mean zero, variance one and correlation matrix ϒX. The number of
predictors truly associated with the outcome variable was p* = 10. We assumed that the
predictors were ordered so that the first ten, X1, …, X10, were associated with the outcome,
while X11, …, Xp were not.

For the linear and the Poisson models we used 500, 000 iterations in the Metropolis-
Hastings algorithm, but for the binary case we used 100, 000 iterations for the Metropolis-
Hastings algorithm with 5, 000 burn-in iterations for computational efficiency. For all
models we used hyperparameters α0 = 0, β0 = 0, ν = 3, λ = 1 and h = 106 to induce vague
priors on α and σ. We set w = 10/p in equation (3) to induce parsimonious models.

3.1 Simulation Scenarios
We compare the hybrid-CBS with SSVS for several simulation scenarios, labeled S1
through S7. We consider two different values for the effect sizes for the outcome associated
predictors: (1) either 0.8 or −0.8 and (2) either 1 or −1. The correlation matrix ϒX of all
scenarios has a block structure. The first block, denoted by ϒX,11 a 10 × 10 matrix,
corresponds to the correlations of the outcome associated predictors, the second block, ϒX,12
a 990 × 10 matrix, contains the correlations between the outcome associated and the noisy
predictors, and the third block, ϒX,22, is a 990 × 990 matrix of correlations between the 990
noisy predictors.

The entries of all three blocks are described below for the various scenarios and were chosen
to capture different strengths of correlations among the groups of predictors.

For scenario (S1) for the linear model, the entries of all block matrices are constant. The
correlations between the outcome associated predictors were very high; ϒX,11 had the entries
ρji = ρij = 0.8, i ≠ j. The entries of ϒX,22 were ρji = ρij = 0.4 for i ≠ j, and ϒX,12 hat entries ρij
= 0.25, i ≠ j. We let σ = 1.5, and βi = 0.8 for i = 1, …, 5, βi = − 0.8 for i = 6, …, 10 and βi =
0 for i ≥ 11 in model (1). For scenario (S2), ϒX was the same as in (S1), but with larger
effect sizes, βi = 1 for i = 1, …, 5, , βi = − 1 for i = 6, …, 10 and βi = 0 for i ≥ 11. For
scenario (S3), βi = 1 for i = 1, …, 5, βi = − 1 for i = 6, …, 10 and βi = 0 for i ≥ 11 and ϒX,11
had constant off diagonal entries ρ = 0.8, the correlations in ϒX,22 were all equal to ρ = 0.4
and the outcome associated and noisy predictors were uncorrelated, that is ϒX,12 had
constant entries ρ = 0, i ≠ j. For scenarios (S4)–(S7) we let σ = 1.5, and βi = 1.0 for i = 1, …,
5, βi = − 1.0 for i = 6, …, 10 and βi = 0 for i ≥ 11 in model (1) and only varied ϒX.

For scenario (S4), ϒX,11 had the entries ρji = ρij = 0.8− |i− j− 1|0.02 for i ≠ j, and the entries
of ϒX,22 and ϒX,12 were constant with ρji = ρij = 0.2 and ρij = 0.1, respectively. Scenario (S5)
had the same ϒX as (S4) but with uncorrelated outcome associated predictors, i.e. ϒX,11 was
the identity matrix. For scenario (S6), ϒX,11 and ϒX,22 were the same as for scenario (S4),
but the between group correlation was stronger, with entries ρij = 0.3 for ϒX,12. For scenario
(S7), ϒX was the same as for (S6) but with ϒX,11 replaced by the identity matrix.
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For the binary model the latent linear variable Z in equation (1) was simulated from the three
correlation structures as described above for the linear case. The values of nonzero
regression coefficients were βi = 0.8 for i = 1, …, 5 and βi = − 0.8 for i = 6, …, 10 in model
(1) for simulation S1, corresponding to odds ratios 2.3 and 0.43, and βi = 1 for i = 1, …, 5, βi
= − 1 for i = 6, …, 10 for simulations (S2) and (S3), corresponding to odds ratios 3 and 0.33
respectively.

For count data, we generated yi ~ Poisson(μi), with , i = 1, …, n, with A =
15. We simulated predictors using the same three correlation structures as for (S1), (S2) and
(S3) in the linear case. In simulation S1, βi = 0.2 for i = 1, …, 5, βi = −0.2 for i = 6, …, 10
and βi = 0 for i ≥ 11. In simulation (S2) and (S3) we used βi = 0.275 for i = 1, …, 5, βi = −
0.275 for i = 6, …, 10 and βi = 0 for i ≥ 11.

3.2 Results
3.2.1 Variable Selection—First, we assessed the ability of the hybrid-CBS and SSVS to
identify true outcome associated predictors for the different simulation scenarios (S1), (S2)
and (S3) using the independent prior, Hγ = cIpγ with c = 1. Figure 1 summaries results for
SSVS (striped bars) and hybrid-CBS (solid bars) for continuous outcomes (row A), count
outcomes (row B), and binary outcomes (row C). Column I of Figure 1 shows the marginal
posterior probabilities of inclusion for the 10 true predictors averaged over 50 simulated
datasets. Column II depicts the average number of predictors that were declared associated
with outcome, based on their marginal probability of inclusion, P(γi = 1|Data) > τ. For
continuous and count data we let τ = 0.5 and for binary outcomes τ = 0.2. Columns III and
IV of Figure 1 present the mean number of true positive (TP) and false positive (FP)
predictors, respectively, corresponding to the selection made on the basis of P(γi = 1|Data) >
τ with the same τ as in column II.

The hybrid-CBS had much larger marginal posterior probabilities of inclusion than SSVS
for all simulation settings and outcomes (Figure 1) and selected six or more of the ten true
predictors for all simulations for continuous and count outcomes and four or more for binary
outcomes. It had relatively small number of FPs for continuous and count outcomes. For
binary outcomes SSVS had large number of FPs for all three simulation settings. However,
the number of TPs was much higher for hybrid-CBS than for SSVS, even for binary
outcomes.

Figure 2 for the linear model illustrates the impact of various correlation structures on the
performance of the algorithms. The hybrid-CBS had much larger marginal posterior
probabilities of inclusion and more true positives than SSVS for scenarios (S4), (S6), and
(S7), although hybrid-CBS gave more false positives. For scenario (S5), where all
correlations were quite low, SSVS performed very well, it had a higher TP rate then the
hybrid-CBS, but interestingly also the highest FP rate among all scenarios studied.

We also assessed the impact of the choice of covariance matrix, Hγ, in the prior distribution
of β on the performance of the algorithms. We studied three choices: (1)Hγ = cIpγ, which
results in an independent prior, (2) Hγ = c(Xγ′Xγ)−, which yields the g-prior (Zellner, 1986),
both common choices in the literature on Bayesian variable selection and (3) a shrinkage
version of the g-prior, where X′X was replaced by (n − 1) ϒ̂λ ̂ based on Schäfer and Strimmer
(2005). The constant c plays an important role. The larger the value of c is, the fewer
variables are selected due to regularization. We let c = 1, 3, and 5 for the independent prior.
In order to get a similar amount of regularization, we used c = 75, 225, and 370 for the g-
prior and c = 3, 8, and 14 for the shrinkage g-prior.
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Figure 3 summarizes our findings for scenario (S2) for continuous outcomes. The rows
again correspond to linear, count and binary outcomes and the columns to the probability of
inclusion for the 10 true predictors (column I), the average number of predictors that were
declared associated with outcome (column II), and the mean number of TPs (column IV)
and FPs predictors (column IV). The independent prior with c = 1 yielded the best results in
terms of the number of TPs and number of true predictors selected, while still resulting in a
low number of false positive selections. Again, hybrid-CBS showed better performance than
SSVS for all settings in Figure 2. For all three choices of priors for β the number of
predictors selected decreased as the value of c increased, due to the regularization.

3.2.2 Sensitivity Analysis for Variable Selection
Variable Selection Criterion: In the previous section we selected variables based on the
marginal posterior inclusion probabilities, p(γi = 1|X, Z) > τ. Alternatively one could use the
highest joint posterior model probability, max{p(γ|X, Z)} to select predictors associated with
outcome. We compared both approaches with respect to the number of predictors declared
important and the numbers of TPs and FPs. Both approaches gave very similar results (Table
1) and selected on average the same predictors.

Choice of Mixing Proportion: For the hybrid-CBS we propose to use a mixing proportion
of 90% for the CBS moves. However, this choice is somewhat arbitrary. We therefore
assessed the sensitivity of the algorithm to other choices of proportion, namely 95%, 80%
and 50% and found that they yielded very similar result (Table 2). The average of the
posterior inclusion probabilities for the true predictors was around 0.75 for all four choices
of mixing proportion (second column in Table 2). The average number of selected predictors
using the criterion p(γi = 1|X, Z) > 0.5 was around 8.5 (third column); the average number of
TPs was 7.3 (fourth column); and average number of FPs was 1.2 (fifth column).

Choice of Hyperparameter w: We added to assess the impact of the magnitude of w used
in the prior distribution for γ given in (3) on both SSVS and hybrid-CBS (Table 3). Not
surprisingly, SSVS was very sensitive to the choice of w, while hybrid-CBS was not, as w
only affects the SSVS component of the algorithm. For continuous outcomes in the S2
setting, selecting predictors based on the marginal inclusion probabilities SSVS selected
around 2 predictors with 1.5 TPs, and 0.7 FPs for w = 5/p and w = 10/p. However, for w =
20/p, SSVS selected 10.5 predictors, with 0.5 TPs and 10 FPs. The hybrid-CBS selected
approximately seven predictors, with six TPs, and 1.3 FPs for all choices of w, w = 5/p, 10/p,
and w = 20/p.

3.2.3 Prediction—To study the prediction error of the algorithms, we applied the model
selected by the hybrid-CBS or SSVS algorithm based on a training set with n = 100
observations and p = 1000 predictors to 50 independent test datasets with N = 1000
observations each, generated under the same scenario as the training set.

Figure 4 shows the mean squared prediction error (MSPE) for the test set for SSVS and
hybrid-CBS with three different prior settings for the linear model for scenario (S1). Letting
Z denote the observed continuous outcome and Ẑ the corresponding fitted value based on the

model selected in the training set, . To reduce the impact of the
hyperparameter c in the prediction, we set c = 1, 75, and 3 for the independent prior, g-prior,
and shrinkage g-prior, respectively. The hybrid-CBS also had a lower MSPE than SSVS for
all choices of prior distributions for β, with the independent prior resulting in the smallest
MSPE overall.
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For comparison purposes we also computed the MSPE using Bayesian Model Averaging
(BMA) based on the 10 best models. This approach also resulted in lower MSPE for the
hybrid-CBS than for SSVS (Table 4).

For count outcomes, the hybrid-CBS also had a smaller MSPE than SSVS with c = 1 and the
independent prior (see Figure 5, a). For binary outcomes we computed the Brier score,

, where Y denotes the binary outcome in the test dataset, Φ stands
for the standard normal distribution function, Xγ ̂ is the predictor matrix of a test dataset with
columns based on the predictors identified in the training set, and βγ ̂ are the least square
estimates of regression coefficients corresponding to Xγ ̂. We also computed the

misclassification rate,  where I denotes an indicator function. The Brier
scores are shown in Figure 5(b). With hyperparameter c = 1 and the independent prior, the
hybrid-CBS method had a lower Brier score on average than SSVS. The average
misclassification rate of the hybrid-CBS was 35%.

Figure 6 shows the MSE scenarios (S4)–(S7) with c = 1 and independent prior for β. Except
for scenario (S5), that was based on very low correlations, hybrid-CBS resulted in a
substantially lower MSPEs than SSVS.

4 Data example
We illustrate our method on data from a proteomic profiling study on melanoma skin cancer
conducted in Northeastern Italy (Landi et al., 2005). The study aim was to identify
predictors for 1) tumor aggressiveness, measured by melanoma thickness (continuous
outcome); 2) the number of nevi (or moles) (count outcome), a risk factor for melanoma;
and 3) case-control status (binary outcome). Mass spectrometry (MS) measurements were
obtained from 173 individuals diagnosed with melanoma (cases, Y = 1), and 178 healthy
individuals (controls, Y = 0) with the Protein Biology System 2 (PBS II) SELDI-TOF mass
spectrometer (Bio-Rad Laboratories, Hercules, CA). The resulting data are mass spectra,
that are patterns representing the distribution of ions by mass-to-charge ratio (m/z).

Before any statistical analyses, we preprocessed the 351 mass spectra with the following
steps: denoising, baseline subtraction, normalization, peak detection, and peak alignment.
The spectra were denoised using an algorithm by Kwon et al. (2008). For baseline
subtraction and peak detection we used the PROcess package in R. For all analyses, the
predictors were the intensities at the m/z values corresponding to 113 peaks that were
present in at least ten percent of all spectra. The 113 peaks were highly correlated; 65.8% of
the pairwise empirical correlations were larger than 0.5, and 22.2% larger than 0.75.

We applied the hybrid-CBS and SSVS methods with the independent prior for the regression
parameters β with c = 1 for all three responses. This value of c ensured the identification of a
sufficient number of predictors. The threshold for the marginal posterior probability of
inclusion was 0.2. We used the shrinkage version of correlation matrix of the predictors for
the hybrid-CBS moves.

First, we aimed to identify predictors associated with melanoma thickness. This analysis was
restricted to the 145 melanoma cases on whom melanoma thickness measurements were
available. After a log-transformation, the thickness measurements were normally distributed.
Based on a linear model (1), six m/z values (5,565.405, 5,828.874, 11,186.37, 11,754.4,
17,114.41 and 18,904.11) had marginal posterior probabilities of inclusion 0.99, 0.99, 0.99,
0.38, 0.34, and 0.26, respectively. While three of the six m/z values (5,565.405, 5,828.87 and
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11,186.37) were also identified by SVSS with marginal posterior probabilities of inclusion
0.27, 0.60, and 0.21, respectively, the inclusion probabilities were much lower.

Second we analyzed case-control data, based on all 173 cases and 175 controls. The hybrid-
CBS method identified ten (m/z) values (2,758.60, 5,955.27, 6,079.15, 6,876.81, 11,186.37,
11,590.23, 11,954.82,17,114.41, 17,843.58, and 33,488.04) with marginal posterior
probabilities of inclusion 0.96, 0.99, 0.99, 0.99, 0.96, 1.00, 0.98, 0.99, 0.99 and 0.99,
respectively. SSVS identified only one peak (11,590.23) with a marginal posterior
probability of inclusion equal to one.

Finally, as having a large number of nevi is a strong risk factor for melanoma, we identified
protein measurements to predict the number of nevi, based on a Poisson model in the
controls. The hybrid-CBS identified six peaks, corresponding to m/z values (6,950.327,
9,746.156, 13,135.19, 12,635.65, 17,843.58, and 18,336.08) with marginal posterior
probabilities of inclusion 0.67, 0.71, 0.69, 0.31, 0.98 and 0.76, respectively. The two peaks
(17,843.58 and 18,336.08) were also chosen by SSVS, with the somewhat smaller posterior
probabilities 0.21 and 0.25, respectively.

To evaluate the predictive performance of the selected models we used leave-one-out cross
validation prediction appropriate for the Bayesian setting (Sha et al., 2004). We selected
predictors of which marginal posterior probabilities of inclusion, P(γi = 1|X, Z), are greater
than 0.5. The MSPEs for melanoma thickness were 0.7433 (SSVS) and 0.7368 (hybrid-
CBS); and for nevi count the MSPEs were 1.4357 (SSVS) and 1.39 (hybrid-CBS). For case-
control status, SSVS had a Brier score of 0.23 and a 39% misclassification rate; and hybrid-
CBS had a Brier score of 0.22 and a 37% misclassification rate. Thus, the predictive
performance of models selected by hybrid-CBS was better than those for SSVS.

5 Discussion
In this paper we proposed a correlation-based search algorithm, the hybrid-CBS, that
extends a popular Bayesian search algorithm for high-dimensional data, the stochastic
search variable selection (SSVS) method, to accommodate the setting of correlated high-
dimensional predictors. Similar to SSVS, we search the model space using variable addition,
deletion, or swap moves. However, our moves are driven by the correlations seen in the
data. To ensure irreducibility in the Markov chain that is the basis for our search method we
combine the purely correlation-based search with SSVS into a hybrid algorithm. We present
details on the implementation of the hybrid-CBS for binary, ordinal and count data.
Modifications of SSVS for survival outcome and multiple categorical outcomes are
described in Sha et al. (2004 and 2006) and can also easily be extended to the hybrid-CBS
algorithm.

We assessed performance of our new algorithm compared to SSVS on simulated data. The
hybrid-CBS performed better than SSVS in terms of selecting true outcome associated
predictors, and had lower prediction errors, when predictors were highly correlated for
continuous, binary, and count response data. In the simulation study we also investigated the
sensitivity of both methods, SSVS and hybrid-CBS, to the choice of some of the model
parameters, in particular the choice of prior for the regression parameters β that relate the
predictors to the outcome, either directly or through a latent variable. We studied the g-prior
and shrinkage g-prior as well as the independent prior. Both the g-prior and independent
prior are related to shrinkage; the former is equivalent to proportional shrinkage and the
independent prior corresponds to absolute shrinkage. When the predictors have very
different scales, the g-prior is recommended because of its automatic scaling feature
(Chipman et al., 2001; Bottolo and Richardson, 2010). Absolute shrinkage is closely related
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to ridge regression (Hoerl and Kennard, 1970). While the g-prior is widely used and has
been studied extensively in Bayesian variable selection for low-dimensional settings (Cui
and George, 2008; Liang et al., 2008), its performance in high-dimensional situations is not
well understood. We found the g-prior did not lead to adequate performance in variable
selection in most cases. As can be seen from Figure 2, substantial correlations between the
true predictor group and noisy variables resulted in poor performance of the g-prior. When
we used the shrinkage version of g-prior with small c, the performance of both SSVS and
hybrid-CBS improved slightly. Of course, for high dimensions the shrinkage estimate of the
correlation matrix will be close to the identity matrix. However, the performance of the
hybrid-CBS with the shrinkage g-prior was still inferior compared with that of the hybrid-
CBS with the independent prior. We therefore recommend using the hybrid-CBS with the
independent prior due to the computational ease.

The hybrid-CBS does not substantially increase the computational burden. For the
continuous outcomes the computation times for the hybrid-CBS were maybe ~ 10%–15%
higher than those for SSVS. With 3.0Ghz quadcore CPU, it took around 101 second for
SSVS and 114 seconds for hybrid-CBS on average for 50 simulated datasets with 200,000
iterations. Finally, the proposed correlation driven search can be easily adapted to other
variable selection methods based on stochastic searches, for example the method proposed
by Holmes and Held (2006) for binary and multinomial outcomes, and the method of
Casella and Moreno (2006) for continuous outcomes.

Acknowledgments
We thank the Editor, Associate Editor and two referees for constructive suggestions that led to a significant
improvement of the paper. Kwon, Landi, and Pfeiffer are supported by the Intramural Research Program of the NIH
National Cancer Intitute. Vannucci is partially supported by NIH grant R01-HG0033190-05 and NSF grant
DMS1007871.

References
Albert J, Chib S. Bayesian analysis of binary and polychotomous response data. J Amer Statist Assoc.

1993; 88:669–679.
Barbieri M, Berger J. Optimal predictive model selection. Ann Statist. 2004; 32:870–897.
Bottolo L, Richardson S. Evolutionary stochastic search for Bayesian model exploration. Bayesian

Analysis. 2010; 5:583–618.
Brown P, Vannucci M, Fearn T. Multivariate Bayesian variable selection and prediction. J Roy Statist

Soc Ser B. 1998a; 60:627–641.
Brown P, Vannucci M, Fearn T. Bayesian wavelength selection in multicomponent analysis. J

Chemometrics. 1998b; 12:173–182.
Carlin B, Chib S. Bayesian model choice via Markov chain Monte Carlo methods. J Roy Statist Soc

Ser B. 1995; 57:473–484.
Casella G, Moreno E. Objective Bayesian variable selection. J Amer Statist Assoc. 2006; 101:157–

167.
Chen, M.; Shao, Q.; Ibrahim, J. Monte Carlo methods in Bayesian computation. New York: Springer-

Verlag; 2000.
Chipman, H.; George, E.; McCulloch, R. The practical implementation of Bayesian model selection.

In: Lahiri, P., editor. IMS Lecture Notes - Monograph Series. New York: Cambridge University
Press; 2001. p. 65-116.

Clyde, M.; DeSimone-Sasinowska, H. Technical report 97-06. Birmingham, Alabama: Duke
University; 1997. Accounting for model uncertainty in Poisson regression models: Particulate
matter and mortality.

Cui W, George E. Empirical Bayes vs. fully Bayes variable selection. J Statist Plann Inference. 2008;
138:888–900.

Kwon et al. Page 11

Comput Stat Data Anal. Author manuscript; available in PMC 2012 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Frühwirth-Schnatter S, Wagner H. Data augmentation and Gibbs sampling for regression models for
small counts. Student. 2005; 5:207–220.

George E, McCulloch R. Variable selection via Gibbs sampling. J Amer Statist Assoc. 1993; 88:881–
889.

George E, McCulloch R. Approaches for Bayesian variable selection. Statist Sinica. 1997; 7:339–373.
Green P. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination.

Biometrika. 1995; 82:711–732.
Hans C, Dobra A, West M. Shotgun stochastic search for “large p” regression. J Amer Statist Assoc.

2007; 102:507–516.
Hoerl A, Kennard R. Ridge Regression: Applications to Nonorthogonal Problems. Tecnometrics.

1970; 12:69–82.
Hoeting J, Madigan D, Raftery A, Volinsky C. Bayesian model averaging: a tutorial. Statist Sci. 1999;

14:382–417.
Holmes C, Held L. Bayesian auxiliary variable models for binary and multinomial regression.

Bayesian Analysis. 2006; 1:145–168.
Ibrahim, J.; Chen, M. Bayesian methods for variable selection in the Cox model Generalized linear

models: A Bayesian perspective. Dey, D.; Ghosh, D.; Mallick, B., editors. New York: Marcel
Dekker; 1999. p. 287-311.

Kwon D, Tadesse M, Sha N, Pfeiffer R, Vannucci M. Identifying biomarkers from mass spectrometry
data with ordinal outcomes. Cancer Informatics. 2007; 3:19–28. [PubMed: 19455232]

Kwon D, Vannucci M, Song J, Jeong J, Pfeiffer R. A novel wavelet-based thresholding method for
preprocessing mass spectrometry data that account for heterogeneous noise. Proteomics. 2008;
8:3019–3029. [PubMed: 18615428]

Landi M, Kanetsky P, Tsang S, Gold B, et al. MC1R, ASIP, and DNA repair in sporadic and familial
melanoma in a Mediterranean population. J National Cancer Institute. 2005; 98:998–1007.

Liang F, Paulo R, Molina G, Clyde M, Berger J. Mixture of g-priors for Bayes variable selection. J
Amer Statist Assoc. 2008; 103:410–423.

Madigan D, York J. Bayesian graphical models for discrete data. International Statist Rev. 1995;
63:215–232.

Schäfer J, Strimmer K. A shrinkage approach to large-scale covariance matrix estimation and
implications for functional genomics. Statist Appl Genomics and Molecular Biology. 2005; 4:1–
32.

Sha N, Tadesse M, Vannucci M. Bayesian variable selection for the analysis of microarray data with
censored outcome. Bioinformatics. 2006; 22:2262–2268. [PubMed: 16845144]

Sha N, Vannucci M, Brown P, Trower M, Amphlett G. Gene selection in arthritis classification with
large-scale microarray expression profiles. Comparative and Functional Genomics. 2003; 4:171–
181. [PubMed: 18629129]

Sha N, Vannucci M, Tadesse M, Brown P, et al. Bayesian variable selection in multinomial probit
models to identify molecular signatures of disease stage. Biometrics. 2004; 60:812–819. [PubMed:
15339306]

Zellner, A. On assessing prior distributions and Bayesian regression analysis with g-prior distributions.
In: Goel, P.; Zellner, A., editors. Studies in Bayesian Econoetrics and Statistics. New York:
Elsevier; 1986. p. 233-243.

Kwon et al. Page 12

Comput Stat Data Anal. Author manuscript; available in PMC 2012 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Simulation Result: Plots for continuous (row A), count (row B), and binary (row C)
outcomes. Striped bars represent SSVS and solid bars represent hybrid-CBS. S1, S2, and S3
denote Simulation 1, Simulation 2, and Simulation 3, respectively.
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Figure 2.
Simulation Result: Plots for continuous outcomes. S2, S4, S5, S6, and S7 denote Simulation
2, Simulation 4, Simulation 5, Simulation 6 and Simulation 7, respectively.
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Figure 3.
Comparison of hyperparameter c and priors of β: Plots for an independent prior (row A), g-
prior (row B), and shrinkage g-pior (row C). Striped bars represent SSVS and solid bars
represent hybrid-CBS.
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Figure 4.
Comparison of Mean Squared Prediction Errors for SSVS and hybrid-CBS: Plots for
continuous outcome. hybrid-CBS indicates hybrid-CBS. Ip and shrk. g-prior denote an
independent prior and shrinkage g-pior, respectively.
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Figure 5.
(a) Comparison of Mean Squared Prediction Errors for SSVS and hybrid-CBS: Plots for
count outcome; (b) Comparison of Brier Scores for SSVS and hybrid-CBS: Plots for binary
outcome.
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Figure 6.
Comparison of Mean Squared Prediction Errors for SSVS and hybrid-CBS: Plots for
continuous outcome. hybrid-CBS indicates hybrid-CBS. Ip denotes an independent prior.
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Table 2

Sensitivity analysis for different proportions of CBS moves.

% of CBS Avg. of Avg. No. of predictors with p(γi = 1|X, Z) > 0.5 No. of TPs No. of FPs

90% 0.77 8.86 7.22 1.64

95% 0.75 8.44 7.34 1.10

80% 0.73 8.3 7.24 1.06

50% 0.76 8.7 7.54 1.16
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