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sets, by means of Bayes factors, information criteria, and classical forecast evalua-

tion tools. The GHt-GARCH and ODLV-GARCH models both strongly dominate
the threshold t-GARCH, and the Bayes factors generally favor GHt-GARCH over

ODLV-GARCH. A Markov switching extension of GHt-GARCH is also presented.

This extension is found to be an empirical improvement over the single-regime

model for one of the five data sets.
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1. Introduction

The conditional distributions of asset returns are well-known to be leptokurtic.
They are also known to exhibit the “leverage effect”: a negative past innovation
on asset returns tends to increase the current volatility. The leptokurticity justi-
fies the introduction of heavy-tailed (e.g. Student or GED) disturbances in the
GARCH class of models, and the “leverage effect” has motivated consideration
of asymmetric extensions of the basic GARCH variance function introduced by
Bollerslev (1986). An example of such an extension is proposed by Glosten et
al. (1993). An excellent survey of ARCH and GARCH models can be found in
Bollerslev et al. (1994).

There can be no certainty that the GARCH variance function will capture all
the asymmetry present in an asset return distribution, even when this function
incorporates a leverage effect. Presumably for this reason, several GARCH mod-
els with skewed error distributions can be found in recent literature. Examples
are Mittnik and Paolella (2000), Giot and Laurent (2003), Bauwens and Lau-
rent (2005), Aas and Haff (2006) and Dark (2010). Aas and Haff (2006) provide
additional references. However, none of these contributions propose a Bayesian
treatment of the estimation problem: the models are estimated by maximum
likelihood or quasi-maximum likelihood. This absence of Bayesian treatments is
unfortunate, since the Bayesian paradigm offers a natural way of taking both pa-
rameter uncertainty and model uncertainty into account. Geweke and Amisano
(2010) show that this is important in the context of forecast evaluation; it is
therefore also likely to have an impact in the context of value at risk or expected
shortfall estimation.

On the other hand, the Bayesian Markov chain Monte Carlo (MCMC) es-
timation of t-GARCH models with symmetric errors, but possibly asymmetric
variance functions is now well-established; an efficient method, based on the
previous contribution of Nakatsuma (2000), is fully described in Ardia (2008,
chap. 5). This method relies on the fact that a Student-t variate can be repre-
sented as a Normal variate with stochastic variance; see, e.g., Geweke (1993). It
is indeed this fact which allows an efficient Bayesian posterior simulator to be
designed, using the technique of data augmentation.

As shown by Barndorff-Nielsen (1977), a Normal distribution can also be ex-
tended by taking both moments of the Normal to be functions of an inverted
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Gamma variate. The resulting distribution is leptokurtic and skewed. It is known
as the Generalized Hyperbolic (GH) distribution, and has been extensively dis-
cussed by Prause (1999); see also Paolella (2007, chap. 9). However, empirical
applications of the GH distribution have been few, perhaps due to the fact that
its parameters can be difficult to identify in general.

Recently, however, Aas and Haff (2006) investigated a special case of the
GH distribution that may considerably alleviate the identification problem men-
tioned above. It has the advantage of nesting the ordinary Student-t as a
limiting case, and can therefore be called the Generalized Hyperbolic Skewed
Student-t (GHSST). Aas and Haff (2006) show that the GHSST can exhibit un-
equal thickness in both tails, contrary to other skewed extensions of the Student-t,
and argue that this offers more flexibility.

In this paper, we will propose an efficient MCMC posterior simulator, based
on data augmentation, that can be used with models having a GHSST error dis-
tribution. It will be applied to two GARCH formulations. The first one (called
GHt-GARCH for short) is a threshold version of the GARCH model in Aas and
Haff (2006). In this first model, the inverted Gamma latent variables are identi-
cally distributed. In the second model, by contrast, these latent variables can be
interpreted as stochastic volatilities, since their conditional distributions depend
on past observations. The second model can therefore be called an “observation-
driven stochastic volatility model” in the sense of Barndorff-Nielsen (1997), and
does not appear to have been estimated before by any method. In order to
avoid possible confusion between this model and the state-space volatility mod-
els that have been proposed in the literature, we will refer to this second model by
the acronym ODLV-GARCH, where ODLV stands for “observation-driven latent
variables”.

Both the ODLV-GARCH and GHt-GARCH models nest the ordinary
t-GARCH as a limiting case. So, they belong to a different class than the state-
space formulation used by Nakajima and Omori (2010), who used the GHSST dis-
tribution in conjunction with an evolution equation implying Lognormal volatil-
ities.

The t-GARCH, ODLV-GARCH, and GHt-GARCH models will be compared
using asset return data, by means of Bayes factors, Bayes information criteria,
and classical forecast evaluation tools.
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An outline of the paper follows. In Section 2, we state the GHt-GARCH model.
Section 3 discusses the ODLV-GARCH model and the differences between this
model and GHt-GARCH. Section 4 describes the posterior simulator. Section 5
presents empirical results based on five publicly available asset return data sets.
Section 6 discusses a Markov switching extension, and Section 7 concludes. In
Appendix A, we discuss at length an efficient algorithm for drawing the latent
variables used in data augmentation.

2. The GHt-GARCH model

This section will present an AR(1)-GARCH model with an asymmetric vari-
ance function and the skewed heavy-tailed error distribution discussed in Aas
and Haff (2006). We model the log-return yt of an asset at time t as:

yt = φ1 + φ2yt−1 + ut for t = 1, . . . , T , (1)

where ut = σtηt and ηt follows a GHSST distribution with zero expectation and
unit variance. The variance equation is an asymmetric GARCH model of the
type proposed by Glosten et al. (1993):

σ2
t = α∗

0 + [α∗
1I(ut−1 ≥ 0) + α∗

2I(ut−1 < 0)]u2
t−1 + β∗σ2

t−1, (2)

where I denotes an indicator function. For simplicity, we take y0 and y−1 as
fixed, and let u0 = y0 − φ1 − φ2y−1, σ2

0 = y2
0 .

The density of ut has a complicated analytical form which involves a Bessel
function of ut; see Aas and Haff (2006, Eq. 8). Evaluating the Bessel function is
very time-consuming. Fortunately, ut can be shown to have the following mixture
representation:

ut = σt

(
β

[
Zt − δ2

ν − 2

]
+
√
Ztεt

)
, (3)

where εt is a standard Normal random variable, and where Zt is independent of
εt and has the following inverted Gamma density:

f(Zt) =
( δ2

2 )
ν
2

Γ(ν
2 )
Z

−ν/2−1
t exp

[
− δ2

2Zt

]
, (4)

with:

δ2 =
(ν − 2)(ν − 4)

4β2

(
−1 +

√
1 +

8β2

ν − 4

)
. (5)
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For a given σt, the marginal density of ut in (3) thus depends on two free
parameters, ν and β. Its first two moments exist if ν > 4. When β → 0, the
limit of δ2 is easily seen to be (ν−2), and the GHSST distribution converges to the
central Student-t with ν degrees of freedom and unit variance. In the GHSST,
ν can therefore be interpreted as a kurtosis parameter and β as a skewness
parameter. Figure 1 plots various shapes of this density; it is shown to be left-
skewed when β < 0 and right-skewed when β > 0.

3. The ODLV-GARCH model

In this version, the conditional density of Zt will depend on the conditional
variance of yt. Equation (3) above is modified as:

ut = β

[
Zt − δ2t

ν − 2

]
+
√
Ztεt, with: (6)

ft(Zt) =
( δ2

t
2

)
ν
2

Γ(ν
2 )
Z

−ν/2−1
t exp

[
− δ2t

2Zt

]
, (7)

and

δ2t =
(ν − 2)(ν − 4)

4β2

⎛
⎝−1 +

√
1 +

8β2σ2
t

ν − 4

⎞
⎠ . (8)

The new error term in (6) also has an expectation of zero and a variance equal
to σ2

t . Its density is given by:

ft(ut) =

2
1−ν

2 δν
t |β|

ν+1
2

Γ(ν
2
)
√
π

K ν+1
2

(
|β|
√
δ2t + x2

t (ut)
)

exp [βxt(ut)]
(√

δ2t + x2
t (ut)

)− ν+1
2

,
(9)

where Kλ(.) is the modified Bessel function of the third kind with index λ, and:

xt(ut) = ut +
βδ2t
ν − 2

.

In the ODLV-GARCH model, the Zt can be interpreted as stochastic volatili-
ties, and β[Zt − δ2t /(ν − 2)] in (6) as a risk premium effect that affects the mode
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(but not the mean) of the distribution of ut. A similar model, where the distri-
bution of Zt depends on past observations, was proposed by Barndorff-Nielsen
(1997). Since δ2t /(ν − 2) = Et−1(Zt), Zt − δ2t /(ν − 2) can be interpreted as the
unanticipated component of volatility. It was argued by French et al. (1987) that
this component is usually negatively correlated with asset returns. One would
therefore expect the coefficient β to be negative, so that ut has a positive mode
(see Figure 1).

It is straightforward (but tedious) to obtain the coefficients of conditional
skewness and kurtosis, given respectively by m3t = σ−3

t Et−1(u3
t ) and m4t =

σ−4
t Et−1(u4

t ), as functions of β, ν, and σt, using equations (6) and (7) and the
well-known expressions for the moments of εt and Zt; the resulting expressions
are quite complicated but can be obtained with standard analytical software such
as Mathematica. The third moment of ut exists if ν > 6, and the fourth moment
exists if ν > 8. Figure 2 plots m3t and m4t as functions of σt, for ν = 10 degrees
of freedom and β = −0.5. As will be seen in Section 5, these values are typical of
some asset return series. Figure 2 shows that skewness and kurtosis increase with
volatility in the ODLV-GARCH model. In the GHt-GARCH model, by contrast,
Et−1(u3

t ) and Et−1(u4
t ) are constants, so that |m3t| and m4t are monotonically

decreasing functions of σt. So, the two models have very different properties.

4. Posterior simulation

We will first discuss the GHt-GARCH model; the slight modifications needed
in the context of the ODLV-GARCH model will be given at the end of this section.
The posterior simulator will be a Metropolis-Hastings (MH) algorithm involving
the three blocks θ1 = (ν, β, α∗

0, α
∗
1, α

∗
2, β

∗), θ2 = (φ1, φ2), and θ3 = (Z1, . . . , ZT ).
Let θ = (θ1 , θ2, θ3), y = (y1, . . . , yT ), and let θ−i contain all the parameters in θ
except θi. We now detail the three steps involved in a single sweep of the MH
algorithm.

Step 1. Drawing θ1 conditional on (θ−1 , y).
This step will use the tailored MH proposal, which was introduced by Chib

and Greenberg (1994, 1995). We assume that the prior support of θ1 is:

{(ν, β, α∗
0, α

∗
1, α

∗
2, β

∗) | ν > 4, α∗
i > 0 for all i and 0 < β∗ < 1}.

The candidate density will have a location vector obtained by constrained
maximization of the posterior log-kernel, and a scale matrix given by a positive
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definite approximation to minus the inverse Hessian. It is important that the
tails of the candidate density be heavier than those of the target density; this
will be the case if the candidate density is Student with a low degrees of freedom
parameter. Using (3) and (4), the conditional posterior log-kernel can be written
as:

k1(θ1) = ln p1(θ1) +
T∑

t=1

k1t(θ1), with:

k1t(θ1) =

−
(

ut
σt

− β
[
Zt − δ2

ν−2

])2

2Zt
+
ν

2
ln
(
δ2

2

)
− ln Γ

(ν
2

)
−
(ν

2
+ 1
)

lnZt − δ2

2Zt
− lnσt,

(10)

where p1(θ1) is the prior kernel, δ2 is evaluated using (5), and σ2
t is evaluated

using (2) with ut = yt − φ1 − φ2yt−1. Define:

θ̃1 = h(θ1) =
[
ln(ν − 4), β, lnα∗

0, lnα
∗
1, lnα

∗
2, ln

(
β∗

1 − β∗

)]
, (11)

k̃1t(θ̃1) = k1t

[
h−1(θ̃1)

]
, (12)

and let θ̃∗1 be an approximate maximizer of k̃1(θ̃1) = k1

[
h−1(θ̃1)

]
, with h−1(θ̃1)

restricted to a compact subset of the prior support. A vector θ̃1 is drawn from a
multivariate Student distribution with 3 degrees of freedom, expectation θ̃∗1 , and
scale matrix Σ1, where:

Σ−1
1 =

T∑
t=1

(
∂k̃1t(θ̃1)
∂θ̃1

∂k̃1t(θ̃1)
∂θ̃′1

)
θ̃∗
1

. (13)

The candidate θ1 = h−1(θ̃1) is accepted with probability:

min
[
1, exp

{
k1(θ1) − k1(θold1 ) + f1[h(θold1 )] + J(θold1 ) − f1[h(θ1)] − J(θ1)

}]
, (14)

where θold1 is the previously drawn vector, f1(.) is the log-kernel of the multivariate
Student density described above, and J(θ1) is the log-Jacobian:

J(θ1) = − ln(ν − 4) −
2∑

i=0

lnα∗
i − ln

[
β∗(1 − β∗)

]
. (15)

If θ1 is rejected, θold1 is retained.
The derivatives in (13) can be computed analytically.
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Step 2. Drawing θ2 conditional on (θ−2 , y).

The prior on θ2 will be the multivariate Normal density:

p2(θ2) = fN (θ2;μ2,Ω2).

The MH candidate density will exploit the fact that the observation equation (1)
combined with (3) is a linear Gaussian regression model conditional on θ−2 and
σ2

t . We define:

ỹt(θ2) = yt − σt(θ2)β
[
Zt − δ2

ν − 2

]
, (16)

where δ2 is evaluated using (5) and σ2
t (θ2) is evaluated using (2) with ut =

ut(θ2) = yt − φ1 − φ2yt−1. The candidate density will be multivariate Student
with 3 degrees of freedom and scale matrix Σ2(θold2 ), where:

Σ−1
2 (θold2 ) = Ω−1

2 +
T∑

t=1

1
σ2

t (θold2 )Zt

(
1 yt−1

yt−1 y2
t−1

)
, (17)

and with expectation vector:

θ∗2(θ
old
2 ) = Σ2(θold2 )

[
Ω−1

2 μ2 +
T∑

t=1

1
σ2

t (θold2 )Zt

(
ỹt(θold2 )

yt−1ỹt(θold2 )

)]
, (18)

where θold2 is the previous draw. The candidate θ2 is accepted with probability:

min
[
1, exp

{
k2(θ2) − k2(θold2 ) + f2(θold2 , θ2) − f2(θ2, θold2 )}], (19)

where k2(θ2) is the conditional posterior log-kernel:

k2(θ2) = ln p2(θ2) +
T∑

t=1

k2t(θ2), with:

k2t(θ2) = −
(

ut(θ2)
σt(θ2)

− β
[
Zt − δ2

ν−2

])2

2Zt
− lnσt(θ2), (20)

and where f2(θ2, θold2 ) is the log-kernel of the candidate density with expectation
θ∗2(θold2 ) and scale matrix Σ2(θold2 ). If θ2 is rejected, θold2 is retained.
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Step 3. Drawing θ3 conditional on (θ−3 , y).
An important property of Equation (3), mentioned by Barndorff-Nielsen

(1997), is that the conditional distribution of Zt given ut is a Generalized Inverse
Gaussian (GIG) distribution. The GIG distribution is extensively discussed in
Jørgensen (1982). Using Bayes’ theorem, it is easily seen that the full conditional
posterior of Zt is a GIG with parameters:

λ =
ν + 1

2
, χt = δ2 +

(
ut

σt
+

βδ2

ν − 2

)2

and ψ = β2. (21)

In Appendix A, we will state the explicit form of this distribution, present an
efficient algorithm for simulating Zt, and compare this algorithm with the one
proposed by Dagpunar (2007).

In the ODLV-GARCH model, the above equations (10), (16), (17), (18), (20),
and (21) are modified as follows:

k1t(θ1) = −
(
ut − β

[
Zt − δ2

t
ν−2

])2

2Zt
+
ν

2
ln
(
δ2t
2

)
− ln Γ

(ν
2

)
−
(ν

2
+ 1
)

lnZt− δ2t
2Zt

,

(10’)

ỹt(θ2) = yt − β

[
Zt − δ2t

ν − 2

]
, (16’)

Σ−1
2 = Ω−1

2 +
T∑

t=1

1
Zt

(
1 yt−1

yt−1 y2
t−1

)
, (17’)

θ∗2(θold2 ) = Σ2

[
Ω−1

2 μ2 +
T∑

t=1

1
Zt

(
ỹt(θold2 )

yt−1ỹt(θold2 )

)]
, (18’)

k2t(θ2) = −
(
ut − β

[
Zt − δ2

t
ν−2

])2

2Zt
+
ν

2
ln
(
δ2t
2

)
− δ2t

2Zt
, (20’)

λ =
ν + 1

2
, χt = δ2t +

(
ut +

βδ2t
ν − 2

)2

and ψ = β2. (21’)

Note that in (17’), Σ2 no longer depends on θ2, and that δ2t in (10’), (16’),
(20’), and (21’) is evaluated using (8) with σ2

t = σ2
t (θ2).
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5. Empirical results

5.1 Data and models.

This section will present empirical results for the models described in Sections
2 and 3, using five samples of daily asset log-returns. In each case, the dependent
variable is defined as yt = 100 ln(Pt/Pt−1), where Pt is the closing price index.
The data are the S&P500 returns from January 6, 1970 to May 5, 2010 (10180
observations); the FTSE100 returns from April 5, 1984 to May 5, 2010 (6588
observations); the CAC40 returns from March 6, 1990 to May 5, 2010 (5094
observations); the NIKKEI225 returns from January 9, 1984 to April 30, 2010
(6471 observations); and the Swiss Market Index (SMI) returns from November
14, 1990 to May 5, 2010 (4904 observations). All five data sets are freely available
on finance.yahoo.com.

In each case, four models will be investigated:

(1) An AR(1) GHt-GARCH model;
(2) An AR(0) GHt-GARCH model, where φ1 = φ2 = 0 is imposed in Equa-

tion (1);
(3) An ODLV-GARCH model, where the conditional mean is either AR(0) or

AR(1), depending on the relative values of information criteria obtained
for the first and second models above;

(4) The usual threshold t-GARCH model (β = 0), where the conditional
mean is the same as in the ODLV-GARCH model above.

5.2 Model comparison.

The first issue to be considered is model choice. In the Bayesian paradigm,
the usual model selection criterion is the marginal likelihood:

p(y |M) =
∫

Θ

f(y | θ,M)p(θ |M)dθ, (22)

where y = (y1 , . . . , yT ) is the data vector, θ is the vector of unknown parameters
in Model M , f(y | θ,M) is the likelihood, and p(θ | M) is the prior. The
likelihood of the GHt-GARCH model can be obtained from the prediction error
decomposition, upon noting that the marginal density of ut in (3) can be written
as:
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gt(ut) =

2
1−ν
2 δν|β| ν+1

2

σtΓ(ν
2 )
√
π

K ν+1
2

(
|β|
√
δ2 + z2

t (ut)
)

exp [βzt(ut)]
(√

δ2 + z2
t (ut)

)− ν+1
2

,
(23)

where δ2 is given by (5), and:

zt(ut) =
ut

σt
+

βδ2

ν − 2
. (24)

The marginal likelihood can be used to compute the Bayes factor for Model
Mi against Model Mj :

BFij =
p(y |Mi)
p(y |Mj)

. (25)

Jeffreys (1961, Appendix B) proposes a rule of thumb where the evidence against
Mj is treated as strong if log10(BFij) < −1, and decisive if log10(BFij) < −2.

Another widely used benchmark for model comparison is the Schwarz infor-
mation criterion, defined here as:

BIC(θ̄) = −2 lnf(y | θ̄) + q lnT, (26)

where θ̄ is the average of the MCMC replications of θ and where q is the number
of parameters in θ. The lowest value of (26) corresponds to the best model. The
magnitude of the difference between Schwarz information criteria is difficult to
interpret, but this criterion has the advantage of being insensitive to the prior in
large samples; we will therefore report its value along with Bayes factors.

The marginal likelihood in (22) was estimated by the bridge sampling method
of Meng and Wong (1996), as implemented in Deschamps (2008). This imple-
mentation uses posterior replications as well as an importance sampling density
q(θ), chosen here as a multivariate Normal on:

(
ln(ν − 4), β, lnα∗

0, lnα
∗
1, lnα

∗
2, ln

(
β∗

1 − β∗

)
, φ1, φ2

)
, (27)

with parameters chosen to match the empirical first- and second-order posterior
moments obtained by MCMC. The priors were standard Normal for β, φ1, and
φ2, Gamma(2, 16) for the ARCH parameters α∗

0, α∗
1, and α∗

2, Beta(8, 2) for the
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GARCH parameter β∗, and Gamma(10, 1) on ν − 4, the latter implying a prior
expectation of 14 for ν. Prior independence was assumed for all parameters.
This prior implies a mass of approximately 70% on the parameter subset where
the GHt-GARCH variance process is covariance-stationary, with a modal value
of β∗ + (α∗

1 + α∗
2)/2 − 1 close to zero.

Table 1 reports the logarithmic Bayes factors and Schwarz information criteria.
In all cases but one (the S&P500 data), the AR(0) model is clearly preferred,
and the Bayes factor evidence in favor of a skewed error distribution ranges
from strong (for the S&P500 data) to decisive (for all the other samples). The
GHt-GARCH model is preferred to the ODLV-GARCH in all cases, the evidence
being very weak for the S&P500 data (with posterior odds less than three to
one in favor of GHt-GARCH), strong for the NIKKEI225 and FTSE100 data,
and decisive for the SMI and CAC40 data. The fact that the Schwarz crite-
rion yields identical model rankings gives credence to a claim that the rankings
obtained by Bayes factors do not depend on our choice of prior. The numeri-
cal standard errors (NSE) in Table 1 were computed by the method described
in Frühwirth-Schnatter (2004); repeated estimations of the marginal likelihood
yielded variability consistent with the reported NSE values.

For comparison purposes, marginal likelihood estimates were also obtained by
the method of Chib and Jeliazkov (2001). This method is easiest to implement in
the AR(0) case. Let q(θ1 | Z, y) be the MH proposal density described in Step 1
of Section 4, let f∗(Z | y, θ1) be the conditional posterior of Z = θ3 in Step 3,
and let α(θold1 , θ1 | Z, y) be the acceptance probability (14). From Chib (1995)
and Chib and Jeliazkov (2001), the marginal likelihood can be estimated by:

ln p̂(y) = ln p(θ̄1) + ln f(y | θ̄1) − ln p̂(θ̄1 | y),

where p(θ̄1) and f(y | θ̄1) are the normalized prior and likelihood evaluated at
the posterior mean θ̄1, and where:

p̂(θ̄1 | y) =
1
m

∑m
i=1 α(θi

1, θ̄1 | Zi, y)q(θ̄1 | Zi, y)
1
m

∑m
j=1 α(θ̄1, θ

j
1 | Zj, y)

;

in the last expression, the θi
1 and Zi are draws from the posterior, and the θj

1

and Zj are draws from the density:

q∗(θj
1, Z

j | y, θ̄1) = q(θj
1 | Zj , y)f∗(Zj | y, θ̄1).
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Table 1. Bayes factors and information criteria

Data Model BIC log10(BF ) NSE

AR(1), GHt-GARCH 26155.18 0.00

S&P500 AR(0), GHt-GARCH 26195.71 −8.74 0.003
AR(1), ODLV-GARCH 26157.70 −0.43 0.004
AR(1), t-GARCH 26159.82 −1.68 0.004

AR(1), GHt-GARCH 17734.46 −1.66 0.002

FTSE100 AR(0), GHt-GARCH 17727.00 0.00
AR(0), ODLV-GARCH 17732.98 −1.31 0.004
AR(0), t-GARCH 17756.58 −7.24 0.005

AR(1), GHt-GARCH 20766.39 −2.41 0.002

NIKKEI225 AR(0), GHt-GARCH 20755.16 0.00
AR(0), ODLV-GARCH 20761.61 −1.61 0.004
AR(0), t-GARCH 20767.47 −3.29 0.002

AR(1), GHt-GARCH 16412.31 −3.41 0.004

CAC40 AR(0), GHt-GARCH 16396.45 0.00
AR(0), ODLV-GARCH 16405.93 −2.18 0.005
AR(0), t-GARCH 16412.66 −4.29 0.004

AR(1), GHt-GARCH 13732.47 −1.81 0.003

SMI AR(0), GHt-GARCH 13724.17 0.00
AR(0), ODLV-GARCH 13742.44 −3.91 0.004
AR(0), t-GARCH 13766.99 −10.08 0.004

BIC : Schwarz information criterion.
log10(BF ): Decimal logarithm of Bayes factor against preferred model.
NSE: Numerical standard error of log10(BF ).

Table 2 compares the results obtained by the two methods for the AR(0) GHt-
GARCH model. The results of the two methods are almost identical; however,
the method of Chib and Jeliazkov (2001), which does not require the evaluation
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Table 2. Comparison of bridge sampling and
Chib-Jeliazkov marginal likelihood estimates

Data Method ln p̂(y) NSE Time

SP500 Chib-Jeliazkov −13091.8 0.046 831
Bridge sampling −13091.6 0.004 1235

FTSE100 Chib-Jeliazkov −8852.5 0.068 557
Bridge sampling −8852.5 0.004 850

NIKKEI225 Chib-Jeliazkov −10369.6 0.052 528
Bridge sampling −10369.8 0.003 756

CAC40 Chib-Jeliazkov −8187.9 0.073 420
Bridge sampling −8187.9 0.007 637

SMI Chib-Jeliazkov −6851.8 0.060 427
Bridge sampling −6851.8 0.005 633

p̂(y) : marginal likelihood estimate for AR(0) GHt-GARCH.
NSE : numerical standard error. Time : execution time (seconds).

of Bessel functions, is approximately 50% faster in this case.

It is instructive to plot the evolution of logarithmic Bayes factors over time
when the models are estimated from successive expanding windows. Such plots
can serve to identify those observations that contribute the most to the evidence
for GHt-GARCH against ODLV-GARCH. The slope of the curve at a particular
point gives essentially the same information as the predictive Bayes factor defined
by Geweke (2005, p. 66). Figure 3 plots the logarithmic (base 10) Bayes factors
of the ODLV-GARCH and GHt-GARCH models against t-GARCH, estimated
from such expanding windows; the first window consisted of the first 2000 ob-
servations and each succeeding window was obtained by adding 50 observations
to the previous one. The last T − 2000 sample observations are reported along
with the Bayes factor curves. The stepwise evolution of the curves reflects the
fact that the posteriors are not updated continuously, but rather by increments
of 50 days. The vertical distance between the curves reflects the evidence in
favor of ODLV-GARCH against GHt-GARCH (or conversely) accumulated at a
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particular point in time, and an ordinate below zero signifies that the cumulative
evidence favors t-GARCH.

It is seen in Figure 3 that for the S&P500 and FTSE100 data, the evidence
slightly favors the ODLV-GARCH model for most of the sample period; it is
only at the very end (corresponding to the onset of the recent financial crisis)
that the evidence begins to favor GHt-GARCH. Also, for the S&P500 data,
there is weak evidence in favor of the t-GARCH model before mid-2007. For
the NIKKEI225 data, the cumulative evidence uniformly favors GHt-GARCH
over ODLV-GARCH, and GHt-GARCH is preferred to t-GARCH over the entire
sample. For the SMI and CAC40 data, it appears that the dominance of GHt-
GARCH over ODLV-GARCH is due to a few observations occurring in 2002 and
2008. Both models are uniformly preferred to t-GARCH, the dominance being
very strong for the SMI data.

5.3 Estimation results.

Table 3 reports estimated posterior quantiles and other statistics for the five
data sets described in Section 5.1, using the models chosen according to the
evidence in Table 1 with the prior described in Section 5.2. The posterior samples
were obtained by combining two independent chains, each obtained by running
the algorithm of Section 4 for 35000 passes of which the first 10000 were discarded.
The final sample was obtained by selecting every fifth replication of the combined
chains, yielding a posterior sample of size (2 × 25000)/5 = 10000. The rejection
rates ranged from 0.42 to 0.52 in Step 1, and the rate in Step 2 was equal to 0.38
for the S&P500 data. These rates can be reduced by choosing larger values for the
candidate degrees of freedom parameter. Convergence was tested by comparing
the two chains, using the method of Gelman and Rubin (1992). The validity
of the code was tested by the joint distribution method of Geweke (2004). In
each case, the credible set for the asymmetry parameter β only covers negative
values, implying left-hand skewness of the error distribution. All the estimated
variance equations exhibit strong asymmetry (α∗

1 < α∗
2). They also suggest

high persistence, but covariance stationarity: the posterior mass on β∗ + (α∗
1 +

α∗
2)/2 > 1 equals zero for the S&P500, CAC40, and FTSE100 data, 1.98% for

the NIKKEI225 data, and 0.03% for the SMI data. This compares with a prior
mass of 30%, as seen in Section 5.2. It is noteworthy that the estimated marginal
posterior densities are all far from Normality, except in the case of φ1 and φ2.
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Table 3. Posterior replication summaries (GHt-GARCH)

Data θ θ0.025 θ0.5 θ0.975 RNE sθ m3 m4

φ1 0.008 0.023 0.039 0.742 0.008 0.043 3.067
φ2 0.049 0.069 0.089 0.936 0.010 0.011 3.012
α∗

0 0.006 0.009 0.012 0.761 0.001 0.349 3.214

S&P500 α∗
1 0.013 0.021 0.029 0.890 0.004 0.199 3.071
α∗

2 0.084 0.099 0.115 0.755 0.008 0.199 3.009
β∗ 0.920 0.931 0.941 0.771 0.005 −0.206 3.018
β −0.240 −0.149 −0.069 0.251 0.043 −0.198 3.087
ν 8.130 9.415 11.128 0.026 0.766 0.383 3.117

α∗
0 0.017 0.023 0.030 0.735 0.003 0.261 3.156
α∗

1 0.027 0.041 0.057 0.871 0.008 0.254 3.116

FTSE100 α∗
2 0.110 0.131 0.154 0.806 0.011 0.220 3.125
β∗ 0.876 0.894 0.910 0.762 0.009 −0.211 3.085
β −0.708 −0.483 −0.309 0.079 0.102 −0.438 3.463
ν 11.481 14.373 18.696 0.021 1.859 0.685 4.025

α∗
0 0.018 0.025 0.032 0.813 0.004 0.289 3.125
α∗

1 0.025 0.037 0.052 0.880 0.007 0.228 3.041

NIKKEI225 α∗
2 0.138 0.163 0.191 0.791 0.014 0.209 3.166
β∗ 0.876 0.892 0.907 0.798 0.008 −0.187 3.122
β −0.302 −0.200 −0.112 0.274 0.048 −0.236 3.265
ν 7.123 8.383 9.919 0.036 0.704 0.320 3.238

α∗
0 0.019 0.027 0.038 0.750 0.005 0.346 3.267
α∗

1 0.006 0.017 0.031 0.785 0.006 0.374 3.253

CAC40 α∗
2 0.102 0.123 0.149 0.734 0.012 0.260 3.181
β∗ 0.898 0.915 0.931 0.727 0.008 −0.219 3.240
β −0.691 −0.426 −0.232 0.071 0.117 −0.583 3.994
ν 11.112 14.290 19.016 0.020 1.982 0.614 3.605

α∗
0 0.020 0.028 0.037 0.778 0.004 0.358 3.182
α∗

1 0.012 0.027 0.045 0.823 0.009 0.333 3.158

SMI α∗
2 0.139 0.168 0.201 0.757 0.016 0.280 3.192
β∗ 0.862 0.884 0.904 0.751 0.011 −0.249 3.129
β −0.748 −0.516 −0.349 0.082 0.101 −0.541 3.653
ν 9.333 11.449 14.684 0.026 1.388 0.794 4.574

θα: posterior quantile at probability α; RNE: relative numerical efficiency;
sθ: posterior standard deviation;m3: posterior skewness;m4: posterior kurtosis.
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Table 4. Correlation matrix of posterior
replications (GHt-GARCH model, S&P500 data)

φ1 φ2 α∗
0 α∗

1 α∗
2 β∗ β ν

φ1 1.00 −0.06 −0.14 0.04 −0.14 0.02 0.20 0.03
φ2 1.00 0.01 −0.03 0.07 −0.04 0.03 0.07
α∗

0 1.00 0.06 0.49 −0.71 −0.02 −0.03
α∗

1 1.00 0.17 −0.50 −0.03 −0.04
α∗

2 1.00 −0.83 −0.02 −0.09
β∗ 1.00 0.02 0.01
β 1.00 −0.36
ν 1.00

The posteriors of α∗
0, α∗

1, α∗
2 and ν exhibit significant right-hand skewness, and

those of β and β∗ exhibit significant left-hand skewness. So, Normal asymptotic
approximations would not appear to be reliable in spite of the very large sample
sizes.

Table 4 reports the posterior correlations between parameters for the S&P500
data; these correlations range from low to moderate, suggesting that the model
is not over-parameterized. Figure 4 shows the correlograms, which indicate that
selecting every fifth replication eliminates most of the autocorrelation for the AR
coefficients φ1 and φ2, for the ARCH coefficients α∗

0, α∗
1, α∗

2, and for the GARCH
coefficient β∗. The autocorrelation of the degrees of freedom parameter ν remains
strong, however, and that for the asymmetry parameter β remains moderate.

5.4 Forecast evaluation.

5.4.1 Probability integral transforms. Following Rosenblatt (1952), Kim et al.
(1998) proposed basing forecast evaluation in GARCH and stochastic volatility
models on the one-step ahead predictive distribution function. Normal deviates
can be obtained from out of sample predictive probability integral transforms,
as:

vt = Φ−1 (P [Yt ≤ yt | y−1, . . . , yt−1]) , (28)

where Φ(.) is the standard Normal integral. An indication that the vt in (28) are
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not independent standard Normal can be interpreted as evidence that the model
is misspecified; see, e.g., Diebold et al. (1998) and Berkowitz (2001).

Using the mixture representation in (3), the predictive probability in (28) can
be estimated from a posterior sample:(

ν(i), β(i), α
∗(i)
0 , α

∗(i)
1 , α

∗(i)
2 , β∗(i), φ(i)

1 , φ
(i)
2

)
for i = 1, . . . ,m, (29)

by the following average:

1
m

m∑
i=1

1
�

�∑
j=1

Φ

⎛
⎝yt − σ

(i)
t β(i)

[
Z

(j)
t − δ2(i)/

(
ν(i) − 2

)]− φ
(i)
1 − φ

(i)
2 yt−1

σ
(i)
t

√
Z

(j)
t

⎞
⎠ , (30)

where σ(i)
t and δ2(i) are computed using (2) and (5) evaluated at a posterior

replication, and where Z(j)
t is drawn from the inverted Gamma distribution in

(4) with ν = ν(i), δ2 = δ2(i). With m = 10000 posterior replications, a number
� = 100 of draws Z(j)

t was found to be adequate.
For each data set, posterior samples based on M rolling estimation windows

were obtained. Each estimation window consisted of 2000 observations, and
was obtained by advancing the start and end of the previous window by 50 days.
Each posterior sample was then used for estimating 50 one-day ahead probability
integral transforms, using (30). The N = 50M estimates of the vt in (28) were
then combined and assessed using the following diagnostics:

(1) An F -statistic, denoted by AR, for testing the nullity of the autoregression
coefficients in an AR(6) model of the vt.

(2) An F -statistic, denoted by ARCH, for testing the nullity of the autore-
gression coefficients in an AR(6) model of the v2

t .
(3) The Bera-Jarque statistic, denoted by BJ, for testing the normality of the

vt.
(4) A likelihood ratio statistic, denoted by LR, for testing the N(0, 1) null

against an unrestricted Normal alternative.

Table 5 lists the p-values for the specifications yielding the highest marginal
likelihoods and lowest Schwarz criteria in Table 1; for comparison, the p-values
obtained with the ODLV-GARCH and t-GARCH formulations are also given.
With several thousand observations, significance at the 0.01 level can be viewed
as evidence of misspecification. The ODLV-GARCH and GHt-GARCH models
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Table 5. Forecast evaluation based on
probability integral transforms (p-values)

Model Data N AR ARCH BJ LR

S&P500 8150 0.02 0.44 0.00 0.58
FTSE100 4550 0.06 0.22 0.89 0.35

GHt-GARCH NIKKEI225 4450 0.93 0.04 0.80 0.38
CAC40 3050 0.12 0.02 0.52 0.98
SMI 2900 0.17 0.01 0.59 0.79

S&P500 8150 0.02 0.27 0.00 0.34
FTSE100 4550 0.05 0.21 0.55 0.35

ODLV-GARCH NIKKEI225 4450 0.93 0.03 0.35 0.46
CAC40 3050 0.12 0.02 0.62 0.97
SMI 2900 0.18 0.03 0.84 0.81

S&P500 8150 0.02 0.36 0.00 0.40
FTSE100 4550 0.08 0.20 0.00 0.26

t-GARCH NIKKEI225 4450 0.91 0.03 0.03 0.54
CAC40 3050 0.17 0.03 0.00 0.90
SMI 2900 0.20 0.03 0.00 0.88

N : sample size. AR: autocorrelation. ARCH: autocorrelation of squares.
BJ: Bera-Jarque. LR: LR test for N(0, 1). Based on the vt in (28).
Conditional mean is AR(1) for S&P500, zero for all the other samples.

pass all diagnostic tests, with the exception of the BJ test for the S&P500 data.
The significance in this case, however, is entirely due to two outliers occurring
on October 19, 1987 and February 27, 2007. When these two observations (in
a total of N = 8150) are removed, the p-value of the BJ statistic rises to 0.02
for GHt-GARCH and to 0.22 for ODLV-GARCH. In contrast, the BJ statistic in
the t-GARCH model is strongly significant in four out of five cases (and remains
significant when the two S&P500 outliers are removed), confirming that the t-
GARCH model does not fully account for the skewness in the data in spite of the
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Table 6. Forecast evaluation based on coverage statistics (p-values)

α

0.01 0.025 0.05 0.05 0.05 0.10 0.10 0.10
Model Data N UC UC UC IND CC UC IND CC

S&P500 8150 0.87 0.98 0.82 0.35 0.63 0.56 0.34 0.54
FTSE100 4550 0.50 0.40 0.66 0.69 0.84 0.30 0.35 0.37

GHt-GARCH NIKKEI225 4450 0.82 0.23 0.04 0.05 0.02 0.03 0.06 0.01
CAC40 3050 0.40 0.66 0.27 0.71 0.50 0.37 0.48 0.52
SMI 2900 0.45 0.16 0.40 0.63 0.62 0.81 0.64 0.87

S&P500 8150 0.46 0.58 0.94 0.28 0.56 0.46 0.42 0.55
FTSE100 4550 0.94 0.22 0.66 0.69 0.84 0.23 0.48 0.38

ODLV-GARCH NIKKEI225 4450 0.49 0.58 0.06 0.03 0.02 0.03 0.13 0.03
CAC40 3050 0.93 0.93 0.48 0.58 0.67 0.63 0.67 0.81
SMI 2900 0.34 0.20 0.73 0.28 0.53 0.86 0.61 0.87

S&P500 8150 0.35 0.32 0.63 0.55 0.75 0.77 0.41 0.68
FTSE100 4550 0.07 0.25 0.27 0.79 0.52 0.70 0.50 0.74

t-GARCH NIKKEI225 4450 0.71 0.12 0.03 0.02 0.01 0.02 0.03 0.01
CAC40 3050 0.25 0.10 0.03 0.59 0.07 0.28 0.41 0.40
SMI 2900 0.36 0.27 0.01 0.32 0.02 0.62 0.74 0.84

N : sample size. UC: unconditional coverage. IND: independence.
CC: conditional coverage. α: VaR probability.

asymmetric formulation of the variance equation.

5.4.2 Coverage. Forecast evaluation can also be based on the methodology of
Christoffersen (1998). The previously describedM posterior samples can be used
for estimating N = 50M values at risk by the empirical quantiles of the simulated
one-day ahead predictives at probability α, denoted by qα

t . Upon defining:

Iα
t = 1 if yt < qα

t ,

= 0 otherwise,
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the following tests are proposed:

(1) UC : unconditional coverage : test of p = α, where p is the probability
that Iα

t equals one, assuming that the Iα
t have independent Bernoulli

distributions.
(2) IND : test of independence versus the alternative that the Iα

t follow a
Markov chain.

(3) CC : conditional coverage: joint test of unconditional coverage and inde-
pendence.

Table 6 lists the p-values of coverage and independence statistics. For α =
0.01 and α = 0.025, the IND and CC statistics cannot always be computed
due to insufficient numbers of observations; for these values of α, we therefore
only report the UC statistic. All three models appear to be acceptable from
a coverage standpoint. There are, however, substantial differences between the
5% value at risk estimates from symmetric and asymmetric versions of threshold
t-GARCH. As expected, the t-GARCH estimates are generally more conservative
(i.e. less negative).

6. A Markov switching extension

6.1 The model.

In this section, we will investigate the empirical performance of a Markov
switching extension of the GHt-GARCH model. In order to avoid the well-known
problem of path dependence, the methodology proposed by Haas et al. (2004)
can be adopted: a separate GARCH process is associated with each latent regime.
For t = 1, . . . , T , we let st ∈ {1, . . . ,K} follow a first-order Markov chain, with:

P (st+1 = j | st = i) = pij and (31)

P (s1 = j) =
1
K
. (32)

The MS-GHt-GARCH model reads as:

yt = φ1 + φ2yt−1 + ut for t = 1, . . . , T , (33)

ut = σt(st)
[
β(st)

(
Zt − δ2(st)

ν(st) − 2

)
+
√
Ztεt

]
, (34)
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δ2(st) =
(ν(st) − 2)(ν(st) − 4)

4β2(st)

[
−1 +

√
1 +

8β2(st)
ν(st) − 4

]
and (35)

σ2
t (j) = α∗

0(j) + [α∗
1(j)I(ut−1 ≥ 0) + α∗

2(j)I(ut−1 < 0)] u2
t−1 + β∗(j)σ2

t−1(j)

for j = 1, . . . ,K, (36)

where, in (34), εt is a standard Normal random variable and Zt has an inverted
Gamma distribution with parameters ν(st)/2 and δ2(st)/2. Equation (36) is
initialized by letting u0 = y0 − φ1 − φ2y−1, and σ2

0(j) = y2
0 for all j. Note that

Equation (36) defines K separate GARCH processes; the value j of st determines
the particular variance process in effect at time t.

6.2 Posterior simulation.

It will be helpful to denote by Θ1 the K × 6 matrix with row j given by:

θ1(j) = ( ν(j) β(j) α∗
0(j) α∗

1(j) α∗
2(j) β∗(j) ) ,

and by θ2 the vector (φ1, φ2).
A single sweep of the posterior simulator involves the K + 4 blocks S =

(s1, . . . , sT ), P = [pij ], Z = (Z1, . . . , ZT ), θ1(j) for j = 1, . . . ,K, and θ2. The
idea of involving the random states S in the simulation was introduced by Albert
and Chib (1993). Following Frühwirth-Schnatter (2001), each sweep of the sim-
ulator is followed by a permutation of the regime definitions: θ1(j) is replaced
by θ1(π(j)), st by π(st), and pij by pπ(i),π(j), where π = (π(1), . . . , π(K)) is a
permutation of (1, . . . ,K). The vector π can either be selected at random, or
determined by an appropriate identification constraint; see Frühwirth-Schnatter
(2001, 2006) for details.

6.2.1. Drawing S and P from their full conditional posterior distributions is
straightforward; the methods are fully described in Chib (1996) and Frühwirth-
Schnatter (2006, chapter 11). Note that this step does not depend on Z: drawing
the latent states st uses a forward-filtering backward-sampling algorithm, with
filtering based on the predictive density (23) rather than on the mixture repre-
sentation (3)–(4).

6.2.2. Drawing Z conditional on S, Θ1, and θ2 can be done by the algorithm
of Appendix A, upon noting that Zt has a GIG distribution with parameters:

λt =
ν(st) + 1

2
, χt = δ2(st) +

(
ut

σt(st)
+
β(st)δ2(st)
ν(st) − 2

)2

and ψt = β2(st),
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where ut = yt−φ1−φ2yt−1, and δ2(st) is obtained by (35). Note that computing
the σ2

t (st) involves generating the entire path {σ2
t (j)}T

t=1 for each value of j
between 1 and K.

6.2.3. Drawing θ1(j) conditional on θ2, S, Z, and θ1(k) for all k �= j can be
done along the lines of Step 1 in Section 4, upon noting that the conditional
posterior log-kernel is given by:

lnp1(θ1(j)) +
∑
t∈Tj

k1t(θ1(j)),

where p1(.) is a prior kernel, Tj = {t | st = j}, and k1t(θ1(j)) is obtained
by replacing, in Equation (10), ν by ν(j), β by β(j), δ2 by δ2(j), and σt by
σt(j). Indeed, σ2

t (st) depends only on θ1(j) when t ∈ Tj , and on θ1(k) for
k �= j when t /∈ Tj . So, prior independence also implies the posterior conditional
independence of θ1(j) and θ1(k) for j �= k. The sum in (13) is now over t ∈ Tj ,
and an identity matrix is added to (13) to guard against the possibility that Σ−1

1

is not positive definite.

6.2.4. Finally, θ2 is drawn conditionally on Θ1, Z, and S by a straightforward
modification of Step 2 in Section 4. Equations (16), (17), and (18) respectively
become:

ỹt(θ2, st) = yt − σt(θ2, st)β(st)
[
Zt − δ2(st)

ν(st) − 2

]
,

Σ−1
2 (θold2 ) = Ω−1

2 +
T∑

t=1

1
σ2

t (θold2 , st)Zt

(
1 yt−1

yt−1 y2
t−1

)
,

and

θ∗2(θ
old
2 ) = Σ2(θold2 )

[
Ω−1

2 μ2 +
T∑

t=1

1
σ2

t (θold2 , st)Zt

(
ỹt(θold2 , st)

yt−1ỹt(θold2 , st)

)]
,

where σ2
t (θ2, st) is evaluated using (36) with ut = ut(θ2) = yt − φ1 − φ2yt−1. In

the conditional posterior log-kernel (20), k2t(θ2) becomes:

−
(

ut(θ2)
σt(θ2,st)

− β(st)
[
Zt − δ2(st)

ν(st)−2

])2

2Zt
− lnσt(θ2, st).
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6.3 Empirical results.

Estimating the Markov switching model of this section implies choosing the
number K of regimes. This number could be chosen by maximizing the mar-
ginal likelihood. In this context, Frühwirth-Schnatter (2004) recommends using
bridge sampling in conjunction with the random (i.e. unconstrained) permuta-
tion sampler, using an importance sampling density constructed from the MCMC
transition kernel. This method appears to be effective in the Gibbsian case; see
Frühwirth-Schnatter (2004) and Deschamps (2008). However, its performance
with the tailored Metropolis-Hastings proposal densities used in this paper ap-
pears to be uncharted territory. It can also be mentioned that the marginal like-
lihood is not useful for selecting an identification constraint, the unconstrained
marginal likelihood being always K! times the constrained one.

When the only objective is the choice of K, a heuristic, but much simpler
procedure can be used. The random permutation sampler is run for several
values ofK, and the largest value ofK yielding noticeable replication clustering is
chosen. The identification constraint suggested by this clustering is then imposed
in a second application of MCMC, and the estimated Markov switching model
is compared with its single-regime counterpart using the Schwarz information
criterion and misspecification diagnostics. This will be the approach used in the
present paper.

For illustrative purposes, we report in Figure 5 some scatter diagrams obtained
by running the random permutation sampler on the NIKKEI225 data, for K = 2
and K = 3. The diagrams for K = 2 clearly suggest the identification constraint
β(1) < β(2), and those for K = 3 clearly suggest that the latter model is over-
parameterized (the results for K = 4 were similar).

Table 7 summarizes the Schwarz criteria obtained from the best single-regime
models and those obtained from the corresponding two-regime MS-GHt-GARCH,
when the identification constraints suggested by the random permutation sam-
pler are imposed. The priors on the persistence probabilities p11 and p22 were
independent Beta(18,2), and those for the other parameters were the same as in
Section 5. The information criteria in Table 7 favor the single-regime model in
all cases except for the S&P500 and NIKKEI225 data.

In Table 8, in-sample misspecification diagnostics are reported; they were com-
puted using estimates of the vt in (28) based on posterior replications conditional
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Table 7. Schwarz information
criteria (single and two-regime models)

GHt-GARCH MS-GHt-GARCH (K = 2)
Data BIC Id. var. BIC

S&P500 26155.18 α∗
0 26143.84

FTSE100 17727.00 α∗
0 17746.06

NIKKEI225 20755.16 β 20734.05
CAC40 16396.45 β∗ 16448.22
SMI 13724.17 ν 13749.34

BIC: Schwarz criterion; Id. var: identifying variable.

Table 8. In-sample diagnostics (single
and two-regime models, p-values)

GHt-GARCH MS-GHt-GARCH (K = 2)
Data AR ARCH BJ LR AR ARCH BJ LR

S&P500 0.15 0.05 0.53 0.99 0.14 0.00 0.65 0.98
FTSE100 0.04 0.23 0.85 0.04 0.05 0.25 0.49 0.05
NIKKEI225 0.59 0.37 0.85 0.83 0.50 0.15 0.25 0.75
CAC40 0.01 0.07 0.88 0.78 0.01 0.04 0.97 0.75
SMI 0.01 0.02 0.66 0.06 0.01 0.00 0.87 0.04

AR: autocorrelation. ARCH: autocorrelation of squares.
BJ: Bera-Jarque. LR: LR test for N(0, 1). Based on the vt in (28).
Conditional mean is AR(1) for S&P500, zero for all the other samples.

on the entire sample (using rolling windows would have been impractical in the
MS-GHt-GARCH model). For comparison, the corresponding single-regime diag-
nostics are also reported. The ARCH statistics for the MS-GHt-GARCH model
estimated on the S&P500 and SMI data are significant, providing some evidence
against this model for these data sets.
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Table 9. Posterior replication summaries
(MS-GHt-GARCH, NIKKEI225 data)

θ θ0.025 θ0.5 θ0.975 RNE sθ m3 m4

α∗
0 0.043 0.068 0.107 0.292 0.017 0.685 3.814
α∗

1 0.003 0.019 0.058 0.479 0.015 1.247 5.236

Regime 1 α∗
2 0.152 0.230 0.345 0.343 0.048 0.602 3.598
β∗ 0.680 0.779 0.847 0.246 0.043 −0.589 3.606
β −0.895 −0.566 −0.346 0.060 0.139 −0.656 3.968
ν 6.259 8.053 10.965 0.032 1.210 0.709 3.710

α∗
0 0.046 0.067 0.097 0.596 0.013 0.632 3.764
α∗

1 0.007 0.018 0.034 0.802 0.007 0.393 3.100

Regime 2 α∗
2 0.117 0.144 0.175 0.799 0.015 0.377 4.701
β∗ 0.869 0.892 0.911 0.828 0.011 −2.246 44.639
β −0.234 −0.083 0.068 0.254 0.075 0.016 3.356
ν 9.097 11.269 15.102 0.024 1.568 0.835 4.125

Transition p11 0.990 0.995 0.998 0.927 0.002 −0.718 3.727
Probs. p22 0.996 0.998 0.999 0.831 0.001 −0.971 4.687

θα: posterior quantile at probability α; RNE: relative numerical efficiency;
sθ: posterior standard deviation;m3: posterior skewness;m4: posterior kurtosis.

Since the joint evidence provided by Tables 7 and 8 favor the two-regime model
only in the NIKKEI225 case, we report in Table 9 posterior replication summaries
for this data set only. The first regime is characterized by a larger deviation from
Normality (lower values of ν and β), higher ARCH asymmetry (value of α∗

2) and
lower GARCH persistence (value of β∗). The smoothed regime probabilities are
presented in Figure 6. Figure 6 shows that the first regime is less persistent than
the second, since it occurs for five relatively brief spells covering less than 4 years
each. The first regime appears to be generally associated with periods of low
volatility.
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7. Discussion and conclusions

This paper has proposed efficient posterior simulators for two GARCH models
having a skewed heavy-tailed error distribution. The first model (GHt-GARCH)
is a threshold version of the GARCH model in Aas and Haff (2006), and does not
appear to have been estimated before by Bayesian methods. The second (ODLV-
GARCH) can be viewed as an observation-driven stochastic volatility model, in
the sense of Barndorff-Nielsen (1997); its empirical performance has apparently
never been investigated.

Using five publicly available asset return data sets, the new models were found
to be significant improvements over classical t-GARCH formulations. In par-
ticular, an asymmetric formulation of the conditional variance did not appear
sufficient to explain fully the skewness of asset return distributions. The mar-
ginal likelihoods for the GHt-GARCH model were found to dominate those of the
ODLV-GARCH model; however, for two of the samples, the evidence in favor of
GHt-GARCH was not decisive, and only appeared at the very end of the sample
(see Figure 3).

A Markov switching extension of the GHt-GARCH model was also presented.
Its estimation only required a relatively straightforward modification of the algo-
rithm for the single-regime model. The estimation cost of this MS-GHt-GARCH
model is much larger than that of its single-regime counterpart, due to the many
evaluations of the Bessel function in (23) that are necessary for drawing the la-
tent variables st (see Section 6.2.1). The Markov switching model outperformed
the single-regime GHt-GARCH in only one instance, for the NIKKEI225 data.

This paper has not attempted to compare the GHt-GARCH and ODLV-
GARCH models with GARCH models based on the other skewed densities that
have been proposed in the literature. Apart from the fact that many such densi-
ties are known (see Paolella (2007, Sec. 7.1.2) for a short survey), it is not clear
that estimating these models by MCMC would be straightforward. Comparing
our models with alternative non-nested formulations would therefore be outside
the scope of this paper.
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Appendix A. Efficient simulation from the

generalized inverse Gaussian distribution

The generalized inverse Gaussian (GIG) density can be written as:

fGIG(x;λ, χ, ψ) =
(χ/ψ)λ/2

2Kλ

(√
χψ
)x−(λ+1) exp

[
−1

2
(
χx−1 + ψx

)]
for x > 0,

(A1)
Kλ being the modified Bessel function of the third kind with index λ. The
parameters in (A1) are constrained by the inequalities χ > 0, ψ > 0, and we
will assume that λ > 0; the case where λ < 0 can be handled by noting that
x−1 ∼ GIG(−λ, ψ, χ) whenever x ∼ GIG(λ, χ, ψ).

The kernel of the GIG density can be seen to be bounded above by that of
the inverted Gamma (IG) density, since this density can be written as:

fIG(x;λ, χ) =
(χ/2)λ

Γ(λ)
x−(λ+1) exp

[
−1

2
(
χx−1

)]
for x > 0. (A2)

A natural rejection method for drawing a GIG variate is therefore based on
an IG source density, and can be formulated as:

Algorithm 1: Inverted Gamma rejection sampling (IGRS).

(1) Draw x ∼ IG(λ, χ).
(2) Draw u ∼ U(0, 1).
(3) If u ≤ exp[−(ψx)/2], return x; otherwise go to Step (1). �
The unconditional acceptance probability in this method can be seen to be:

p(λ, χ, ψ) =
(χ/2)λ

Γ(λ)
2Kλ

(√
χψ
)

(χ/ψ)λ/2
=

2Kλ(ω)(ω/2)λ

Γ(λ)
, (A3)

with ω =
√
χψ.

The probability (A3) is decreasing in ω and increasing in λ. When ω is large
relative to λ, it can become unacceptably low, and a general method for drawing
from log-concave densities will be more efficient than IGRS.

Even though the GIG density of X is not log-concave when λ > 0, the density
of Y = lnX, which is:

fY (y) =
1

2Kλ(ω)
exp [−λ(y − ξ) − ω cosh(y − ξ)] , (A4)
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with:

ω =
√
χψ and ξ =

1
2

ln
(
χ

ψ

)
,

is easily seen to be log-concave. When ω is large, (A4) is close to a Normal
density with an expectation given by the modal value:

y∗ = ξ − ln

[
λ

ω
+

√
λ2

ω2
+ 1

]
, (A5)

and with a variance smaller than 1/ω; see Jørgensen (1982). The approximate
Normality of (A4) means that the envelope rejection sampling method of Gilks
and Wild (1992) is likely to be effective. In our context, two simplifications of
their algorithm can be made: first, it is not necessary to use a squeezing function
since the log-kernel in (A4) is easy to compute; second, an adaptive method is
not relevant since multiple draws from a single density are not needed. For the
sake of completeness, we now describe our implementation of this algorithm. It
depends on an integer k ≥ 1; choosing k is a compromise between the setup cost
and the acceptance probability.

Algorithm 2: Envelope rejection sampling (ERS).

(1) Let, for i = 0, . . . , k:

yi = ymin +
(y∗ − ymin)i

k
,

and, for i = k + 1, . . . , 2k:

yi = y∗ +
(ymax − y∗)(i − k)

k
,

where y∗ is the mode given by (A5) and where ymin = y∗−3/
√
ω, ymax =

y∗ + 3/
√
ω. The approximate Normality of (A4) ensures that the 2k + 1

points yi cover an interval where this density is high.
(2) Compute, for i = 0, . . . , 2k, the log-kernels and derivatives:

gi = −λ(yi − ξ) − ω cosh(yi − ξ),

and
g′i = −λ− ω sinh(yi − ξ).
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Note that by construction, g′k = 0.
(3) Compute, for i = 0, . . . , 2k − 1:

zi =
gi+1 − gi − yi+1g

′
i+1 + yig

′
i

g′i − g′i+1

.

The zi are the points where the tangents to the log-kernel drawn at con-
secutive yi intersect.

(4) Compute a piecewise linear upper hull of the log-kernel as follows:

u(y) =
2k∑
i=0

(αi + βi y)I(zi−1,zi)(y),

where I denotes an indicator function, and where:

αi = gi − g′iyi, βi = g′i, z−1 = −∞ and z2k = +∞.

The source density kernel of the ERS method will be exp[u(y)]. Note
that βi > 0 for i < k, βk = 0, and βi < 0 for i > k.

(5) Compute a discrete probability function (p0, . . . , p2k) by evaluating:

hi = αi + βizi − ln |βi| for i = 0, . . . , 2k − 1 and i �= k,

h∗i = αi + βizi−1 − ln |βi| for i = 1, . . . , 2k and i �= k,

hk = h∗k = αk,

hmax = max
1≤i≤2k

max(hi−1, h
∗
i ),

I0 = exp(h0 − hmax),

Ii = | exp(hi − hmax) − exp(h∗i − hmax)| for i = 1, . . . , 2k − 1 and i �= k,

Ik = (zk − zk−1) exp(αk − hmax),

I2k = exp(h∗2k − hmax),

and defining:

pi =
Ii∑2k

j=0 Ij
.
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The pi can be seen to be proportional to the integrals:

∫ zi

zi−1

exp(αi + βi y)dy.

(6) Draw an integer � between 0 and 2k using the discrete probability function
above.

(7) Draw u ∼ U(0, 1). Conditional on the value � drawn in Step (6), let:

y = z� +
lnu
β�

if � = 0,

y = z� +
ln
[
u+ (1 − u) exp[β�(z�−1 − z�)]

]
β�

if 1 ≤ � ≤ k − 1,

y = zk−1 + (zk − zk−1)u if � = k,

y = z�−1 +
ln
[
u+ (1 − u) exp[β�(z� − z�−1)]

]
β�

if k + 1 ≤ � ≤ 2k − 1,

and

y = z�−1 +
lnu
β�

if � = 2k.

(8) Let � be the value drawn in Step (6) and y be the value drawn in Step (7).
Evaluate:

g(y) = −λ(y − ξ) − ω cosh(y − ξ).

Draw u ∼ U(0, 1). If u ≤ exp[g(y) − α� − β� y] return x = exp(y).
Otherwise go to Step (6). �

We will assume in what follows that λ ≥ 2.5, since this condition is necessary
for the existence of the variance of the GHSST distribution in this paper (recall
that λ = (ν + 1)/2, where ν is the degrees of freedom parameter of this distribu-
tion). As mentioned at the beginning of this Appendix, the ERS method will be
preferable to IGRS when (A3) yields a low value. Evaluating (A3) is not always
practical, since the Bessel function can overflow when λ is large relative to ω.
However, for every given value of ω =

√
χψ, the IGRS acceptance probability

attains a minimum over the interval 2.5 ≤ λ < ∞ when λ = 2.5, and it can be
checked using standard root-finding algorithms that, in (A3), p(2.5, χ, ψ) ≥ 0.10
whenever ω ≤ 4.95. This suggests using IGRS whenever ω ≤ 4.95 and ERS oth-
erwise. Indeed, the two methods are complementary: as ω → 0, (A4) tends to an
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improper density and ERS will no longer be efficient, but the IGRS acceptance
probability in (A3) tends to one.

The method was tested using 100,000 uniformly distributed random values of
λ, χ, and ψ, with 2.5 ≤ λ ≤ 102.5, 1 ≤ χ ≤ 101, and 0 ≤ ψ ≤ 100. Using the low
value of k = 2, the 100,000 GIG draws required about 600 milliseconds on a 3.2
GHz workstation, using compiled code.

When ω > 1011, (A4) essentially becomes a Dirac mass and the modal value
exp(y∗) can be safely returned.

We will now compare the performance of our algorithm with the one proposed
by Dagpunar (2007). Table 10 reports the acceptance probabilities of both meth-
ods for combinations of values of λ and ω. The acceptance probability of Dag-
punar’s method can be computed analytically (Dagpunar, 2007, p. 72). That of
the ERS method was estimated by simulation, by drawing 1,000,000 GIG variates
and recording, for each draw i, the number Ni of tries (including the successful
one). SinceNi−1 follows a geometric distribution, we have E(Ni) = 1/p, and the
average of the Ni provides a consistent estimate of the inverse of the acceptance
probability p.

It is seen in Table 10 that when ω ≤ 4.95, Dagpunar’s method yields higher
acceptance probabilities than the IGRS method described in this paper. However,
performing the acceptance test in Dagpunar’s method is slightly more elaborate
than performing the IGRS counterpart. When ω > 4.95, the ERS probabilities
tend to dominate Dagpunar’s method, at least for moderate values of λ, and this
dominance becomes more obvious as ω increases. It can also be noted that the
ERS probabilities could be increased by choosing a value of k greater than two.

In fact, when ω is large, Dagpunar (2007) recommends drawing GIG variates
by the ratio of uniforms method in Dagpunar (1989). Implementing this method
requires approximating the roots of a polynomial equation by numerical methods,
and the acceptance test in Dagpunar (1989, p. 707) is subject to the potential
error in this approximation. By contrast, the ERS method is an exact one.
For this reason, the author would recommend ERS whenever Dagpunar’s (2007)
method turns out to be inefficient.
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Table 10. Comparison of acceptance probabilities (GIG simulation)

λ

ω Method 3 4 6 8 10 20

0.01 IGRS 1.000 1.000 1.000 1.000 1.000 1.000
DAGPUNAR 1.000 1.000 1.000 1.000 1.000 1.000

0.1 IGRS 0.999 0.999 1.000 1.000 1.000 1.000
DAGPUNAR 1.000 1.000 1.000 1.000 1.000 1.000

0.5 IGRS 0.970 0.980 0.988 0.991 0.993 0.997
DAGPUNAR 0.990 0.995 0.998 0.999 0.999 1.000

4.95 IGRS 0.134 0.204 0.335 0.439 0.520 0.726
DAGPUNAR 0.692 0.771 0.865 0.915 0.942 0.985

5 ERS (k = 2) 0.885 0.874 0.852 0.824 0.796 0.674
DAGPUNAR 0.689 0.768 0.864 0.913 0.941 0.984

10 ERS (k = 2) 0.898 0.895 0.888 0.878 0.866 0.798
DAGPUNAR 0.516 0.592 0.703 0.779 0.833 0.943

102 ERS (k = 2) 0.907 0.906 0.906 0.906 0.906 0.905
DAGPUNAR 0.168 0.196 0.241 0.279 0.312 0.441

103 ERS (k = 2) 0.907 0.907 0.907 0.907 0.907 0.907
DAGPUNAR 0.053 0.062 0.076 0.089 0.099 0.141

106 ERS (k = 2) 0.907 0.907 0.907 0.907 0.907 0.907
DAGPUNAR 0.002 0.002 0.002 0.003 0.003 0.004
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Figure 1. GHSST densities (unit variance)

Figure 2. Error skewness and kurtosis as functions
of standard deviation
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Figure 3.  Evolution of logarithmic Bayes factors over time 
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Figure 4. Correlograms of posterior replications (S&P500 data)
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Figure 5.  Random permutation sampler replications (NIKKEI225 
data)
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Figure 6. Smoothed regime probabilities (NIKKEI225 data)
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