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Abstract
The aim of this paper is to provide a composite likelihood approach to handle spatially correlated
survival data using pairwise joint distributions. With e-commerce data, a recent question of
interest in marketing research has been to describe spatially clustered purchasing behavior and to
assess whether geographic distance is the appropriate metric to describe purchasing dependence.
We present a model for the dependence structure of time-to-event data subject to spatial
dependence to characterize purchasing behavior from the motivating example from e-commerce
data. We assume the Farlie-Gumbel-Morgenstern (FGM) distribution and then model the
dependence parameter as a function of geographic and demographic pairwise distances. For
estimation of the dependence parameters, we present pairwise composite likelihood equations. We
prove that the resulting estimators exhibit key properties of consistency and asymptotic normality
under certain regularity conditions in the increasing-domain framework of spatial asymptotic
theory.
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1. Introduction
Multivariate time-to-event data are subject to spatial correlation in familial and multicenter
clinical trials in biomedical sciences, region-wide disease studies in epidemiology and e-
commerce studies in marketing (Li and Lin, 2006; Henderson et al., 2002; Li and Ryan,
2002; Banerjee et al., 2003). The practical interest lies in the dependence between the
survival outcomes in the geographic domain of interest. In standard geo-statistical practice,
the variance and correlation structure of uncensored data are modeled through a parametric
covariance function and the parameters are estimated by maximum likelihood (Cressie,
1993). The estimation of parameters poses a challenge, since using a full likelihood
approach is computationally burdensome due to high-dimensional integrals. An added
challenge in the analysis of time-to-event data prone to spatial correlation is the presence of
censoring.
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Two widely used methods in modeling associations between failure times are frailty and
copula models. Nielsen et al. (1992), Klein (1992), Murphy (1995, 1996), and Parner (1998)
investigated the estimation and inference for the frailty model. A comprehensive review can
be found in Andersen et al. (1993) and Hougaard (2000). The frailty model-based approach
is appealing for family studies since it accommodates the dependencies among relatives by
assuming a shared frailty (Parner, 1998; Bandeen-Roche and Liang, 1996; Hsu and Gorfine,
2006). Models developed for clustered data may not fully allow for spatially correlated data.
Motivated by a study of asthma onset in Boston, Li and Ryan (2002) used an extended
frailty model to take into account the spatial correlation structure. Henderson et al. (2002)
investigated survival of leukemia in northwest England by using a multivariate gamma
frailty model with a covariance structure allowing for spatial effects.

Genest and MacKay (1986), Oakes (1989) and Shih and Louis (1995) modeled the
association of bivariate failure times using copula functions. An attractive feature of the
copula model is that the margins do not depend on the choice of the dependency structure.
As a result, one can model and estimate the dependency and margins separately. In a
multivariate setting, Li and Lin (2006) developed a method for analyzing survival data
correlated in a region by specifying a multivariate normal copula and allowing for a spatial
correlation structure in the parameters. They provided an estimating equation approach,
avoiding the full likelihood that can be intractable when spatially correlated survival
outcomes are involved.

Composite likelihood as proposed in Lindsay (1998) is convenient in the setting where the
full likelihood is difficult to construct. Earlier, Besag (1974) considered a similar approach
for spatial data. Cox and Reid (2004) provided a general framework for the composite
likelihood approach to inference. Composite likelihood methods have been used in
multivariate analysis of various types such as non-normal spatial data (Heagerty and Lele,
1998; Varin et al., 2005) and binary correlated data (LeCessie and Van Houwelingen, 1994;
Kuk and Nott, 2000). Kuk (2007) considered a weighted composite likelihood for clustered
data. Varin (2008) provided a survey of composite likelihood applications.

For survival data, the composite likelihood approach has been used in the analysis of
clustered data in familial studies. Parner (2001) modeled the marginal distribution of pairs of
failure times using shared frailty models and constructed a pseudo log-likelihood function
by adding the pairwise likelihood contributions. Andersen (2004) specified joint survivor
functions with copula models and estimated the marginal hazard and association parameters
via composite likelihood. Tibaldi et al. (2004a,b) considered composite marginal likelihood
inference for multivariate survival data using a Plackett–Dale (Plackett, 1965) model. For
estimation, Zhao and Joe (2005) considered a two-stage approach and proposed the use in a
multivariate setting in frailty and copula models. These methods are not suited for spatial
correlation among the observations since they assume clusters to be independent.

The methodology in this paper is motivated by a problem in e-commerce data, where
marketing research has generated much interest in ascertaining whether there is any spatial
clustering in purchasing behavior among new customers (Bell and Song, 2007; Bradlow et
al., 2005). We present a model for the dependence structure of failure times subject to
spatial correlation. We use the Farlie–Gumbel–Morgenstern bivariate family as the survivor
function. In order to address the question whether the spatial clustering of purchasing
behavior depends on only geographical distances, we model the dependence parameter as a
function of Euclidean distances and other pairwise distances. To estimate parameters, we
follow a composite likelihood approach for the analysis of spatially correlated survival data.
Following Cox and Reid (2004), we use a univariate marginal likelihood to estimate
parameters in the hazard function and pairwise composite likelihood for the dependence
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parameters. The resulting pairwise composite likelihood has a convenient form. We consider
the case in which the marginal distribution of failure times follows the parametric Weibull
family or the Cox proportional hazards model. We use a two-stage estimation procedure to
estimate parameters from the marginal likelihood and then use composite likelihood to
estimate dependence parameters. We prove that the resulting estimators exhibit key
properties of consistency and asymptotic normality under certain regularity conditions in the
increasing-domain spatial asymptotic framework.

In Section 2 we present the model and we present the estimation procedure of composite
likelihood along with the asymptotic properties of the estimators. In Section 3 we discuss an
application to a marketing study of e-commerce data and conclude with final remarks in
Section 4.

2. Method
2.1. Notation and model

In a spatial region of interest, consider a total of n subjects who are followed up to failure or
censoring. Let T be the failure time and C the censoring time. Let Z be a p-vector of
covariates. Conditional on Z, T and C are assumed to be independent. Let (Ti, Ci, Zi, i = 1,
…, n) be n copies of (T, C, Z). For the ith subject, one can only observe (T̃i, Zi, δi, i = 1,…,
n) where T̃i = min(Ti, Ci) and δi = 1 (Ti ≤ Ci). Denote by λ0(t) the baseline hazard function

and  the baseline cumulative hazard function. Let Λi(t) denote the
cumulative hazard function, and let β be a p-dimensional regression coefficient vector. In
addition to the covariates, each subject’s geographic coordinates (latitude and longitude) are
observed. We are interested in the marginal effect of the covariate vector Z on the hazard
function as well as the dependence structure among failure times.

A first step towards modeling the dependence structure is to model pairwise joint
distributions. We propose using the Farlie-Gumbel-Morgenstern (FGM) family of
distributions (Morgenstern, 1956; Gumbel, 1960; Farlie, 1960), given by

where Fi(ti) is the marginal survival function of Ti, and Fij(ti, tj) = P(Ti ≥ ti, Tj ≥ tj). There is
a restriction on ξij such that 0 ≤ |ξij| ≤ 1. The parameter ξij can be viewed as a measure of
dependence. We consider the case in which the marginals follow the Weibull family

.

To parameterize the bivariate joint distribution, it suffices to parameterize ξij and the
univariate marginal survival functions Fi(ti). To this end, we propose that the dependence
parameter ξij is itself a function of geographic distance as well as other arbitrary pairwise
distances. Specifically, let ξij = ξij(ψ; wij), where wij could include the Euclidean distance
and certain pairwise characteristics and ψ is a vector of parameters to be estimated.

Specifically, let dij be the Euclidean distance between the spatial locations of subjects i and
j, where dii = 0 by definition, and zij is a function of demographic variables for units i and j,
e.g. an indicator of whether subjects i and j reside in metropolitan regions.
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where

and c is a known constant, which will be shown below. The exponential decay exp(dij, ψ) is
modified by a factor of νij which varies depending on pairwise characteristics. This
parameterization allows for the spatial dependence to vary among observations of varying
distances as well as varying demographic profiles.

It is clear that the case of ξij = 0 corresponds to case where Ti and Tj are independent. To
better understand the meaning of ξij for non-zero values of ξij, we show that the dependence
parameter ξij is related to a global measure of dependence discussed by Hsu and Prentice
(1996). The global measure is defined as ρij := corr{Λi(Ti), Λj(Tj)}, i ≠ j = 1,…, n. We show
that the global measure of dependence is in one-to-one correspondence with the parameter
ξij. Hsu and Prentice (1996) present the following relationship:

Using the notation where Fi(ti) = Fi0{Λi(ti)} and F(ti, tj) = F0{Λi(ti), Λj(tj)}, we can show
that for a given pair, the correlation between subject i and j is given by

This implies that the global dependence measure, ρij, is related to ξij by a constant. If we
specify Fi0(xi) = e−xi and Fj0(xj) = e−xj, then ρij = ξij/4 and c = 4.

2.2. Inferential procedure and asymptotic properties
Let β0 be a vector of p regression coefficients and let λ(t|z) be the marginal hazard rate of an
individual with covariate value z. We consider the case λ(t|Z) = λ0(t) exp(β′Z). Using the
usual counting process notation, let Ni(t) = 1(T̃i ≤ t, δi = 1) be the counting process which
jumps at time Ti if Ti ≤ Ci, and the at-risk process Yi(t) = 1(T̃i ≥ t). Let Mi(t) be the
corresponding martingale adapted to the filtration Fi, t = σ{Ni(s), Yi(s), Zi, 0 ≤ s < t},

Suppose that the baseline hazard λ0(t) is specified up to a finite dimensional parameter η, i.e.
λ0(t) = λ0(t, η). Let θ = (β′, η′)′. Our strategy is to construct a joint estimating equation to
estimate θ via a marginal likelihood, and estimate ψ via the composite likelihood shown
below. Let Fi(t, θ) = exp{− exp(β′Zi)Λ0(t, η)}. Then the log-likelihood function has the form

Paik and Ying Page 4

Comput Stat Data Anal. Author manuscript; available in PMC 2013 November 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Specifying the marginal model as a Weibull model, we have λ0(t, η) = γtγ − 1 exp(α), where
η = (α, γ)′. The log-likelihood has the following form

Thus we have the score function  where

We will use pairwise composite likelihood to estimate the spatial dependence parameter ψ.
There exists a multivariate distribution whose bivariate survivor functions are Fij(ti, tj, θ, ψ)
(Prentice and Cai, 1992). Below we show an estimating function for ψ when the marginal
hazard is known.

The pairwise composite likelihood has the following general expression:

where

and the joint density of Ti and Tj is given by

We note that the summation involves all pairs i and j that belong to Dn, a sequence of
strictly increasing finite domains of Zd with cardinality |Dn|. The summand is a |Dn|-
dimensional vector random variable. Then
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where c denotes the terms that depend on the marginal distribution only and do not involve
the parameter ψ for the dependence. The pairwise score equation is

Where . We adopt a two-stage approach for estimation. In the first stage,
we apply the estimating procedure for the Weibull model to obtain estimates of regression
parameters and the baseline hazard. Estimates from the first stage are plugged into the
estimating Equation 1 to solve for the spatial parameters ψ̂. This two-stage approach can be
expressed as a joint estimating equation of the marginal and dependence parameter, since
the estimating equation for the marginal hazards does not involve the dependence parameter.
We solve the following equation

Let θ̂ and ψ̂ denote the solutions to the joint equation above. We present the asymptotic
result for the Weibull model.

Theorem 3.1—Under suitable regularity conditions,

where
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We can consistently estimate Aij and Vij by replacing θ and ψ in Ui(θ), Uij(ψ, θ) by θ̂ and ψ̂.
To ensure consistent variance estimation, we assume a sequence of strictly increasing finite
domains Dn of Zd that satisfy the following condition: there exists α > 0 and (nm) a strictly
increasing sequence of integers such that

We choose a sequence {km} satisfying  with 0 < β < α/2, and also choose rm →

∞ such that . For consistent variance estimation, the neighborhoods are chosen by
the distance between i and j denoted as d(i, j).

The pairwise score functions can essentially be formulated as weighted U-statistics as shown
in Equation (4) on page 2 of a separate Technical Report available from the authors. Since
none of the existing spatial asymptotic theory works for U-statistics, the supplementary
material provides relevant theory for U-statistics considered in the spatial domain. When the
marginal hazards model is assumed to follow a Weibull model, we can invoke Theorem 1
from the Technical Report for the asymptotic normality of the estimator based on the
marginal likelihood and Theorem 2 obtain the asymptotic normality of the estimator of the
spatial parameter based on the pairwise composite likelihood. We appeal to Theorem 5 to
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justify the consistency of the variance estimator derived from the marginal likelihood by
showing the difference between the variance estimator and theoretical quantity converges to
0 in probability. Under suitable mixing conditions, Theorem 6 shows that consistent
variance estimators based on the composite pairwise likelihood can be obtained.

We can replace the Weibull model with the Cox proportional hazards model and develop the
inferential procedure similarly. In this case, the composite likelihood involves the unknown
baseline hazard and one would proceed by plugging in the Aalen-Breslow type estimator.
For the Cox model, we report asymptotic results in Web Appendix I.

3. Marketing data
We apply the proposed method to data from a marketing study on e-commerce. In the
marketing literature, there is a significant interest in finding the appropriate metric to
describe spatial dependence; more specifically, the interesting question is to determine
whether spatial dependence is solely due to geographic distance. The data source is an
internet retailer that has documented the calendar time of a business launch and the
purchases made in a time period. Demographic and local retail information on the zip codes
comes from a secondary data source (ZIP Business Patterns database from the US Census
Bureau). The research interest is to test whether a neighborhood effect is present among e-
commerce related to the internet retailer and to determine the factors affecting internet
retailing. We consider each observation as the time from the start of the business until the
first purchase in the zip code. If there was no purchase in the zip code, the observation was
censored. The data include 1596 zip codes in the state of New York.

Figs. 1 and 2 display the region of interest. The initial time point is the launch of the
website, and the times until purchase are plotted at the geographical coordinates of each
customer. Circles are plotted inversely proportional to the length of time until purchase.

We fit a parametric Weibull model and a Cox model for the marginal hazard. Since the size
of a neighborhood may be related to the hazard of the first purchase, we included the
number of supermarkets in each zip code as a covariate to account for varying population
sizes. Based on prior marketing research, the following covariates are selected: the number
of supermarkets in the zip code, percentage of households with children, percentage of
households who earn greater than $50,000 annually, and the percentage of households with
at least one family member who attended college. For the percentage of households with at
least one household member with a college degree, the Weibull model yielded a log hazard
ratio of 2.629, and the Cox proportional hazards model yielded an estimate of 2.976. This
indicates neighborhoods with higher proportions of educated households are more likely to
purchase from the web-based company. A summary of the marginal results from the
Weibull models and Cox proportional hazards are combined in Table 1.

The model for dependence attributes pairwise characteristics of the population of interest to
the dependence of purchasing times. In the marketing literature, this dependence is referred
to as a neighborhood effect (Bell and Song, 2007; Bradlow et al, 2005). We allowed the
dependence parameter to be a function of geographic distance and an indicator
characterizing the type of residential neighborhood of the pairs. Tables 1 and 2 show a
summary of parameter estimates of the dependence model for the Weibull and Cox models.
The estimates correspond to the intercept, geographic distance between the pair, and an
indicator for the given pair residing in metropolitan areas. Both marginal hazards models
yielded virtually identical estimates of ψ up to 4 decimal points. While the updating values
were different, the two algorithms converged in 7 steps.
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The estimate corresponding to Euclidean distance (−0.603, standard error 0.068) indicates
that the dependence decreases as geographic distance increases. For example, the
dependence ξ between pairs living in metropolitan regions is 0.107 when the distance
between the pair is 0.5 km, and is 0.079 when the distance between the pair is 1 km. When
the distance is 2 km, the dependence is 0.044. This confirms a previous finding in the
marketing science literature that the correlation between buyers decreases as a function of
geographic distance (Bell and Song, 2007). We note that testing ψ2 = 0 corresponds to
testing for the equality of dependence among metropolitan pairs versus non-metropolitan
pairs given the same distance. The estimate for ψ2 indicates that for a given distance, the
dependence between two people of metropolitan areas is larger than it is between two people
who reside in non-metropolitan regions. When either member of the pair resides in non-
metropolitan regions, the dependence among the pair is 0.03 when the distance is 1 km
apart.

A significant interest in the marketing literature is to assess whether geographic distance is
the appropriate metric to describe purchasing dependence. Our findings add to the results in
the literature that the spatial dependence of e-commerce may be more pronounced in urban
than rural areas. The interpretation of the model estimates is that residents of different
neighborhood types have varying degrees of spatial dependence.

4. Discussion
In this paper, we proposed a composite likelihood approach for estimating parameters in a
semiparametric model for spatially correlated survival data. In the marketing data example,
the goals were to determine factors affecting internet purchasing patterns in a population of
interest and to characterize the dependence of purchasing behavior. Our model is suitable for
the goals of this study. Frailty models such as those proposed in Banerjee et al. (2003) or
Henderson et al. (2002) assume a subject-specific frailty, and parameter estimates do not
carry an interpretation of a population average. Moreover, these models may not be well
suited to address the question of interest as it would be difficult to model the dependence in
as a function of anything other than distance. On the other hand, another marginal approach
has been proposed by Li and Lin (2006). Their model makes use of a multivariate normal
copula which has an estimation procedure that is computationally complex due to numerical
integration. Our approach does not require numerical integration but follows a
straightforward two-step procedure. This two-stage approach can be expressed as a joint
estimating equation of the marginal and dependence parameter, since the estimating
equation for the marginal hazards does not involve the dependence parameter. Further, we
note that the estimating equation for β is unbiased even when the spatial correlation structure
is misspecified. A limitation is that the FGM family may be only able to handle small
dependence, although in our marketing example the dependence among purchasing behavior
is moderately low.

In this paper, we considered the FGM family of bivariate distributions through the
specification of marginals, but the FGM family is found to be a special case of a broader
class of models using a representation proposed by Prentice and Cai (1992).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Customer purchases in New York State.
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Fig. 2.
Customer purchases in a metropolitan region of New York.
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Table 1

Marketing example: estimates for Marginal Hazard using Cox PH.

β est exp(β) se p

β1 0.084 1.088 0.003 0.000

β2 0.562 1.755 0.635 0.116

β3 2.976 19.625 0.400 0.000

β4 2.401 11.033 0.461 0.000
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Table 2

Dependence parameter estimates.

Weibull

ψ Parameter estimate Std. error p-value

ψ0 0.339 0.014 <0.001

ψ1 −0.603 0.068 <0.001

ψ2 −1.656 0.057 <0.001
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