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Abstract:  Several methods have recently been proposed in the ultra high frequency 

financial literature to remove the effects of microstructure noise and to obtain 

consistent estimates of the integrated volatility (IV) as a measure of ex-post daily 

volatility. Even bias-corrected and consistent (modified) realized volatility (RV) 

estimates of the integrated volatility can contain residual microstructure noise and 

other measurement errors. Such noise is called “realized volatility error”. Since such 

measurement errors are ignored, we need to take account of them in estimating and 

forecasting IV. This paper investigates through Monte Carlo simulations the effects of 

RV errors on estimating and forecasting IV with RV data. It is found that: (i) 

neglecting RV errors can lead to serious bias in estimators due to model 

misspecification; (ii) the effects of RV errors on one-step ahead forecasts are minor 

when consistent estimators are used and when the number of intraday observations is 

large; and (iii) even the partially corrected 2R  recently proposed in the literature 

should be fully corrected for evaluating forecasts. This paper proposes a full 

correction of 2R , which can be applied to linear and nonlinear, short and long memory 

models. An empirical example for S&P 500 data is used to demonstrate that 

neglecting RV errors can lead to serious bias in estimating the model of integrated 

volatility, and that the new method proposed here can eliminate the effects of the RV 

noise. The empirical results also show that the full correction for 2R  is necessary for 

an accurate description of goodness-of-fit. 
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Modelling and Forecasting Noisy Realized Volatility 

 

1 Introduction 

 

Given the rapid growth in financial markets and the continual development of new 

and more complex financial instruments, there is an ever-growing need for theoretical 

and empirical knowledge of volatility in financial time series.  

 

There is, however, an inherent problem in using models where the volatility measure 

plays a central role. The conditional variance is latent, and hence is not directly 

observable. It can be estimated, among other approaches, by the (Generalized) 

Autoregressive Conditional Heteroskedasticity, or (G)ARCH, family of models 

proposed by Engle (1982) and Bollerslev (1986), stochastic volatility (SV) models 

(see, for example, Taylor (1986)), or exponentially weighted moving averages 

(EWMA), as advocated by the J.P. Morgan's Riskmetrics methodology (see McAleer 

(2005) for a recent exposition of a wide range of univariate and multivariate, 

conditional and stochastic, models of volatility, and Asai, McAleer and Yu (2006) for 

a review of the growing literature on multivariate stochastic volatility models). 

However, as observed by Bollerslev (1987), Malmsten and Teräsvirta (2004), and 

Carnero, Peña, and Ruiz (2004), among others, most of the latent volatility models 

fail to describe satisfactorily several stylized facts that have been observed in financial 

time series.  

 

The search for an adequate framework for the estimation and prediction of the 

conditional or stochastic variance of financial assets returns has led to the analysis of 

high frequency intraday data. Merton (1980) noted that the variance over a fixed 

interval can be estimated arbitrarily, although accurately, as the sum of squared 

realizations, provided the data are available at a sufficiently high sampling frequency. 

More recently, Andersen and Bollerslev (1998) showed that ex post daily foreign 

exchange volatility is best measured by aggregating 288 squared five-minute returns. 

The five-minute frequency was suggested as a trade-off between accuracy, which is 
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theoretically optimized using the highest possible frequency, and microstructure noise 

that can arise through the bid-ask bounce, asynchronous trading, infrequent trading, 

and price discreteness, among other factors.  

 

Ignoring the remaining measurement error, which can be problematic, the ex post 

volatility essentially becomes “observable”, and hence it can be modelled directly, 

rather than being treated as a latent variable. Based on the theoretical results of 

Barndorff-Nielsen and Shephard (2002), Andersen, Bollerslev, Diebold and Labys 

(2003) and Meddahi (2002), several recent studies have documented the properties of 

realized volatility constructed from high frequency data. However, it is well known 

that neglecting microstructure noise in calculating realized volatility can lead to 

biased and inconsistent estimates of the integrated volatility as a true measure of daily 

volatility.  

 

Several methods have recently been proposed in the ultra high frequency financial 

literature to remove the effects of microstructure noise and to obtain consistent 

estimates of the integrated volatility (see Barndorff-Nielsen, Hansen, Lunde and 

Shephard (2008), Christensen, Oomen and Podolskij (2008), Hansen, Large and 

Lunde (2008), and Zhang, Mykland and Aït-Sahalia (2005)). For extensive reviews of 

the realized volatility literature, see McAleer and Medeiros (2008) and Bandi and 

Russell (2007). Nevertheless, even bias-corrected and consistent realized volatility 

estimates of the integrated volatility can contain residual microstructure noise and 

other measurement errors that should not be ignored. Furthermore, the consistency of 

the above mentioned estimators is derived under some (strong) assumptions about the 

microstructure noise. Whenever some of these assumptions are not met in practice, 

the estimators turn to be inconsistent. Finally, if the number of intraday observations 

is small (due to illiquidity effects or data availability), the remaining measurement 

error may not be negligible. Barndorff-Nielsen and Shephard (2002) refer to such 

remaining noise as the “realized volatility (RV) errors”. They suggested a method to 

estimate the continuous-time SV model, in which volatility follows a non-Gaussian 

Ornstein-Uhlenbeck (OU) process (see also Corradi and Distaso (2006) for a 

discussion of measurement errors and realized volatility).  
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The contribution of this paper is two-fold. First, we extend Barndorff-Nielsen´s and 

Shephard (2002) approach and estimate three different models of integrated volatility. 

The common features between Barndorff-Nielsen and Shephard (2002) and the 

current paper is the use of state space representation to remove such realized volatility 

errors. This paper deals with discrete-time SV models, in which the logarithm of 

integrated volatility follows a K-component model, a long memory model (ARFIMA), 

or a heterogeneous autoregressive (HAR) model. Our K-component model 

corresponds to the continuous-time SV model of Chernov et al. (2003). Monte Carlo 

simulation experiments are presented to investigate the effects of the RV errors on the 

estimators and forecasts of these three models. Second, we show that, in the presence 

of RV errors, the R
2
 correction proposed by Andersen, Bollerslev and Meddahi (2005) 

is only a partial correction. We provide a fully corrected R
2
 measure in Mincer-

Zarnowitz regressions when the dependent variable is a noisy RV measure.  

 

An empirical example is used to show that neglecting the RV error can lead to serious 

bias in estimating integrated volatility, and that the new method can eliminate the 

effects of the RV error. Finally, the fully corrected 2R  proposed in this paper is 

needed in most cases. 

 

The plan of the remainder of the paper is as follows. Section 2 discusses the effects of 

RV error on estimating and forecasting integrated volatility. Section 3 presents the 

results of Monte Carlo simulation experiments regarding the effects of RV error, 

using the K-component, long memory and HAR models. Section 4 proposes a new 

method to fully correct 2R  in the presence of RV error. The results of an empirical 

example are analyzed in Section 5. Some concluding remarks are given in Section 6. 

 

2 Realized Volatility and the Significance of Measurement Errors 

 

Suppose that, along day t, the logarithmic prices of a given asset follow a continuous 

time diffusion process, 

,2,1,10),()()()(  ttdWtdttdp  ,  

where )( tp  is the logarithmic  price at time t , )(  t  is the drift component, 

)(  t  is the instantaneous volatility (or standard deviation), and )( tW  is a 
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standard Brownian motion. In addition, suppose that )(  t  is orthogonal to 

)( tW , such that there is no leverage effect. This assumption is standard in the 

realized volatility literature.  

 

Andersen, Bollerslev, Diebold and Labys (2003) and Barndorff-Nielsen and Shephard 

(2002) showed that daily returns, defined as )1()(  tptprt
, are Gaussian 

conditionally on   1

0
)1(),1(




 ttt , the -algebra (information set) 

generated by the sample paths of  )1(  t  and  )1(  t , 10  , such that  









 

1

0

2
1

0
,)1(,)1(N~  dtdtr tt . 

 

The term 
1

2 2

0
( 1)tIV t d      is known as the integrated variance, which is a 

measure of the day-t ex post volatility. The integrated variance is typically the object 

of interest as a measure of the true daily volatility.  

 

In general,  t  , or a function of  t   such as  2 t   or  2ln t  , is 

assumed to follow a continuous time diffusion process (see Ghysels, Harvey and 

Renault (1996) for example). Integrating on  , the Brownian motion of the diffusion 

process becomes a Gaussian variable, such that the integrated variance is a random 

variable. In this sense, 2

tIV  plays the same role as the stochastic variance in the class 

of “Stochastic Volatility (SV)” models. From this viewpoint, the connections among 

the integrated variance, stochastic variance, and conditional variance are clear. As 

shown by Nelson (1990), conditional variance models are approximations to 

continuous-time SV models. In the conditional variance model, the current variance is 

determined by past information sets, indicating that the approximation can be 

improved. Usually, continuous-time SV models are approximated by the Euler-

Maruyama method, and the resulting models are called “discrete time” SV models. 

For example, the EGARCH model and the asymmetric SV model of Harvey and 

Shephard (1996) have the same diffusion limit, in which  2ln t   follows the OU 

process with the negative correlation between the Brownian motions of )( tp  and 

 2ln t  . 
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Let 
tRV  be a suitable estimator of the integrated volatility, 

2

t tIV IV , as suggested 

by Zhang, Mykland and Aït-Sahalia (2005), hereafter ZMA (2005), or Barndorff-

Nielsen, Hansen, Lunde and Shephard (2008) (BHLS (2008)). Then 
tRV  is consistent, 

and its order of convergence is 
tn , where 

tn  is the total number of observations at 

day t and    1 6 1 4   depends on the assumptions made about the noise
1
. For 

simplicity, we may write 
tRV  as 

 
1

t t t

t

RV IV u
n

  , (1) 

where 
tu  is an independent process with mean 0 and variance 2

u , respectively
2
. 

Hereafter, 2~ (0, )t uu ID  . We call the second term in (1), t tu n , the “realized 

volatility error”. It should be noted that 
tu  is not, in principle, the microstructure 

noise, as it is just the estimation error. 

 

The approach proposed in this paper is based on equation (1), which shows that the 

last term plays a key role as a measurement error. It is known that measurement errors 

can lead to serious bias in estimating econometric models (see textbooks such as 

Wooldridge (2002)). As the logarithm of 
tRV  is modelled in the literature, it is useful 

to consider the measurement error of ln tRV  when it is based on equation (1). By 

using a Taylor series expansion of  ln t tIV n u  around 0tu  , we have 

 ln lnt t tRV IV w  , (2) 

where 

 
1

1

11

2

ii

t
t

i t

u
w

i n IV






  
  

 
 . 

Here, 
tw  is correlated with 

tRV , and is  po n  .  

 

Consider a general time series model for ln tIV , such as 

                                                 
1
 For the case of no noise, we can obtain 1 2  . 

2
 We only assume this for the purpose of describing the idea. We may relax this assumption, as in 

Barndorff-Nielsen and Shephard (2002), who assume that   0t tE u IV  , allowing the variance of 

tu  to depend on t, and 
tu  to be correlated with 

tIV .  
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   

 

1 1

1 1

1 ln ,

, , ,

d

t t

t t t t

L IV v

v g



  

 

 

  

 

 

where L is the lag operator,   is a parameter,  1, ,t tg v v   can be a linear or 

nonlinear function, and 
t  is the innovation term. This model includes ARMA and 

ARFIMA models, by the AR    representation, assuming that the invertibility 

conditions are satisfied. Obviously, it also contains the non-linear AR models. Then 

we have the model of 
tRV  as 

 

   

 

1 1

1 1 1

1 ln ,

, , ,

d

t t

t t t t

L RV

g

 

   



 

  

  

  

 

  

where  1
d

t t tL w      and    1 11 ,
d

t t t t tL w g X W   

      with the function  

          
        

1 1

1

, 1 ln , 1 ln ,

1 ln , 1 ln , ,

d d

t t t t t t

d d

t t

g X W g L RV w L RV w

g L RV L RV

 

 

 

 



      

    
 

and  1ln , ln ,t t tX RV RV

  and  1, ,t t tW w w  . This leads to a measurement 

error problem in nonlinear regression models. Estimation neglecting measurement 

errors produces bias in the estimators, which may affect the bias in the forecasts. Such 

bias depends both on the model and the size of the RV error. 

 

Consider two examples. If the true  ln t  follows an OU process, then ln tIV  follows 

an AR(1) process, namely 

  1ln 1 lnt t tIV IV        .  

Then we have a model of 
tRV  as 

  1 1ln 1 lnt t tRV RV        ,  

where 
1 1t t t tw w      . Note that 

1t 
 is correlated with 

tRV , by the structure of 

the model. Hence, neglecting 
1t tw w   causes a familiar problem of measurement 

errors in regression models. The OLS estimator for   is biased due to the RV error in 

tRV  and the correlation between ln tRV  and the disturbance. On the other hand, 
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taking account of 
1t tw w   leads to an ARMA(1,1) specification of ln tRV , as an 

AR(1) plus noise follows an ARMA(1,1) model, in general (see Granger and Morris 

(1976)). In the case of taking account of 
tw , the forecast of ln tRV  is made of all the 

past information, 
1 2ln ,ln ,t tRV RV 

, due to the AR    representation of a 

stationary ARMA process. Regarding the case of neglected measurement errors, the 

forecast of ln tRV  depends only on 
1ln tRV 
 from the AR(1) specification. Hence, 

forecasts that neglect the measurement errors lead to two kinds of bias, one caused by 

the bias in the estimate of  , and the other from the lack of information. 

 

Another example is the Heterogeneous Autoregressive (HAR) model of Corsi (2009). 

Consider the HAR model of ln tIV  as 

 
5 22

1 0 1 2 1 3 1

1 1

1 1
ln ln ln ln

5 22
t t t i t i t

i i

IV IV IV IV        

 

      , (3) 

which yields the 
tRV  model as 

5 22

1 0 1 2 1 3 1 1

1 1

1 1
ln ln ln ln

5 22
t t t i t i t

i i

RV RV RV RV         

 

      , 

where 

5 22

1 1 1 2 1 3 1

1 1

1 1

5 22
t t t t t i t i

i i

w w w w         

 

      . 

 

We may apply the discussion of the AR(1) case. In this case, ln tRV  follows a 

restricted ARMA(22,22) model. Hence, neglecting the effects of 
tw  and using QML 

lead to bias in the estimates of 
0 , 

1 , 
2  and 

3 . Furthermore, forecasts obtained by 

neglecting measurement errors will be biased due to the bias in the estimates and the 

lack of information. Overall, the moving average term caused by measurement error 

plays an important role in estimating and forecasting integrated volatility. 

 

3  Effects of RV Errors 

 

In the following section, we will investigate the effects of the RV error on estimating 

and forecasting volatility models. We consider three kinds of models, namely the K-
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component, long memory and HAR models, which are familiar in empirical analysis. 

Then we will conduct Monte Carlo simulations using two quasi-maximum likelihood 

(QML) estimators, one taking account of measurement errors caused by RV error, and 

another which neglects measurement errors. The purpose of the simulations is to (i)  

compare the finite sample properties of two estimators, (ii) investigate differences in 

forecasts based on these estimators, and (iii) check the effects on the corrected 2R  

values. 

 

3.1  K-component Model 

With regard to the integrated volatility, 
tIV , consider the following K-component 

model: 

 

1

, 1

exp ,

, 1, , ,

K

t it

i

i t i it i it

IV

i K

 

   





 
  

 

  



 (4) 

where 
it  follows the independent standard normal distribution. In the literature of 

stochastic volatility based on observed return series, Chernov et al. (2003) and Asai 

(2008), among others, consider such a K-component model in a more general 

framework. Here, we will consider estimation of the model via a proxy for the latent 

integrated volatility, namely realized volatility. 

 

Based on equations (1)-(4), we have 

 
1

ln ln ln
K

t t t it t

i

RV IV w w 


     . (5) 

Thus, we can construct the state space model with the measurement equation (5) and 

the state equation of 
it , which enables an application of the QML method via the 

Kalman filter. Note that the distribution of the measurement error, 
tw , is unknown. 

 

We may have filtered (or smoothed) the estimate of the logarithm of integrated 

volatility via the Kalman filter (or smoother). For purposes of forecasting out of 

sample, the one-step ahead predicted value, , 11
ˆˆln

K

i Ti
  
 , is also available. 
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The method here includes estimation of the K-component model in the absence of RV 

errors. Let 
w  be the standard deviation of 

tw . By setting 0w  , the approach can 

deal with the case of no measurement errors. 

 

3.2  Long Memory Model for Integrated Volatility 

In this section we consider a long memory model for the logarithm of integrated 

volatility. For convenience, we assume that  expt tIV x  and that 
tx  follows an 

ARFIMA(p,d,q) model. Then we have 

 

     

ln ln ln ,

1 ,

t t t t t

d

t t

RV IV w x w

L L x L



  

    

 

 (6) 

where  2~ 0,t N    and 
tw  is defined by equation (2). The spectral density of the 

model is given by  

  
 

 

2
2

2

22
,

22 1

i

w

d
i i

e
f

e e





 

  
   

 



 

    


. 

 

Thus, we may apply the method of Breidt, Crato and de Lima (1998) in order to 

estimate the above model
3
. With an adaptation of the algorithm given in Harvey 

(1998), we can obtain the estimates and forecasts of ln tIV . In order to estimate the 

model without RV errors, we need only to set 
w  to zero.  

 

3.3  HAR Model for Integrated Volatility 

We consider the HAR model for integrated volatility as 

 

5 22

1 1 2 1 3 1

1 1

ln ln ln ,

1 1
ln ln ln ln ,

5 22

t t t t t

t t t i t i t

i i

RV IV w x w

x x x x



       

 

    

    

 (7) 

 

                                                 
3
 An alternative method is to work with the filtering algorithm proposed by So (1999), 

but we abandoned it because of its computational burden. 
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where  2~ 0,t N    and 
tw  is defined by equation (2). Note that setting 

 0 1 2 3exp 1           and ln lnt tx IV    leads to equation (3). As the 

model is an AR(22) plus noise, we can use the QML method via the Kalman filter. 

For purposes of forecasting out of sample, the one-step ahead predicted value is also 

available from the Kalman filter. 

 

For the case of neglecting measurement error, we may handle the case by setting 

0w  . In this case, the QML estimator is equivalent to the OLS estimator. 

 

3.4  Framework of Experiments 

We start from equation (1) for specifying the magnitude of the RV error. The variance 

of the RV error is given by 2 2

u tn  . We consider the case of ZMA (2005), which 

indicates that 1 6  . Let the variance of 
tIV  be 2

iv . Then we define the variance 

ratio of the RV error to volatility as  

 

 
2

2

u

iv t

ev
n




 . (8) 

 

In the following, we set 0.03ev   in order to consider a minor RV error compared 

with volatility. It should be noted that, if the RV error is large, it will lead to bias in 

estimating and forecasting the models of IV. Hence, we exclude the obvious case in 

order to concentrate on the case that the estimator of RV is consistent and well-

behaved. 

 

In the following Monte Carlo simulations, we generate data of 
tIV  with sample size 

T+1. The parameter setting are as follows;    1 1 2 2, , , , 0.98,0.1,0.4,0.4,1       for 

the two component model (equation (4) with K=2),    , , , 0.4,0.4, 0.1,1d       for 

the ARFIMA(1,d,0) model (6), and    1 2 3, , , , 0.8,0.1,0.05,0.25,1       for the 

HAR model (7). Next, we generate the noise process in the following way. For the 

parameter values above, we can calculate the variance of ln tIV  as the variance of the 
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ARMA and ARFIMA models are available. Then, by using the property of the log-

normal distribution, we can obtain the value of 2

iv . With 250tn   and ev=0.03, we 

obtain the values of 
u  as 0.642u   for the two component model and 0.466u   

for the ARFIMA model. We generated  2~ 0,t uU N   in order to cauculate 
tRV  via 

(1). The first T observations are used for estimation of the models, while the last 

observation is used for forecasting evaluation. The number of replications is fixed at 

1000. 

 

For each replication, we estimate the models with and without measurement errors in 

order to investigate the finite sample properties of the QML estimators, and to 

compare the performances of the one-step-ahead predictions. 

 

Let  
1|

ˆ i

T Th 
  1,2, ,1000i   be the one-step-ahead forecast of 

1ln TIV 
 in the i-th 

replication. We calculate the mean absolute error (MAE) and root mean squared 

errors (RMSE) based on the true values. In addition to these values, we use two kinds 

of Mincer-Zarnowitz regression: 

 

| 1

| 1

: ln error,

: ln error,

IV
t tt

RV
t tt

MZ IV h

MZ RV h

 

 





  

  

 

for purposes of investigating the effects of using the noisy RV as the regressand. 

 

3.5  Monte Carlo Results 

This subsection reports the results of the Monte Carlo simulations described above. 

Table 1(a) shows the true parameters and the mean, standard deviations and RMSE of 

two kinds of QML estimators for 1000 replications with T=1000. As it is not easy to 

obtain the true value of 
w  analytically, we use the simulated value from 1000 

replications as a proxy. The QML estimator taking account of RV error has a small 

bias, while the QML estimator neglecting RV error has a relatively large bias, 

especially for  2 2,  . On the other hand, introducing 
w  makes the standard 

deviations for  2 2,   larger, compared with those for the QML neglecting RV error. 
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Overall, the RMSE values for the QML with measurement errors are always smaller 

than those for the QML neglecting measurement errors. 

 

In the above simulations, we also obtained the predicted values, 1, 1
ˆ

T  , 2, 1
ˆ

T   and 

2

, 11
ˆˆln i Ti

  
  1|

ˆ
T Th  . Table 1(b) presents the MAE and RMSE values for the 

predictions of 1, 1T  , 2, 1T   and 
1ln TIV 
. The QML estimator taking account of RV 

error always has smaller MAE and RMSE values than the corresponding QML 

estimator neglecting the RV error. Table 1(c) shows 2R  and the F test for the IVMZ  

and RVMZ  regressions. The F test is for the null hypothesis 
0 : 0 and 1H     

( 0 and 1   ) in the MZ equation for ln tRV  ( ln tIV ). The p-values in Table 1(c) 

indicate that the model is not correctly specified, implying that the test tends to over-

reject the null hypothesis. 

 

The QML estimator taking account of RV error has larger 2R  than the corresponding 

QML estimator neglecting RV error, as expected. Interestingly, RVMZ  shows the 

opposite result. Thus, 2R  for RVMZ  yields a misleading result. Therefore, we must 

be careful in comparing 2R  values based on RVMZ . We will discuss this point 

further in the next section. 

 

Now we turn to the results for the ARFIMA model, which is given in Table 2. Table 

2(a) presents the true parameters and the mean, standard deviations and RMSE of two 

kinds of QML estimators for 1000 replications with T=1000. We set 
w  as the 

simulated value from 1000 replications as given previously. In the results for QML 

neglecting measurement errors, the estimator for d has a downward bias, while the 

estimator for   has an upward bias. The estimator for   is unbiased. In the results 

for QML taking account of RV error, the bias is minor, except for  , but the standard 

deviations are relatively large. This may be explained by three reasons: (i) The sample 

size is relatively small for the analysis of a long memory process; (ii) the 

measurement error in the current parameter setting is too small to detect; (iii) As in 

Table 1(a), introducing 
w  for accommodating measurement errors make larger the 
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standard deviations of some parameters which are strongly affected by neglecting the 

noise.  

 

In order to investigate the effects of sample size, Table 3 reports the results for 

T=2000. The bias in   for the QML accommodating the RV errors becomes smaller. 

In all cases, the standard deviations and RMSE are smaller than those in Table 2.  

 

For purposes of forecasting integrated volatility, Table 2(b) shows that the QML 

estimator taking account of RV error always has smaller MAE and RMSE values than 

the corresponding QML estimator neglecting the RV error. This is the same as in 

Table 1(b). Table 2(c) presents 2R  and the F test for the IVMZ  and RVMZ  

regressions. The p-values of the F test are for the null hypothesis 
0 : 0 and 1H     

( 0 and 1   ) in the MZ equation for ln tRV  ( ln tIV ), and indicate that the model is 

correctly specified. In both the cases of including and neglecting RV error, IVMZ  has 

larger 2R  values than does RVMZ . This result is reasonable, as the denominator of 

2R  is the sum of squared deviations of the regressand, for which ln tIV  has smaller 

values than does ln tRV . Furthermore, the QML estimator taking account of the RV 

error always has larger 2R  values than the corresponding QML estimator neglecting 

the RV error. We obtain the same conclusions from Tables 3 (b) and 3(c) for T=2000. 

 

Third, we discuss the simulation results of the HAR model, which are given in Table 

4. Table 4(a) presents the true parameters and the mean, standard deviations and 

RMSE of two kinds of estimators for 1000 replications with T=1000. We set 
w  to be 

the simulated value from 1000 replications, as above. In the results for QML 

neglecting measurement errors, the estimators of 
1  and 

2  have large bias, while the 

estimator for   has an upward bias. In the results for QML accounting for RV error, 

the bias is negligible. As noted previously, introducing 
w  for accommodating RV 

errors makes larger the standard deviations of some parameters which are strongly 

affected by neglecting the noise. 
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For purposes of forecasting integrated volatility, Table 4(b) shows that the QML 

estimator taking account of RV error always has smaller MAE and RMSE values than 

the corresponding QML estimator neglecting RV error. Table 4(c) presents 2R  and 

the F test for the IVMZ  and RVMZ  regressions. The p-values in Table 1(c) indicate 

that the model is not correctly specified, implying that the test tends to over-reject the 

null hypothesis. The QML estimator taking account of RV error has larger 2R  than 

the corresponding QML estimator neglecting RV error, as expected. On the other 

hand, RVMZ  shows the opposite result, showing that 2R  for RVMZ  yields a 

misleading result. 

 

In the Monte Carlo simulations for the effects of a relatively small noise, it is found 

that: (i) the estimator neglecting the RV error has bias; (ii) the estimator taking 

account of RV error produces better forecasts than the estimator neglecting the RV 

error, but the differences are minor; and (iii) the 2R  values based on RVMZ  are 

misleading, and need to be corrected. 

 

4  Correcting 2
R  

 

As shown in the previous section, we need to correct 2R  based on RVMZ . A natural 

framework is to use the correction suggested by Andersen, Bollerslev and Meddahi 

(2005). In the following, we will examine the results of Monte Carlo experiments in 

detail, showing that their partial correction is insufficient. Then we will propose a 

fully corrected 2R  measure. 

 

4.1  Implications from the Monte Carlo results 

The essence of Andersen, Bollerslev and Meddahi (2005) is to multiply by 

 
 

 

ln

ln

t

t

V RV

V IV
 

the 2R  values based on RVMZ  in the previous section. This is reasonable as the 

denominator of 2R  is the squared sum of deviations of ln tRV , but 2R  based on 

IVMZ  uses ln tIV . For reasons that will become clear below, we will refer to this type 

of 2R  as the „partially corrected 2R ‟. 
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Regarding the previous Monte Carlo experiments, Table 5(a) shows the 2R  based on 

RVMZ  and IVMZ , and the partially corrected 2R  by using the sample value of 

   ln lnt tV RV V IV . Clearly, the partially corrected 2R  overestimates 2R  for 

IVMZ , and it sometimes exceeds one, indicating that we have failed to use some 

important information. 

 

The Appendix shows the algebraic relationship between 2R  for RVMZ  and IVMZ , 

indicating that we need to multiply by not only the sample value of 

   ln lnt tV RV V IV  but also by  
2

ˆ ˆ  . We will refer to this type of corrected 2R  

as the „fully corrected 2R ‟. Table 5 also presents the value of  
2

ˆ ˆ   and the fully 

corrected 2R . This time the resulting 2R  coincides with 2R  for IVMZ . Therefore, the 

full correction is needed for real data. 

 

4.2  Proposed Approach 

From the results above, we need two kinds of correction, the adjustment for the 

denominator by    ln lnt tV RV V IV , and also for the numerator by  
2

ˆ ˆ  . In real 

data analysis,  ln tV IV  and ̂  are unavailable, and they have to be estimated. We 

can estimate    ln lnt tV RV V IV  by the approach of Andersen, Bollerslev and 

Meddahi (2005), so that we only need to estimate ̂ , which is given by  

 

 
 

 
| 1

2

| 1

ˆ
ˆ ˆ

ˆ

t t t

t t

h h w

h h

 





 






. (9) 

 

Appendix shows how to derive the connection between ̂  and ̂ . Equation (9) 

indicates that we also need to estimate 
tw .  

 

For this paper, we propose a simple method as follows. First of all, using the whole 

sample, including those for forecasting, we estimate the model taking account of the 
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measurement errors. Second, for the estimated parameter value, we conduct filtering 

techniques below in order to obtain the filtered estimate of 
tw  for the forecasting 

period. Third, we obtain an estimate of ̂  by substituting the estimates of 
tw  for the 

true value of 
tw  in (9). Note that this estimate of 

tw  may be used not only for the 

model with measurement errors but also for the model neglecting measurement errors. 

 

With respect to the filtering technique, we suggest the following approach. For the 

short-memory models including the ARMA and K-components models, we can use 

the Kalman filter. For the case of the long-memory ARFIMA model, we may use the 

filtering algorithm proposed by So (1999). Regarding nonlinear time series models, 

we can work with particle filters, such as in Kitagawa (1987). Note that another 

candidate for 
tw  is the smoothed estimates. 

 

In general, we may assume that   0t tE u IV   for 
tu , as in Barndorff-Nielsen and 

Shephard (2002), such that the variance of 
tu  depends on t and 

tu  can be correlated 

with 
tIV . The correction proposed here is still valid. For evaluating the forecasts of 

tIV  and 2

tIV ,  a similar correction is required, in addition to the partial correction of 

Andersen, Bollerslev and Meddahi (2005) . The additional correction requires the 

estimation of 
tw  in  

 
t t tRV IV w   

for volatility, and  
2 2

t t tRV IV w   

for volatility squared. If the models for log-volatility are considered, as in the current 

paper, we may use the particle filters for obtaining filtered estimates of 
tw , in general. 

 

Estimates of 
tw  and ln tIV  are available simultaneously. It is an open question 

whether this estimate is used for empirical analyses. We leave this problem for future 

research. 
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4.3  Simulation Results 

In order to check the performance of the proposed fully corrected approach, we 

conduct another Monte Carlo simulation. The previous Monte Carlo experiments 

considered the series of  
1|

ˆ i

T Th 
  1,2, ,500i  . In other words, each  

1|
ˆ i

T Th 
 was 

calculated for the i-th replication. Now we generate 
tIV  and 

tRV  with the same 

parameters and with the sample size of T+500 once only. Then we forecast the model 

to obtain 
| 1

ˆ
T j T jh   

  1,2, ,500j  , fixing the window size as T. For each forecast, 

the model is re-estimated. After forecasting, we estimate the model with the whole 

sample (T+500) in order to have the filtered estimate of 
tw , 

tw . On evaluating the 

forecasts using RVMZ , we can correct 2R  by multiplying  
2

ˆ   for the corrected 

2R  by the  sample value of    ln lnt tV RV V IV , where   is the estimate of ̂  based 

on (9) and 
tw . It should be noted that the smoothed estimate of 

tw  is another proxy 

for 
tw . 

 

Table 5(b) shows the simulation results for 2R  based on RVMZ  and IVMZ , the 

partially corrected 2R  by using the sample value of    ln lnt tV RV V IV , the values 

of  
2

ˆ ˆ   and  
2

ˆ  , and the fully corrected 2R  based on  
2

ˆ  . We first 

analyse the results for the two component model. Roughly speaking, the difference 

between 2R  for IVMZ  and the partially corrected 2R  is 0.025, while the difference 

between the true 2R  and fully corrected 2R  is 0.01, such that the fully corrected 2R  

yields a better estimate of the true value. For the ARFIMA model, we have a similar 

result. The difference between 2R  for IVMZ  and the partially corrected 2R  is 0.03, 

while the difference between 2R  for IVMZ  and fully corrected 2R  is 0.02. With 

respect to the HAR model, the difference between 2R  for IVMZ  and the partially 

corrected 2R  is 0.025, while the difference between true 2R  and fully corrected 2R  is 

0.02. In short, the fully corrected 2R  can be far more accurate than its partially 

corrected counterpart in some cases, but it is never worse. 
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Before concluding the section, we discuss the effects of model misspecification. If the 

model is misspecified, which is typically the case for most models used in empirical 

research, the model misspecification error can be confused as a measurement error in 

finite samples. Hence, we need to separate the effect of measurement error from 

model misspecification error. For this purpose, we suggest using the most general 

model considered for the analysis in order to obtain the estimate of 
tw . Note that the 

most general model need not produce the best out-of-sample forecasts, but it is 

expected to have best in-sample forecasts, that is, fitted values, if the sample size is 

large enough. In applied work, the true model may encompass the most general model 

considered for the analysis, yielding model misspecification error. The fully corrected 

2R  is not worse in any case than its partially corrected counterpart, by construction. 

For the case of our simulation experiments, ARFIMA is the most general model, as 

the remaining two models have only ARMA representations. We obtained the filtered 

estimate of 
tw , employing the ARFIMA model, for the case that each of the other two 

models is correct. Then we found that the results for the full corrected 2R  remain 

unchanged. 

 

5  Empirical Example 

 

This section examines the estimates and forecasts using the RV of Standard and 

Poor‟s 500 Composite Index (S&P 500). In order to calculate the daily realized 

volatility, we use the estimation method given in ZMA (2005). The sample period is 

Jan/3/1996 to March/29/2007, giving T=2796 observations of RV. 

 

We also compare the models given above with models including an MA(1) term, 

namely, the two component model (AR(1)+ARMA(1,1)), the ARFIMA(1,d,1) model, 

and the ARMA(22,1) with restrictions on the AR coefficients. The additional 

parameter is the coefficient of the MA(1) term, which is the same as the models with 

measurement errors. Intuitively, including the MA(1) term is more comprehensive 

than accommodating the measurement errors. We will use the first two models for 

estimating and forecasting integrated volatility. Instead of the last one, we consider 

the Heterogeneous ARMA (HARMA) model given by 
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which is a natural extension of the HAR model. 

 

Before estimating the models, it is useful to test for the existence of measurement 

errors. Tanaka (2002) proposed the LM statistic to test the presence of measurement 

errors based on three kinds of processes, namely the AR(p), unit root and long 

memory models. The test statistics have the standard normal distribution under the 

null hypothesis of no measurement error, and is one-sided on the right tail. Table 6 

shows the descriptive and test statistics for the logarithm of RV, with descriptive 

statistics of returns and RV itself. When an AR(1) model is assumed to be the true 

process of the logarithm of integrated volatility, the calculated statistic rejects the null 

hypothesis of no measurement error. When an ARFIMA(1,d,0) process is assumed to 

be true, the calculated statistic also rejects the null hypothesis. The empirical results 

indicate that there are measurement errors which are not negligible, even after 

ostensibly removing the microstructure noise. 

 

Table 7 shows the QML estimates for the two-component model, accounting for and 

neglecting measurement errors. For the former, the estimated value of 
1  is close to 

0.99, while the estimate of 
1  is 0.07, which are typical for SV models. For the 

second component, the estimate of 
2  is 0.80, while that of 

2  is 0.18. The estimate 

of 
w  is 0.38, and is significant at the five percent level, indicating that measurement 

errors are not negligible. For the case of neglecting measurement errors, the estimates 

of 
1  and 

2  decrease, while those of 
1  and 

2  increase. As expected from the 

Monte Carlo simulations, the differences for the second factor are large and not 

negligible, showing the large bias that are arise from neglecting the measurement 

errors. Table 7 also presents the QML estimates for the two component model 

comprising AR(1) and ARMA(1,1). The estimate of the MA(1) term is negative and 

significant. All other estimates, apart from 
2 , are close to those of QML with 

measurement errors. 
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Table 8 presents two kinds of QML estimates for the ARFIMA(1,d,0) model, one 

based on accommodating measurement error and another neglecting measurement 

error. For the former, which takes account of measurement error, the estimate of d is 

0.49, indicating that ln tIV  has long range persistence and is stationary. The estimate 

of   is positive and significant, while the estimate of 
w  

is close to that in Table 7. 

For the latter, the estimate of d is 0.48, for which the downward bias is expected from 

the Monte Carlo simulations. The estimate of   is negative and significant. Table 8 

also gives the estimates of ARFIMA(1,d,1) as a counterpart to the ARFIMA(1,d,0) 

model accommodating measurement error. The estimate of the MA term is positive 

and significant. 

 

Table 9 presents estimates for the HAR model. For the QML estimates accounting 

measurement errors, the estimate of 
1 2 3     is 0.96, which implies high 

persistence in volatility. The estimate of 
w  is 0.33, which is smaller than those in 

Tables 7 and 8. Regarding the case of QML neglecting measurement error, the 

estimate of 
1 2 3     is 0.93, but the estimates of each parameter is different from 

those of the former. We also estimated the HARMA model, which is the 

ARMA(22,22) with restrictions on the AR and MA coefficients. The estimate of the 

MA term is negative and significant. The estimate of 
1 2 3     is 0.98, while 

1 2 3     is 0.648. The estimates of 
1  and 

3  are significant, while that of 
2  is 

insignificant.  

 

Next, we compare the out-of-sample forecasts based on these three approaches, which 

are the two-component plus noise model, ARFIMA plus noise model, and HAR plus 

noise model. The period of forecast is the last 796 observations. For each set of 

forecasts, the parameters are re-estimated to calculate the one-step-ahead forecasts, 

fixing the sample size to 2000. 

 

The forecasts are evaluated by estimating the Mincer-Zarnowitz regression, RVMZ . 

We compute the partially corrected 2R  values, as proposed in Andersen, Bollerslev 

and Meddahi (2005), as a measure of the ability of the model to track the variance 
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over time. We also calculate the fully corrected 2R  values, as proposed in the 

previous section, but do not calculate the mean absolute errors or root mean squared 

errors as they neglect the measurement error in realized volatility. 

 

Table 10 reports the partially and fully corrected 2R  values for the two-component, 

ARFIMA(1,d,0) and HAR models. For estimating 
tw  with the full correction, we use 

the ARFIMA model, as discussed in the previous section. The differences between the 

partially and fully corrected 2R  values are not negligible, implying the importance of 

taking account of the measurement error fully in correcting 2R . The partially 

corrected 2R  selects the two component model accommodating the measurement 

error, while the fully corrected 2R  chooses the ARFIMA models with/without 

measurement error. This can happen as in the Monte Carlo simulations, which suggest 

that the fully corrected 2R  provides a more accurate estimate of the true 2R  than does 

the partially corrected 2R . 

 

Furthermore, Table 10 indicates that the fully corrected 2R  values show that the 

ARFIMA models with/without measurement errors have the highest value, while the 

two-component model with the MA(1) term has the lowest. We will examine the 

differences among the models with and without measurement errors. As stated 

previously, the ARFIMA models have the highest value of the fully corrected 2R , 

while the HAR model with measurement error has the lowest. The second best model 

is the two-component model with measurement error, while the remaining two models 

have similar values. As some of the differences in the corrected 2R  values among the 

six models are very small, we need to assess the results by an alternative approach.  

 

For the complementary analysis, we conduct the tests for forecast encompassing 

suggested by Harvey, Leybourne and Newbold (1998). Consider a combination of 

two forecasts, 
1tf  and 

2tf , as   1 21ct t tf f f      0 1  , in order to produce 

forecasts that are superior to the two individual forecasts. The null hypothesis is 

0  , and the alternative hypothesis  0   has an interpretation that 
2tf  contains 
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useful information that is not present in 
1tf . For the case 0  , 

1tf  is said to 

“encompass” 
2tf .  

 

Table 11 gives the p-values of the test of Harvey, Leybourne and Newbold (1998) 

with respect to the models with/without measurement errors. The interpretation of the 

results is as follows. The forecasts of both ARFIMA models encompass all the other 

forecasts. The forecast of the two factor model with measurement error encompasses 

the remaining three models. The forecast of the HAR model with measurement error 

encompasses no forecasts. The implication obviously supports the fully corrected 2R  

values in Table 10. Note that the test of forecast encompassing is not suitable for 

model evaluation for the following two reasons: (i) it neglects the measurement 

errors, and (ii) the test may potentially find two forecasts which are unable to 

encompass each other. 

 

Table 12 gives the partially and fully corrected 2R  values for the h step-ahead 

forecasts (h=5, 10, 20), regarding the two component, ARFIMA and HAR models 

with/without measurement errors and with the MA term. As noted previously, the 

differences between the partially and fully corrected 2R  values are not negligible. In 

all cases, the fully corrected 2R  chooses the HAR model with measurement errors. 

For the cases h=5 and 10, the two component (AR(1)+ARMA(1,1)) model has the 

lowest values of the fully corrected 2R , whereas for the case h=20, the ARFIMA 

model neglecting measurement errors is chosen. Table 12 has omitted the results for 

the F test of the null hypothesis that  
0 : 0 and 1H     in the MZ equation. The 

tests all reject the null hypothesis, thereby indicating that the models can be improved.  

 

6  Conclusion 

 

Neglecting microstructure noise in calculating realized volatility (RV) can lead to 

biased and inconsistent estimates of the integrated volatility as a true measure of daily 

volatility. Consequently, several methods have recently been proposed in the ultra 

high frequency financial literature to remove the effects of microstructure noise and to 

obtain consistent estimates of the integrated volatility. However, even bias-corrected 
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and consistent RV estimates of the integrated volatility contain RV errors that should 

not be ignored. 

 

This paper investigated the effects of RV errors on estimating and forecasting models 

of integrated volatility. For minor RV errors, the Monte Carlo results showed that: (i) 

the estimates neglecting measurement error have serious biases; (ii) forecasts 

accounting for the measurement error outperform those neglecting them, but the 

differences can be small; and (iii) 2R  for evaluating the forecasts should be corrected 

appropriately. 

 

This paper also proposed a new method to correct 2R  of the Mincer-Zarnowitz 

regression, which is based on measurement errors in the estimated model. Theoretical 

and Monte Carlo results showed that the new fully corrected method is preferred to 

the partially corrected approach of Andersen, Bollerslev and Meddahi (2005). 

 

The empirical example of S&P 500 showed that neglecting microstructure noise can 

cause serious bias in estimating integrated volatility. Such bias in forecasting was 

found to be small. The proposed fully corrected 2R  showed the clear difference with 

the partially corrected 2R  of Andersen, Bollerslev and Meddahi (2005), implying that 

the appropriate correction can be empirically useful. 
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Data Appendix: Construction of Daily Realized Volatility Measures  

 

The empirical analysis focuses on the realized volatility of the S&P 500 index. We 

start by removing non-standard quotes (that is, discarding quotes where the bid or 

offer price is missing and selecting observations where the “mode” field in the TAQ 

file is 3, 5, 10, 12 or 29; see the description below), computing prices through the 

mean of the bid and ask quotes, filtering possible errors (namely, ruling out 

implausible returns in relation to the last quotes), and obtaining one second returns for 

the 9:30 am to 4:00 p.m. period (which are the regular trading hours on the NYSE).  

 

Observing the consistency considerations in Hansen and Lunde (2006), the previous 

tick method for determining prices at precise second marks is implemented. Based on 

the results of Hasbrouck (1995), who reports a median 92.7% information share at the 

NYSE for Dow stocks, and Blume and Gold (1997), who conclude that NYSE quotes 

match or determine the best displayed quote most of the time, we privilege NYSE 

quotes if there is more than one quote in a given second. 

 

In order to calculate the daily realized volatility, we use the estimation method given 

in BHLS (2008). 
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Appendix: Fully Corrected 2
R  

Consider the following structure of noise 

t t ty x w  , (A.1) 

where 
tx  follows a univariate dependent process, and 

tw  is correlated with 
tx . 

Although 
tx  is assumed to be latent, we can observe 

ty . We denote the forecast of 
tx  

as ˆ
th , where 

ty  and 
tx  in (A.1) correspond to ln tRV  and ln tIV  , respectively, in the 

text. 

 

Regarding the two Mincer-Zarnowitz regressions: 

ˆ error,

ˆ error.

t t

t t

x h

y h

 

 

  

  

 (A.2) 

2R  is given as 

 
 

2
2

2

2

ˆ ˆˆ
t

x

t

h h
R

x x

 







, (A.3) 

and 

 
 

2
2

2

2

ˆ ˆˆ
t

y

t

h h
R

y y

 







, (A.4) 

respectively, where ̂  and ̂  are OLS estimates, and ĥ , x  and y  denote the means 

of ˆ
th , 

tx  and 
ty , respectively. In (A.2), only the second 2R  can be calculated 

empirically. 

 

In order to obtain the latent 2

xR  from the observed 
2

yR , we need to multiply 
2

yR  not 

only by    
2 2

t ty y x x    but also by  
2

ˆ ˆ  . It should be noted that  

 
 

2

ˆ ˆ

ˆ ˆ

ˆ ˆ

t t

t

h h w

h h

 


 






, (A.5) 

in which the second term in (A.5) does not approach zero as T   because of the 
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correlation between ˆ
th  and 

tw . Multiplication of 
2

yR  by    
2 2

t ty y x x    

gives the partially corrected 2R  of Andersen, Bollerslev and Meddahi (2005), while 

the use of the additional information through  
2

ˆ ˆ   gives the fully corrected 2R  

developed in this paper. 
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Table 1: Monte Carlo Results of the QML Estimators for the Two-Component Model 

for T=1000 

 

(a) Finite Sample Properties 

Parameter True With Measurement Errors Neglecting Measurement Errors 

 Value Mean St.Dev. RMSE Mean St.Dev. RMSE 

1  0.98 0.9701 0.0137 0.0169 0.9663 0.0158 0.0210 

1  0.10 0.1040 0.0213 0.0217 0.1131 0.0230 0.0265 

2  0.40 0.4044 0.1055 0.1055 0.2939 0.0546 0.1193 

2  0.40 0.4164 0.0586 0.0609 0.4750 0.0284 0.0802 

  1.00 1.1452 0.1471 0.2067 1.1457 0.1470 0.2069 

w  0.1745 01759 0.1287 0.1287    

Note: The true value of 
w  is obtained by simulation. 

 

(b) One-Step-Ahead Predictions 

Statistic With Measurement Errors Neglecting Measurement Errors 

 1, 1T   2, 1T   
1ln TIV 
 1, 1T   2, 1T   

1ln TIV 
 

MAE 0.2325 0.2790 0.2294 0.2337 0.2839 0.2307 

RMSE 0.2910 0.3512 0.2968 0.2952 0.3568 0.2987 

 

(c) Mincer-Zarnowitz Regression 

Method With Measurement Errors Neglecting Measurement Errors 

 2R  F test 2R  F test 
IVMZ  0.8143 0.0000* 0.8112 0.0000* 
RVMZ  0.8632 0.0000* 0.8651 0.0000* 

Note: „F test‟ denotes the p-value of the (robust) 2  test for the null 

hypothesis of 0 and 1    ( 0 and 1   ) in the MZ equation 

for ln tRV  ( ln tIV ).
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Table 2: Monte Carlo Results of the QML Estimators for the ARFIMA Model for 

T=1000 

 

(a) Finite Sample Properties 

Parameter True With Measurement Errors Neglecting Measurement Errors 

 Value Mean St.Dev. RMSE Mean St.Dev. RMSE 

d  0.40 0.4099 0.0664 0.0671 0.3755 0.0410 0.0477 

  0.40 0.3756 0.0758 0.0797 0.4411 0.0235 0.0474 

  -0.10 -0.0444 0.1581 0.1676 -0.1051 0.0473 0.0476 

w  0.1537 0.1515 0.1369 0.1369    

Note: The true value of 
w  is obtained by simulation. 

 

 (b) One-Step-Ahead Predictions of 
1ln TIV 
 

Statistic With Measurement Errors 
Neglecting Measurement 

Errors 

MAE 0.3154 0.3158 

RMSE 0.3919 0.3922 

 

(c) Mincer-Zarnowitz Regression 

Method With Measurement Errors Neglecting Measurement Errors 

 2R  F test 2R  F test 
IVMZ  0.4536 0.5918 0.4528 0.5969 
RVMZ  0.4205 0.3915 0.4195 0.7808 

Note: „F test‟ denotes P-value of the (robust) 2  test for the null 

hypothesis of 0 and 1    ( 0 and 1   ) in the MZ equation 

for ln tRV  ( ln tIV ). 
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Table 3: Monte Carlo Results of the QML Estimators for the ARFIMA Model for 

T=2000 

 

(a) Finite Sample Properties 

Parameter True With Measurement Errors Neglecting Measurement Errors 

 Value Mean St.Dev. RMSE Mean St.Dev. RMSE 

d  0.40 0.4116 0.0465 0.0479 0.3766 0.0277 0.0362 

  0.40 0.3800 0.0673 0.0702 0.4393 0.0189 0.0436 

  -0.10 -0.0564 0.1211 0.1287 -0.1037 0.0338 0.0340 

w  0.1537 0.1484 0.1284 0.1285    

Note: The true value of 
w  is obtained by simulation. 

 

 (b) One-Step-Ahead Predictions of 
1ln TIV 
 

Statistic With Measurement Errors 
Neglecting Measurement 

Errors 

MAE 0.3157 0.3158 

RMSE 0.3947 0.3949 

 

(c) Mincer-Zarnowitz Regression 

Method With Measurement Errors Neglecting Measurement Errors 

 2R  F test 2R  F test 
IVMZ  0.3967 0.0885 0.3959 0.1148 
RVMZ  0.3639 0.3191 0.3628 0.3549 

Note: „F test‟ denotes P-value of the (robust) 2  test for the null 

hypothesis of 0 and 1    ( 0 and 1   ) in the MZ equation 

for ln tRV  ( ln tIV ). 
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Table 4: Monte Carlo Results of the Estimators for the HAR Model for T=1000 

 

(a) Finite Sample Properties 

Parameter True With Measurement Errors Neglecting Measurement 

Errors 

 Value Mean St.Dev. RMSE Mean St.Dev. RMSE 

1  0.80 0.7915 0.1337 0.1339 0.4448 0.0840 0.3650 

2  
0.10 0.0995 0.1252 0.1252 0.3878 0.0844 0.2999 

3  0.05 0.0478 0.0331 0.0332 0.0724 0.0473 0.0524 

  0.25 0.2629 0.0503 0.0520 0.4016 0.0458 0.1583 

  1.00 0.9913 0.1508 0.1511 0.9895 0.1558 0.1561 

w  0.2637 0.2445 0.0655 0.0683    

Note: The true value of 
w  is obtained by simulation.  

 

 

(b) One-Step-Ahead Predictions of 
1ln TIV 
 

Statistic With Measurement Errors Neglecting Measurement Errors 

MAE 0.1432 0.1440 

RMSE 0.1841 0.1871 

 

(c) Mincer-Zarnowitz Regression 

Method With Measurement Errors Neglecting Measurement Errors 

 2R  F test 2R  F test 
IVMZ  0.9132 0.0000* 0.9107 0.0000* 
RVMZ  0.9269 0.0000* 0.9318 0.0000* 

Note: „F test‟ denotes P-value of the (robust) 2  test for the null 

hypothesis of 0 and 1    ( 0 and 1   ) in MZ equation for 

ln tRV  ( ln tIV ). 
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Table 5: Partially and Fully Corrected 2R  

 

(a) Forecasts ( )

1|
ˆ i

T Th 
  1,2, ,1000i   

Descriptive Statistics Two Component ARFIMA HAR 

With 

ME  

Neglecting 

ME 

With 

ME 

Neglecting 

ME 

With 

ME 

Neglecting 

ME 
2R  for IVMZ  0.8143 0.8112 0.4536 0.4528 0.9132 0.9110 
2R  for RVMZ  0.8632 0.8651 0.4205 0.4195 0.9269 0.9318 

   ˆ ˆln lnt tV RV V IV  1.3986 1.3986 1.1267 1.1267 1.1687 1.1581 

 
2

ˆ ˆ   0.6744 0.6704 0.9574 0.9579 0.8508 0.8442 

Partially Corrected 2R  1.2073 1.2099 0.4738 0.4727 1.0734 1.0791 

Fully Corrected 2R  0.8143 0.8112 0.4536 0.4528 0.9132 0.9110 

Note: ME denotes „Measurement Errors‟. 

 

(b) Forecasts 
| 1

ˆ
T j T jh   

  1,2, ,500j   

Descriptive Statistics Two Components ARFIMA HAR 

With 

ME  

Neglecting 

ME 

With 

ME 

Neglecting 

ME 

With 

ME 

Neglecting 

ME 
2R  for IVMZ  0.5179 0.5165 0.4551 0.4550 0.8385 0.8355 
2R  for RVMZ  0.4889 0.4872 0.4166 0.4165 0.7603 0.7584 

   ˆ ˆln lnt tV RV V IV  1.1103 1.1103 1.1641 1.1641 1.1358 1.1358 

 
2

ˆ ˆ   0.9541 0.9548 0.9385 0.9385 0.9709 0.9700 

 
2

ˆ   0.9364 0.9404 0.8976 0.8976 0.9486 0.9465 

Partially Corrected 2R  0.5428 0.5410 0.4849 0.4849 0.8636 0.8614 

Fully Corrected 2R  0.5083 0.5087 0.4353 0.4353 0.8192 0.8153 
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Table 6: Descriptive Statistics for S&P 500 

                          

     LM test 

Stock Mean St.Dev. Skewness Kurtosis AR(1) ARFIMA(1,d,0) 

Return 0.0296 1.1227 -0.1781 6.3870   

RV 1.0434 1.2010 4.4862 33.737   

lnRV -0.3074 0.7774 0.5873 3.2424 17.513* 15.053* 

Note: The LM test of Tanaka (2002) is a test of measurement errors. The 

test statistic has the standard normal distribution under the null hypothesis 

of no measurement error, and rejects the null hypothesis if the calculated 

value exceeds the right side critical value. „*‟ indicates significance at 5%. 

 

 

Table 7: QML Estimates of the Two-Component Model 

 

QML 1  
1  

2  
2  

2    w  Q Log-like 

With ME 0.9922 

(0.0046) 

0.0743 

(0.0226) 

0.8044 

(0.1038) 

0.1839 

(0.0226) 

 0.7150 

(0.1248) 

0.3839 

(0.0131) 
-1907.60 

Neglecting ME 0.9824 

(0.0043) 

0.1202 

(0.0097) 

0.1391 

(0.0288) 

0.4254 

(0.0080) 

 0.7270 

(0.0925) 
 -1910.79 

With MA(1) 0.9918 

(0.0045) 

0.0769 

(0.0215) 

0.7898  

(0.1069) 

0.4562  

(0.0131) 

-0.5549 

(0.0834) 

0.7136  

(0.1226) 
 -1907.69 

Note: Standard errors are in parentheses. ME denotes „Measurement Errors‟. 

 

 

Table 8: QML Estimates of the ARFIMA(1,d,0) Model 

 

QML d      
 w  

With ME 0.4934 

(0.0990) 

0.1651 

(0.0596) 

0.5761 

(0.2901) 

 0.3931 

(0.0195) 

Neglecting ME 0.4766 

(0.0192) 

0.4791 

(0.0064) 

-0.1358 

(0.0255) 

  

With MA(1) 0.4995 

(0.0319) 

0.4783 

(0.0064) 

0.1715 

(0.0991) 

0.3385 

(0.1126) 

 

Note: Standard errors are in parentheses. ME denotes „Measurement 

Errors‟. 
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Table 9: Estimates of the HAR Model 

 

Method 1  
2  

3  
1  

2  
3      w  Q Log-

like 

With ME 0.5435 

(0.1281) 

0.3002 

(0.1055) 

0.1170 

(0.0352) 

   0.3031 

(0.0497) 

0.7241 

(0.1248) 

0.3339 

(0.0340) 
-1907.10 

Neglecting 

ME 

0.2423 

(0.0227) 

0.4585 

(0.0384) 

0.2343 

(0.0329) 

   0.4793 

(0.0064) 

0.7525 

(0.1057) 
 -1916.04 

With 

MA(22) 

0.6683 

(0.1293) 

0.2509  

(0.1026) 

0.0626  

(0.0562) 

-0.3599 

(0.1167) 

-0.1155 

(0.0824) 

-0.1724 

(0.0798) 

0.4781  

(0.0064) 

0.7572  

(0.1335) 
 -1909.31 

Note: ME denotes „Measurement errors‟. Standard errors are in parentheses.  

 

 

Table 10: Results for One-Step-Ahead Forecasts 

 

Method 

Two-Component 

Models 

ARFIMA(1,d,0) 

models 

HAR models 

Partially 

Corrected 
2R  

Fully 

Corrected 
2R  

Partially 

Corrected 
2R  

Fully 

Corrected 
2R  

Partially 

Corrected 
2R  

Fully 

Corrected 
2R  

With ME 0.308 0.384 0.306 0.386 0.276 0.347 

Neglecting 

ME 
0.305 0.380 0.307 0.386 0.301 0.377 

With MA 0.261 0.330 0.263 0.343 0.302 0.382 

Note: ME denotes „Measurement errors‟. The table reports the out-of-sample 

forecasting results for daily realized volatility. The partially and fully corrected 2R  

values are corrected by the methods of Andersen, Bollerslev and Meddahi (2005) and 

the current paper, respectively.  
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Table 11: Forecast Encompassing Tests for One-Step-Ahead Prediction 

 

  1 21ct t tf f f      0 1   

2tf  

1tf  

Two Component ARFIMA HAR 

1i   2i   1i   2i   1i   2i   

Two Component       

1i   --- 0.098 0.003 0.013 0.585 0.667 

2i   0.004 --- 0.000 0.001 0.829 0.506 

ARFIMA       

1i   0.389 0.428 --- 0.606 0.234 0.503 

2i   0.786 0.782 0.264 --- 0.244 0.930 

HAR       

1i   0.000 0.000 0.000 0.000 --- 0.000 

2i   0.004 0.147 0.000 0.000 0.665 --- 

Note: The entries are p-values for the null hypothesis 0  . We 

denote i as the model with measurement error  1i  , and the 

model neglecting measurement error  2i  . 
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Table 12: Results for Multi-Step-Ahead Forecasts 

 

Method 

Two-Component 

Models 

ARFIMA(1,d,0) 

models 

HAR models 

Partially 

Corrected 
2R  

Fully 

Corrected 
2R  

Partially 

Corrected 
2R  

Fully 

Corrected 
2R  

Partially 

Corrected 
2R  

Fully 

Corrected 
2R  

5 step-ahead        

With ME 0.296 0.366 0.287 0.366 0.299 0.378 

Neglecting ME 0.302 0.370 0.289 0.369 0.281 0.358 

With MA 0.277 0.351 0.287 0.372 0.285 0.367 

10 step-ahead        

With ME 0.289 0.357 0.261 0.338 0.296 0.373 

Neglecting ME 0.301 0.366 0.263 0.339 0.267 0.339 

With MA 0.260 0.332 0.268 0.351 0.269 0.346 

20 step-ahead        

With ME 0.280 0.343 0.226 0.297 0.294 0.368 

Neglecting ME 0.291 0.352 0.225 0.295 0.272 0.343 

With MA 0.248 0.312 0.235 0.312 0.239 0.313 

Note: ME denotes „Measurement errors‟. The table reports the out-of-sample 

forecasting results for daily realized volatility. The partially and fully corrected 2R  

values are corrected by the methods of Andersen, Bollerslev and Meddahi (2005) and 

the current paper, respectively. 

 

 


