
Sample Size Calculation for Comparing Time-Averaged
Responses in K-Group Repeated-Measurement Studies

Song Zhang and
Department of Clinical Sciences, UT Southwestern Medical Center, Dallas, TX

Chul Ahn
Department of Clinical Sciences, UT Southwestern Medical Center, Dallas, TX

Abstract
Many clinical trials compare the efficacy of K (≥3) treatments in repeated measurement studies.
However, the design of such trials have received relatively less attention from researchers. Zhang
& Ahn (2012) derived a closed-form sample size formula for two-sample comparisons of time-
averaged responses using the generalized estimating equation (GEE) approach, which takes into
account different correlation structures and missing data patterns. In this paper, we extend the
sample size formula to scenarios where K (≥3) treatments are compared simultaneously to detect
time-averaged differences in treatment effect. A closed-form sample size formula based on the
noncentral χ2 test statistic is derived. We conduct simulation studies to assess the performance of
the proposed sample size formula under various correlation structures from a damped exponential
family, random and monotone missing patterns, and different observation probabilities. Simulation
studies show that empirical powers and type I errors are close to their nominal levels. The
proposed sample size formula is illustrated using a real clinical trial example.

1 Introduction
Diggle et al. (2002) provided closed-form sample size formulas for clinical trials with
repeated measurements, which compare the time-averaged responses and the rates of change
based on a continuous outcome between two groups, assuming no missing data, the
compound symmetry (CS) correlation among observations, and a balanced design. Jung &
Ahn (2004) proposed a sample size formula to compare K-sample slopes in repeated-
measurement studies using the generalized estimating equation (GEE) approach (Liang &
Zeger 1986), which has been widely used to analyze repeated-measurement data due to its
ability to accommodate missing values and robustness against misspecification of the true
correlation structure. Time-averaged difference analysis is frequently used when the
outcome varies with time (Zhang & Ahn 2011). For example, if mean blood pressure levels
are compared between treatment groups by taking only one measurement from each subject,
the experiment may have a poor performance due to substantial within-subject variation in
blood pressure levels. Liu & Wu (2005) provided a sample size formula to test the time-
averaged differences for unbalanced clinical trials between two treatment groups. Following
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the GEE approach, Zhang & Ahn (2012) extended the sample size calculation for time-
averaged difference between two groups to allow for missing data, general correlation
structures, and unbalanced randomization.

In this paper we further extend the approach of Zhang & Ahn (2012) to calculate sample
sizes for repeated-measurement clinical trials where K (≥ 3) treatment groups are compared
based on time-averaged differences. The derived sample size formula has a closed form, and
is flexible enough to accommodate balanced or unbalanced experimental designs, arbitrary
missing data patterns, and various correlation structures.

Suppose in a clinical trial enrolled subjects are randomly assigned to one of K treatment
arms, and scheduled to be evaluated J times during the study period (at time t1, ⋯, tJ). Here
tJ indicates the end of study. Without loss of generality, we set tJ = J. We use ykij to denote
the continuous outcome variable obtained from the ith subject of the kth treatment arm at

time tj. The number of subjects within each treatment arm is denoted by nk, and 
is the total number of subjects. We define rk = nk/n to be the probability of a patient being
assigned to the kth treatment. To detect time-averaged differences among the K treatment
arms, we consider the following model,

(1)

where bk indicates a group-specific treatment effect and εkij is a zero-mean error term with
variance σ2. We assume εkij to be correlated within subjects, Corr(εkij, εkij′) = ρjj′ with ρjj =
1, and independent across subjects. The null hypothesis of interest is H0 : b1 = ⋯ = bK.

First we briefly review the testing procedure without missing data. Based on an independent
working correlation structure, the GEE estimator of bk is

(2)

To facilitate a later extension that accommodates missing data, we present the estimator in a
matrix form. Here yki = (yki1, ⋯, ykiJ)′ is the vector of repeated measurements from the
same patient and 1 is a vector with all J elements being 1.

Under the null hypothesis, we use b to denote the common value of treatment effects. i.e., b1
= b2 = ⋯ = bK = b. The GEE estimator of b is obtained by pooling observations from all K
groups,

We define a vector . Plugging (1), we have
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Here εki = (εki1, ⋯, εkiJ)′. Under H0, the central limit theorem suggests that as n → ∞,
vector B is approximately normal with a mean 0 and a (K − 1) × (K − 1) variance matrix W
= (wkh). The value of wkh is

(3)

Note that we define  with length (K − 1) instead of

 with length K. The reason is that the K elements in the latter

vector follow a linear constraint, , which in turn would lead to a singular
variance matrix.

In practice W can be consistently estimated based on empirical error vectors ε̂kij = yki − 1b̂k.

For hypothesis testing, we reject H0 with type I error α if . Here  is
the 100(1 − α)th percentile of a χ2 distribution with (K − 1) degrees of freedom.

2 Sample Size and Power Calculation
Suppose we would like to test the alternative hypothesis Ha : b1 = θ1, ⋯, bK = θK, versus the
null hypothesis H0 : b1 = ⋯ = bK, based on statistic B′Ŵ−1B. Under Ha, as n → ∞, B
′Ŵ−1B approximately has a noncentral χ2 distribution with K − 1 degrees of freedom and a
noncentrality parameter nη′W−1η, where W = limn→∞ Ŵ and

with . Let  denote a noncentral χ2 random variable with K − 1 degrees
of freedom and a noncentrality parameter U. Under type I error α and power 1 − β, the
sample size is calculated by first solving for U from the following equation,

Denoting the solution by U = U(K − 1, α, β), the required sample size is

(4)

The value of U(K − 1, α, β) can be obtained through numerical search. The SAS function
CNONCT also provides the solution. In the following we derive the expression of W or W−1

in the presence of missing data and arbitrary correlation structures, which eventually leads to
a closed-form sample size formula. We assume that the outcomes are either measured at
scheduled time (t1, ⋯, tJ) or missing, and the missing probabilities are only associated with
time. Let δkij be an indicator which takes value 0/1 if a subject’s outcome measurement at tj
is missing/observed. We define pj = E(δkij) to be the probability of a subject having an
observation at time tj, and pjj′ = E(δkijδkij′) to be the probability of a subject having
observations at both tj and tj′. Note that pjj = pj.
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Theorem 1. As n → ∞, the (K − 1) × (K − 1) variance matrix Ŵ converges to

Here .

Proof. See Appendix A.1.

The special structure of W allows straightforward evaluation of its inverse,

 with r = (r1, ⋯, rK−1)′. Then we have

(5)

Plugging (5) into (4), we have the final sample size formula accounting for missing data in
the test of time-averaged differences.

The required sample size is affected by missing data through observation probabilities (pj
and pjj′) in s and μ. Different specifications of pjj′ imply different missing patterns. For
example, under random missing (RM), we have pjj′ = pjpj′. That is, having an observation at
tj is independent of having an observation at tj′. On the other hand, under monotone missing
(MM), a subject missing the measurement at tj will miss all subsequent measurements. In
this case we have pjj′ = pj′ for j′ > j. The sample size is also affected by within-subject
correlation, which is characterized by ρjj′. Different correlation structures can be considered.
The compound symmetry (CS) correlation structure assumes a constant correlation
regardless of the temporal distance between two measurements, ρjj′ = ρ for j ≠ j′. The
autoregressive (AR) correlation structure, however, assumes ρjj′ = ρ|tj−tj′|. Thus
measurements made close together will have a higher correlation than those made far apart.
In this study we consider a flexible damped exponential family of correlations from Munoz
et al. (1992). The within-subject correlation is parameterized by ρjj′ = ρ|tj−tj′|ϕ with 0 ≤ ϕ ≤
1. Note that the CS and AR correlation structures are special cases of this family when ϕ
takes value 0 and 1, respectively. With ϕ ranging between 0 and 1, we have a flexible model
to describe the various correlation structures in real experiments.

Traditionally, researchers have taken a crude approach to adjusting sample size for missing
data. Specifically, the observation probabilities usually decrease over time, p1 ≥ p2 ≥ ⋯ ≥ pJ,
and we define q = 1 − pJ to be the dropout rate at the end of study. To make adjustment for
missing data, researchers first calculate the sample size under complete data (p1 = p2 = ⋯ =
pJ = 1), denoted by n0. Then the sample size with missing data is obtained by inflating n0 by
a factor of 1/(1 − q). That is, n* = n0/pJ. This adjustment approach may be too conservative,
resulting an unnecessarily large sample size and waste of resources. The reasons are: 1)
Subject who dropped out at tJ might have partial observations (measurements at earlier
times). These partial observations are involved in statistical inference but their contribution
is ignored by the crude sample size adjustment. 2) The impact of missing patterns also needs

Zhang and Ahn Page 4

Comput Stat Data Anal. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



to be considered. Given the same dropout rate, observation probabilities that fall rapidly at
the beginning of study and stabilize later will lead to more severe missingness than
probabilities that drop steadily over time. Furthermore, given the same observation
probabilities P = (p1, ⋯, pJ)′, the RM pattern suggests that missing values tend to be evenly
distributed among all subjects while the MM pattern suggests that missing values tend to be
concentrated among a subset of subjects. 3) The impact of missing data also depends on
correlation. For example, if the repeated measurements are highly correlated, missing a few
measurements may only lead to small information loss, and thus little impact on sample size.

The proposed sample size formula makes a better use of information. In , it
considers all the observation probabilities over the study period instead of the dropout rate at

the end of study only. In , the correlation (ρjj′) between pairs of
measurements are taken into account as well as the probabilities that they are actually
observed in the trial. The following theorem indicates that under realistic conditions, the
proposed approach always leads to a saving in sample size compared with that based on the
traditional adjustment for missing data.

Theorem 2. In a clinical trial with repeated measurements, if a) the observation probabilities
are non-increasing over time, p1 ≥ p2 ≥ ⋯ ≥ pJ; and b) the within-subject correlations are
non-negative, ρjj′ ≥ 0; then we always have

Furthermore, we have n = n0/pJ only under complete data, p1 = ⋯ = PJ = 1.

Proof. See Appendix A.2.

The two conditions are satisfied in most clinical trials. Given these two conditions, Theorem
(2) is applicable regardless of missing pattern or correlation structure.

The sample size requirement also depends on the alternative hypothesis. One frequently
assumed alternative hypothesis is that among the K groups, one receives a control treatment
and the others receive different experimental treatments with similar efficacy. Without loss
of generality, let θK denote the control treatment effect, and θ1 = ⋯ = θK − 1 = θK + Δ
denote the experimental treatment effects. This specification implies that θ̄ = θK + (1 − rK)Δ
and ηk = rKΔ for k = 1, ⋯, K − 1. Then the sample size formula is

Another widely used alternative hypothesis is that the experimental groups (k = 1, ⋯, K − 1)
are ordered in treatment effect. For example, the dosage of an experimental drug increases
over the groups, with a constant improvement in efficacy between consecutive dosages. In
this case we have θk = θK + kΔ for k = 1, ⋯, K − 1. Here we only present the special case of
a balanced design, r1 = ⋯ = rK = 1/K. First we have θ̄ = θK + Δ(K − 1)/2 and ηk = Δ[k − (K
− 1)/2] for k = 1, ⋯, (K − 1). The required sample size is expressed as
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3 Simulation
We conduct simulation studies to assess the performance of the proposed sample size. A
clinical trial is conducted to compare the efficacy of K = 4 treatments based on time-
averaged differences of J = 6 repeated measurements during the study period. The nominal
power and type I error are set at 1 − β = 0.8 and α = 0.05, respectively. We explore the
effects of a series of correlation structures from the damped exponential family with ϕ = 0
(CS), 1/2, and 1 (AR(1)). Different values of parameter ρ are considered, ranging from 0.1,
0.25, to 0.5. We assess the impact of two missing patterns, RM and MM, with different
trends in observation probabilities,

P1 = (1, 0.82, 0.79, 0.76, 0.73, 0.7),

P2 = (1, 0.94, 0.88, 0.82, 0.76, 0.7),

P3 = (1, 1, 1, 0.9, 0.8, 0.7),

P4 = (1, 1, 1, 1, 1, 1).

The first element of the four probability vectors are 1, indicating complete data at t1. Vectors
P1, P2 and P3 assume an equal dropout rate of 0.3 at the end of study, but via different paths.
Specifically, P1 assumes a sharp drop at the early stage; P2 assumes a constant decrease
throughout the study period; and P3 assumes missing data to only occur in the late stage.
The scenario of complete data is described by P4. We consider two types of alternative
hypotheses, both with K − 1 experimental treatments and a control treatment. The first one

(denoted by ) assumes the (K − 1) experimental treatments to have similar efficacy with

Δ(1) = 0.2. The second one (denoted by ) assumes the (K − 1) experimental treatments to
be ordinal in efficacy with a constant improvement (Δ(2) = 0.1) upon one another. We
specify variance parameter σ2 = 1. For illustration purpose, we only present the results for
balanced design r1 = ⋯ = rK = 1/K. The sample size formula, however, is generally
applicable to any randomization scheme.

A required sample size (n) is calculated for each combination of the aforementioned
designing factors. Five thousand datasets, each containing n subjects, are then generated
based on Model (1), with assumed missing patterns and correlation structures. We assess the
empirical power and type I error in testing null hypothesis H0 : b1 = ⋯ = bK. The
simulations are conducted using statistical software R 2.13.1 (R Foundation for Statistical
Computing, Vienna, Austria). The R code is available upon request from the first author.

Tables 1 and 2 present estimated sample sizes, and empirical powers and type I errors, under

alternative hypotheses , respectively. In both tables the empirical powers and
type I errors are close to their nominal values, suggesting that the proposed sample size
performs well. Furthermore, within each table, the sample sizes under P4 are exactly the
same between the random and monotone missing patterns, because P4 represents complete
data. We have a few observations. First, the within-subject correlation ρjj′ = ρ|tj−tj′|ϕ is an
increasing function of ρ and a decreasing function of ϕ. As the correlation (ρjj′) increases,
the effective number of observations decreases, and the required sample size increases. Thus
we observe in both tables that the sample sizes increase with ρ. Similarly, with ϕ increasing
from 0 to 1, ρjj′ decreases as the correlation structure transforms from CS to AR(1), and the
sample size requirement decreases. Under the monotone missing pattern, missing data tends
to be concentrated within certain patients, which leads to a larger sample size requirement
than that under the random missing pattern. The two tables also demonstrate the advantage
of the proposed sample size in adjusting for missing data compared with the traditional

approach. For example, under ( , ρ = 0.1, ϕ = 0), the sample size under complete data is
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219. To adjust for a dropout rate of 0.3, the crude approach would have required a sample
size of n* = 219/0.7 = 313, dramatically larger than those presented in Table 2: 255 for P1,
244 for P2, and 234 for P3 under RM; and 266 for P1, 250 for P2, and 236 for P3 under MM.
The proposed sample size formula takes into account the strength of correlation (ρ),
correlation structure (ϕ), trend in observation probability, and missing pattern, in the
adjustment for missing data. This accurate adjustment enhances the efficiency in the use of
medical resources in clinical trials.

Because in the damped exponential family, the correlation coefficients ρjj′ depend on both ϕ
and ρ. To further investigate the association between correlation and sample size, we

conduct an additional simulation study where we fix the value of , the
average of within-subject correlation coefficients. For ϕ=0, 1/2, and 1, we solve for the
values of ρ such that ρ̄ is fixed at particular levels. We explore three levels of ρ̄: 0.1, 0.25,
and 0.5. With (ϕ, ρ) obtained, we conduct simulations to assess the performance of the

sample size formula. In Table 3 we present the simulation results for . We can see that as
ϕ increases, larger values of ρ are required to maintain the average level of correlation ρ̄.
The simulation results indicate that even for a given average level of correlation, different
combinations of (ϕ, ρ) still lead to drastically different sample sizes. For example, under no
missing data, if we fix ρ̄ at 0.1, the required sample size is 364 under (ϕ = 0, ρ = 0.1) but 425
under (ϕ = 1, ρ = 0.33), a 17% difference. Thus the key factor affecting the sample size
requirement is not the average correlation, but the combination of (ϕ, ρ). We reach similar

conclusions from the simulation results for  (the table omitted).

4 Real Data Example
For illustration, we apply the proposed sample size formula to a collaborative study of
schizophrenia by the National Institute of Mental Health, which collected data on treatment-
related changes in the overall severity (Hedeker & Gibbons 1997). A total of 437 patients
were enrolled and randomly assigned to one of K = 4 medications arms: placebo,
chlorpromazine, fluphenazine, and thioridazine. The latter three are anti-psychotic drugs.
After initiating medication, patients were followed up weekly for 6 weeks. The outcome
measurements followed a random missing pattern. The proportions of subjects with
observations at weeks 1 to 6 are (0.98, 0.03, 0.86, 0.03, 0.02, 0.77). Thus only a small
portion of subjects had measurements at weeks 2, 4, and 5. Because the three anti-psychotic
drugs were considered to have similar effects, in a preliminary study, they were combined as
one group and compared with the placebo. Model (1) with a CS correlation structure was fit
to the data, and it was estimated that the time-averaged difference Δ = 0.99, variance σ2 =
2.05, and correlation ρ = 0.45.

Suppose we would like to design a similar trial based on results from the aforementioned
schizophrenia study. We set the levels of type I error at 0.05 and power at 0.90, and adopt a
balanced design. Because most of the measurements were obtained at weeks 1, 3, and 6, we
assume J = 3 and the vector of observation probabilities P = (0.98, 0.86, 0.77). If the three
experimental treatments have a similar effect, it requires a total of n = 108 subjects to detect
a time-averaged difference of Δ = 0.99. If there is no missing data, n = 101 subjects will be
needed. By enrolling 437 subjects, the original study was powered to detect a time-averaged
difference of Δ = 0.5. Finally, if we assume the effects of the three treatments to be ordinal
at 0.79, 0.99, and 1.19 (the average remains to be 0.99), the estimated sample size will be n
= 98.
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5 Discussion
We have developed a closed-form sample size formula for a K-sample (K ≥ 3) comparison
of time-averaged responses that incorporates missing data, general correlation structures,
and unbalanced randomizations. Our simulation results suggest that the proposed sample
size formula performs well, with the empirical power and type I error close to the nominal
levels under various correlation structures and missing data patterns. Our simulation results
also demonstrate that correlation coefficients and correlation structures substantially
influence the sample size requirement. The sample size under a CS structure is always larger
than that under an AR(1) structure given the same ρ value. In the absence of information
concerning the true correlation structure, a conservative approach would be to adopt the CS
model.

The simulations in this paper show that with all other design parameters fixed, a larger
correlation between repeated observations leads to a larger sample size. In Jung & Ahn
(2004), which investigated the sample size calculation for comparing the rates of changes
among K groups, a larger correlation between repeated measurements leads to a smaller
sample size. Correlation affecting sample sizes differently in these two scenarios has been
noted by Diggle et al. (2002) in two-sample comparisons.

We derived the sample size formula based on the assumption of missing completely at
random. When the missing probability of a particular subjects depends on the subject’s
covariates, we can specify pj as the average of individual probabilities over the distribution
of the covariates in the population, and the results in this paper remain valid. If the missing
probabilities depend on the subject’s outcomes, an additional model for the missing
mechanism is needed to achieve a valid statistical inference. This much more complicated
model prevents the derivation of a closed-form sample size formula, and sample size
requirement would have to be assessed through numerical studies. It is generally true,
however, that a more complicated model would require a large sample size to maintain the
level of power and type I error.

A heuristic approach for sample size calculation in K-sample trial has been to calculate the
number of patients needed per treatment group using the sample size formula for 2-sample
comparisons, and then multiply that number by K to obtain the total sample size needed for
the study (Liu & Dahlberg 1995). Research is in progress to compare empirical powers
between the heuristic and the proposed approaches under different scenarios such as (1) a
control and K − 1 similar treatments, and (2) K ordered treatments.
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Appendix A.1
Proof. With missing data, the expression of b̂k is obtained from (2) by replacing 1 with δki =
(δki1, ⋯, δkiJ)′,
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The expression of b̂, b̂k − b̂, and wkh in Section 1 can be modified similarly to accommodate
missing data. To derive the expression of W, first we have

We simplify the above expression using the fact that εki are independent between subjects.
When k = h,

As n → ∞, we have that  converges to nrks,  converges to nrkμ,

 converges to ns, and  converges to nμ. Thus

When k ≠ h,

(6)

Similarly it can be shown that wkh converges to −s/μ2.

Thus we complete the proof of Theorem 1.

Appendix A.2

Proof. Under complete data (p1 = ⋯ = pJ = 1), we have  and μ0 = J.
Here we use subscript 0 to indicate their correspondence with n0. Thus proving n ≤ n0/pJ is
equivalent to proving that

(7)

Here .

Lemma 1. Under Conditions a) and b),
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Proof. Because ρjj′ ≥ 0 and, regardless of random or monotone missing pattern, pjj′ ≤ pj′, we
have

That is, the right hand side of inequality is a weighted average of {pj′ : j′ = 2, ⋯, J}, with
weights

With ρjj′ ≥ 0 from Condition b), we have w2 ≤ w2 ≤ ⋯ ≤ wJ. Furthermore, Condition a)
indicates that p1 ≥ p2 ≥ ⋯ ≥ pJ. In the weighted average, the weights decrease with the
values of the elements. Thus

Here  is the unweighted average of {pj′ : j′ = 2, ⋯, J}. We have the
last “≤” sign because p̄ includes an additional element (p1), which is no less than any of the
elements in p̄(−1). Thus we complete the proof of Lemma 1.

Using Lemma 1, the left hand side of inequality (7) is less than

We have the last ≤ sign because pJ is the smallest element in P = (p1, ⋯, pJ). Thus it is
smaller than the average.

It is obvious from the above derivation that the equality sign only holds when p1 = ⋯ = pJ =
1.
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