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Abstract
Data processing and source identification using lower dimensional hidden structure plays an
essential role in many fields of applications, including image processing, neural networks, genome
studies, signal processing and other areas where large datasets are often encountered. One of the
common methods for source separation using lower dimensional structure involves the use of
Independent Component Analysis, which is based on a linear representation of the observed data
in terms of independent hidden sources. The problem thus involves the estimation of the linear
mixing matrix and the densities of the independent hidden sources. However, the solution to the
problem depends on the identifiability of the sources. This paper first presents a set of sufficient
conditions to establish the identifiability of the sources and the mixing matrix using moment
restrictions of the hidden source variables. Under such sufficient conditions a semi-parametric
maximum likelihood estimate of the mixing matrix is obtained using a class of mixture
distributions. The consistency of our proposed estimate is established under additional regularity
conditions. The proposed method is illustrated and compared with existing methods using
simulated and real data sets.
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1 Introduction
The problem of finding a representation of multivariate random variables which maintains
its essential distributional structure using a set of lower dimensional random variables has
been of interest to researchers in statistics, signal processing and neural networks. Such
representations of higher dimensional random vector using a lower dimensional vector
provide a statistical framework to the identification and separation of the sources. Since the
linear transformations of data are computationally and conceptually easier to implement,
most of the methods are based on finding a linear transformation of the data. Some of the
major approaches for solving this problem include principal component analysis (PCA),
factor analysis (FA), projection pursuit (PP) and independent component analysis (ICA). A
distinguishing feature of the ICA compared with other source separation methods is that the
lower dimensional random variables are extracted as independent sources in contrast to
uncorrelated random variables (e.g., as in PCA). Jutten and Herault (1991) were perhaps the
first to state the problem and coin the name ICA. Some of the early approaches to ICA are
based on estimating the mixing matrix of the linear transformation by the maximization of
the mutual information or the negentropy function (see Comon (1994) for details). Other
methods for estimating the mixing matrix are based on gradient algorithms or cumulant
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functions which are described in detail by Hyvarinen et al. (2001), Cardoso and Souloumiac
(1993) and the references therein.

In general, separating the sources as independent components provides maximal separation
of the sources from the observed signals and hence ICA has become a popular method
among practitioners. In PCA, the goal is to reduce the dimension of the data by
decorrelation. However, decorrelation may not be an adequate measure for source separation
if the densities of underlying hidden sources are nongaussian. Embrechts et al. (2001)
present an excellent overview of the limitations on using correlation as measure of
dependence. Since in practice the data collected in signal processing are often nongaussian,
the decorrelation approach does not usually result in adequate separation of the sources.

A general formulation of the source separation problem can be presented as follows. Given a
random sample X1, …, XT, where Xi = (xi1, …, xin)T are independent and identically
distributed random vectors, can we find a unique transformation g: ℝn→ ℝm for some m ≤ n
and densities f1, …, fm such that

where S = (s1, …, sm)T is the vector of independent sources, in other words,  for
j = 1, …, m, i = 1, …, T and “ ” denotes that the random quantities on either side of this
equality have identical distribution. A special case emerges when the relationship is assumed
to be linear. Then g(S) = AS and the problem reduces to the estimation of the mixing matrix
A and the probability densities f1, …, fm.

In matrix notation, a model for ICA can be written as,

(1)

where X = (x1, …, xn)T, S = (s1, …, sm)T, A = (aij)n×m and E = (e1, …, en)T is an n × 1 vector
of independent gaussian noise variables each with mean 0. Writing B = (A I) and Y =
(STET)T we can equivalently express (1) as

(2)

Without any loss of generality we assume throughout the article that E(X) = 0 and E(S) = 0.
Also, following the previous works on ICA, for the rest of the article we assume that n = m
(but see our remarks in Section 7). In many ICA algorithms such as the FastICA described
by Hyvarinen and Oja (2000) it is further assumed that E = 0 and the model is called noise
free.

In most of the early literature on likelihood based solutions to the ICA, the densities of the
independent sources fj, j = 1, …, m, are prespecified parametrically and are chosen based on
the fact that these densities should be nongaussian. Some of the commonly used choices are
gamma or double exponential densities. Boscolo et al. (2004) proposed a pseudo-likelihood
based method for ICA using model (1) where the densities of the sources are estimated
nonparametrically by using the kernel density estimate (Silverman, 1985). It was shown that
simultaneously estimating the densities of the sources along with the mixing matrix
improves the estimation compared to some of the parametric approaches. The performance
of their method was evaluated by simulation studies in terms of maximizing the median
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signal-to-interference ratio (SIR) defined as , where sij is the
original source value and ŝij is the reconstructed value. A more recent nonparametric
approach to the linear ICA model (1) proposed by Chen and Bickel (2006) is based on score
functions. The score functions of the sources are estimated by using B-splines and the
estimate of the unmixing matrix W = A−1 is computed by a Newton-Raphson type
optimization method. However, most of these previous methods for ICA are difficult to
compare mutually, even based on simulated data sets, when the mixing matrix A and the
source densities f1, …, fm are not uniquely identified.

One of the issues that is partly unresolved in the literature on ICA is the identifiability of the
model given in (1). Comon (1994) describes the indeterminacies in the model succinctly as
follows. If an information theoretic method is used for ICA and the original sources are ‘as
nongaussian as possible’ then the model is identifiable up to matrix equivalence. Two square
matrices A and B of the same dimension are called equivalent if each column of A is
proportional to one of the columns of B and vice versa. In other words, there exist an m × m
permutation matrix P, a diagonal matrix Λ with positive entries on its diagonal and a
diagonal matrix D with diagonal entries equal to ±1 such that

Notice that BS = AG if we choose G = PDΛS for any two equivalent matrices A and B which
makes the representation (1) not identifiable if the goal is to estimate the matrix A and the
densities of the independent components s1, …, sm.

In most of the commonly used algorithms for ICA the fact that a model for ICA is not fully
identifiable is often completely ignored (e.g., FastICA, JADE). Chen and Bickel (2006)
proposed restricting the absolute median of the densities of independent sources be unity to
partly resolve the identifiability problem, but they correctly point out that there is still
ambiguity due to sign changes and row permutations.

Boscolo et al. (2002) addressed the issue of the identifiability of ICA model where the
extracted vector has more than one gaussian component as follows. Suppose that S is a
vector of independent components of size m × 1, k of which are gaussian random variables.
Then it is proved that the m –k nongaussian components can be extracted up to matrix
equivalence from the linear mixture X = AS if the matrix A is m × m and of full column rank
and the mutual information is used for estimation of the unmixing matrix W.

In this paper we derive the conditions for the uniqueness of the linear representation (1) by
imposing a set of minimal moment constraints on the distributions of the independent
sources. We then use a newly proposed semi-parametric density estimation method based on
a suitable class of mixture densities that allows to conserve the moment restrictions needed
for identifiability and establish consistency of our proposed estimator of W. Next, we present
an iterative method for computing the proposed estimate of the unmixing matrix W and the
source densities f1, …, fm simultaneously. Finally, we present empirical analysis based on
simulated data and compare the performance of our method to three existing competitive
methods for which software are available and an illustrative example based on a real dataset.

2 Parameter Identifiability of the ICA
Suppose that a vector of observed values X = (x1, …, xm)T is known to be a mixture of some
underlying independent sources S = (s1, …, sm)T as given in (1). The problem is the
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estimation of the matrix A and the densities of the underlying sources s1, …, sm. The
statistical estimation of the mixing matrix A (or its inverse W) and the source densities f1, …,
fm remains an ill-posed problem until the ‘true parameters,’ the mixing matrix and the source
densities are uniquely defined in the statistical model given by (1). In this Section we derive
a set of sufficient conditions under which the ICA model has a solution and it is unique.

To begin with, we re-state a characterization result due to Kagan et al. (1973, p. 315)
showing the existence of the solution and its uniqueness up to matrix equivalence.

Theorem 2.1
(Kagan et al. (1973)). Suppose X can be expressed as in (2) where the matrix B is such that
the columns corresponding to the nongaussian components of Y are linearly independent.
Then X can be expressed as in (1)

where E has a multivariate normal distribution, S is a vector of nongaussian independent
components and it is independent of E and the columns of A are linearly independent. The
decomposition is unique in that if X has another representation given by X = BG + Ẽ then E
and Ẽ have the same multivariate normal distribution, S and G have the same distribution
except for change of scale and location. The matrices A and B are equivalent.

Hence by the above theorem not only A is statistically identifiable but also the distributions
of the independent sources S are uniquely identifiable. In addition, one set of sufficient
conditions for existence and uniqueness of the solution for ICA model up to matrix
equivalence is that the independent components are assumed to be nongaussian and that A is
of full column rank. In other words if X has two representations given by X = AS + E and X
= BG + Ẽ then the vectors E and Ẽ have the same multivariate normal density, A and B are
equivalent and S and G belong to the same location and scale family, i.e., if the joint density
of the source vector S is given by fs(·) then there exist a vector C ∈ ℝm and a scalar b > 0
such that the joint density of G can be expressed as fg(Y) = fs{(Y − C)/b}. Hence, there exist
matrices P, D and Λ, such that B = APDΛ and G = Λ −1D−1PTS, where P is a permutation
matrix, Λ is a diagonal matrix with positive diagonal elements and D is a diagonal matrix
with diagonal values ±1. Based on the above result and taking into account the three sources
of nonidentifiability we obtain the following result to resolve the identifiability of the ICA
model.

Theorem 2.2
Suppose the mixing matrix A in noisy ICA model (1) is of full column rank and the
independent sources are all nongaussian. Further, suppose that all of the third moments of
the sources exist and they satisfy the following conditions,

(3)

then the ICA model is fully identifiable, in the sense if X has two representations given by X
= AS + E = BG + Ẽ, where A and B are each of full column rank and both S and G satisfy the
conditions in (3), then A = B and .
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The details of the proof are given in Appendix A. Notice that the conditions  for j =

1, …, m can be replaced by  for all j = 1, …, m and the third moments are ordered.
Here we chose to distinguish the source densities according to their skewness measure.
However, other statistical measures of the shape of the source densities can be used for
indentifying the densities of the original sources.

In some applications, we often have subject matter knowledge that the original sources are
positive valued random variables. Since the third moment of a positive valued random
variable is necessarily positive, the following result can be obtained immediately from
Theorem 2.2.

Corollary 2.3
Suppose s1, …, sm in the ICA model (1) are positive valued random variables with E(sj) = 1,
for j = 1, …, m. Then the model is fully identifiable if var(s1) < … < var(sm).

Next we show that the sufficient conditions stated in Theorem 2.2 are minimal if we assume
that skewness of the source variables are distinct.

Theorem 2.4
The conditions (3) given in Theorem 2.2 are minimal if the sources s1, …, sm in the ICA
model (1) are assumed to have third order moments and further assuming that the skewness
measures of the densities are distinct.

The proof of the theorem is given in Appendix B. The above result also facilitates the
implementation of an algorithm where the independent sources with mean zero can be
transformed to satisfy the conditions (3). Section 4 provides more details on source density
estimation.

3 A Semiparametric ICA Model
By Theorem 2.2 a set of sufficient conditions requiring the existence of the third moments of
densities f1, …, fm in ICA model makes the mixing matrix A identifiable. Eloyan and Ghosh
(2011) developed a flexible class of models based on a mixture of densities (for instance
gaussian kernels) to estimate a univariate density subject to moment constraints. We extend
their method to the multivariate case for estimating the densities of the independent
components of S.

Following the work of Eloyan and Ghosh (2011), we propose to estimate each of the source
densities fj by the following mixture of densities

(4)

where μj1 < μj2 < … < μjNj is a suitable sequence of known numbers (knots) and σNj > 0 is
chosen as a function of μjk's and Nj, ϕ (·)is a kernel density function satisfying set of
regularity conditions. Given the μjk, σNj and Nj, the weights θjk are estimated subject to a set
of restrictions implying that fj,j = 1, …, m satisfy a set of sufficient conditions for
identifiability (e.g., as in (3) in Theorem 2.2). In particular, in order to satisfy the set of three
conditions given in (3), we estimate the θjk's subject to the following necessary conditions:
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(5)

Clearly the first set of restrictions (i) correspond to the three conditions in (3) and the last
condition (ii) in (5) is needed to assure that the mixture density in (4) is a legitimate
probability density function. A constrained EM algorithm (see Eloyan and Ghosh (2011))
can be used to estimate not only the θjk's subject to restrictions given in (5), but also Nj's.
Next, we describe a method to simultaneously estimate the matrix W and the weights θjk for
a given sequence of the knots μjk and σnj. Notice that the number of components Nj, j = 1,
…, m are not fixed but rather estimated making our method fully automatic not requiring
any tuning parameter selection. The densities can then be reordered according to their third
order moments as in (3).

In matrix notation the noise free ICA model (see Comon (1994), Chen and Bickel (2006),
Hyvarinen et al. (2001), etc.) is given by

where X is the T × m matrix of observed values (signals), S is the T × m matrix of underlying
(hidden) sources and A is the m × m unknown mixing matrix. In addition, suppose that the
mixing matrix is nonsingular and define its inverse as W = A−1. As discussed in Section 1,
the densities of the independent components are given by sij ∼ fj, for each j = 1, …, m and
hence the column Sj is a sample of T independent and identically distributed variates from
the density fj.

Suppose Ŵ(0) is an initial estimate for W found by some preliminary but fast estimation

method (e.g. singular value decomposition). Next, for each hidden component sj, let  be
the initial number of components in the mixture used for estimating the density of the source

variable  be a starting set of known means (or knots) and  a known
common scale (standard deviation) for the components of the mixture density.

Our goal is to estimate the true unknown unmixing matrix W0 and the densities of
thesources fj simultaneously using an iterative method. For the iteration step M ∈{1,2,…},
we obtain a pseudo-sample of the matrix of independent sources as Ŝ(M) = XŴ(M−1). For
each j = 1, …, m to estimate the density of the hidden source sj using the pseudo-sample

 Let  and suppose the set of means  and

standard deviation  are chosen so that the sieve structure of the sets of means is

conserved. In other words if we define , then

. Notice that by this construction the standard deviations σNj are fixed,
however the choice of the bandwidth is controlled by estimation of N. Further details for
constructing the means that conserve the sieve structure can be found in Eloyan and Ghosh
(2011). Next, the constrained EM-algorithm as described in Eloyan and Ghosh (2011) can
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be used to compute the weights of the mixture density  that minimize the
Kullback-Leibler discrepancy (KLD) between the true and the estimated densities of sj
defined as

Hence for each j = 1, …, m the density estimate is constructed as follows

(6)

where ϕ(·) is the density of a gaussian random variable with mean zero and variance one.
Other popular Kernels with mean zero and variance unity can also be used in (6). By
construction the densities of the independent sources are nongaussian.

The likelihood function of the unmixing matrix W = ((wlj)) is given by

where F = (f1, …, fm) is the vector of densities of hidden sources. By using the estimates
given in (6) and writing F ̂ = (f̂1, …, f̂m)T the loglikelihood function of the unmixing matrix is
given by

(7)

Notice that by the choice of the estimating densities of original sources the gradient vector
∇L(W, F) and hessian matrix ∇2L(W, F̂) of the loglikelihood above can be computed
analytically and are given in Appendix D. Hence by using a hill-climbing version of the
Newton-Raphson algorithm (see Section 4 for more computational details) an update of the
unmixing matrix can be computed as follows

Let  be a set of finite mixture densities
with N mixture components. Let  denote a class of densities satisfying the following
regularity conditions, for any f ∈ ,

i. 0 ≤ f(x) ≤ L for some L > 0 and for x ∈ supp(f) = {x ∈ ℝ,: f(x) > 0}.
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ii. | ∫Sf(x) log f(x)dx| < ∞ and | ∫Sf(x) [—logϕ{(x — μ)/σ}]dx| < ∞ for any μ ∈supp(f)
and σ > 0.

We assume that the true source densities fj satisfy the identifiability conditions (3) given in
Theorem 2.2. The following result provides a set of regularity conditions under which we
establish the consistency of the estimator of W obtained by maximizing the log-likelihood
function given by (7) and simultaneously estimating the densities f̂1, …, f̂m.

Theorem 3.1
Suppose in the ICA model (1) the following conditions hold.

1. The densities of the hidden sources fj ∈ , for j = 1, …, m and are nongaussian.

2. There exists a sequence of known quantities Nj = {μj,1 < … < μj, Nj : μj, k∈
supp(fj), k = 1,…Nj, j = 1, …, m}, such that Nj ⊂ Nj+1 and

 as Nj→∞.

3. There exists a sequence of known quantities σNj satisfying σNj = o(1) as Nj as Nj
→.∞

4. The estimated densities f̂j ∈ N and satisfy the constraints (3).

5. The true mixing matrix A is nosingular.

If KLD(fj, f̂j)→ 0 as Nj → ∞ and Ŵ = argmaxL(W, f ̂) then

Ŵ → W0 almost surely, as T → ∞,

where W0 is the true value of the inverse of the mixing matrix, i. e., .

An outline of the proof of the theorem is presented in Appendix C.

4 An Iterative Method to Compute the MLE of W
We first describe a method to find a quick and good starting value for W. The m × m

covariance matrix of X defined as  can be
factorized as

where Cs = cov(S) = I by constraints (3). Hence Cx = ATA. By spectral decomposition we
obtain Cx = QΛQT, where Λ is the diagonal matrix of eigenvalues of Cx and Q is an
orthogonal matrix of corresponding eigenvectors satisfying QTQ = I. This implies that a
good choice for A can be obtained as A = QΛ1/2QT. We choose a starting value for W as

By using the above starting value of W given by Ŵ(0), let S(0) = XW(0),

 and . Finally let
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 and construct  (see Eilers
and Marx (1996)) and Komarek et al. (2005)). An iterative algorithm for finding the
estimate of the unmixing matrix W is given as follows.

For iteration step M ∈ {1,2,…},

1. Let S(M) = XW(M).

2.
For each j = 1, …, m set  and construct the set of means that

satisfy .

3.
By using constrained EM algorithm obtain the estimate . Notice
that the EM algorithm described by Eloyan and Ghosh (2011) estimates the density
subject to constraints on the mean(=0) and variance(=1) of the random variable.

4. sort the densities f1, …, fm in ascending order of their third order moments.

5. Compute the gradient ∇L(Ŵ(M), F ̂) and hessian matrix ∇2L(Ŵ (M), F̂) (see
Appendix D for exact analytical expressions).

6. Update the unmixing matrix by setting

7. If L(Ŵ (M+1), F̂) < L(Ŵ (M),F ̂), set Ŵ (M+1) = W(M) and repeat steps 5-6. In other
words increase the number of mixture components and implement steps 5-6 until a
new value of Ŵ is obtained. Otherwise return to step 1.

Repeat the steps 1-7 above until convergence. In our numerical illustrations, we have used

the stopping rule as  With ∈ = 10−3

Note that even though the sample s is a pseudo-sample from the true density, Theorem 3.1
still hold by the continuous mapping theorem.

5 Simulation Study
We illustrate the proposed estimation method by evaluating the performance of the
algorithm under different scenarios. First we set the number of underlying sources to m = 2
and the number of observations T = 1000. The true value of the mixing matrix is set as

We generate the hidden source variables using three sets of nongaussian distributions: Case
I: m = 2

a. Shifted and scaled Gamma densities
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b. Shifted and scaled Weibull densities

c. Shifted and scaled Gamma and a mixture of normals

where ϕ(·) denotes the density function of a normal random variable with mean 0 and
variance 1. Notice that the above densities satisfy the conditions (3) required for the
identifiability of ICA, in other words the means are equal to 0, the variances are equal to 1
and the skewness of all of the above densities are positive and increasing for each case. The
computations are performed using the R software. For comparison, the following three
algorithms were also used: (i) fastICA (FICA) proposed by Hyvarinen and Oja (2000), (ii)
PearsonICA (PICA) proposed by Karvanen and Koivunen (2002) and (iii) JADE proposed
by Cardoso and Souloumiac (1993) (the corresponding R packages are available online at
http://cran.r-project.org/). In the rest of this Chapter we will use Mixture ICA (MICA) to
denote our proposed method.

The performance of the method is evaluated by a commonly used error criterion in signal
processing literature called the Amari error (Amari, 1998). For a given known m × m mixing
matrix A and estimated unmixing matrix Ŵ the Amari error is defined as

where P = AŴ. Notice that for any two matrices A and Ŵ, the Amari error satisfies the
inequality 0 < AE < m − 1 and is equal to zero if and only if the true mixing matrix A and the
estimated mixing matrix Â = Ŵ−1 are equivalent in the sense as defined in Section 2.
However, the Amari error is not invariant to a constant multiplier, in other words AE(A, Ŵ)
≠ AE(A, Ŵ Λ), where Λ is a diagonal matrix with positive elements on the diagonal. Hence
before computing this error we rescale the columns of the matrices A and Ŵ to have
Euclidean norm unity so that the estimates obtained by FICA, PICA and JADE are
comparable to our proposed method MICA. We compute the logarithms of the efficiencies
for each estimation method with respect to our proposed MICA method as
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where Ŵ2 is the estimate obtained by our proposed MICA method and Ŵ1 is the estimated
unmixing matrix using one of the three methods FICA, JADE or PICA. Clearly, if lef f(Ŵ1,
Ŵ2) > 0 then MICA performs better than its competitor. The larger the value of lef
f(Ŵ1,Ŵ2), the more efficient MICA is compared to its competitor. For each of the
simulation scenarios we compute the log-efficiency based on several simulated data sets.

Figure 1 shows the boxplots of the log-efficiencies of Amari errors for the three different
estimates compared with our proposed MICA estimate for 200 simulated datasets for each of
the three scenarios (a)-(c) under Case I: m = 2 sources. It can be noted that our method
performs significantly better than all three competing methods. In particular, the 25th
percentiles of the log-efficiencies are above zero against all three methods indicating a
superior performance of MICA in at least 75% of the test cases (out of 200 runs). The
median Amari error value for our proposed MICA method in case (c) is 0.009 which is
smaller than that of FICA with median AE = 0.021, PICA with median AE = 0.027 and
JADE with median AE = 0.034. Thus, it appears that our proposed method performs
substantially better than all three methods when one of the sources has multimodal or
skewed distribution.

Next we consider the case when there are m = 3 hidden sources again generated from
various nongaussian distributions:

Case II: m = 3

a. Shifted and scaled Gamma and Weibull densities

b. Shifted and scaled Weibull densities and a mixture of normals

c. Shifted and scaled Weibull and mixtures of gaussian densities

The mixing matrix used in this case is as follows
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Here again the chosen densities satisfy the identifiability conditions as stated in Theorem
2.2. The resulting boxplots of the log-efficiencies based on 200 simulated data sets for each
of the scenarios (a)-(c) under case II: m = 3 are presented in Figure 2. For case (a) the
efficiency of MICA is similar to that of PICA, but performs significantly better than FICA
and JADE. However, in cases (b) and (c) the proposed MICA method substantially
outperforms the others. It can be noted that the 25th percentiles for cases (b) and (c) of the
log-efficiencies of the three methods compared with our proposed MICA estimate are above
zero in Figure 2 showing that our method outperforms the others in terms of minimizing the
Amari error criterion. Tables 1 and 2 present some selected summary values of the Amari
errors of the estimates of A found by four different estimation methods corresponding to
cases (b) and (c) with m = 3.

As another performance measure we also computed the mean ranks of the Amari errors for
each method over 200 simulated cases. In other words, for each simulated data we compute
the AE corresponding to each of the four methods and rank them as 1,2,3,4 by the increasing
order of their AEs. E.g., if AE(MICA) < AE(FICA) < AE(JADE) < AE(PICA) then
rank(MICA) = 1 while rank(PICA) = 4, in case of a tie we use equal ranks. The mean ranks
for the cases (b) and (c) with m = 3 are shown in column seven of Tables 1 and 2
respectively with standard deviations of the ranks in the parenthesis. Since the mean rank of
the AE for MICA is close to 1 for both cases (b) and (c) we can claim that our method
results in a lower value of the Amari error in majority of the cases (out of 200 MC runs)
when compared with the other three methods. The boxplots of the Amari errors for each
case in Figures 1 and 2 are ordered by the rank of the corresponding method. The mean rank
of our proposed MICA was found to be close to 1 in all simulation cases above for m = 2
and m = 3.

6 Application to fMRI Data
ICA is commonly used in neuroimaging to obtain brain networks when the subjects are
performing a task or when resting. We use a resting state functional magnetic resonance
imaging (fMRI) dataset to illustrate the performance of our method compared with other
commonly used ICA algorithms. The data are collected when the subjects are resting in the
scanner as opposed to performing a task. The dataset is one of the hundreds of fMRI scans
freely available at http://www.nitrc.org/projects/fcon_1000/website. Even though the
initiative to collect and post a large number of fMRI imaged online is recent, this dataset has
already found wide usage in literature. At each time point a 3 dimensional image of the brain
is obtained. 123 scans are collected with 2 ms intervals. For each scan a 3D array of the
intensities is measured. The 3D array is then vectorized for each scan to obtain a vector of
voxels. By concatenating the 123 vectors of voxels we obtain the time by voxel matrix X of
dimension T × 123 where T is the number of voxels.

MICA algorithm was used to recover m = 20 independent components (the running time is
90 minutes on a regular laptop). As a preprocessing step PCA is used to reduce the
dimension of the matrix X to T × m. The images in Figure 3 show two of the independent
components found by the proposed MICA overlayed on a brain template. In this application,
the goal is to find the voxels in the brain that have highest loadings on the independent
components. Hence, after computing the independent component the values are thresholded
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at s = 0.1 for this case. The areas shown in Figure 3 correspond to the regions with high
loadings on the independent component.

The original data were used for computation instead of smoothing the data first, hence we
observe some noise in the resulting images in Figure 3. The visual network and the default
brain networks are recovered by the algorithm.

7 Conclusion and Discussions
In this paper, a new semiparametric approach for Independent Component Analysis (ICA)
for source separation is proposed. We first discussed the identifiability issues related to the
ICA and introduced a new semiparametric method to estimate the so-called mixing matrix
within ICA. Even though ICA is gaining more popularity in different fields of statistical
research there is still some ambiguity in the identifiability of the model used. We derived
some sufficient conditions for the densities of the hidden sources which guarantee that the
ICA model is fully identifiable. Based on these sufficient conditions we proposed a semi-
parametric likelihood based method for the estimation of the unmixing matrix while making
no parametric assumptions about the independent hidden source distributions.

Mixtures of gaussian densities were used for modeling the underlying densities of the hidden
sources. The simulation studies showed that our method performs similar to the existing
methods for some cases when the underlying densities of the hidden sources are unimodal.
Our method outperforms some of the competitors when the underlying densities are possibly
multimodal and/or skewed. Different kernel densities can be used for the mixture densities
to obtain a better estimate of the densities of underlying sources and such possibilities will
be explored in the future. Finally, the problem of estimating the minimum number of
independent sources remains unresolved. Throughout our paper we have assumed n = m for
simplicity, however in practice m could be significantly smaller than n. The estimation of m
appears to be a nontrivial problem as in that case A is no longer a square matrix and
definition of Amari error and unmixing matrix may need to be modified suitably possibly
using some version of g-inverse. In practice, often PCA or other dimension reduction
methods are first used to “estimate” m and then ICA is used on the extracted PCs.
Admittedly, such a two-step approach is sub-optimal and hence simultaneous estimation of
m, A and the densities of the ICs (f1, …, fm) would be of utmost interest.
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Appendix A: Proof of Theorem 2.2 in Section 2
Proof. Suppose X has two representations X = AS + E and X = BG + Ẽ where S and G satisfy
(3). Then it follows from Theorem 2.1 that G = ΛDPTS with

(8)

where Λ, D and P are as defined in Section 2. On the other hand
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Suppose the columns of the permutation matrix P are defined as follows P = (p1 … pm).

Since P is a permutation matrix, its columns should be orthonormal and hence  if i ≠

j and . Thus it follows that,

By its definition we can write D = diag(d1, …, dm), where , for j = 1, …, m and so it

follows that . Hence, the covariance of G can be obtained as

Finally, by its definition, Λ = diag(λ1, …, λm) with λj> 0 for j = 1, …, m and so

(9)

Since S and G both satisfy (3) it follows from (8) and (9) that , for j = 1, …, m, and
hence Λ = I.

Consider again the matrix D with diagonal elements satisfying  for j = 1, …, m. Now
suppose dj = −1 for some j ∈ 1, …, m, this implies gj = −sj and hence it follows that

which contradicts the assumption that the third moments are positive (see (3)). Thus, it
follows that D = I.

Now suppose the columns of the identity matrix are defined as Ij,j = 1, …, m with 1 at the jth
entry and 0 elsewhere. Any permutation matrix can be obtained by permuting columns or
rows of the identity matrix. Suppose P is a permutation matrix different from I and is
constructed by permuting two columns i and j of I as follows

Since G = PTS = (s1 … si−1 sj si+1 … sj−1 si sj+1 … sm) T, the third moment of the ith
element of vector G satisfies

which contradicts the assumption that the third moments of the sources are increasing and
hence P = I.
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As a result if X has two representations given by X = AS + E and X = BG + Ẽ, then 
and E have the same gaussian densities which in tern implies A = B and there fore the model
is fully identifiable.

Appendix B: Proof of Theorem 2.4 in Section 2
Proof. Suppose Z = (z1, …, zm)T is an m × 1 vector, where E(|zj|3) < ∞ and E(zj) = 0, for j =
1, …, m. Now if we consider

then we obtain var(sj) = 1 and . Define S as the vector constructed by reordering the
S̃ according to the values of the third moments of its elements. The vector S will satisfy the
conditions in Theorem 2.2.

Appendix C: Proof of Theorem 3.1 in Section 3
Proof. Suppose the sequence of the true densities of the hidden sources is defined as F0 =
(f1, …, fm). Since any continuous and bounded density function can be approximated by an
infinite mixture of gaussian densities (see Eloyan and Ghosh (2011) for other regularity
conditions and metric of convergence) then there exists a sequence of weights Θ ∞ = (Θ1∞,
…, Θm∞) such that for any ∈ > 0

(10)

which follows from the fact that L(W0, F) is a continuous functional of F. Note that we use
the notation L(W, Θ) = L(W, f̂Θ) as defined in (7). By the nested structure of the sets of
means of estimated densities and by construction of Ŵ(M) we obtain

Hence the monotone sequence  has a limit as M, N(m)→ ∞. Notice that any

estimated weight vector at any stage of iteration (e.g. ) belongs to

, where ΔN is a compact set. Hence, for a compact set Ω
⊂ ℝ m×m by continuity of the function L(·) there exist W0 ∈ Ω and θ∞ = (θ1∞, …,θm∞) such
that for any δ ∈ (0,1)

(11)

for sufficiently large T and M, where

Eloyan and Ghosh Page 15

Comput Stat Data Anal. Author manuscript; available in PMC 2014 February 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Hence, by (10) and (11) we obtain for any δ ∈ (0,1),

This implies that

Finally, by using the argmax theorem stated in Ferger (2004) we obtain

which completes the proof of the theorem.

Appendix D: The gradient vector and Hessian matrix of loglikelihood
function

For α, β = 1, …, m the first derivative of L(W, F̂) can be found as

Now suppose α, β, δ, γ = 1, …, m and δ = β then
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Figure 1.
Boxplots of the log-efficiencies of our proposed MICA as compared to the three commonly
used methods FICA, JADE and PICA for Case I: m = 2.
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Figure 2.
Boxplots of the log-efficiencies of our proposed MICA as compared to the three commonly
used methods FICA, JADE and PICA for Case II: m = 3.
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Figure 3.
Visualization of the vision network (top) and the default brain network (bottom) found by
MICA for one subject.
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