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a b s t r a c t

In the context of linear state space models with known parameters, the Kalman filter (KF)
generates best linear unbiased predictions of the underlying states together with their
corresponding PredictionMean Square Errors (PMSE). However, in practice, when the filter
is run with the parameters substituted by consistent estimates, the corresponding PMSE
do not take into account the parameter uncertainty. Consequently, they underestimate
their true counterparts. In this paper, we propose two new bootstrap procedures to obtain
PMSE of the unobserved states designed to incorporate this latter uncertainty. We show
that the new bootstrap procedures have better finite sample properties than bootstrap
alternatives and than procedures based on the asymptotic approximation of the parameter
distribution. The proposed procedures are implemented for estimating the PMSE of several
key unobservable US macroeconomic variables as the output gap, the Non-accelerating
Inflation Rate of Unemployment (NAIRU), the long-run investment rate and the core
inflation. We show that taking into account the parameter uncertainty may change their
prediction intervals and, consequently, the conclusions about the utility of the NAIRU as a
macroeconomic indicator for expansions and recessions.

1. Introduction

State spacemodels are very popular for describing the dynamic evolution of a large range of economic and financial time
series in which there are unobserved variables of interest; see, for example, Fernández-Villaverde et al. (2007) who propose
representing the equilibrium of an economic model using a state-space representation, Orphanides and van Norden (2002),
Doménech and Gómez (2006) and Proietti et al. (2007) for estimating the unobserved output gap in several economies and
Stock and Watson (2007) for a trend-cycle model with stochastic volatility fitted to US inflation, just to cite several recent
empirical applications.

One of the main attractiveness of state space models is that they allow the implementation of the Kalman filter and
smoothing algorithms which deliver estimates of the underlying states which, in the context of linear state space models
with known parameters, are best linear unbiased. The filters also deliver the corresponding prediction mean squared errors
(PMSE) which measure the uncertainty associated with the estimated states. However, in practice, the filter is run with
some parameters substituted by consistent estimates. In this case, the Kalman filter PMSE do not take into account the
additional uncertainty due to the parameter estimation. As a result, they underestimate the true PMSE and, consequently,
the uncertainty associatedwith the estimates of the underlying states; see among others, Ansley and Kohn (1986), Hamilton
(1986), Durbin and Koopman (2000) and Quenneville and Singh (2000).
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There are several procedures available in the literature to incorporate the parameter estimation uncertainty into the
Kalman filter PMSE. First, fully Bayesian methods generate distributions of the underlying states which in a natural way
incorporate the parameter uncertainty; see, for example, Carter andKohn (1994) andDurbin andKoopman (2002). However,
these procedures can be computationally complicated and time consuming in relatively largemodels; seeHarvey (2000) and
Quenneville and Singh (2000). Furthermore, they usually require particular assumptions about the conditional distribution
of the parameters and states. Alternatively, as proposed by Ansley and Kohn (1986), the PMSE of the estimated underlying
states can be computed by using theDeltamethod and the first twomoments of the asymptotic distribution of the parameter
estimator. There are also corrections of the Kalman filter PMSE based on theMonte Carlo integration of the distribution of the
parameter estimator which is approximated by the asymptotic distribution; see Hamilton (1986). However, the asymptotic
distribution can be a poor approximation to the finite sample distribution when the sample size is not large enough. Proietti
et al. (2007) implements the Hamilton (1986) and Ansley and Kohn (1986) procedures to obtain standard deviations of the
Euro area output gap that incorporate the parameter uncertainty. However, Quenneville and Singh (2000) show that these
two procedures miss terms of the same order as their proposed corrections. Consequently, they propose enhancements
of both procedures to estimate the PMSE based on second order approximations of the parameter distribution and show
that the corresponding reductions of the PMSE biases are relatively small. Kass and Steffey (1989) also propose a second
order approximationwhich is evenmore computationally demanding. To overcome these limitations, Quenneville and Singh
(2000) propose computing the PMSE of the underlying states by using the Monte Carlo integration of the distribution of the
parameter estimator where this distribution is approximated by the posterior distribution obtained in a Bayesian fashion.
Although their procedure reduces the biases in the PMSE, it is proposed in the context of a particular simplemodel, the local
level model, and can be computationally demanding for more general unobserved component models. Finally, Pfeffermann
and Tiller (2005) propose using bootstrap procedures to compute PMSE in the context of the Kalman filter. Bootstrap
procedures have the advantage of being computationally simple even in relatively complicated models. Furthermore, they
are robust against misspecification of the error distribution; see Wall and Stoffer (2002, 2004) and Rodríguez and Ruiz
(2009) for their implementation to obtain the prediction distribution of future values of the observed variables. However,
the bootstrap PMSE proposed by Pfeffermann and Tiller (2005) are designed to obtain unconditional PMSE of the estimates
of the underlying states. The distinction between conditional and unconditional PMSE could be important in time-varying
state spacemodels with estimated parameters; see Ansley and Kohn (1986) for arguments in favor of computing conditional
PMSE.

Consequently, in this paper, we propose two new bootstrap procedures to obtain conditional PMSE of the Kalman filter
estimates of the unobserved states that incorporate the parameter uncertainty. Following, Hamilton (1986) and Quenneville
and Singh (2000), the new procedures are based on the Monte Carlo integration of the distribution of the parameter
estimator, but instead of approximating this distribution by the asymptotic or posterior distributions, we propose to
approximate it by a bootstrap distribution; see Stoffer andWall (1991) for the bootstrap approximation of the distribution of
theMaximum Likelihood (ML) estimator of the parameters in state spacemodels. The first procedure proposed in this paper
is parametric in the sense that it is based on resampling from the assumed distribution of the errors. The second procedure
is based on resampling from the residuals of the estimated model and consequently, it does not assume any particular error
distribution. We carry out Monte Carlo experiments to analyze the finite sample performance of our procedures which is
compared with that of alternative procedures. We show that the biases of the PMSE proposed in this paper are smaller
than those of the asymptotic procedures of Hamilton (1986) and the bootstrap PMSE procedure of Pfeffermann and Tiller
(2005). The results are illustrated with simulated and real data highlighting the importance of incorporating the parameter
uncertainty in empirical applications.

The rest of the paper is organized as follows. Section 2 describes the Kalman filter and illustrates with simulated data
the biases incurred when estimating the PMSE of the estimated underlying states by running the filter with estimated
parameters. We also briefly describe the asymptotic procedure of Hamilton (1986) and the bootstrap procedures proposed
by Pfeffermann and Tiller (2005) to overcome these biases. In Section 3, we propose two new bootstrap procedures to obtain
PMSE of the one-step-ahead estimator of the unobserved states that take into account the parameter uncertainty. Their
finite sample properties are analyzed and comparedwith those of the standard Kalman filter, the asymptotic and previously
available bootstrap PMSE. Section 4 contains an empirical application in which we estimate the uncertainty associated with
the unobserved quarterly output gap, Non-Accelerating Inflation Rate of Unemployment (NAIRU), investment rate and core
inflation in the US. Finally, Section 5 concludes the paper.

2. PMSE of Kalman filter estimates of states

Consider the following state space model

Yt = Ztαt + dt + R1tεt , (1a)
αt = Ttαt−1 + ct + R2tηt , t = 1, . . . , T , (1b)

where Yt is an N ×1 vector time series observed at time t, αt is them×1 vector of unobservable state variables, εt is a k×1
vector of independent white noise processes with zero mean and covariance matrix Ht and ηt is a g × 1 vector of serially
uncorrelated disturbances with zero mean and covariance matrix Qt . The disturbances εt and ηt are uncorrelated with each
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other in all time periods. Finally, the initial state vector,α1, hasmean a1|0 and covariancematrix P1|0. All the systemmatrices,
Zt , dt , Tt , ct , R1t , R2t ,Ht and Qt , are assumed to be known given the information available at time t − 1. The model in (1) is
time-invariant when, with the exception of dt and ct , all the systemmatrices are time-invariant. For simplicity, in this paper,
we focus on one-step-ahead estimates. However, the results can be easily extended to filtered and smoothed estimates of
the states.

Next, we briefly describe the Kalman filter and previous proposals to obtain PMSE that incorporate the parameter
uncertainty.

2.1. PMSE of the Kalman filter

The Kalman filter provides optimal unbiased linear one-step-ahead estimates of the underlying states, αt , and their
corresponding PMSE, which are denoted by at|t−1 and Pt|t−1 respectively. If the errors are further assumed to have a
conditional joint Normal distribution, then at|t−1 is the conditional mean of αt . In particular, the Kalman filter equations
are given by

at|t−1 = Ttat−1|t−2 + ct + KtF−1
t−1Vt−1 (2a)

Pt|t−1 = TtPt−1|t−2T ′

t − KtF−1
t−1K

′

t + R2tQtR′

2t , (2b)

where Kt = TtPt−1|t−2Z ′

t−1 is the filter gain, Vt = Yt − dt − Ztat|t−1 is the one-step-ahead vector of innovations and Ft is
their covariance matrix given by Ft = ZtPt|t−1Z ′

t + R1tHtR′

1t ; see, Harvey (1989) for details. It is important to observe that in
linear models in which the systemmatrices are independent of the observations, the PMSE, Pt|t−1, is also independent of the
observations. Therefore, in this case, Pt|t−1 is also the unconditional error covariance matrix associated with the conditional
mean estimator of the underlying state.

For the implementation of the bootstrap procedures described later in this paper, it is also useful to express the state
space model in (1) in what is known as the Innovation Form (IF) which depends on a unique disturbance vector instead of
two. The IF is given by Eq. (2a) together with

Yt = Ztat|t−1 + dt + Vt . (3)

Note that the unique disturbance vector in the IF is the one-step-ahead vector of innovations, Vt .
The implementation of the Kalman filter equations in (2) requires all the parameters involved in the system matrices

and the initial conditions a1|0 and P1|0 being known. In practice, some of these parameters are unknown and, in order to
run the filter, they are substituted by consistent estimates. In this paper, we consider the Quasi-Maximum Likelihood (QML)
estimator of the parameters because of its good asymptotic and finite sample properties; see, for example, Harvey (1989)
for details. Denote byZt ,dt ,Ht ,R1t ,Tt ,ct ,R2t and Qt the system of matrices where the unknown parameters have been
substituted by their QML estimates. Furthermore, the initial conditions for the filter are also unknown. The usual practice
is to assume that they are given by the unconditional distribution of the unobserved states in case they are stationary or by
a diffuse prior distribution when they are non-stationary; see Harvey (1989). Then, the Kalman filter can be run with the
system matrices substituted by their respective estimates providingat|t−1 andPt|t−1. Note that whileat|t−1 is an estimate
of the conditional mean of the state, at|t−1,Pt|t−1 is not the PMSE ofat|t−1 as it does not take into account the parameter
uncertainty involved in its computation. Therefore,Pt|t−1 will underestimate the true conditional PMSE ofat|t−1 which is

given by PMSEt|t−1 = Et−1

at|t−1 − αt
 at|t−1 − αt

′ and can be decomposed as follows

PMSEt|t−1 = Et−1


at|t−1 − αt

 
at|t−1 − αt

′
+ Et−1

at|t−1 − at|t−1
 at|t−1 − at|t−1

′ (4)

where the t − 1 under the expectation means that it is taken conditional on {Y1, . . . , Yt−1}. Note that the cross-product
Et−1

at|t−1 − at|t−1
 

at|t−1 − αt
′ is zero under the assumption of conditional Normality. The first term in (4) measures

filter uncertainty which is given by Pt|t−1. It represents how far would the state be from its estimate when the parameters
are known. This uncertainty is due to the uncertainty in separating signal and noise and it is inherent to the Kalman filter.
On the other hand, the second term in (4) measures the parameter uncertainty as it represents the discrepancy between the
estimates of the unobserved states obtained with known and unknown parameters.Pt|t−1 measures the first uncertainty
but fails to incorporate the second.

To illustrate the biases incurredwhen usingPt|t−1 tomeasure the true PMSE ofat|t−1, we consider the following bivariate
model proposed by Smets (2002) for the output gap

πt = α(L)πt−1 + βzt−1 + εt (5)
yt = ypt + zt
zt = 2θ1 cos θ2zt−1 − θ2

1 zt−2 + λit−1 + ηz
t

ypt = µ + ypt−1 + η
y
t
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Fig. 1. Simulated and one-step-ahead estimates of the output gap together with 95% prediction intervals based on PMSE obtained from: (i) the Kalman
filter with estimated parameters; (ii) the asymptotic approximation; (iii) the parametric bootstrap procedure of Pfeffermann and Tiller (2005); (iv) the
conditional parametric bootstrap and (v) the true conditional expression in Harvey and delle Monache (2009).

where the observed variables are the inflation, πt , the product, yt , and the exogenous real interest rate, it . The unobserved
variables are the potential output, ypt , and the output gap, zt . In order to simulate a time series from model (5), we have
chosen the parameter values close to those estimated with real data by Smets (2002). In particular, in the Phillips-curve
equation, α(L) is an order 4 polynomial with parameters α1 = 0.4, α2 = 0.1, α3 = 0.2 and α4 = 0.1 and β = 0.2. The
parameters of the reduced form aggregated demand equation are θ1 = 0.77, θ2 = 0.24 and λ = −0.1. Finally, all the
disturbances in the model are mutually independent Gaussian white noises with variances σ 2

ε = 0.54, σ 2
z = 0.05 and

σ 2
y = 1.2. After generating a time series by model (5) with T = 100, all the parameters are estimated by maximizing the

Gaussian log-likelihood.1 Then, the Kalman filter is run with the estimated parameters. Fig. 1 plots the simulated output
gap, zt , and its one-step-ahead estimates,zt|t−1, together with their corresponding 95% intervals constructed usingPt|t−1. In
order to avoid the effect of the initial values on the estimates of the Kalman filter PMSE,we have discarded the first tenPt|t−1;
see Ray (1989). The true PMSE ofzt|t−1 in (4) are computed using the formula in Harvey and delle Monache (2009) where
the ‘‘true’’ and misspecified filters are the filters with known and estimated parameters respectively. The 95% prediction
intervals constructed using the true PMSE are also plotted in Fig. 1 which shows that the intervals constructed usingPt|t−1
are much thinner than those based on the true PMSE. Furthermore, the true output gap, zt , is too often out of the standard
Kalman filter intervals which do not incorporate the parameter uncertainty. Therefore, these intervals can be misleading
when used to measure the uncertainty around the estimated output gap.

The finite sample biases ofPt|t−1 as an estimator of the true PMSE in (4) have been obtained by theMonte Carlo simulation
in the context of the following RandomWalk plus Noise (RWN) model2

yt = µt + εt (6a)
µt = µt−1 + ηt (6b)

where yt is the observation at time t of the series of interest and ηt is a Gaussian white noise with variance σ 2
η = σ 2

ε qwhere
q = 0.25. We consider three alternative distributions for the measurement noise, εt , which is mutually independent of ηt .
First, εt is assumed to be a Gaussian white noise with variance σ 2

ε = 1. Second, we assume that εt is given by the following
conditionally heteroscedastic process

εt = ε
Ď
t σt , (7)

where σ 2
t = α0 + α1v

2
t−1 with α0 = 0.6719, α1 = 0.2, vt is the innovation and ε

Ď
t is a Gaussian white noise

process with variance 1, distributed independently of ηt . The parameters in (7) have been chosen so that the marginal
variance of εt , σ

2
ε , is 1. Note that, given the specification of σ 2

t and assuming that the parameters are known, the model
is still conditionally Gaussian since knowledge of past observations implies knowledge of past innovations.3 Finally, we
consider a non-conditionally Gaussian model by assuming that εt is a serially independent sequence with a centered and

1 All programs for maximizing the log-likelihood and subsequent estimation of the unobserved components and PMSE were written by the first author
in MATLAB.
2 Results for alternative univariate andmultivariate state space models are available from the authors upon request. The conclusions are the same so we

omit them to save space.
3 Thismodel is relatedwith the STARCHmodel described byHarvey et al. (1992) but they differ in that the STARCHmodel assumes that σ 2

t = α0+α1ε
2
t−1

and, consequently, it is not conditionally Gaussian.
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Table 1
Averages through time and Monte Carlo replicates of the
percentage relative biases of the PMSE of the underlying
level in the RWN model with Gaussian homoscedastic,
Gaussian heteroscedastic and χ2

(1) errors.

Homoscedastic Heteroscedastic χ2
(1)

T = 40

KF −13.56 −16.49 −16.28
Asy −6.94 −7.76 −7.16
PT1 −7.68 −11.96 −11.02
PT2 −12.06 −15.96 2.49
CB1 −1.85 −2.06 −1.81
CB2 −2.92 −2.08 −3.82

T = 100

KF −6.50 −6.10 −6.74
Asy −3.12 −2.36 −4.21
PT1 −3.09 −3.99 −4.44
PT2 −4.89 −5.66 2.14
CB1 −1.28 −0.92 −1.74
CB2 −1.27 −1.00 −2.22

T = 500

KF −0.99 −1.30 −3.04
Asy −0.96 −1.15 −3.02
PT1 −0.57 −0.93 −2.64
PT2 −0.64 −0.98 −1.84
CB1 −0.53 −0.59 −2.44
CB2 −0.45 −0.59 −2.51

re-scaled log

χ2

(1)


distribution. This distribution is of a particular interest in the context of Stochastic Volatility models;

see, for instance, Harvey et al. (1994) for the relation between the RWN model in (6) and the linear transformation of the
Autoregressive Stochastic Volatility model.

In each case, we generate R = 1000 replicates of

y(j)
t , t = 1, . . . , T ; j = 1, . . . , R


by model (6) with sample sizes

T = 40, 100 and 500. The initial values are chosen as µ0 = 0 and, when needed, σ 2
1 equal to the marginal variance of εt ,

which is one. For each replicate, the parameters are estimated by maximizing the Gaussian log-likelihood and the Kalman
filter in (2) is runwith estimated parameters andm(j)

1|0 = 0 andP (j)
1|0 = ∞. The corresponding one-step-ahead estimates of the

underlying level are denoted by m(j)
t|t−1 and the Kalman filter PMSE are denoted byP (j)

t|t−1. Furthermore, for each simulated

series j, we compute the true PMSE of m(j)
t|t−1 by the following expression derived from the results in Harvey and delle

Monache (2009)

PMSE(j)
t|t−1 = PMSE(j)

t−1|t−2


1 −K (j)

t

2
+K (j)2

t σ 2
ε + σ 2

η (8)

where K (j)
t is the filter gain obtained with estimated parameters. Table 1 reports the averages through the Monte Carlo

replicates and time of the percentage relative biases given by d(j)
t = 100 ·

P (j)
t|t−1/PMSE(j)

t|t−1 − 1

. In order to avoid the

effect of the initial values on the estimates of the Kalman filter PMSE, we have discarded the first fiveP (j)
t|t−1 in the averages

reported in Table 1. Consider first the results when εt is Gaussian. In this case, if T = 40,Pt|t−1 underestimates by 13.56% the
true PMSE of the one-step-ahead estimate of µt , denoted by mt|t−1; see Quenneville and Singh (2000) who report a bias of
−21.21% in a similar experiment. The difference between both results could be attributed to the fact that they compute
smoothed estimates and, in order to avoid imposing positivity restrictions, they maximize the concentrated likelihood
with respect to log


σ 2

η


/2. Table 1 also shows that the small sample biases ofPt|t−1 are slightly larger when the errors

are conditionally heteroscedastic or non-Gaussian. In any case, note that given that the underestimation of the PMSE ofmt|t−1 can be attributed to the parameter uncertainty, it obviously decreases with the sample size.
The average biases reported in Table 1 show that when the Kalman filter is run with estimated parameters,Pt|t−1 is a

negatively biased estimator of the conditional true PMSE ofmt|t−1. These biases can be rather large in small samples specially
when the model is time-varying or non-Gaussian. Therefore, it is important to incorporate the parameter uncertainty when
measuring the uncertainty associated with the estimates of the underlying states. As mentioned in the Introduction, there
have been several procedures proposed in the literature with this goal. Next, we describe two of them. The first one is based
on the Monte Carlo integration of the asymptotic distribution of the parameter estimator as proposed by Hamilton (1986).
Second, we describe the bootstrap procedures proposed by Pfeffermann and Tiller (2005).
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2.2. Asymptotic approximation

Hamilton (1986) proposes to estimate the true PMSE ofat|t−1 given in expression (4) by computing first the expectations
conditional on the parameter estimates and then integrating over all possible values of the parameter estimates as follows

PMSEt|t−1 = Eθ

Et−1


at|t−1 − αt

 
at|t−1 − αt

′
|θ+ Eθ


Et−1

at|t−1 − at|t−1
 at|t−1 − at|t−1

′
|θ , (9)

whereθ is the estimated vector of model parameters. The expectations in (9) are obtained by integrating the distribution
of the estimator of θ which is approximated by its asymptotic distribution. Therefore, Hamilton (1986) propose first to
estimate the parameters and then obtain a large number, M , of realizations,θ (i)

a , from the asymptotic distribution of the
estimator. The Kalman filter is run using each of the realizationsθ (i)

a and the original observations, {Y1, . . . , YT }, obtaining
a series of estimates of the state and their corresponding PMSE, denoted byat|t−1

θ (i)
a


andPt|t−1

θ (i)
a


, respectively.4 An

analogue of the first expectationwithin curly brackets in (9) can be obtained byPt|t−1

θ (i)
a


while the analogue of the second

expectation is
at|t−1

θ (i)
a


− at|t−1

 at|t−1

θ (i)
a


− at|t−1

′

, where at|t−1 =
1
M

∑M
i=1at|t−1

θ (i)
a


. Then, after integrating

over all values ofθ , the following approximation of the PMSE in (9) is obtained

PMSE
Asy
t|t−1 =

1
M

M−
i=1

Pt|t−1
θ (i)

a


+

1
M

M−
i=1

at|t−1
θ (i)

a


− at|t−1

 at|t−1
θ (i)

a


− at|t−1

′
. (10)

To illustrate the performance of the asymptotic correction in (10), we consider again the same time series generated by
the output gap model in (5). Fig. 1 plots the 95% prediction intervals forzt|t−1 obtained when the PMSE is computed as in
(10). It is important to note that when extracting values from the asymptotic distribution of the Gaussian QML estimator
of the parameters, it could be the case that the resulting extraction of some of the variances is non-positive. In these cases,
we substitute the corresponding PMSE by the originalPt|t−1; see Quenneville and Singh (2000) for the same substitution.
The 95% prediction intervals plotted in Fig. 1 are wider than the Kalman filter intervals. However, note that when compared
with the intervals constructed using the true PMSE, they are too wide at the beginning of the sample and too narrow at the
end. They still leave out of the intervals some realizations of the true output gap.

The finite sample properties of the asymptotic correction in (10) have been analyzed in the context of the RWNmodel in
(6). Table 1 reports the average relative biases of PMSE

Asy
t|t−1.We canobserve thatwhen T = 40, PMSE

Asy
t|t−1 underestimates the

true PMSE by 6.94% in the homoscedastic case and by a slightly larger percentage in the heteroscedastic and non-Gaussian
models. Therefore, the bias inPt|t−1 is reduced by approximately 50%; compare with Quenneville and Singh (2000) who
report a reduction of 15% for smoothed estimates of the underlying level based on a different estimator of the parameters.
The underestimation observed in PMSE

Asy
t|t−1 may be attributed to the inappropriateness in small samples of the asymptotic

distribution to approximate the finite sample distribution of the QML estimator. Obviously, the QML estimator is consistent
and the biases decrease with the sample size.

2.3. Bootstrap procedures

Bootstrapping has been seeing to have good properties to approximate the distribution of the ML estimator of the
parameters of state space models and to obtain prediction densities of future values of the observed variables; see Stoffer
andWall (1991), Wall and Stoffer (2002, 2004) and Rodríguez and Ruiz (2009). Consequently, Pfeffermann and Tiller (2005)
propose using bootstrap procedures to obtain the PMSE ofat|t−1 that incorporate the parameter uncertainty. They propose
parametric and non-parametric bootstrap procedures. The parametric procedure is based on extracting realizations, ε∗

t and
η∗
t , t = 1, . . . , T , from the joint true distribution of εt and ηt , using them and the estimated parameters,θ , substituted in

model (1) to obtain a bootstrap replicate

Y ∗

1 , . . . , Y ∗

T


as follows

Y ∗

t =Ztα∗

t +dt +R1tε
∗

t ,

α∗

t =Ttα∗

t−1 +ct +R2tη
∗

t , t = 1, . . . , T . (11)

Note that this first step of the parametric bootstrap procedure is the same as the first step of the simulation smoother
algorithm proposed by Durbin and Koopman (2002). Alternatively, the nonparametric bootstrap does not rely on any
distributional assumption of the errors. Following Stoffer and Wall (1991), the standardized estimated innovations,V s

t =F−1/2
t

Vt , are resampled obtaining

V ∗

1 , . . . , V ∗

T


and the bootstrap replicates,


Y ∗

1 , . . . , Y ∗

T


, are obtained from the IF in (3)

4 We add explicitly the dependence of the estimates of the unobserved states and their corresponding PMSE on the estimated parameters to clarify the
procedure.
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and (2a) with the parameters substituted by their QML estimates and the innovations by their bootstrap counterparts as
follows

Y ∗

t =Zta∗

t|t−1 +dt + V ∗

t

a∗

t+1|t =Tt+1a∗

t|t−1 +ct+1 +Kt+1F−1
t V ∗

t . (12)

Once a bootstrap replicate

Y ∗

1 , . . . , Y ∗

T


has been obtained by any of the two alternative procedures in (11) and (12), the

parameters are again estimated obtainingθ∗.
When using the parametric resampling scheme, Pfeffermann and Tiller (2005) propose to compute the bootstrap PMSE

as follows

PMSE
PT1
t =Pt|t−1 −

1
B

B−
j=1

Pt|t−1
θ∗(j)

+
1
B

B−
j=1

a∗

t|t−1

θ∗(j)
− α∗

t

 a∗

t|t−1

θ∗(j)
− α∗

t

′
(13)

wherePt|t−1(θ∗) is obtained from the Kalman filter run with bootstrap estimates of the parameters,θ∗, and the original
series, {Y1, . . . , YT }. Then, the Kalman filter is run again using the bootstrap estimates of the parameters, θ∗, and the
bootstrap replicate of the series,


Y ∗

1 , . . . , Y ∗

T


, to obtain bootstrap estimates of the state,a∗

t|t−1(
θ∗). Note that this estimator

is unfeasible when implementing the non-parametric scheme as, in this case, α∗
t is not available. In this latter case,

Pfeffermann and Tiller (2005) propose to obtain an alternative estimator of the PMSE which require a further run of the
Kalman filter with the original estimates of the parameters,θ , and the bootstrap replicate of the series,


Y ∗

1 , . . . , Y ∗

T


, to

obtain estimates of the state denoted bya∗

t|t−1(
θ). After repeating the steps just described, B times, the PMSE ofat|t−1

proposed by Pfeffermann and Tiller (2005) is given by

PMSE
PT2
t =

1
B

B−
j=1

a∗

t|t−1

θ∗(j)
−a∗(j)

t|t−1

θ a∗

t|t−1

θ∗(j)
−a∗(j)

t|t−1

θ′

+ 2Pt|t−1 −
1
B

B−
j=1

Pt|t−1
θ∗(j) . (14)

In order to illustrate the performance of the parametric bootstrap PMSE in Eq. (13), we consider again the output gap
model. Fig. 1, which plots the 95% prediction intervals constructed using the parametric PMSE

PT1
t , shows that the intervals

are nowmuchmore close to the true 95% prediction intervals giving amore realistic picture about the uncertainty associated
with the estimated output gap. The intervals based on the non-parametric PT2 are similar to those plotted in Fig. 1 for PT1.

The finite sample properties of the bootstrap PMSE in (13) and (14) have been analyzedusing the sameMonte Carlo design
described above. Table 1, that reports the corresponding percentage biases, shows that, in the Gaussian homoscedastic
model, the relative biases of the parametric PMSE

PT1
t are smaller than those of the Kalman filter with estimated parameters

and similar to those of the asymptotic PMSE in (10). However, when T = 40, the biases observed in the conditionally
heteroscedastic and non-Gaussianmodels aremuch larger thanwhen using the asymptotic approximation.When looking at
the percentage biases of the nonparametric PMSE

PT2
t , we can observed that they are hardly reduced in the two conditionally

Gaussian models. The performance of the nonparametric bootstrap PMSE in the non-Gaussian model is rather surprising
with the biases being positive. According to our simulation results, it seems that the non-parametric PMSE in (14) are not
appropriate in small samples to estimate the uncertainty associated with the Kalman filter estimates of the unobserved
states. Finally, note that, as expected, in large sample sizes, both procedures are approximately unbiased.

As described above, the PMSE in (13) and (14) are computed by taking expectations over all bootstrap realizations of the
series and, consequently, it is not a conditional but an unconditional PMSE. However, the Kalman filter is designed to obtain
conditional estimates of the underlying state and their corresponding PMSE. Therefore, it could be possible to improve the
performance of bootstrap PMSE by computing them conditional on the available data set. This is the main idea behind the
procedures proposed in this paper that we develop in the following section.

3. New bootstrap procedures

In this section, we propose two new bootstrap procedures to estimate the conditional PMSE of one-step-ahead
estimates of the unobserved states obtained by implementing the Kalman filter with estimated parameters. Our proposed
procedures are based on incorporating the parameter uncertainty by the Monte Carlo integration of the parameter
estimator distribution. However, instead of dealing with the parameter uncertainty by simulating the parameters from the
asymptotic distribution, as in Hamilton (1986), or by using the Bayes posterior distribution as in Quenneville and Singh
(2000), we simulate them from a bootstrap distribution. Stoffer and Wall (1991) show that, in small sample sizes, the
bootstrap distribution is a better approximation to the finite sample distribution of the ML estimator than the asymptotic
approximation. Consequently, the bootstrap PMSE proposed in this paper are expected to have better properties in small
samples than those of Hamilton (1986). On the other hand, our procedure is computationally simpler than that proposed by
Quenneville and Singh (2000) and can be easily implemented in relatively complicated models. Finally, the new bootstrap
procedures have two advantageswhen comparedwith the bootstrap procedures proposed by Pfeffermann and Tiller (2005).
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First, for each bootstrap replicate, the Kalman filter has to be run once instead of three times as in the non-parametric
bootstrap in (14) or twice as in the parametric bootstrap in (13). Consequently, the procedure is computationally simpler.
Furthermore, by computing the conditional PMSE, the finite sample biases are smaller.

We also propose resampling using parametric and nonparametric schemes. As in Pfeffermann and Tiller (2005), the
parametric bootstrap procedure is based on resampling from the assumed joint true distribution of the noises as in (11).
Alternatively, the nonparametric procedure is based on resampling from the empirical distribution of the standardized one-
step-ahead innovations,V s

t , and obtain bootstrap replicates of the series as in (12). Once a bootstrap replicate

Y ∗

1 , . . . , Y ∗

T


is obtained by any of the two resampling schemes, the parameters are estimated by QML, obtainingθ∗. Then, the Kalman
filter is run once with the original observations {Y1, . . . , YT } andθ∗ to obtainat|t−1(θ∗) andPt|t−1(θ∗), t = 1, . . . , T . After
obtaining B bootstrap replicates, the conditional bootstrap PMSE is obtained as follows

PMSE
CB
t|t−1 =

1
B

B−
j=1

Pt|t−1
θ∗(j)

+
1
B

B−
j=1

at|t−1
θ∗(j)

− a∗

t|t−1

 at|t−1
θ∗(j)

− a∗

t|t−1

′
(15)

where a∗

t|t−1 =
1
B

∑B
j=1at|t−1

θ∗(j)

. We denote by PMSE

CB1
t|t−1 the PMSE obtained using the parametric scheme while

PMSE
CB2
t|t−1 corresponds to the nonparametric bootstrap. Note that in the new procedures proposed in this paper, the Kalman

filter is run with the bootstrap estimates of the parameters and the original time series. In this way, the PMSE in Eq. (15)
is conditional on the information contained in the original series. Furthermore, by computing the conditional PMSE, we
avoid running the filter two more times as in the procedure proposed by Pfeffermann and Tiller (2005). Consequently, our
procedure is computationally simpler.

In order to illustrate the performance of the bootstrap PMSE proposed in this paper, we consider again the output
gap model. Fig. 1 plots the 95% intervals obtained using the parametric PMSE

CB1
t|t−1 in (15). In this particular example, the

prediction intervals are very close to those obtained when using the PMSE
PT1

although they are slightly closer to the true
intervals.

Finally, the finite sample properties of the two new bootstrap PMSE are analyzed by simulation using the same Monte
Carlo designs described above. Table 1, that reports the relative biases, shows that, regardless of the model, the biases of the
proposed parametric and non-parametric conditional bootstrap PMSE are very similar between them and clearly smaller
than those observed when the PMSE are computed using the Kalman filter with estimated parameters, the asymptotic
approximation of Hamilton (1986) or the bootstrap procedures of Pfeffermann and Tiller (2005). The averages reported
in Table 1 show that the reductions of the relative biases can be very important when T = 40. For example, in the
homoscedastic RWNmodel, the relative bias of the nonparametric bootstrap is reduced by a 79% with respect to the bias of
the PMSE computed by the Kalman filter with estimated parameters. The reduction is 58% with respect to the asymptotic
approximation and 62% and 76%with respect to the parametric and nonparametric bootstrap procedures of Pfeffermann and
Tiller (2005) respectively. The reduction of the relative biases is still important when T = 100while when T = 500 all PMSE
are approximately unbiased. It is also remarkable that the relative biases of the parametric and non-parametric bootstrap
procedures proposed in this paper are approximately the same. The good performance of the parametric procedure could
be expected given that we are resampling from the true error distribution. However, it is comforting to observe that the
behavior of the non-parametric procedure, which does not assume any particular distribution, is comparable with that of
the parametric procedure. Given that the biases of the parametric and nonparametric resampling schemes are so similar,
it seems safer to always use the nonparametric procedure which does not rely on any particular assumption on the error
distribution.

Therefore, our simulation results show that in small andmoderate sample sizes, the conditional PMSE ofat|t−1 computed
using the new bootstrap procedures proposed in this paper have very small biases giving a realistic measure of the
uncertainty associated with the underlying estimated states. Furthermore, this reduction of bias is accomplished using
procedures which are simple from a computational point of view and, consequently, they can be easily implemented in
practice.

4. Empirical application: estimating the output gap, the NAIRU, the trend investment rate and the core inflation in US

In this section,we apply thenewproposedbootstrap PMSEof the estimatedunobserved states to estimate theuncertainty
associated with the estimation of the output gap, NAIRU, investment trend and core inflation of the US economy, based on
the unobserved component model proposed by Doménech and Gómez (2006). The logarithm of the GDP, yt , the inflation
rate defined as the average inflation over the last four months, πt , the unemployment rate also defined as the average of
unemployment rate over the last four months, Ut and the nominal investment rate defined as the ratio between investment
and GDP, xt have been observed quarterly from 1948:Q1 to 2003:Q1.

The model proposed by Doménech and Gómez (2006) incorporates the following three stylized facts often observed in
those macroeconomic variables, namely: (i) Negative correlation between the output gap and the deviations of unemploy-
ment from the NAIRU, often known as the Okun law, (ii) Short run trade-off between inflation and unemployment known as
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forward looking Phillips curve, and (iii) Co-movement of output and investment called accelerator-type investment equa-
tion. The model is given by

yt ≡ ypt + zt , (16a)

zt+1 = 2θ1 cos θ2zt − θ2
1 zt−1 + ωzt , (16b)

ypt+1 = µ + ypt + ωyt , (16c)

πt =


1 −

4−
i=1

µi


π t +

4−
i=1

µiπt−i + ηyzt + vπ t , (16d)

π t = π t−1 + ωπ t , (16e)

Ut = φuUt−1 + (1 − φu)U t + φ0zt + vut , (16f)

U t = U t−1 + ωut , (16g)

xt = βxxt−1 + (1 − βx) xt + βy0zt + βy1zt−1 + vxt , (16h)

xt = xt−1 + ωxt , (16i)

where zt is the unobserved output gap which is assumed to follow a cyclical AR(2) process in Eq. (16b) and, ypt is the log-
arithm of the potential output represented by a random walk plus drift model in Eq. (16c). The parameter µ captures the
growth rate of the potential output. The noises ωzt and ωyt are assumed to be mutually independent white noise processes
with zero mean and variances σ 2

ωz and σ 2
ωy respectively. The following two equations, (16d) and (16e) describe the dynamic

evolution of inflation,πt and its relationwith the output gap.π t is the core inflationwhich follows a randomwalk. The noises
vπ t and ωπ t are white noise processes with variances σ 2

vπ and σ 2
ωπ respectively. Both noises are mutually independent and

independent of ωzt and ωyt . Eqs. (16f) and (16g) describe the Okun law where U t is the NAIRU. Once more, the disturbances
associatedwith the unemployment, vut andωut are white noises with variances σ 2

vu and σ 2
ωu, respectively. They aremutually

independent and independent of the rest of disturbances in the model. Finally, the last two equations, (16h) and (16i) de-
scribe the dynamic evolution of the investment rate, xt , where xt is the long run investment trend. The disturbances vxt and
ωxt are white noise processes with zero mean and variances σ 2

vx and σ 2
ωx and, once more, they are assumed to be mutually

independent and independent of all previous disturbances.
Model (16) can be casted into a state space framework as in (1) with Yt = [yt ,Ut − φuUt−1, xt − βxxt−1, πt −

(
∑4

i=1 µiπt−i)]
′, αt =


ypt ,U t , xt , π t , zt−2, zt−1, zt

′
, εt = [vut , vxt , vπ t ] , ηt =


ωyt , ωut , ωxt , ωπ t , ωzt


,Ht = diag


σ 2

vu,

σ 2
vx, σ

2
vπ


,Qt = diag


σ 2

ωy, σ
2
ωu, σ

2
ωx, σ

2
ωπ , σ 2

ωz


,

T =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 −θ2

1 2θ1 cos θ2

 ,

Z =


1 0 0 0 0 0 0
0 1 − φu 0 0 0 0 φ0
0 0 1 − βx 0 0 βy1 βy0

0 0 0 1 −

4−
i=1

µi 0 0 ηy

 ,

R1 =



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

 , and R2 =

0 0 0
1 0 0
0 1 0
0 0 1

 ,

where diag{.} is the diagonal matrix.
After a preliminary analysis of the data, several breaks in the marginal variances of inflation and output are detected and

incorporated into demodel; see Doménech andGómez (2006). Table 2 reports the QML estimates of the parameters together
with their standard asymptotic deviations obtained numerically using the results in Harvey (1989) for the asymptotic
distribution of the QML estimator of the hyperparameters of state-space models. With respect to the estimates reported
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Fig. 2. Histogram and kernel estimates of the density of standardized one-step-ahead innovations of (a) Output, (b) Unemployment, (c) Investment and
(d) Inflation.

Table 2
QML parameter estimates of multivariate unobserved component model for output, unemployment, inflation and investment. Estimation based on 221
quarterly observations from 1948:Q1 to 2003:Q1. Standard deviations in parenthesis.

Output Inflation NAIRU Investment

θ1 0.7710 ηy 0.3123 σvπ 0.0044 φ0 −0.3107 βy0 0.6458
(0.0490) (0.0887) (0.0015) (0.0217) (0.0397)

θ2 0.2359 µ1 0.1427 σωπ1 0.0096 φU 0.3653 βy1 −0.6102
(0.0781) (0.0637) (0.0011) (0.0582) (0.0473)

σωy1 0.0075 µ2 −0.1332 σωπ2 0.0163 σvu 0.0009 βx 0.8253
(0.0007) (0.0498) (0.0037) (0.0002) (0.0548)

σωy2 0.0069 µ3 0.2413 σωπ3 0.0047 σωu 0.0022 σvu 0.0033
(0.0008) (0.0771) (0.0013) (0.0003) (0.0003)

σωz 0.0048 µ4 −0.1679 σωu 0.0023
(0.0003) (0.0714) (0.0007)

in Table 2, which are very close to those reported by Doménech and Gómez (2006), it is interesting to point out that the
estimated break in the output volatility is highly significant with a decrease in the volatility after 1983:Q1. Moreover, the
inflation volatility has a substantial increase in 1972:Q1 and a decrease in 1983:Q1. The sign of the coefficients associated
with the output gap are significant and positive in the inflation, unemployment and investment equations.

Fig. 2, which plots kernel estimates of each of the densities of the four components of the innovation vector, shows that
the unemployment and investment innovations seem to have asymmetric distributions. Therefore, it could be expected that
the parametric based on the Normal assumption and nonparametric bootstrap PMSE may differ in these cases.

The Kalman filter is runwith the QML estimates of the parameters reported in Table 2 to obtain one-step-ahead estimates
of the underlying components and their PMSE. We also estimate the PMSE by using the asymptotic approximation, the
parametric and nonparametric bootstrap procedures of Pfeffermann and Tiller (2005) and the twonewconditional bootstrap
procedures proposed in this paper. The parametric resampling schemes are based on assuming Gaussian innovations.
Table 3 reports the averages and standard deviations through time of the PMSE estimated for each of the four underlying
components by each of the five procedures. First of all, note that the PMSE computed using the non-parametric bootstrap
procedure of Pfeffermann and Tiller (2005) are even smaller than when they are computed using the Kalman filter with
estimated parameters. As shown in the simulation results reported in previous section, this procedure seems to be not
appropriated to measure the uncertainty associated with the unobserved components. Alternatively, the PMSE obtained by
theKalman filterwith estimated parameters and by the asymptotic procedure are very similar for theNAIRU, investment and
long-run inflation. However, there is a large difference in the PMSE of the output gapwhich is 0.0143when estimated by the
Kalman filter and 0.0214 when incorporating the parameter uncertainty using the asymptotic approximation. Furthermore,
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Table 3
Averages and standard deviations (in parenthesis) through time of PMSE computed using the Kalman filter with estimated parameters (KF), the asymptotic
approximation (Asy), the parametric (PT1) and non-parametric (PT2) bootstrap procedures of Pfeffermann and Tiller (2005) and the parametric (CB1) and
non-parametric (CB2) new bootstrap procedures.

KF Asy PT1 PT2 CB1 CB2

Output gap 0.0143 0.0214 0.0217 0.0104 0.0238 0.0283
(0.0012) (0.0013) (0.0016) (0.0082) (0.0078) (0.0095)

NAIRU 0.0050 0.0051 0.0051 0.0026 0.0063 0.0089
(0.0004) (0.0004) (0.0004) (0.0023) (0.0021) (0.0074)

Investment 0.0059 0.0062 0.0093 0.0031 0.0212 0.0223
(0.0019) (0.0021) (0.0048) (0.0043) (0.0066) (0.0097)

Inflation 0.0137 0.0140 0.0142 0.0118 0.0179 0.0173
(0.0116) (0.0119) (0.0121) (0.0080) (0.0132) (0.0110)
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Fig. 3. One-step-aheadKalman filter estimates of the output gap,NAIRU, Investment trend andCore inflation togetherwith the corresponding 90% intervals
based on PMSE constructed using: (i) the Kalman filter with estimated parameters (continuous lines) and (ii) the non-parametric conditional bootstrap
(dotted lines).

in concordance with our Monte Carlo results, the PMSE estimated using the parametric bootstrap procedure proposed by
Pfeffermann and Tiller (2005) are very similar to those obtained by using the asymptotic procedure for all variables but
investment. In this case, the PMSE computed using the bootstrap procedure is 0.0093, while it is estimated as 0.0062 using
the asymptotic approximation. Finally, the PMSE obtained using the two bootstrap procedures proposed in this paper are
clearly larger than those obtained by all the alternative procedures for all four unobserved variables. Note that the parametric
bootstrap is based on the assumption of Gaussian errors which seems to be not satisfied in all equations. As expected, given
the simulation results in the previous section, the PMSE estimated using the parametric and non-parametric bootstrap
procedures are very similar for all variables. Only in the case of the NAIRU, the PMSE estimated using the parametric
bootstrap is 0.0063 while it is 0.0089 when the non-parametric procedure is implemented. Note that the unemployment is
one of the variables forwhich the innovations seem tobenon-Gaussian. Also note that the bootstrap PMSE for the investment
trend is around five times the PMSE computed using the Kalman filter. The smallest difference between the bootstrap and the
Kalman filter PMSE is about 30% for the core inflation. Consequently, the prediction intervals based on the PMSE proposed
by Hamilton (1986) and Pfeffermann and Tiller (2005) will be wider than those based on the PMSE of the Kalman filter.
Furthermore, when the bootstrap PMSE proposed in this paper are used for constructing prediction intervals, the resulting
intervals will be even wider than for the previous procedures. This is reflected in Fig. 3 that plots one-step-ahead estimates
of the output gap, NAIRU, investment trend and the core inflation together with their 90% prediction intervals based on the
PMSE estimated by theKalman filter and by the nonparametric bootstrap procedure proposed in this paper. It is clear that the
latter intervals are much wider than the former. Therefore, taking into account the parameter uncertainty may change the
conclusions about the uncertainty associated to the four unobserved variables estimated. This effect is specially important
when estimating the NAIRU and the long-run investment rate. The differences between the prediction intervals constructed
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Fig. 4. Observed unemployment rate together with the corresponding 90% intervals of the NAIRU based on PMSE constructed using: (i) the Kalman filter
with estimated parameters (continuous lines) and (ii) the non-parametric conditional bootstrap (dotted lines).

for the NAIRU may have important implications as regards to its utility for macroeconomic policy. Fig. 4, that plots the
unemployment rate together with the 90% prediction intervals for the NAIRU, shows that the former is out of the intervals
in the second half of the sixties indicating an expansion and in the first half of the eighties suggesting a recession. Given
this result, Doménech and Gómez (2006) conclude that the difference between the NAIRU and the unemployment rate is
useful for policy makers in the sense that it can be used for identifying expansions and recessions very accurately. However,
once we construct the intervals by taking into account the parameter uncertainty, as suggested in this paper, they are much
wider and, consequently, the unemployment is not out of the 90% prediction intervals of the NAIRU at any moment along
the sample period considered.5 Therefore, when taking into account the parameter uncertainty, the conclusion of Staiger
et al. (2001) that doubt about the ability of that difference for economy policy is supported.

5. Conclusions

In this paper, we propose two new bootstrap procedures to obtain PMSE of the Kalman filter estimator of the unobserved
states in state spacemodels which take into account the uncertainty attributable to parameter estimation. These procedures
have the advantage of being computationally simple having at the same time good finite sample properties. In the context
of the RWN model, we show that their biases are smaller than those of the PMSE computed using the Kalman filter, the
asymptotic approximation and alternative bootstrap procedures previously proposed in the literature.

We illustrate, using simulated and real data, the importance of taking into account the parameter uncertainty. In the
context of US macroeconomic data, we put some doubts on the usefulness of the difference between the unemployment
rate and the NAIRU for predicting expansions and recessions of the economy once the parameter uncertainty is taken into
account.
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