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Abstract
Linear mixed-effects models involve fixed effects, random effects and covariance structure, which
require model selection to simplify a model and to enhance its interpretability and predictability.
In this article, we develop, in the context of linear mixed-effects models, the generalized degrees
of freedom and an adaptive model selection procedure defined by a data-driven model complexity
penalty. Numerically, the procedure performs well against its competitors not only in selecting
fixed effects but in selecting random effects and covariance structure as well. Theoretically,
asymptotic optimality of the proposed methodology is established over a class of information
criteria. The proposed methodology is applied to the BioCycle study, to determine predictors of
hormone levels among premenopausal women and to assess variation in hormone levels both
between and within women across the menstrual cycle.
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1 Introduction
In clinical or epidemiologic studies, linear mixed-effects models (LMMs) (Laird and Ware
1982; Longford 1993) are commonly used in analyzing clustered data (repeated measures
data, longitudinal data) with continuous outcomes and multiple covariates. LMMs are
attractive because they can effectively model the dependence structure that arises from
repeated measures for the same cluster by appropriately using random effects and
covariance structure. Despite a large body of literature on LMMs, the issue of selecting their
fixed effects, random effects or covariance structure has not received much attention.
Incorrect inclusion of fixed or random effects, or incorrect specification of covariance
structure can result in biased results and false interpretation. Therefore, accurate model
assessment and precise model selection procedures are essential for improving the
performance of LMMs. In this article, we focus on model selection in LMMs and develop a
competitive methodology for selecting LMMs.

Specialized model selection methods for LMMs were rarely proposed in the literature,
although information criteria have been extensively applied in data analysis where LMMs
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are used. Most information criteria select the optimal model M ̂ among candidate models
{Mγ,γ ∈ Γ} by minimizing a model selection criterion of the form

(1)

where n is the total number of observations, kMγ is the number of independent parameters in
a candidate model Mγ, and ℓMγ is the log-likelihood given by Mγ. Akaike's information
criterion (AIC) in Akaike (1973) uses the expected Kullback-Leibler information with λ(n,
kMγ) = 1; a bias-corrected version of AIC, called AICc (Hurvich and Tsai 1989), with λ(n,
kMγ) = nkMγ/(n − kMγ − 1) estimates the expected Kullback-Leibler information directly in a
regression model where a second order bias adjustment is made; Bayesian information
criterion (BIC) in Schwarz (1978) uses an asymptotic Bayes factor and advocates λ(n, kMγ) =
log(n)/2; risk inflation criterion (RIC) in Foster and George (1994) is based on the minimax
principle, and adjusts the penalization parameter to be λ(n, kMγ) = log(p), where p is the
number of available covariates; covariance inflation criterion (CIC) in Tibshirani and Knight

(1999) with  adjusts the prediction error by the average covariance of
the predictions and responses when the prediction rule is applied to permute the data set; and
many others are available. The total number of unknown parameters kMγ in the information
criteria characterize the model complexity that the information criteria intend to penalize on.
Increasing number of unknown parameter in either random effects or the variance-
covariance structure of random effects or within-cluster errors in LMM indeed increases the
model complexity. Therefore, as suggested by Pinheiro and Bates (2000), Diggle et al.
(2002), and Wolfinger (1997), the total number of unknown parameters kMγ used to compute
information criteria includes not only the parameters introduced by fixed effects but also the
ones introduced by random effects and variance-covariance structure. However, in (1), the
penalization parameter λ(n, kMγ) penalizes an increase in the size of a model only through a
fixed penalization parameter, in the sense that it is pre-determined by n and kMγ, and
therefore it is not adaptive to various model structures. The model selection procedures with
form (1) are hereby referred as nonadaptive selection procedures. The nonadaptive model
selection procedures with a large penalty often yield an optimal model whose size is small,
and the nonadaptive procedures with a small penalty often yield an optimal model whose
size is large. Consequently, a large penalty is likely to perform well when the true model has
a parsimonious representation, and is likely to perform poorly otherwise. This feature of
nonadaptive model selection procedures results in large selection bias in LMMs. Shen and
Ye (2002) and Shen, Huang, and Ye (2004) confirmed the disadvantages of those
nonadaptive procedures in linear regression, logistic regression and Poisson regression.
They showed that, with the inflexibility of the penalization parameter, information criteria
ignore the uncertainty of data and fail to adjust the penalization parameter for better
performance. The need is compelling for a data-adaptive model selection procedure that can
reduce the selection bias and essentially performs well over a variety of situations.

In this article, we derive the generalized degrees of freedom (GDF) (Ye 1998; Efron 2004)
in LMMs, and discuss how to use data perturbation (Shen, Huang, and Ye 2004; Shen and
Huang 2006) to estimate the GDF. Through the GDF, we extend the adaptive model
selection procedure proposed by Shen and Ye (2002) and Shen, Huang, and Ye (2004) to the
context of LMMs. In simulations, we evaluate the finite sample performance of the proposed
methodology in selecting fixed effects, random effects and covariance structure of LMMs.
We establish the large-sample asymptotic optimality of the proposed procedure. The
asymptotic properties are in agreement with our numerical examples that the proposed
methodology approximates the best performance over a class of information criteria with
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form (1). Finally, we apply the proposed adaptive model selection procedure to the BioCycle
study, to determine factors that influence hormone levels of premenopausal women and to
assess variation in hormone levels both between and within women across the menstrual
cycle.

The rest of the article is organized as follows. Section 2 presents the GDF and the adaptive
model selection for LMMs. Section 3 discusses the data perturbation estimation for the GDF
and establishes the asymptotic optimality of adaptive model selection. In Section 4,
numerical studies with small sample simulation datasets are performed to demonstrate
advantages of the proposed method over information criteria. In Section 5, we demonstrate
the adaptive model selection by applying it to hormone levels data in the BioCycle study.
The last section is devoted to a discussion and technical proofs is in appendix.

2 Generalized Degrees of Freedom and Adaptive Model Selection
2.1 Generalized degrees of freedom

Suppose that data are collected from m independent clusters (or subjects in longitudinal
data) with response variable Yij, covariates Xij,1,⋯, Xij,p that are associated with fixed
effects, and covariates Zij,1⋯, Zij,q that are associated with random effects bi, where i = 1,
2,⋯, m indicates clusters and j = 1, 2,⋯, ni indicates observations within the ith cluster.
LMMs specify the response vector Yij as

(2)

where Xij = (Xij,1,⋯, Xij, p)′ is a fixed-effects covariate vector, β is a fixed-effects coefficient
vector, Zij = (Zij,1,⋯, Zij,q)′ is a random-effects covariate vector, and ∊i = (∊i1,⋯, ∊ini)′ is a
within-cluster error vector that follows N(0, σ2Λi). The random effects bi are independent
and identically distributed and follow N(0,Ψ). The within-cluster errors ∊i are assumed to be
independent for different i. The random effects bi and the within-cluster errors ∊i are
assumed to be independent. LMMs assume the Gaussian continuous response to be a linear
function of covariates with regression coefficients that vary over individuals, which reflects
natural heterogeneity due to unmeasured factors. They allow flexible correlation structures
by assuming appropriate random-effects covariates Zij and covariance matrices Ψ and Λi's.

In (2), the Kullback-Leibler (KL) loss can be used to measure the accuracy of maximum
likelihood method. The KL loss measures the deviation of the estimated likelihood from the
true likelihood as if the truth were known. Let ψ = vech(Ψ) be a vector that contains the
distinct components of Ψ, let φ = vech(Λ1,⋯,Λm) be a vector that contains the distinct
components of Λ1,⋯, Λm, and let ξ = (β′,ψ′, σ, φ′)′ be the vector that contains all the
parameters in (2). Let Yi = (Yi1,⋯, Yini)′, Xi = (Xi1,⋯, Xini)′ and Zi = (Zi1,⋯, Zini)′. The
performance of estimator ξ ̂ in the ith cluster can be evaluated by its closeness to ξ in terms of
the clusterwise KL loss of ξ versus ξ ̂: ∫ p(yi∣ξ)[log p(yi∣ξ) − log p(yi∣ξ ̂))]dyi, where p(yi∣ξ) is
the likelihood function of the observations in the ith cluster. This yields the total KL loss for
all independent clusters:

(3)

which, after dropping the terms that are only related to ξ, reduces to
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(4)

where μi = Xiβ and  are the clusterwise mean and covariance matrix,
respectively; μ̂i and Σ̂i are the corresponding estimates with ξ replaced by ξ ̂. The KL loss
ℒ(ξ, ξ ̂) compares different LMM estimations in virtue of the true parameter value ξ. If ξ
were known, then we could select the optimal model by minimizing (4) with respect to
candidate models.

Motivated by the information criteria (1), we now consider a class of KL loss estimators of
the form

(5)

Members of this class penalize an increase in the size of a model used in estimation, with ħ
controlling the degree of penalization. Clearly, different choices of ħ yield different model
selection criteria; for instance, when ħ is the number of parameters, (5) becomes AIC.

Theorem 1—(optimal KL loss estimation). The optimal ħ that minimizes

, the expected ℓ2 distance between the KL loss (4) and
the class of loss estimators (5), is

(6)

The optimal ħ, the  in (6), which measures the degrees of freedom cost in model selection
or statistical uncertainty of model selection, is thereby defined as the generalized degrees of
freedom or the GDF of LMMs. When LMMs (2) degenerate into linear models by
discarding random effects, the proposed GDF (6) becomes the GDF discussed in Ye (1998),
which is a generalization of the degrees of freedom of fit in linear models (Weisberg 2005).
In the rest of the article, we use  to denote the GDF, and denote as (M) the GDF of a
specified model M. Moreover, by Theorem 1, the performance of M can be assessed through
its optimal KL loss “estimator”

(7)

and, for any M,

(8)
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The optimal KL loss estimator (7) measures the divergence between the true likelihood and
the estimated likelihood by M. It can be used to assess and compare various models. In
Section 2.2, (7) will be used to develop our adaptive model selection procedure in LMMs.

The optimal KL loss estimator (7) would be an unbiased estimator of ℒ(ξ, ξ ̂M) if it were
independent of the true parameters. However, it usually depends on unknown parameters
through (M), and therefore needs to be estimated by data. We will develop in Section 3 the
data perturbation estimate of (M), denoted by (M), in order to fully realize adaptive model
selection. Prior to that, we will describe the procedure of adaptive model selection in Section
2.2 assuming (M) is available.

2.2 Adaptive model selection
Now consider a class of model selection criteria in the form of

(9)

for selecting the best model from a class of candidate models {Mγ, γ ∈ Γ}. To achieve the
goal of adaptive selection, we choose the optimal λ from data by selecting the optimal model
selection procedure from a class of information criteria (9) indexed by λ ∈ (0, ∞). First, for
each fixed λ ∈ (0, ∞), one model, denoted by M ̂(λ), is selected from candidate models such
that it minimizes (9). Let the parameter estimates for M ̂(λ) be ξ ̂M ̂(λ), and let the estimated
GDF for M ̂(λ) be (M ̂(λ)). Second, the optimal λ, denoted by λ ̂, is obtained such that it
minimizes the estimated loss of M ̂(λ)

(10)

with respect to λ ∈ (0, ∞). Finally, inserting λ ̂ back into (9) yields the adaptive model
selection procedure: the adaptive selection procedure chooses the optimal model M ̂(λ ̂) by
minimizing the adaptive model selection criterion

(11)

over the candidate models {Mγ, γ ∈ Γ}. In (11), the λ ̂ is data-dependent as well as our
selection procedure. The adaptive penalty λ ̂ estimates the ideal optimal penalization
parameter over the class (9); its value varies depending on the data and the size of the true
model. Therefore, it permits an approximation to the best performance of the class of model
selection criteria (9).

3 Estimation of Generalized Degrees of Freedom
3.1 Estimation through data perturbation

This section estimates the GDF for LMMs through the data perturbation technique (Shen,
Huang and Ye 2004; Shen and Huang 2006). Data perturbation assesses sensitivity of the
estimated parameter through the pseudo response vector
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(12)

which is generated from the original response vector Yi and a perturbed vector Ỹi with
perturbation size τ ∈ (0,1]. To generate Ỹi, data perturbation samples Ỹi are taken from the
distribution of Yi with the unknown distribution mean replaced by Yi; that is, if we denote as
pYi (·∣μ) the distribution of Yi with distribution mean μ, Ỹi is sampled from pYi (·∣Yi), for i =
1,2⋯, m. In the logistic models and the Poisson models, data perturbation can be
implemented directly because of the absence of dispersion parameters (Shen, Huang and Ye
2004). But in LMMs, the distribution of Yi depends on unknown dispersion parameters ψ, σ,
and φ, besides μ. Thus, more precisely, we may denote the distribution of Yi as pYi (·∣μ, ψ, σ,
φ). To sample Ỹi in LMMs, we suggest to use the most complex model among all candidate
models to obtain estimates ψ̃, σ̃, and φ̃, and then sample Ỹi from pYi (·∣Yi, ψ̃, σ̃, φ̃).

To estimate the GDF, we can rewrite the GDF in (6) to be the summation of the difference
of two covariance penalties (Efron 2004):

, where Y=(Y1,⋯, Ym)′

denotes the response vector, σ ̂ijk(Y) is the jkth element of , and μ̂ij(Y) is the jth
element of μ̂i(Y). The response vector Y in the parenthesis indicates that the estimates depend
on the response vector Y. With perturbed  with perturbation size τ, let E*, var*, and cov*
denote the conditional mean, variance, and covariance, respectively, given Yi. For any
combination of i j, and k, note that the first covariance penalty term cov(σ ̂ijk(Y)μij(Y),Yik)

equals , which can be approximated by

; whereas the second
covariance penalty cov(σ ̂ijk(Y), YijYik)/2 equals

, which can be approximated by

,

where  is the estimated variance of YijYik. For our implementation, we use a
Monte Carlo numerical approximation. We sample , d = 1, 2, ⋯, D,
independently from the distribution of  as described earlier. Note that 
follows the conditional distribution of  given Yi, i = 1, 2,⋯, m and d = 1, 2,⋯, D. Then the
GDF is approximated by

where D is chosen to be sufficiently large to ensure an adequate Monte Carlo approximation.
By the law of large numbers, the proposed Monte Carlo approximation of the GDF via data
perturbation converges to the true GDF as D → 0. However, both our simulation studies and
Shen, Huang and Ye (2004) found that the Monte Carlo approximation of (M) is
sufficiently accurate if we choose D to be greater or equal to the number of observations.
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Therefore, we recommended that D be at least  for the model selection problems that

we consider in LMMs. We will choose D to be  in our simulations and data analysis.

In data perturbation (DP) technique, the parameter τ with τ ∈ (0,1] is called perturbation
size. In the literature, the choise of τ and the sensitivity of the performance of the adaptive
model selection (or model assessment) to τ has been thoroughly investigated in linear
models, logistic regression, Poisson regression. Please refer to Ye (1998), Shen and Ye
(Shen2002), Shen, Huang and Ye (2004), and Shen and Huang (2006) for more details. We
have performed the sensitivity study to τ in LMMs for the adaptive model selection
procedure, and find that the choice of τ does not affect the performance of the adaptive
selection procedure in selecting either fixed-effects covariates, random effects, or covariance
structures. We follow Shen and Huang (2006) and use τ = 0.5 in our simulations and data
analysis.

3.2 Asymptotic optimality
In what follows, we investigate theoretical aspects of M ̂(λ ̂), the optimal model selected by
adaptive model selection criterion, based on properties of data perturbation. Particularly, the
asymptotic optimality of M ̂(λ ̂) is established in Theorem 2; that is, M ̂(λ ̂) approximates the
best performance among all models selected by the procedures with form (9).

Theorem 2—(asymptotic optimality). Assume that: (1) (integrability) for some δ > 0 and λ
∈ (0, ∞), Esupτ ∈ (0, δ) ∣ (M ̂(λ))∣ < ∞; (2) (identifiability) infλ ∈ (0, ∞) ∣ℒ(ξ, ξ ̂M ̂(λ))∣ >0; (3)
(finite variance estimation) for any i, j, and k,

. Let λ̂ be
the minimizer of (10), then

(13)

If it is further assumed that (4) (loss and risk) limm,ni→∞supλ ∈ (0,∞)∣ℒ(ξ, ξ ̂M ̂(λ))/E(ℒ(ξ,
ξ ̂M ̂(λ))) −1∣ = 0, then

(14)

Theorems 2 establishes asymptotic optimality of the proposed adaptive model selection
procedure in LMMs. The selected model M ̂(λ ̂) by the adaptive selection procedure is optimal
in the sense that M ̂(λ ̂), the model that minimizes (11) with a data-adaptive λ ̂, asymptotically
achieves the minimal loss among all models selected by procedures with form (9).

4 Simulation Studies
In this section, we access the finite sample performance of the proposed selection procedure
for LMMs through simulations. The numerical studies focus on three aspects in selecting
LMMs: (1) selecting fixed-effects covariates in the mean structure, (2) selecting random
effects for the covariates and (3) selecting covariance structure for within-cluster errors. By
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repeating each simulation 500 times, we compare the performance of AIC, BIC, and
adaptive model selection procedure. AIC and BIC are directly applicable. The proposed
adaptive procedure is implemented as described above, with λ ̂ in (11) computed through a
fine grid search of a large interval (0, C) instead of (0, ∞), where C is sufficiently large. In

our simulations, we use .

Example 1 (fixed effects selection for longitudinal data). This simulation example considers
the LMM

(15)

which contains a “within-cluster time-covariate” Xij,1, a “cluster-level covariate” Xi,2, and
other 8 covariates Xij,3,…,Xij,10. The within-cluster time-covariate Xij,1 = xij takes values xij
= (j−1)/ni,j = 1,…,ni. The covariate Xi,2 = xi takes binary values 0 or 1 with equal
probabilities. The covariates (Xij,3,…,Xij,10)′ follow the multivariate normal distribution with
zero mean and covariance between the k1th and k2th element being ρ∣k1−k2∣, k1,k2 = 3,…, 10.
Three values of ρ are examined: 0.5, 0, and −0.5. The random effects bi0, bi1 and within-
cluster errors ∊ij are mutually independent and follow the standard normal distribution. The
simulation data are generated from (15) with m = 20 clusters and ni = 5 observations for
each cluster. In this example, two cases are examined: (1) β0 = 2.5, β1 = 3.75, β2 = 1.5, β7 =
2, and βk = 0 otherwise; and (2) β0 = 2.5, β1 = 3.75, β4 = β5 = β6 = −1.25, β8 = β9 = β10 =
1.75, and β2 = β3 = β7 = 0.

Based on the criteria of AIC, BIC, and the adaptive model selection, we perform backward
stepwise selection to select fixed-effects covariates in the simulated datasets generated from
each case. The random effects bi0 and bi1 are forced into each candidate model as we are
examining the performance on selecting fixed-effects covariates. The simulation results are
summarized in Table 1. In the first case, AIC with λ = 1 selects the highest number of fixed-
effects covariates on average. Because of the large number of incorrectly selected
covariates, the proportion of correct fit (exactly selecting the fixed-effects covariates in true
model, see Zou and Li 2008) by AIC is the lowest. In contrast, BIC has fewer both correctly
and incorrectly selected covariates and produces 0.6 correct-fit rate. Our approach with
flexible data-adaptive penalization parameter in (1), however, acts between AIC and BIC in
terms of correctly selected fixed-effects covariates and performs the best in terms of the
correct-fit rate, the KL loss, and the number of incorrectly selected covariates. It introduces
0.8 correct-fit rate and the lowest averaged KL loss. In the second case, three criteria
correctly identify the true nonzero fixed-effects coefficients. Unsurprisingly, AIC collects
the most incorrect nonzero coefficients, BIC does less than AIC, and the adaptive procedure
collects almost no incorrect fixed-effects covariates.

Example 2 (fixed effects selection for longitudinal data). This simulation example considers
the LMM

(16)

which contains one “within-cluster time-covariate” Xij,1 taking values xij = (j − 1)/ni, j =
1,⋯,ni and other 29 covariates Xij,2,⋯,Xij,30. The covariates (Xij,2,⋯,Xij,30)′ follow the
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multivariate normal distribution with zero mean and covariance between the k1th and k2th
element being ρ∣k1−k2∣, k1, k2 = 2,⋯, 30. Three values of ρ are considered: 0.5, 0, and −0.5.
The random effects bi0, bi1 and within-cluster errors ∊ij are mutually independent and follow
the standard normal distribution. The simulation data are generated from Model (16) with m
= 20 clusters and ni = 5 observations from each cluster. In this example, two cases are
examined: (1) β0 = 2.5, β1 = 3.75, β10 = −β20 = β30 = 1.25, and βk = 0 otherwise; and (2) β0
= 2.5, β1 = 3.75, β2 =⋯ = β9 = 1.25, β11 =⋯ = β19 = −1.25, β21 =⋯ = β29 = 1.25 and β10 =
β20 = β30 = 0.

Based on the criteria of AIC, BIC, and the adaptive model selection, we perform backward
stepwise selection to select fixed-effects covariates to examine the performance of AIC,
BIC, and the adaptive model selection. The random effects bi0 and bi1 are forced into each
candidate model. The simulation results are summarized in Table 2. In the first case, all
three criteria are able to identify the true covariates. However, AIC adds several incorrect
fixed-effects covariates in the selected model, whereas BIC collects fewer than AIC. The
adaptive procedure achieves exact selection in every simulation replication. Due to the non-
adaptive penalization parameters, AIC and BIC have less than 0.03 and 0.5 correct-fit rate,
respectively. In the second case, the adaptive model selection procedure performs the best
by offering the lowest KL loss and the highest correct-fit rate. BIC performs better than AIC
when correlation coefficient ρ = 0.5 or ρ = 0. When ρ = −0.5, BIC selects much less than 27
fixed-effects covariates in some simulation replications, and therefore dramatically reduces
the numbers of incorrect and correct selected covariates.

Example 3 (random effects selection for clustered data). This simulation example considers
the LMM

(17)

which contains 10 covariates Xij,1,⋯, Xij,10 with possible random effects bi1, ⋯, bi,10.
Whether or not covariate Xij,k has random effect is determined by the corresponding
indicator variable δk, which takes values either 0 or 1. The covariates (Xij,1, ⋯, Xij,10)′ follow
the multivariate normal distribution with zero mean and covariance between the k1th and
k2th element being ρ∣k1−k2∣, k1, k2 = 1, ⋯ ,10, where ρ takes 0.5, 0, and −0.5. The random
effects bik follow a normal distribution with mean zero and standard deviation 0.5, the
within-subject errors ∊ij follow the standard normal distribution, and bik and ∊ij are mutually
independent. The simulation data are generated from (17) with m = 10 clusters and ni = 25
observations from each cluster. In this example, four cases are examined: (1) δ1 = δ2 = 1,
and δk = 0 otherwise; (2) δ1 = ⋯ = δ4 = 1, and δk = 0 otherwise; (3) δ1 =⋯· = δ6 = 1, and δk =
0 otherwise; and (4) δ1 = ⋯= δ8 = 1, and δk = 0 otherwise. Throughout the four cases, the
fixed-effects coefficients are assigned values as β0 = 1.5, β1 =⋯ = β10 = 1.25.

We conduct the best subset search for 10 random effects bi1, ⋯, bi,10. We always include the
fixed-effects coefficients of ten covariates and the random intercept in the candidate models.
The simulation results are summarized in Tables 3 and 4. Our proposed method achieves the
best performance in all cases in terms of the number of correctly selected random effects,
the KL loss and the proportion of correct fit (exactly selecting the random effects in true
model). In Cases 1 and 2, BIC with fixed penalization parameter λ=2.76 selects smaller
number of both correct and incorrect random effects than AIC, and it also produces higher
correct-fit rate. As a comparison, AIC with fixed penalization parameter λ=1 does much
better than BIC in terms of the proportion of correct fit in Cases 3 and 4, because the large
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number of random effects in the true models prefers relatively small penalties. However, the
adaptive model selection outperforms AIC and BIC in all cases.

Example 4 (covariance structure selection). This simulation example considers the LMM

(18)

which contains a “within-cluster time-covariate” Xij,1 taking values xij = (j −1)/ni, the
random effects bi0 and bi1 independently following N(0,0.5), and correlated within-cluster
errors that are generated from a mixed autoregressive-moving average (ARMA) model (Box
and Jenkins 1994)

with homoscedastic noise aij independently following N(0, 0.5), r1 autoregressive
parameters ϕl1, and r2 moving average parameters θl2. The simulation data are generated
from (18) with m = 5 clusters and ni = 50 observations from each cluster. The goal of the
correlation structure selection is to determine parameters r1 and r2. Five correlation
structures are examined: ARMA(s,5), s = 1, 2, ⋯, 5. For implementation, r1 and r2 are
assumed to potentially take values 0, 1, ⋯, 10. We conduct an exhaustive search for LMMs
with all possible ARMA(r1,r2) structures. Throughout the simulation study, β0 = β1 = 1 and
ϕl1 = θl2 = 0.5 for any l1 and l2. The simulation results are summarized in Table 5. The
proposed procedure yields the best performance in five situations in terms of the KL loss,
the average r1 and r2 in the selected models, and the proportion of correctly selecting the
true covariance structure. It is evident from Table V that AIC and BIC, with a nonadaptive
penalty, cannot simultaneously perform well for both large and small s.

5 Application: Estradiol Levels in the BioCycle Study
5.1 The BioCycle study

The BioCycle study is an epidemiologic study of menstrual cycle function among healthy,
regularly menstruating women. It was conducted by the Eunice Kennedy Shriver National
Institute of Child Health and Human Development and the State University of New York at
Buffalo from 2005 to 2007. One of the objectives was to study endogenous reproductive
hormone levels and their association with other covariates across the menstrual cycle. The
BioCycle Study followed 259 regularly menstruating premenopausal women from New
York for up to two menstrual cycles. The study population, materials, and methods have
been previously described in detail (Wactawski-Wende at el. 2009). In summary, healthy
women between the ages of 18–44 had to be regularly menstruating (self-reported cycle
length between 21 and 35 days for each menstrual cycle in the past 6 months) in order to
participate. Women with conditions known to affect menstrual cycle function such as
polycystic ovary disease, uterine fibroids, or current use of hormonal contraception (i.e., 3
months prior to study entry) were excluded. Eligible participants visited the study clinic 8
times during each menstrual cycle, at which time fasting serum samples were collected. The
visits were scheduled to occur during specific phases of the menstrual cycle, based on an
approximate 28-day cycle length. Hormones levels, including estradiol levels, and other
biological markers, including insulin and lipoprotein cholesterol levels, were measured from
serum samples collected at each visit. Participants were asked to complete standardized
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questionnaires at the baseline visit on lifestyle, physical activity, and reproductive history.
Dietary intake was assessed four times per cycle using the 24-hour dietary recall
methodology and the Nutrition Data System for Research software version 2005 developed
by the Nutrition Coordinating Center, University of Minnesota, Minneapolis, MN. Physical
and anthropometric measures were done according to standardized protocols and included
height and weight for the calculation of body mass index.

Due to the considerable variability in hormone levels both between women and within a
woman from cycle to cycle, LMMs with random effects and complex within-cluster
covariance structure have typically been used to account for the correlations between and
within women in the analysis of factors associated with hormone levels and menstrual cycle
function (Schisterman at el. 2010; Mumford at el. 2010). One of the challenges during the
data analysis was the demand of precisely selecting covariates in LMMs as well as their
random effects and covariance structure. However, traditional model selection methods for
LMMs have major drawbacks and sometimes fail to identify the associated factors and
correlation structure, which can induce inaccurate prediction of hormone levels and
incorrect interpretation of the association between hormone levels and the predictors. This
motivated us to propose a novel model selection procedure with better performance, so as to
benefit not only the BioCycle study, but also other clinical or epidemiologic studies in the
future that will use LMMs.

5.2 Modeling estradiol levels
One of the hormones that is of particular interest is estradiol, as estradiol is the primary
estrogen secreted by the ovary and the predominant sex hormone present in females.
Estradiol plays a key role in reproductive function, as well as in the development and
recurrence of breast cancer and other chronic diseases. Understanding the factors associated
with estradiol levels may aid in understanding an individual's susceptibility to disease, as
well as offer potential strategies for disease prevention. It has also been argued that
differences in breast cancer incidence between populations could be due to differences in
demographic characteristics associated with estradiol levels. Here we are interested in
identifying factors that are associated with estradiol levels and accessing variation in
estradiol levels both between women and within a women across the menstrual cycle. The
main outcome of interest is the logarithm of estradiol levels as measured in fasting serum
samples in the BioCycle study. Potential biological factors that might influence estradiol
levels include age (Xage), body mass index (Xbmi), race (white, black Xrac1, other Xrac2), past
use of oral contraceptives (yes or no, Xoc), age at menarche (Xmen), parity (Xpar), marital
status (married/living as married or single/separated/divorced, Xmar), physical activity (low,
moderate Xphy1, high Xphy2), smoking status (ever or never, Xsmo), insulin levels (Xins), the
logarithm of total cholesterol levels (Xcho), the logarithm of luteinizing hormone levels (Xlh),
dietary fat intake (Xfat), dietary fiber intake (Xfib), and total energy intake (Xene). We
consider LMMs that include an intercept and a subset of the 19 covariates: aforementioned
17 covariates plus the standardized cycle day (XDay) and the quadratic term of standardized

cycle day . We allow the intercept, Xage, Xlh, XDay, and  to potentially have random
effects and allow correlated within-cluster errors modeled by ARMA(r1,r2) with r1 and r2
possibly taking values 0, 1, · · ·, 5.

We implement the best subset selection with AIC, BIC, and our proposed procedure.
Selected fixed effects, random effects, autoregressive parameters, and moving average
parameters by the three selection procedures are summarized in Table 6. Figure 1 shows the
numbers of selected fixed effects, selected random effects, selected autoregressive and
moving average parameters by the information criteria (1) with the penalization parameter λ

changing from 0.1 to 10.0. All three procedures select fixed effects Xage, Xlh, XDay,  and
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the intercept. AIC selects three more fixed effects, namely Xpar, Xfib, and Xphy1, while BIC
selects only one more fixed effect, namely Xphy1. The adaptive model selection procedure
with penalization parameter λ = 2.25, however, selects Xfib, and Xphy1. The previous
literature scientifically supports the conclusions of the proposed method. In particular, the
lack of association between parity and estradiol is consistent with Westhoff et al. (1996).
Moreover, high fiber intake has been associated with lower levels of estradiol in many
studies (Bagga et al 1995; Gann et al 2003; Goldin et al. 1994) presumably due to a
reduction in β-glucuronidase activity in feces in response to fiber intake, which subsequently
leads to a decline in the reabsorption of estrogen in the colon. For random effects selection,
all three methods select a random coefficient for the intercept. BIC and the proposed method

select an additional random effect for , while AIC selects additional random effects for

both  and Xlh. For within-cluster covariance structure selection, the proposed method,
AIC, and BIC select ARMA(1,1), ARMA(2, 2), and ARMA(0,1), respectively. From the
simulation studies and theoretical properties shown in the previous sections, the LMM
selected by the proposed methodology has the best prediction performance and the highest
probability of correct-fit.

6 Discussion
In the analysis of biomedical data, LMMs are useful models. For data like hormone levels in
the BioCycle study, linear mixed models provide an attractive framework. Sophisticated
model selection procedures can help LMMs to improve their interpretability and
predictability. This article develops the concept of GDF for LMMs, as well as a data
perturbation estimation procedure of the GDF of LMMs. As a model complexity
measurement of LMMs, the GDF permits adaptive model selection, in which the
penalization parameter is estimated from data. We show the adaptive model selection
procedure approximates the best performance of nonadaptive alternatives within the class
(1) in model selection. We examine performance of the proposed model selection procedure
in fixed effects selection, random effects selection and covariance structure selection.
Numerical examples suggest that it performs well against information criteria with form (1)
in terms of the KL loss and correct-fit rate. As seen from the simulations and theoretical
results, the adaptive model selection has advantages over its nonadaptive counterparts in
LMMs.

We have concentrated on developing the adaptive model selection procedure for LMMs.
The idea of data-adaptive selection can be extended to other models such as survival models
and generalized linear mixed models. Such extension works may require deriving the GDF
and the optimal loss estimators for those models.

Appendix
The proof of the Theorem 1 is straightforward. Before we present the proof of Theorem 2, a
lemma is presented.

Lemma 1
Under the Assumptions (1) and (3) in Theorem 2, the data perturbation estimator (M ̂(λ)) of
the GDF of M ̂(λ) in Section 3.1 satisfies

(19)
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Proof of Lemma 1
First note that the left hand side of (19) is equal to

(20)

By the Assumption (3), the last term in (20) can be dropped. By assumption (1) and
dominated convergence theorem, the first term in (20) is equal to

Similarly, the second term in (20) is equal to

Therefore, (19) holds.

Proof of Theorem 2
Suppose λopt minimizes ℒ(ξ, ξ ̂M ̂(λ)) in terms of λopt = infλ ∈ (0,∞) E(ℒ(ξ, ξ ̂M ̂(λ))). By the
definition of λopt, we have
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By Lemma 1, limm,ni→∞limτ→0+(E (M ̂(λopt))− (M ̂(λopt))) = 0, and limm,ni→∞limτ→0+(E 
(M ̂(λ ̂) − (M ̂(λ ̂)) = 0. Therefore,

which implies (13). With Assumption (4), (14) can be further concluded.

Acknowledgments
The authors would like to sincerely thank Editor, Associate Editor and two anonymous referees for their insightful
comments that have led to significant improvement of this paper. Bo Zhang and Sunni Mumford's research was
supported by the Intramural Research Program of the National Institutes of Health, Eunice Kennedy Shriver
National Institute of Child Health and Human Development. Xiaotong Shen's research was supported in part by
NIH grant 1R01GM081535–01, and NSF grants DMS–0604394 and DMS–0906616. We thank the Center for
Information Technology, the National Institutes of Health, for providing access to the high performance
computational capabilities of the Biowulf Linux cluster.

References
Akaike, H. Information theory and the maximum likelihood principle. In: Petrov, V.; Csáki, F., editors.

International Symposium on Information Theory. Budapest: Akademiai Kiádo; 1973. p. 267-281.
Box, GEP.; Jenkins, GM.; Reinsel, GC. Time Series Analysis: Forecasting and Control. 3rd. Holden-

Day; San Francisco: 1994.
Diggle, P.; Heagerty, P.; Liang, K.; Zeger, S. Analysis of Longitudinal Data. 2nd. Oxford University

Press; Oxford: 2002.
Efron B. The estimation of prediction error: covariance penalties and cross-validation. Journal of the

American Statistical Association. 2004; 99:619–642.
Gann PH, Chatterton RT, Gapstur SM, Liu K, Garside D, Giovanazzi S, Thedford K, Van Horn L. The

effects of a low-fat/high-fiber diet on sex hormone levels and menstrual cycling in premenopausal
women: a 12-month randomized trial (the diet and hormone study). Cancer. 2003; 98:1870–1879.
[PubMed: 14584069]

George EI, Foster DP. The risk inflation criterion for multiple regression. The Annals of Statistics.
1994; 22:1947–1975.

Hurvich CM, Tsai CL. Regression and time series model selection in small samples. Biometrika. 1989;
76:297–307.

Laird NM, Ware JH. Random-effects models for longitudinal data. Biometrics. 1982; 38:963–974.
[PubMed: 7168798]

Longford, NT. Random Coefficient Models. Oxford; Clarendon: 1993.
Mumford SL, Schisterman EF, Siega-Riz AM, Browne RW, Gaskins AJ, Trevisan M, Steiner AZ,

Daniels JL, Zhang C, Perkins NJ, Wactawski-Wende J. A longitudinal study of serum lipoproteins
in relation to endogenous reproductive hormones during the menstrual cycle: findings from the
biocycle study. Journal of Clinical Endocrinology and Metabolism. 2010; 95:E80–E85. [PubMed:
20534764]

Pinheiro, JC.; Bates, DM. Mixed-effects models in S and S-PLUS. Springer-Verlag; New York: 2000.
Schisterman EF, Gaskins AJ, Mumford SL, Browne RW, Yeung E, Trevisan M, Hediger M, Zhang C,

Perkins NJ, Hovey K, Wactawski-Wende J. Influence of endogenous reproductive hormones on
F2-isoprostane levels in premenopausal women: the BioCycle study. American Journal of
Epidemiology. 2010; 172:430–439. [PubMed: 20679069]

Schwarz G. Estimating the dimension of a model. The Annals of Statistics. 1978; 6:461–464.
Shen X, Huang H, Ye J. Adaptive model selection and assessment for exponential family.

Technometrics. 2004; 46:306–317.
Shen X, Huang H. Optimal model assessment, selection, and combination. Journal of the American

Statistical Association. 2006; 102:554–568.

Zhang et al. Page 14

Comput Stat Data Anal. Author manuscript; available in PMC 2013 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Shen X, Ye J. Adaptive model selection. Journal of the American Statistical Association. 2002;
97:210–221.

Tibshirani R, Knight K. The covariance inflation criterion for model selection. Journal of the Royal
Statistical Society, Ser B. 1999; 61:529–546.

Wactawski-Wende J, Schisterman EF, Hovey KM, Howards PP, Browne RW, Hediger M, Liu A,
Trevisan M. BioCycle study: design of the longitudinal study of the oxidative stress and hormone
variation during the menstrual cycle. Paediatric and Perinatal Epidemiology. 2009; 23:171–184.
[PubMed: 19159403]

Weisberg, S. Applied Linear Regression. 3rd. Wiley/Interscience; New York: 2005.
Westhoff C, Gentile G, Lee J, Zacur H, Helbig D. Predictors of ovarian steroid secretion in

reproductive-age women. American Journal of Epidemiology. 1996; 144:381–388. [PubMed:
8712195]

Wolfinger RD. An example of using mixed models and proc mixed for longitudinal data. Journal of
Biopharmaceutical Statistics. 1997; 7:481–500. [PubMed: 9358325]

Ye J. On measuring and correcting the effects of data mining and model selection. Journal of the
American Statistical Association. 1998; 93:120–131.

Zou H, Li R. One-step sparse estimates in nonconcave penlaized likelihood models. Annals of
Statistics. 2008; 36:1509–1533. [PubMed: 19823597]

Zhang et al. Page 15

Comput Stat Data Anal. Author manuscript; available in PMC 2013 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Numbers of selected fixed effects, numbers of selected random effects, numbers of
autoregressive (AR) parameter and numbers of moving average (MA) parameter, by
information criteria (1) with the penalization parameter λ changing from 0.1 to 10.0 (grid
length 0.1).
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Table 6

Estimated fixed-effects coefficients (the estimated standard deviations in parentheses), estimated standard
deviations of random effects, estimated autoregressive and moving average parameters from selected LMMs
for hormone levels data in the BioCycle study via different methods.

Adaptive(λ̂ = 2.2500) AIC(λ= 1.0000) BIC(λ = 3.7826)

Fixed effects coefficients

Intercept 2.5995(0 1132) 2.4953(0. 1262) 2.4599(0 0994)

XDay 0.1558(0.0069) 0.1502(0.0067) 0.1572(0.0070)

X2
Day −0.0042(0.0002) −0.0040(0.0002) −0.0042(0.0002)

Xlh 0.2521(0.0172) 0.2598(0.0172) 0.2502(0.0173)

Xage 0.0112 (0.0029) 0.0169 (0.0040) 0.0105 (0.0030)

Xcho – – –

Xmar – – –

Xpar – −0.0494(0.0280) –

Xpar – – –

Xfat – – –

Xene – – –

Xsmo – – –

Xoc – – –

Xbmi – – –

Xmen – – –

Xfib −0.0109(0.0041) −0.0111(0.0042) –

Xphy1 – – –

Xphy2 – – –

Xrac1 0.2623(0.0624) 0.2811(0.0629) 0.2885(0.0616)

Xrac2 – – –

Random effects standard deviations

σIntercept 0.2945 0.3013 0.2865

σDay – – –

σDay
2 0.0004 0.0004 0.0003

σlh – 0.0460 –

σscr – – –

Autoregressive parameters

φ1 −0.3163 −0.7187 –

φ2 – −0.7239 –

φ3 – – –

φ4 – – –

φ5 – – –

Moving average parameters

θ1 0.5730 0.9266 0.2949
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Adaptive(λ̂ = 2.2500) AIC(λ= 1.0000) BIC(λ = 3.7826)

θ2 – 0.7172 –

θ3 – – –

θ4 – – –

θ5 – – –
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