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Abstract

We study properties and parameter estimation of finite-state homogeneous continuous-time
bivariate Markov chains. Only one of the two processes of the bivariate Markov chain is ob-
servable. The general form of the bivariate Markov chain studied here makes no assumptions
on the structure of the generator of the chain, and hence, neither the underlying process nor
the observable process is necessarily Markov. The bivariate Markov chain allows for simulta-
neous jumps of the underlying and observable processes. Furthermore, the inter-arrival time
of observed events is phase-type. The bivariate Markov chain generalizes the batch Markovian
arrival process as well as the Markov modulated Markov process. We develop an expectation-
maximization (EM) procedure for estimating the generator of a bivariate Markov chain, and
we demonstrate its performance. The procedure does not rely on any numerical integration or
sampling scheme of the continuous-time bivariate Markov chain. The proposed EM algorithm
is equally applicable to multivariate Markov chains.

Keywords: Parameter estimation, EM algorithm, Continuous-time bivariate Markov chain,
Markov modulated processes

1 Introduction

We consider the problem of estimating the parameter of a continuous-time finite-state homogeneous
bivariate Markov chain. Only one of the two processes of the bivariate Markov chain is observable.
The other is commonly referred to as the underlying process. We do not restrict the structure
of the generator of the bivariate Markov chain to have any particular form. Thus, simultaneous
jumps of the observable and underlying processes are possible, and neither of these two processes is
necessarily Markov. In [25], a continuous-time bivariate Markov chain was used to model delays and
congestion in a computer network, and a parameter estimation algorithm was proposed. The model
was motivated by the desire to capture correlations observed empirically in samples of network
delays. A continuous-time multivariate Markov chain was used to model ion channel currents in
[3].
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work in this paper was presented in a preliminary form at the 45th Conference on Information Science and Systems

hosted by The Johns Hopkins University, Baltimore, MD, March 23-25, 2011.
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The bivariate Markov chain generalizes commonly used models such as the batch Markovian ar-
rival process (BMAP) [5, 13], the Markov modulated Markov process (MMMP) [8], and the Markov
modulated Poisson process (MMPP) [10, 20, 21, 18]. In the BMAP, for example, the generator is an
infinite upper triangular block Toeplitz matrix. In the MMMP and MMPP, the generator is such
that no simultaneous jumps of the underlying and observable processes are allowed. In addition,
the underlying processes in all three examples are homogeneous continuous-time Markov chains.

We develop an expectation-maximization (EM) algorithm for estimating the parameter of a
continuous-time bivariate Markov chain. The proposed EM algorithm is equally applicable to mul-
tivariate Markov chains. An EM algorithm for the MMPP was originally developed by Rydén[21].
Using a similar approach, EM algorithms were subsequently developed for the BMAP in [5, 13]
and the MMMP in [8]. The EM algorithm developed in the present paper also relies on Rydén’s
approach. It consists of closed-form, stable recursions employing scaling and Van Loan’s approach
for computation of integrals of matrix exponentials [24], along the lines of [18, 8].

In the parameter estimation algorithm of [25], the continuous-time bivariate Markov chain
is first sampled and the transition matrix of the resulting discrete-time bivariate Markov chain is
estimated using a variant of the Baum algorithm [4]. The generator of the continuous-time bivariate
Markov chain is subsequently obtained from the transition matrix estimate. As discussed in [17],
this approach may lead to ambiguous estimates of the generator of the bivariate Markov chain,
and in some cases it will not lead to a valid estimate. Moreover, the approach does not allow
structuring of the generator estimate since it is obtained as a byproduct of the transition matrix
estimate. The EM algorithm developed in this paper estimates the generator of the bivariate
Markov chain directly from a sample path of the continuous-time observable process. This leads to
a more accurate computationally efficient estimator which is free of the above drawbacks.

The remainder of this paper is organized as follows. In Section 2, we discuss properties of the
continuous-time bivariate Markov chain and develop associated likelihood functions. In Section 3,
we develop the EM algorithm. In Section 4, we discuss the implementation of the EM algorithm
and provide a numerical example. Concluding remarks are given in Section 5.

2 Continuous-time Bivariate Markov Chain

Consider a finite-state homogeneous continuous-time bivariate Markov chain

Z = (X,S) = {(X(t), S(t)), t ≥ 0}, (1)

defined on a standard probability space, and assume that it is irreducible. The process S =
{S(t), t ≥ 0} is the underlying process with state space of say {a1, . . . , ar}, and X = {X(t), t ≥ 0}
is the observable process with state space of say {b1, . . . , bd}. The orders r and d are assumed
known. We assume without loss of generality that ai = i for i = 1, . . . , r and bl = l for l = 1, . . . , d.
The state space of Z is then given by {1, . . . , d} × {1, . . . , r}. Neither X nor S need be Markov.
Necessary and sufficient conditions for either process to be a homogeneous continuous-time Markov
chain are given in [3, Theorem 3.1]. With probability one, all sample paths of Z are right-continuous
step functions with a finite number of jumps in any finite interval [1, Theorem 2.1].

The bivariate Markov chain is parameterized by a generator matrix

H = {hln(ij), l, n = 1, . . . d; i, j = 1, . . . r}, (2)
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Figure 1: Example sample path of Z = (X,S).

where the set of joint states {(l, i)} is ordered lexicographically. With P (·) denoting the probability
measure on the given space,

hln(ij) = lim
ǫ→0

1

ǫ
P (Z(t+ ǫ) = (n, j) | Z(t) = (l, i)), (3)

for (l, i) 6= (n, j). The generator matrix can be expressed as a block matrix H = {Hln, l, n =
1, . . . , d}, where Hln = {hln(ij), i, j = 1, . . . , r} are r × r matrices. The number of independent
scalar values that constitute the generator H is at most rd(rd− 1). Since none of the rows of H is
identically zero, the submatrix Hll, l ∈ {1, . . . , d}, is strictly diagonally dominant, i.e.,

−hll(ii) =
∑

(n,j):(n,j)6=(l,i)

hln(ij) >
∑

j:j 6=i

hll(ij), (4)

for all i = 1, . . . , r, and thus, Hll is nonsingular [23, p. 476].
Clearly, the observable process X(t) is a deterministic function of the bivariate Markov chain

Z(t). Conversely, the pair consisting of a univariate Markov chain together with a deterministic
function of that chain is a bivariate Markov chain (see [19]).

2.1 Density of observable process

Assume that the observable process X of a bivariate Markov chain Z = (X,S) starts from some
state X0 at time T0 = 0 and jumps N times in [0, T ] at 0 < T1 < T2 < · · · < TN ≤ T . Let
Xk = X(Tk) denote the state of X in the interval [Tk, Tk+1) for k = 1, 2, . . . , N − 1 and let XN

denote the state of X in the interval [TN , T ]. This convention differs slightly from that used in [8],
where Xk , X(Tk−1), k = 1, . . . , N + 1. Define Sk = S(Tk) to be the state of S at the jump time
Tk of X. Let Zk = Z(Tk) = (Xk, Sk). Let ∆Tk = Tk − Tk−1 denote the dwell time of X in state
Xk−1 during the interval [Tk−1, Tk), k = 1, . . . , N . We denote realizations of Xk, Sk, Zk, Tk, and
∆Tk by xk, sk, zk, tk, and ∆tk, respectively. Figure 1 depicts a sample path of a bivariate Markov
chain Z = (X,S) for which N = 5, r = d = 2, a1 = 1, a2 = 2, b1 = 1, and b2 = 2. From the figure,
we see that the sequence {Zk} is given by

{(1, 1), (2, 2), (1, 2), (2, 2), (1, 2), (2, 1)}. (5)
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Note that in Figure 1, the processes X and S jump simultaneously at times T3 and T5.
The bivariate Markov chain Z is a pure-jump Markov process and is therefore strong Markov

(see [26, Section 4-1]) Using the strong Markov property of Z, it follows that

P (Zk+1 = z,∆Tk+1 ≤ τ | Z0, . . . , Zk;T0, . . . , Tk)

= P (Zk+1 = z,∆Tk+1 ≤ τ | Zk) (6)

for all z ∈ {1, . . . , d} × {1, . . . , r}; τ ≥ 0; and k = 0, 1, 2, . . .. Therefore, {(Zk, Tk)} is a Markov
renewal process (see [6]). Since the observable process X can be represented in an equivalent form
as {(Xk, Tk)}, it follows that the density of X in [0, TN ] may be obtained from the product of
transition densities of {(Zk, Tk)}. If T > TN , an additional term is required to obtain the density
of X in [0, T ], as will be specified shortly.

Assuming a stationary bivariate Markov chain, the transition density of {(Zk, Tk)} follows from
the density corresponding to

P (Z(τ) = (n, j), T1 ∈ [τ, τ + dτ) | Z(0) = (l, i)), (7)

for l 6= n, which we denote by f ln
ij (τ). Let f ln(τ) = {f ln

ij (τ), i, j = 1, . . . , r} denote the transition
density matrix of {(Zk, Tk)}. When τ does not coincide with a jump time of the observable process,
the transition probability

f̄ l
ij(τ) = P (S(τ) = j, T1 > τ | X(0) = l, S(0) = i) (8)

is also required. Let f̄ l(τ) = {f̄ l
ij(τ), i, j = 1, . . . , r} denote the corresponding transition matrix.

The following proposition gives explicit forms for f ln(τ) and f̄ l(τ).

Proposition 1. For τ ≥ 0,

f ln(τ) = eHllτHln, l 6= n, (9)

and

f̄ l(τ) = eHllτ . (10)

Furthermore,

P (Zk+1 = (n, j) | Zk = (l, i)) =
[

−H−1
ll Hln

]

ij
. (11)

Proof. Following an argument similar to that given in [11, 8], the density f ln
ij (t) satisfies the following

equation:

f ln
ij (τ) = hln(ij)e

hll(ii)τ + ehll(ii)τ

∫ τ

0
e−hll(ii)t

∑

k 6=i

hll(ik)f
ln
kj (t)dt. (12)

Differentiating both sides of (12) with respect to t and simplifying, it follows that

df ln
ij (τ)

dτ
= hll(ii)f

ln
ij (τ) +

∑

k 6=i

hll(ik)f
ln
kj (τ) =

∑

k

hll(ik)f
ln
kj (tτ). (13)
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Therefore,

df ln(τ)

dτ
= Hllf

ln(τ) (14)

with initial condition f ln(0) = Hln from (12). Hence, (9) follows. Integrating (9) from 0 to ∞ gives
(11).

The transition probability f̄ l
ij(τ) satisfies an equation similar to (12) except that the first term

on the right-hand side is replaced by ehll(ii)τ δij . This change only affects the initial condition, viz.,
f̄ l(0) = I, where I denotes the identity matrix. Hence, (10) follows.

To simplify notation in the sequel, we shall use P (·) to denote not only a probability measure, but
also a density, as appropriate (cf. [21, 8]). The exact meaning of expressions involving P (·) should be
clear from the context. In particular, all null probabilities are to be interpreted in the density sense.
The density of X in [0, T ] depends on the initial state probabilities µx0

(i) = P (X0 = x0, S0 = i),
i = 1, . . . , r. Let

µx0
= {µx0

(1), µx0
(2), . . . , µx0

(r)} (15)

denote the initial state distribution. Using the Markov renewal property of {(Zk, Tk)}, the density
of X in [0, T ] can be expressed as

P (X(t), 0 ≤ t ≤ T ) = µx0

{

N
∏

k=1

fxk−1xk(∆tk)

}

f̄xN (T − tN )1, (16)

where 1 denotes a column vector of all ones. This expression will be used in Section 3 to develop
the EM recursions.

2.2 Forward-backward recursions

The density in (16) can be evaluated using forward and backward recursions. The forward density
is defined by the row vector

L(k) = {P (X(t), 0 ≤ t ≤ tk, Sk = i), i = 1, . . . , r}, (17)

for k = 0, 1, . . . , N . The forward recursion is given by

L(0) = µx0
,

L(k) = L(k − 1)fxk−1xk(∆tk). (18)

The backward density is defined by the column vector

R(k) = {P (X(t), tk−1 < t ≤ T | Xk−1 = xk−1, Sk−1 = i), i = 1, . . . , r}′,

for k = N+1, N, . . . , 1, where ′ denote matrix transpose. The backward recursion is given by

R(N + 1) = f̄xN (T − tN )1,

R(k) = fxk−1xk(∆tk)R(k + 1). (19)
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From (16)–(19), the density of the observable process in [0, T ] is given by

P (X(t), 0 ≤ t ≤ T ) = L(k)R(k + 1), k = 0, . . . , N. (20)

To ensure numerical stability, it is necessary to scale the above recursions. Using an approach
similar to that developed in [18], the scaled forward recursion is given by

L̃(0) = µx0
,

L̃(k) =
L̃(k − 1)fxk−1xk(∆tk)

ck
, k = 1, . . . , N, (21)

where

ck , L̃(k − 1)fxk−1xk(∆tk)1, k = 1, . . . , N. (22)

The scaled backward recursion is given by

R̃(N+1)= f̄xN (T − tN )1,

R̃(k)=
fxk−1xk(∆tk)R̃(k+1)

ck
, k = 1, . . . , N. (23)

Clearly, L̃(0) = L(0) and R̃(N+1) = R(N+1). For k = 1, . . . , N , one can show straightforwardly
that the scaled and unscaled iterates of the forward and backward recursions are related by

L̃(k) =
L(k)

∏k
m=1 cm

and R̃(k) =
R(k)

∏N
m=k cm

. (24)

From (24) and (17), one sees that for k = 1, . . . , N , the scaled forward vector L̃(k) can be interpreted
as the probability distribution of the underlying process S at time Tk conditioned on the observable
sample path up to and including time tk:

L̃(k) = {P (Sk = i | X(t), 0 ≤ t < tk), i = 1, . . . , r} . (25)

Thus, the density of X up to and including the Nth jump can be expressed as the product of the
scaling constants as follows:

P (X(t), 0 ≤ t ≤ tN ) = L(N)1 =

(

N
∏

k=1

ck

)

L̃(N)1 =

N
∏

k=1

ck. (26)

Therefore, the log-likelihood of the observed sample path is given by

L =
N
∑

k=1

log ck. (27)

The above forward and backward recursions can be generalized to apply to any time t between
jump times of the observable process. In particular, for t ∈ [tk, tk+1), consider the row vector

ℓ̃(t) = {P (S(t) = i | X(τ), 0 ≤ τ ≤ t), i = 1, . . . , r} . (28)

It follows that

ℓ̃(t) =
L(k)f̄xk(t− tk)

L(k)f̄xk(t− tk)1
. (29)

A similar result was derived by [19].
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2.3 Properties

The observable process X is conditionally Markov given S, and vice versa. In contrast to the
MMMP and BMAP (see Section 2.4), the underlying process S of the bivariate Markov chain Z
need not be Markov. A necessary and sufficient condition for S to be a (homogeneous) Markov
chain is that there exists a matrix Q satisfying [3, Theorem 3.1]

Q =

d
∑

n=1

Hln (30)

for l = 1, . . . , d. In this case, Q is the generator of S.
Various statistics of X and S can be expressed in terms of the stationary distribution of Z. We

denote this distribution by π = {πnj}, where πnj = limt→∞ P (Z(t) = (n, j) | Z(0) = (l, i)) and the
set of joint states {(n, j)} is ordered lexicographically. The vector π is the unique solution to the
following system:

πH = 0, π1 = 1. (31)

The process {Zk} is a homogeneous discrete-time Markov chain with transition probabilities
given by (11) in Proposition 1. Define the r×r matrixAln = −H−1

ll Hln, for {l, n : l 6= n ∈ {1, . . . , n}.
For l = n, let All be a matrix of all zeros. The transition matrix of {Zk} is given by A = {Aln}.
Let DH = diag{Hll, l = 1, . . . , d}. It follows that A = −D−1

H H + I. Let ν = {νnj} denote the
stationary distribution of {Zk}, where νnj = limk→∞ P (Zk = (n, j) | Z0 = (l, i)). The vector ν is
the unique solution to the following system:

νA = ν, ν1 = 1. (32)

Then ν can be related to π as follows (cf. [10, (6)]):

ν =
πDH

πDH1
. (33)

The dwell time of the observable process X in a given state has a phase-type distribution
[16, Chapter 2]. The phase-type distribution generalizes mixtures and convolutions of exponential
distributions and can be used to approximate a large class of dwell time distributions. To state this
property formally, we denote the conditional density of the kth dwell time ∆Tk given that Xk−1 = l
by f∆Tk|Xk−1

(τ | l). Define αli = limk→∞ P (Sk = i | Xk = l) and let αl = {αli, i = 1, . . . , r}. The
conditional probability αli can be expressed in terms of ν as follows:

αli =
νli
∑

i νli
. (34)

We then have the following proposition, which is proved in A.

Proposition 2. The stationary conditional distribution of ∆Tk given Xk−1 = l is phase-type. In
particular,

lim
k→∞

f∆Tk|Xk−1
(τ | l) = αle

Hllτβl, (35)

where βl =
∑

n:n 6=l Hln1.

The phase-type dwell time of the observable process may be useful in explicit durational mod-
eling embedded in a hidden Markov model system (cf. [9, 22, 28]). It should be clear that the dwell
time of the underlying process S also has a phase-type distribution. This may be useful in certain
applications for which the underlying process has a non-Markovian character.
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Figure 2: Relationships among various bivariate Markov chains.

2.4 Relation to other models

In this section, we relate the continuous-time bivariate Markov chain to other widely used stochastic
models mentioned in Section 1.

The MMMP (cf. [8]) is a bivariate Markov chain (X,S) for which the underlying process S
is a homogeneous irreducible Markov chain. The observable process X, conditioned on S, is a
nonhomogeneous irreducible Markov chain. The generator of S satisfies Q =

∑d
n=1 Hln, for all l,

and the submatrices {Hln, l 6= n} of the bivariate generator matrixH are all diagonal matrices. This
implies that with probability one, the underlying and observable chains do not jump simultaneously.
Conditioned on S(t) = i, the generator of the observable process is given by Gi = {hln(ii), l, n =
1, . . . , d}. Thus, the MMMP may be parameterized by {Q,G1, . . . , Gr}. The number of independent
scalar values that constitute the parameter of an MMMP is at most r(r − 1) + rd(d− 1).

The BMAP (cf. [14, 13]) is a bivariate Markov chain (N,S) for which the underlying process S
is a homogeneous irreducible finite state Markov chain, and the observable process N is a counting
process with state space {0, 1, 2, . . . , ...}. The size of each jump of N , i.e., the batch size, lies in
{1, 2, . . . , d − 1}. The generator of a BMAP is an upper triangular block Toeplitz matrix with
first row given by {D0,D1, . . . ,Dd−1, 0, 0, . . .}. The generator Q of the underlying chain S satisfies
Q =

∑d−1
m=0 Dm. The BMAP becomes a Markovian arrival process (MAP) when d = 1, i.e., the

observable process can jump by at most one. For this model, we only have D0 and D1. The MAP in
turn becomes an MMPP (cf. [10, 20, 21, 18]) when D1 is a diagonal matrix with the corresponding
Poisson rates along the main diagonal. In contrast to the MMMP and MMPP, the observable and
underlying chains of the BMAP and MAP can jump simultaneously.

The BMAP can be represented in the framework of this paper using a finite-state bivariate
Markov chain Z = (X,S) where X is defined by X(t) = (N(t) mod d) + 1; i.e., the observable
process X records the modulo-d counts of the counting process N of the BMAP. In this case, the
generator of Z is given by H = {Hln, l, n = 1, . . . , d}, where

Hln , D
l−n mod d

(36)

and H is a block circulant matrix. The number of independent scalar values that constitute the
parameter of the BMAP is at most r2d− r.

The bivariate Markov chain may also be seen as a hidden Markov process where {Zk} plays the
role of the underlying Markov chain, and the observations are continuous random variables given by

8



{∆Tk} [21]. The conditional density of each observation ∆Tk depends on both Zk−1 and Zk, which
follows from (9). A review of hidden Markov processes may be found in [7]. The EM algorithm
developed in Section 3 is applicable to any of the above particular cases, as well as multivariate
Markov chains (see [3]).

3 EM Algorithm

In this section, we describe an EM algorithm for ML estimation of the parameter of a bivariate
chain, denoted by φ0, given the sample path of the observable process in the interval [0, T ]. In the
EM approach, a new parameter estimate, say φι+1, is obtained from a given parameter estimate,
say φι, as follows:

φι+1=argmax
φ

E{log P ({Z(t), 0 ≤ t ≤ T};φ) | X(t), 0 ≤ t ≤ T ;φι}, (37)

where the expectation is taken over {S(t), 0 ≤ t ≤ T} given the observable sample path {X(t), 0 ≤
t ≤ T}. The maximization is over φ, which consists of the off-diagonal elements of the bivariate
generator H. The density of a univariate Markov chain was derived in [1]. A similar approach can
be used to derive the density of the bivariate Markov chain {Z(t), 0 ≤ t ≤ T} which is required in
(37). The resulting log-density is expressed in terms of the number of jumps mln

ij from each state

(l, i) to any other state (n, j) and the dwell time Dl
i in each state (l, i).

Let ϕli(t) = I(Z(t) = (l, i)), where I(·) denotes the indicator function, and let # denote set
cardinality. Then,

mln
ij = #{t : 0<t≤T,Z(t−)=(l, i), Z(t)=(n, j)}

=
∑

t∈[0,T ]

ϕli(t−)ϕnj(t), (38)

Dl
i =

∫ T

0
ϕli(t)dt, (39)

where the sum in (38) is over the jump points of Z(t). The conditional mean in (37) involves the
conditional mean estimates

m̂ln
ij = E{mln

ij | X(t), 0 ≤ t ≤ T}, and (40)

D̂l
i = E{Dl

i | X(t), 0 ≤ t ≤ T}, (41)

where the dependency on φι is suppressed.
The maximization in (37) yields the following intuitive estimate in the ι+ 1st iteration of the

EM algorithm [1]:

ĥln(ij) =
m̂ln

ij

D̂l
i

, (l, i) 6= (n, j). (42)

Next, we develop closed-form expressions for the estimates m̂ln
ij and D̂l

i.

9



3.1 Number of jumps estimate

The conditional expectation of mln
ij in (38) is given by

m̂ln
ij =

∑

t∈[0,T ]

P (Z(t−) = (l, i), Z(t) = (n, j) | X(τ), 0 ≤ τ ≤ T ). (43)

To further evaluate this expression, we consider two cases: 1) l = n, i 6= j; and 2) l 6= n.

Case 1): (l = n, i 6= j)

In this case, the sum in (43) is over jumps of the underlying process S from i to j while the
observable chain X remains in state l. The estimate in (43) can be written as a Riemann integral
by partitioning the interval [0, T ] into N subintervals of length ∆ such that N∆ = T and then
taking the limit as ∆ approaches zero:

m̂ll
ij = lim

∆→0

N
∑

k=1

∆ ·
P (Z((k − 1)∆) = (l, i), Z(k∆) = (l, j) | X(t), 0 ≤ τ ≤ T )

∆

=

∫ T

0
P (Z(t−) = (l, i), Z(t) = (l, j) | X(τ), 0 ≤ τ ≤ T )dt. (44)

In (44), P (Z(t−) = (l, i), Z(t) = (l, j) | X(τ), 0 ≤ τ ≤ T ) denotes the conditional density given
X(τ), 0 ≤ τ ≤ T , of a jump of Z from (l, i) to (l, j) at time t. A result similar to (44) was originally
stated in [1, 2, 21]. A detailed proof was provided in [1], in the context of estimating finite-state
Markov chains, and in [2], in the context of estimating phase-type distributions. The proof was
adapted in [8] for estimating MMMPs.

We have the following proposition, which is stated for the case when T = tN .

Proposition 3. For k = 0, . . . , N − 1, define the 2r × 2r matrix

Ck =

[

Hxkxk
Hxkxk+1

R̃(k + 2)L̃(k)
0 Hxkxk

]

. (45)

Let Ik be the r × r upper right block of the matrix exponential eCk∆tk+1 , denoted by

Ik =
[

eCk∆tk+1
]

12
. (46)

Then,

m̂ll
ij =



Hll ⊙
∑

k:xk=l

I ′
k

ck+1





ij

(47)

where ⊙ denotes element-by-element matrix multiplication.
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Proof. Let 1i denote a column vector with a one in the ith element and zeros elsewhere. Suppose
t ∈ [tk, tk+1) and xk = l. Applying (18), (19), (26) in that order we obtain

P (Z(t−) = (l, i), Z(t) = (l, j) | X(τ), 0 ≤ τ ≤ T )

=
P (Z(t−) = (l, i), Z(t) = (l, j),X(τ), 0 ≤ τ ≤ T )

P (X(τ), 0 ≤ τ ≤ T )

=

{

µx0

∏k
m=1 f

xm−1xm(∆tm)
}

P (X(τ), 0 ≤ τ ≤ T )
f̄xk(t−tk)1ihxkxk

(ij)1′
jf

xkxk+1(tk+1−t)

·

{

N
∏

m=k+2

fxm−1xm(∆tm)

}

1

=
hll(ij)L(k)

P (X(τ), 0 ≤ τ ≤ T )
f̄xk(t−tk)1i1

′
jf

xkxk+1(tk+1−t)R(k+2)

=
hll(ij)L̃(k)

ck+1
f̄xk(t−tk)1i1

′
jf

xkxk+1(tk+1−t)R̃(k+2)

=
hll(ij)

ck+1

[

fxkxk+1(tk+1−t)R̃(k+2)L̃(k)f̄xk(t−tk)
]

ji
. (48)

Substituting (48) into (44), it follows that

m̂ll
ij =

∑

k:xk=l

hll(ij)

ck+1

[
∫ tk+1

tk

fxkxk+1(tk+1−t)R̃(k+2)L̃(k)f̄xk(t−tk)dt

]

ji

. (49)

Denoting the integral in the above expression by Ik and using (9) and (10), we obtain

Ik =

∫ ∆tk+1

0
eHx

k
x
k
(∆tk+1−y)Hxkxk+1

R̃(k+2)L̃(k)eHx
k
x
k
ydy. (50)

The result (47) now follows from (49) and (50). Following the approach of [18, 8], we apply the
result in [24] to evaluate the integral in (50) and obtain (46).

Case 2): (l 6= n)

In this case, the sum in (43) is over the jump points of the observable process X from state l
to state n, irrespective of jumps of S. Hence, the conditional mean of the number of jumps can be
written as

m̂ln
ij =

∑

k:xk=l,

xk+1=n

P (Z(tk−) = (l, i), Z(tk) = (n, j) | X(τ), 0 ≤ τ ≤ T ). (51)

We have the following result, which holds for T ≥ tN .

Proposition 4. Let

Jk = R̃(k+2)L̃(k)eHx
k
x
k
∆tk , k = 0, . . . , N−1. (52)
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Then for l 6= n,

m̂ln
ij =









Hln ⊙
∑

k:xk=l,

xk+1=n

J ′
k

ck+1









ij

, (53)

Proof. Suppose k is such that xk = l and xk+1 = n. Similarly to Proposition 3,

P (Z(tk−)=(l, i), Z(tk)=(n, j) | X(τ), 0 ≤ τ ≤ T )

=
P (Z(tk−)=(l, i), Z(tk)=(n, j),X(τ), 0 ≤ τ ≤ T )

P (X(τ), 0 ≤ τ ≤ T )

=
hln(ij)

{

µx0

∏k
m=1 f

xm−1xm(∆tm)
}

P (X(τ), 0 ≤ τ ≤ T )
f̄xk+1(∆tk+1)1i1

′
j

{

N
∏

m=k+2

fxm−1xm(∆tm)

}

1

=
hln(ij)

P (X(τ), 0 ≤ τ ≤ T )
L(k)f̄xk(∆tk)1i1

′
jR(k+2)

=
hln(ij)

ck+1

[

R̃(k+2)L̃(k)f̄xk(∆tk)
]

ji
. (54)

Substituting (54) into (51),

m̂ln
ij =

∑

k:xk=l,

xk+1=n

hln(ij)

ck+1

[

R̃(k + 2)L̃(k)f̄xk(∆tk)
]

ji
. (55)

The result follows by using (10) in (55) and defining Jk as the bracketed term in that expression.

3.2 Dwell time estimate

Next, we provide an expression for the dwell time estimate D̂l
i. Taking the conditional expectation

in (39), it follows that

D̂l
i =

∫ T

0
P (Z(t) = (l, i) | X(τ), 0 ≤ τ ≤ T )dt. (56)

We have the following result, which is stated for the case T = tN .

Proposition 5.

D̂l
i =





∑

k:xk=l

I ′
k

ck+1





ii

, (57)

where Ik is given in (46).
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Proof. The integrand in (56) can be non-zero only for values of t for which X(t) is in state l. Hence,
it follows that

D̂l
i =

∑

k:xk=l

∫ tk+1

tk

P (Z(t) = (l, i) | X(τ), 0 ≤ τ ≤ T )dt. (58)

For t ∈ [tk, tk+1) and xk = l, we have similarly to Proposition 3,

P (Z(t) = (l, i) | X(τ), 0 ≤ τ ≤ T ) =
P (Z(t) = (l, i),X(τ), 0 ≤ τ ≤ T )

P (X(τ), 0 ≤ τ ≤ T )

=

{

µx0

∏k
m=1 f

xm−1xm(∆tm)
}

P (X(τ), 0 ≤ τ ≤ T )
· f̄xk(t−tk)1i1

′
i

·

{

fxkxk+1(tk+1−t)

N
∏

m=k+2

fxm−1xm(∆tm)

}

1

=
L(k)

P (X(τ), 0 ≤ τ ≤ T )
f̄xk(t−tk)1i1

′
if

xkxk+1(tk+1−t)R(k+2)

=
1

ck+1

[

fxkxk+1(tk+1−t)R̃(k+2)L̃(k)f̄xk(t−tk)
]

ii
. (59)

The result follows from substituting (59) into (58).

4 Implementation and Numerical Example

The EM algorithm for continuous-time bivariate Markov chains developed in Section 3 was imple-
mented in Python using the SciPy and NumPy libraries. The matrix exponential function from the
SciPy library is based on a Padé approximation, which has a computational complexity of O(r3) for
an r× r matrix (see [15]). For comparison purposes, the parameter estimation algorithm based on
time-sampling proposed in [25] was also implemented in Python. We refer to this algorithm as the
Baum-based algorithm for estimating the parameter of continuous-time bivariate Markov chains.

4.1 Baum-based Algorithm

In the Baum-based algorithm described in [25], the continuous-time bivariate Markov chain Z is
time-sampled to obtain a discrete-time bivariate Markov chain Z̃ = (X̃, S̃) = {Z̃k = (X̃k, S̃k)},
where

Z̃k = Z(k∆), k = 0, 1, 2, . . . ,

and ∆ is the sampling interval. Let R denote the transition matrix of Z̃. A variant of the Baum
algorithm [4] is then employed to obtain a maximum likelihood estimate, R̂, of R. An estimate of
the generator of the continuous-time bivariate Markov chain is obtained from

Ĥ =
1

∆
ln(R̂), (60)
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where ln(R̂) denotes the principal branch of the matrix logarithm of R̂, which is given by its Taylor
series expansion

ln(R̂) =

∞
∑

n=1

(−1)n−1 (R̂− I)n

n
, (61)

whenever the series converges. Existence and uniqueness of a generator Ĥ corresponding to a
transition matrix R̂ are not guaranteed (see [12, 17]). In practice, existence and uniqueness of Ĥ
for a given R̂ depend on the sampling interval ∆ (see [17]). Moreover, if a generator matrix Ĥ of
a certain structure is desired (e.g., a generator for an MMPP), that structure is difficult to impose
through estimation of R̂.

A sufficient condition for the series in (61) to converge is that the diagonal entries of R̂ are all
greater than 0.5, i.e., R̂ is strictly diagonally dominant (see Theorem 2.2 in [12] and Theorem 1 in
[25]). In this case, the row sums of ln(R̂) are guaranteed to be zero, but some of the off-diagonal
elements may possibly be negative [12, Theorem 2.1]. An approximate generator can then be
obtained by setting the negative off-diagonal entries to zero and adjusting the diagonal elements
such that the row sums of the modified matrix are zero. If R̂ is not strictly diagonally dominant,
the algorithm in [25] uses the first term in the series expansion of (61) to obtain an approximate
generator, i.e.,

Ĥ =
R̂− I

∆
. (62)

4.2 Computational and Storage Requirements

The computational requirement of the EM algorithm developed in Section 3 depends linearly on
the number of jumps, N , of the observable process. For each jump of the observable process,
matrix exponentials for the transition density matrix fxkxk+1(∆tk) in (18) and (19) and for the
matrix Ik in (46) are computed. Computation of the matrix exponential of an r×r matrix requires
O(r3) arithmetic operations (see [15]). Thus, the computational requirement due to computation
of matrix exponentials is O(Nr3). The element-by-element matrix multiplications in (47) and
(53) contribute a computational requirement of O(N(r2d2)). Therefore, the overall computational
complexity of the EM algorithm can be stated as O(N(r3+ r2d2)). The storage requirement of the
EM algorithm is dominated by the (scaled) forward and backward variables L̃(k) and R̃(k). Hence,
the overall storage required is O(Nr).

By comparison, the computational requirement of the Baum-based algorithm is O(Ñr2d2),
where Ñ = T/∆ is the number of discrete-time samples. The storage requirement of the Baum-
based algorithm is O(Ñrd). Clearly, both the computational and storage requirement of this
algorithm are highly dependent on the choice of the sampling interval ∆.

4.3 Numerical Example

A simple numerical example of estimating the parameter of a continuous-time bivariate Markov
chain using the EM procedure developed in Section 3 is presented in Table 1. For this example, the
number of underlying states is r = 2 and the number of observable states is d = 2. The generator
matrix H is displayed in terms of its block matrix components Hln, which are 2 × 2 matrices for
l, n ∈ {1, 2}. The column labeled φ0 shows the true parameter value for the bivariate Markov
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φ0 φ0 φ̂em

H11 -70 10 -120 30 -77.03 14.76
20 -55 2 -8 8.46 -47.95

H12 50 10 70 20 51.80 10.46
25 10 5 1 32.66 6.83

H21 50 0 70 0 49.50 0
0 10 0 1 0 9.54

H22 -60 10 -100 30 -59.51 10.01
20 -30 2 -3 19.61 -29.15

Table 1: φ0 = true; φ0 = initial; φ̂em = EM-based estimate.

φ̂baum

∆ 0.1 0.01 0.005 0.0025

H11 -10.00 0.13 -77.54 10.40 -78.18 15.40 -80.43 15.98
2.35 -6.08 11.30 -49.21 6.16 -48.20 8.73 -48.53

H12 0.42 9.44 57.34 9.81 49.29 13.48 52.13 12.32
1.28 2.45 20.63 17.29 33.49 8.55 31.44 8.36

H21 0.00 7.92 7.10 2.91 52.04 1.18 51.92 0.45
1.85 1.39 2.19 15.36 2.11 9.74 0.97 10.63

H22 -10.00 2.18 -56.29 6.28 -64.22 11.01 -64.51 12.13
0.53 -3.76 4.21 -21.77 16.09 -27.93 17.72 -29.31

Table 2: Parameter estimates obtained using the Baum-based approach of [25] with different sam-
pling intervals ∆.
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chain. Similarly, the columns labeled φ0 and φ̂em show, respectively, the initial parameter and the
EM-based estimate rounded to two decimal places. The observed data, generated using the true
parameter φ0, consisted of N = 104 observable jumps. The EM algorithm was terminated when
the relative difference of successive log-likelihood values, evaluated using (27), fell below 10−7.

The bivariate Markov chain parameterized by φ0 in Table 1 is neither a BMAP nor an MMMP.
Indeed, H is not block circulant as in a BMAP and H12 is not diagonal as in an MMMP. Moreover,
according to [3, Theorem 3.1], the underlying process S is not a homogeneous continuous-time
Markov chain since H11 +H12 6= H21 +H22 (cf. (30)).

The estimate φ̂em was obtained after 63 iterations of the EM procedure. An important property
of the EM algorithm is that whenever an off-diagonal element of the generator H is zero in the
initial parameter, the corresponding element in any EM iterate remains zero. This can be seen
easily from Propositions 3 and 4. Thus, if structural information about H is known, that structure
can be incorporated into the initial parameter estimate and it will be preserved by the EM algorithm
in subsequent iterations. In the example of Table 1, H21 is diagonal in the initial parameter φ0 and
retains its diagonal structure in the estimate φ̂em. We also see that the estimate of H21, which has
the diagonal structure required for an MMMP, is markedly more accurate than that of H12. Based
on the numerical experience gained from this and other examples, we can qualitatively say that
estimation of the diagonal elements of Hln (l 6= n) tends to be more accurate and requires fewer
iterations than that of the off-diagonal elements.

For comparison purposes, we have implemented the Baum-based approach proposed in [25]
and applied it to the bivariate Markov chain specified in Table 1 with true parameter φ0 and
initial parameter estimate φ0, using the sampling intervals ∆ = 0.1, 0.01, 0.005, and 0.0025. The
corresponding number of discrete-time samples Ñ was 2408, 24077, 48153, and 96305, respectively.
The algorithm was terminated when the relative difference of successive log-likelihood values fell
below 10−7. The number of iterations required for the four sampling intervals was 499, 446, 105,
and 123, respectively. In this example, a generator matrix could be obtained from the transition
matrix estimate using (60) for all of the sampling intervals except for ∆ = 0.1. When ∆ = 0.1, the
generator was obtained using the approximation (62).

The results are shown in Table 2. For all of the sampling intervals, the estimate of H21 is not
a diagonal matrix, but the accuracy of this estimate appears to improve as ∆ is decreased. The
Baum-based estimates of the other block matrices Hln also appear to become closer in value to the
EM-based estimate φ̂em shown in Table 1 as the sampling interval decreases. On the other hand, as
∆ decreases, the computational requirement of the Baum-based approach increases proportionally,
as discussed in Section 4.2. In the case ∆ = 0.1, the parameter estimate is far from the true
parameter, which is not surprising, as many jumps of the observable process are missed in the
sampling process. Indeed, the likelihood of the final parameter estimate φ̂baum obtained in this
case is actually lower than that of the initial parameter estimate φ0 given in Table 1. This example
illustrates not only the high sensitivity of the final parameter estimate with respect to the size of
the sampling interval, but also that the likelihood values of the continuous-time bivariate Markov
chain may decrease from one iteration to the next in the Baum-based approach. In contrast, the
EM algorithm generates a sequence of parameter estimates with nondecreasing likelihood values.
Conditions for convergence of the sequence of parameter estimates were given in [27].
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5 Conclusion

We have studied properties of the continuous-time bivariate Markov chain and developed explicit
forward-backward recursions for estimating its parameter based on the EM algorithm. The pro-
posed EM algorithm does not require any sampling scheme or numerical integration. The bivariate
Markov chain generalizes a large class of stochastic models including the MMMP and the BMAP,
which both generalize the MMPP but are not equivalent. In its general form, the bivariate Markov
chain has been used to model ion channel currents (see [3]) and congestion in computer networks
(see [25]). Since the proposed EM procedure preserves the zero values in the estimates of the gen-
erator for the bivariate Markov chain, it can be applied to estimate the parameter of special cases,
for example, the MMMP and BMAP, by specifying an initial parameter estimate of the appropriate
form.

A Proof of Proposition 2

The density corresponding to (7) can be expressed as

f∆Tk,Xk,Sk|Xk−1,Sk−1
(τ, n, j | l, i) = [f ln(τ)]ij , k ≥ 1. (63)

Summing both sides of (63) over n, for n 6= l, and over j, applying (9), and using βl ,
∑

n:n 6=lHln1,
we obtain

f∆Tk|Xk−1,Sk−1
(τ | l, i) =



eHllτ
∑

n:n 6=l

Hln1





i

=
[

eHllτβl
]

i
. (64)

Applying the law of total probability,

f∆Tk|Xk−1
(τ | l) =

∑

i

P (Sk−1 = i|Xk−1 = l)
[

eHllτβl
]

i
. (65)

Taking the limit as k → ∞, it follows that

lim
k→∞

f∆Tk|Xk−1
(τ | l) = αle

Hlltτβl. (66)

Equation (66) has the form of a phase-type distribution parameterized by (αl,Hll) [16, Chapter
2]. Indeed, the stationary distribution of ∆Tk conditioned on Xk−1 = l is equivalent to the distri-
bution of the absorption time of a Markov chain defined on the state space {1, 2, . . . , r + 1} with
initial distribution given by αl and generator matrix given by

G =

[

Hll βl
0 0

]

, (67)

where 0 denotes a row vector of all zeros. Here, r + 1 is an absorbing state, while the remaining
states, 1, . . . , r, are transient.
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