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Abstract

The estimation of multivariate GARCH time series models is a difficult task mainly due to the
significant overparameterization exhibited by the problem and usually referred to as the “curse of
dimensionality”. For example, in the case of the VEC family, the number of parameters involved in
the model grows as a polynomial of order four on the dimensionality of the problem. Moreover, these
parameters are subjected to convoluted nonlinear constraints necessary to ensure, for instance, the
existence of stationary solutions and the positive semidefinite character of the conditional covariance
matrices used in the model design. So far, this problem has been addressed in the literature only in
low dimensional cases with strong parsimony constraints (see for instance [ASPL03] for the diagonal
three-dimensional VEC handled with ad-hoc techniques). In this paper we propose a general for-
mulation of the estimation problem in any dimension and develop a Bregman-proximal trust-region
method for its solution. The Bregman-proximal approach allows us to handle the constraints in
a very efficient and natural way by staying in the primal space and the Trust-Region mechanism
stabilizes and speeds up the scheme. Preliminary computational experiments are presented and
confirm the very good performances of the proposed approach.

Key Words: multivariate GARCH, VEC model, volatility modeling, multivariate financial time
series, Bregman divergences, Burg’s divergence, LogDet divergence, constrained optimization.

1 Introduction

Autoregressive conditionally heteroscedastic (ARCH) models [Eng82] and their generalized counterparts
(GARCH) [Bol86] are standard econometric tools to capture the leptokurticity and the volatility cluster-
ing exhibited by financial time series. In the one dimensional situation, a large collection of parametric
models that account for various stylized features of financial returns is available. Additionally, adequate
model selection and estimation tools have been developed, as well as explicit characterizations of the
conditions that ensure stationarity or the existence of higher moments.

One of the advantages of GARCH models that makes them particularly useful is that once they have
been calibrated they provide an estimate of the dynamical behavior of volatility which, in principle, is
not directly observable. This feature makes desirable the extension of the GARCH prescription to the
multivariate case since such a generalization provides a dynamical picture of the correlations between
different assets which are of major importance, in the context of financial econometrics, for pricing and
hedging purposes, asset allocation, and risk management in general.
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This generalization is nevertheless not free from difficulties. The most general multivariate GARCH
models are the VEC prescription proposed by Bollerslev et al [BEW88] and the BEKK model by Engle
et al [EK95]; both families of models present satisfactory properties that match those found in univariate
GARCH models, nevertheless their lack of parsimony, even in low dimensions makes them extremely
difficult to calibrate; for example, VEC(1,1) models require n(n+1)(n(n+1)+1)/2 parameters, where n is
the dimensionality of the modeling problem; BEKK(1,1,1) requires n(5n+1)/2. Indeed, due to the high
number of parameters needed, it is rare to find these models at work beyond two or three dimensions and
even then, ad hoc estimation techniques are used and additional limitations are imposed on the model to
make it artificially parsimonious; see for example [ASPL03] for an illustration of the estimation of a three
dimensional DVEC model (VEC model with diagonal parameter matrices [BEW88]) using constrained
non-linear programming. These difficulties have lead to the search for more parsimonious but still
functioning models like for example CCC [Bol90], DCC [TT02, Eng02] or GDC [KN98]. On a different
vein, a number of different signal separation techniques have been tried out in the financial time series
context with the aim of reducing this intrinsically multivariate problem to a collection of univariate ones.
For example, principal component analysis is used in the O-GARCH model [Din94, AC97, Ale98, Ale03]
and independent component analysis in the ICA-GARCH model [WYL06, GFGPP08]. We advice the
reader to check with the excellent reviews [BLR06, ST09] for a comprehensive description of these and
other models.

Despite the overparameterization problem we will concentrate in this work on full fledge VEC models.
This decision is taken not for the pure sake of generality but because the intrinsic difficulties of this
parametric family of models make them an ideal benchmark for testing optimization techniques subjected
to potentially complex matrix constraints. Stated differently, it is our belief that, independently from
the pertinence of the VEC family in certain modeling situations, any optimization algorithm developed
to estimate them will work smoothly when applied to more elementary situations. Hence, the work that
we present in this paper is capable of increasing the range of dimensions in which VEC models can be
estimated in practice by improving the existing technology in two directions:

• Explicit matrix formulation of the model and of the associated stationarity and positivity con-
straints: the works in the literature usually proceed by expressing the constraints in terms of the
entries of the parameter matrices (see for example [ASPL03] in the DVEC case). A global matrix
formulation is necessary in order to obtain a dimension independent encoding of the problem.
This task is carried out in Sections 2 and 3

• Use of a Bregman-type proximal optimization algorithm that efficiently handles the constraints in
the primal space. More specifically, we will be using Burg’s matrix divergence; this divergence
is presented, for example, in [KSD09a] and it is a particular instance of a Bregman divergence.
Bregman divergences are of much use in the context of machine learning (see for instance [DT07,
KSD09b] and references therein). In our situation we have opted for this technique as it allows
for a particularly efficient treatment of positive definiteness constraints, as those in our problem,
avoiding the need to solve additional secondary optimization problems that appear, for example,
had we used Lagrange duality. It is worth emphasizing that even though the constraints that we
handle in the estimation problem admit a simple and explicit conic formulation well adapted to the
use of Lagrange multipliers, the associated dual optimization problem is in this case of difficulty
comparable to that of the primal so avoiding this extra step is a major advantage. This approach
is presented in Sections 4.1 and 4.2. In Section 4.3 we couple the use of Bregman divergences
with a refinement of the local penalized model using quadratic BFGS type terms and with a trust-
region iteration acceptance rule that greatly stabilizes the primal trajectory and improves the
convergence speed of the algorithm. Finally, given the non-linear non-convex nature of estimation
via quasi-loglikelihood optimization, the availability of good preliminary estimation techniques is
of paramount importance in order to avoid local minima; this point is treated in Section 4.4 where
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some of the simpler modeling solutions listed above are used to come up with a starting point to
properly initialize the optimization algorithm.

In Section 5 we illustrate the estimation method proposed in Section 4 with various numerical
experiments that prove its applicability and support the following statements:

• The trust-region correction speeds up the algorithm and the BFGS modification makes the con-
vergence rate dimensionally independent.

• More importantly, VEC seems to be a performing modeling tool for stock market log-returns
when compared with other more parsimonious parametric families, even in dimensions where the
high number of parameters in comparison with the sample size would make us expect a deficient
modeling behavior. Our conjecture is that this better than expected results have to do with the
spectral sparsity (in the dimensions we work on we should rather say spectral concentration) of
the correlation matrices exhibited by stock market log-returns; this empirically observed feature
imposes nonlinear constraints on the model parameters that invalidate the hypotheses necessary
to formulate the standard results on the asymptotic normality of the quasi-loglikelihood parameter
estimator (see later on expressions (4.1) and (4.2)) and make it more favorable with respect to its
use with standard sample sizes. In a forthcoming publication we plan to provide a detailed study
of the convergence and complexity properties of the proposed algorithm, together with dimension
reduction techniques based on the use of the spectral sparsity that, as we said, is empirically
observed in actual financial time series.

Notation and conventions: In order to make the reading of the paper easier, most of the proofs of the
stated results have been gathered at the end in the form of appendices. All along the paper, bold symbols
like r denote column vectors, rT denotes the transposed vector. Given a filtered probability space
(Ω,P,F , {Ft}t∈N) and X,Y two random variables, we will denote by Et[X] := E[X|Ft] the conditional
expectation, covt(X,Y ) := cov(X,Y |Ft) := Et[XY ] − Et[X]Et[Y ] the conditional covariance, and by
vart(X) := Et[X

2] − Et[X]2 the conditional variance. A discrete-time stochastic process {Xt}t∈N is
predictable when Xt is Ft−1-measurable, for any t ∈ N.

2 Preliminaries on matrices and matrix operators

Matrices: Let n,m ∈ N and denote by Mn,m the space of n ×m matrices. When n = m we will just
write Mn to refer to the space of n×n square matrices. Unless specified otherwise, all the matrices in this
paper will contain purely real entries. The equality A = (aij) denotes the matrix A with components
aij ∈ R. The symbol Sn denotes the subspace of Mn that contains all symmetric matrices

Sn = {A ∈Mm | AT = A}

and S+n (respectively S−n ) is the cone in Sn containing the positive (respectively negative) semidefinite
matrices. The symbol A � 0 (respectively A � 0) means that A is positive (respectively negative)
semidefinite.

We will consider Mn,m as an inner product space with the pairing

〈A,B〉 = trace(ABT ) (2.1)

and denote by ‖A‖ = 〈A,A〉 12 the associated Frobenius norm. Given a linear operator A : Mn,m →Mp,q

we will denote by A∗ : M∗p,q →M∗n,m its adjoint with respect to the inner product (2.1).
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The vec, vech, mat, and math operators and their adjoints: The symbol vec : Mn → Rn2

denotes the operator that stacks all the columns of a matrix into a vector. Let N = 1
2n(n+ 1) and let

vech : Sn → RN be the operator that stacks only the lower triangular part, including the diagonal, of a
symmetric matrix into a vector. The inverse of the vech (respectively vec)operator will be denoted by

math : RN → Sn (respectively mat : Rn2 →Mn).
Given n ∈ N and N = 1

2n(n + 1), let S = {(i, j) ∈ {1, . . . , n} × {1, . . . , n} | i ≥ j} we define
σ : S → {1, . . . , N} as the map that yields the position of component (i, j), i ≥ j, of any symmetric
matrix in its equivalent vech representation. The symbol σ−1 : {1, . . . , N} → S will denote its inverse
and σ̃ : {1, . . . , n} × {1, . . . , n} → {1, . . . , N} the extension of σ defined by:

σ̃(i, j) =

{
σ(i, j) i ≥ j
σ(j, i) i < j.

(2.2)

The proof of the following result is provided in the Appendix.

Proposition 2.1 Given n ∈ N and N = 1
2n(n + 1), let A ∈ Sn and m ∈ RN arbitrary. The following

identities hold true:

(i) 〈vech(A),m〉 = 1
2 〈A+ diag(A),math(m)〉.

(ii) 〈A,math(m)〉 = 2〈vech(A− 1
2diag(A)),m〉,

where diag(A) denotes the diagonal matrix obtained out of the diagonal entries of A. Let vech∗ : RN →
Sn and math∗ : Sn → RN be the adjoint maps of vech and math, respectively, then:

math∗(A) = 2 vech

(
A− 1

2
diag(A)

)
, (2.3)

vech∗(m) =
1

2
(math(m) + diag(math(m))) . (2.4)

The operator norms of the mappings that we just introduced are given by:

‖vech‖op = 1 (2.5)

‖math‖op =
√

2 (2.6)

‖vech∗‖op = 1 (2.7)

‖math∗‖op =
√

2 (2.8)

‖diag‖op = 1 (2.9)

Block matrices and the Σ operator: let n ∈ N and B ∈Mn2 . The matrix B can be divided into n2

blocks Bij ∈Mn and hence its components can be labeled using a blockwise notation by referring to the
(k, l) element of the (i, j) block as (Bij)kl. This notation makes particularly accessible the interpretation
of B as the coordinate expression of a linear endomorphism of the tensor product space Rn⊗Rn. Indeed
if {e1, . . . , en} is the canonical basis or Rn, we have

B(ei ⊗ ek) =

n∑
j,l=1

(Bij)kl(ej ⊗ el). (2.10)

Definition 2.2 Let A ∈MN with N = 1
2n(n+1). We define Σ(A) ∈ Sn2 blockwise using the expression

If k ≥ l (Σ(A)kl)ij =


1
2Aσ(k,l),σ(i,j), if i > j
Aσ(k,l),σ(i,j), if i = j
1
2Aσ(k,l),σ(j,i), if i < j

If k ≤ l Σ(A)kl = Σ(A)lk,

(2.11)
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where σ is the map defined above that yields the position of component (i, j), i ≥ j, of any symmetric
matrix in its equivalent vech representation. By construction (Σ(A)kl)ij is symmetric with respect to
transpositions in the (k, l) and (i, j) indices; this implies that Σ(A) is both symmetric and blockwise
symmetric. We will refer to any matrix in Sn2 with this property as n-symmetric and will denote the
corresponding space by Snn2 .

The proofs of the next two results are provided in the Appendix.

Proposition 2.3 Given H ∈ Sn and A ∈MN , with N = 1
2n(n+1), the n-symmetric matrix Σ(A) ∈ Snn2

that we just defined satisfies:
A vech(H) = vech(Σ(A) •H), (2.12)

where Σ(A) •H ∈ Sn is the symmetric matrix given by

(Σ(A) •H)kl = 〈Σ(A)kl, H〉 = trace(Σ(A)klH).

Proposition 2.4 Let Σ : MN →Mn2 be the operator defined in the previous proposition, N = 1
2n(n+1).

Then, for any B ∈Mn2 , the corresponding dual map Σ∗ : Mn2 →MN is given by

Σ∗(B) = 2B − B̃, (2.13)

where B, B̃ ∈MN are the matrices defined by

Bpq = ((Pnn2(B))σ−1(p))σ−1(q), and B̃pq = Bpqδpr1(σ−1(p)),pr2(σ
−1(p)).

The symbol Pnn2(B) denotes the orthogonal projection of B ∈ Mn2 onto the space Snn2 of n-symmetric
matrices that we spell out in Lemma 7.1. As we saw in Proposition 2.3, Σ maps into the space Snn2 of

symmetric matrices; let Σ̃ : MN → Snn2 be the map obtained out of Σ by restriction of its range. The

map Σ̃ is a bijection with inverse Σ̃−1 : Snn2 →MN given by(
Σ̃−1(B)

)
p,q

=
(
Bσ−1(p)

)
σ−1(q)

(
2− δpr1(σ−1(q)),pr2(σ

−1(q))

)
. (2.14)

3 The VEC-GARCH model

Consider the n-dimensional conditionally heteroscedastic discrete-time process {zt} determined by the
relation

zt = H
1/2
t εt with {εt} ∼ IIDN(0, In).

In this expression, {Ht} denotes a predictable matrix process, that is for each t ∈ N, the matrix random

variable Ht is Ft−1-measurable, and H
1/2
t is a square root of Ht, hence it satisfies H

1/2
t (H

1/2
t )T = Ht.

In these conditions it is easy to show that the conditional mean Et[zt] = 0 and that the conditional
covariance matrix process of {zt} coincides with {Ht}.

Different prescriptions for the time evolution of the conditional covariance matrix {Ht} determine
different vector conditional heteroscedastic models. In this paper we will focus on the VEC-GARCH
model (just VEC in what follows). This model was introduced in [BEW88] as the direct generalization
of the univariate GARCH model [Bol86] in the sense that every conditional variance and covariance is
a function of all lagged conditional variances and covariances as well as all squares and cross-products
of the lagged time series values. More specifically, the VEC(q,p) model is determined by

ht = c +

q∑
i=1

Aiηt−i +

p∑
i=1

Biht−i,
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where ht := vech(Ht), ηt := vech(ztz
T ), c is a N -dimensional vector, with N := n(n + 1)/2 and

Ai, Bi ∈MN .
In the rest of the paper we will restrict to the case p = q = 1, that is:{

zt = H
1/2
t εt with {εt} ∼ IIDN(0, In),

ht = c +Aηt−1 +Bht−1.
(3.1)

In this case the model needs N(2N+1) = 1
2 (n2 +n)(n2 +n+1) parameters for a complete specification.

3.1 Positivity and stationarity constraints

The general prescription for the VEC model spelled out in (3.1) does not guarantee that it has station-
ary solutions. Moreover, as we saw above, the resulting matrices {Ht}t∈N are the conditional covariance
matrices of the resulting process and therefore, additional constraints should be imposed on the param-
eter matrices c, A, and B in order to ensure that they are symmetric and positive semidefinite. Unlike
the situation encountered in the one-dimensional case, necessary and sufficient conditions for positivity
and stationarity seem very difficult to find and we will content ourselves with sufficient specifications.

Positivity constraints: we will use the sufficient conditions introduced by Gourieroux in [Gou97]
that, as we show in the next proposition, can be explicitly formulated using the map Σ introduced in
Definition 2.2.

Proposition 3.1 If the parameter matrices c, A, and B in (3.1) are such that math(c),Σ(A), and Σ(B)
are positive semidefinite then so are the resulting conditional covariance matrices {Ht}t∈N, provided the
initial condition H0 is positive semidefinite.

Second order stationarity constraints: Gourieroux [Gou97] has stated sufficient conditions in terms
of the spectral radius of A+B that we will make more restrictive in order to ensure the availability of
a formulation in terms of positive semidefiniteness constraints.

Proposition 3.2 The VEC model specified in (3.1) admits a unique second order stationary solution
if all the eigenvalues of A + B lie strictly inside the unit circle. This is always the case whenever the
top singular eigenvalue σmax(A + B) of A + B is smaller than one or, equivalently, when the matrix
IN − (A+B)(A+B)T is positive definite. If any of these conditions is satisfied, the marginal variance
of the model is given by

Γ(0) = math(E[ht]) = math((IN −A−B)−1c). (3.2)

3.2 The likelihood function, its gradient, and computability constraints

Given a sample z = {z1, . . . , zT }, the quasi-loglikelihood associated to (3.1) is:

logL(z;θ) = −TN
2

log 2π − 1

2

T∑
t=1

log(detHt)−
1

2

T∑
t=1

zTt H
−1
t zt (3.3)

where θ := (c, A,B). In this expression, the matrices Ht are constructed out of θ and the sample z using
the second expression in (3.1). This implies that the dependence of logL on θ takes place through the
matrices Ht. Notice that these matrices are well defined once initial values H0 and z0 have been fixed.
This initial values are usually taken out of a presample; if this is not available it is customary to take
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the mean values associated to the stationary model, namely z = 0 and H0 = math((IN − A − B)−1c)
(see (3.2)). Once the initial conditions have been fixed, it can be shown by induction that

ht =

(
t−1∑
i=0

Bi

)
c +

t−1∑
i=0

BiAηt−i−1 +Bth0. (3.4)

The maximum likelihood estimator θ̂ of θ is the value that maximizes (3.3) for a given sample z. The
search of that extremal is carried out using an optimization algorithm that we will discuss later on in
the paper and that requires the gradient ∇θlogL(z;θ) of logL. In order to compute it we write the total
quasi-loglikelihood as a sum of T conditional loglikelihoods

lt(zt;A,B, c) = −N
2

log 2π − 1

2
log(detHt)−

1

2
zTt H

−1
t zt

A lengthy calculation shows that:

∇clt =

[
(γt − Γt)

T
t−1∑
i=0

Bi

]T
, (3.5)

∇Alt =

[
t−1∑
i=0

ηt−i−1 (γt − Γt)
T
Bi

]T
, (3.6)

∇Blt =

t−1∑
i=0

i−1∑
j=0

Bj(c +Aηt−i−1) (γt − Γt)
T
Bi−j−1 +Bjh0 (γt − Γt)

T
Bt−j−1

T , (3.7)

where

Γt :=
1

2
math∗(H−1t ), γt :=

1

2
math∗(Λt), and Λt := H−1t ztz

T
t H
−1
t .

These formulas for the gradient were obtained by using the explicit expression of the conditional covari-
ance matrices (3.4) in terms of the sample elements and the coefficient matrices. Such a closed form
expression is not always available as soon as the model becomes slightly more complicated; for example,
if one adds to the model (3.1) a drift term like in [Dua95] for the one dimensional GARCH case, an
expression like (3.4) ceases to exist. That is why, in the next proposition, we introduce an alternative
iterative method that can be extended to more general models, it is well adapted to its use under the
form of a computer code and, more importantly, suggests the introduction of an additional estimation
constraint that noticeably shortens the computation time needed for its numerical evaluation.

Proposition 3.3 Let z = {z1, . . . , zT } be a sample, θ := (c, A,B), and let logL(z;θ) be the quasi-
loglikelihood introduced in (3.3). Then, for any component θ of the three-tuple θ, we have

∇θ logL =

T∑
t=1

∇θlt =

T∑
t=1

T ∗θHt · ∇Ht lt, where (3.8)

∇Ht
lt = −1

2

[
H−1t −H−1t ztz

T
t H
−1
t

]
, (3.9)

and the differential operators T ∗θHt are determined by the recursions:

T ∗cHt ·∆ = math∗(∆) + T ∗cHt−1 · vech∗(BTmath∗(∆)), (3.10)

T ∗AHt ·∆ = math∗(∆) · ηTt−1 + T ∗AHt−1 · vech∗(BTmath∗(∆)), (3.11)

T ∗BHt ·∆ = math∗(∆) · vech(Ht−1)T + T ∗BHt−1 · vech∗(BTmath∗(∆)), (3.12)
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with ηt = vech(ztz
T ), ∆ ∈ Sn and setting T ∗cH0 = 0, T ∗AH0 = T ∗BH0 = 0. The operators T ∗θHt

constructed in (3.10)–(3.12) are the adjoints of the partial tangent maps TcHt : RN → Sn, TAHt :
MN → Sn, and TBHt : MN → Sn to Ht(c, A,B) := math(ht(c, A,B)), with ht(c, A,B) as defined
in (3.4).

Matrix expression of the recursions (3.10)–(3.12): the use of Proposition 3.3 requires translating
the operator recursions (3.10)–(3.12) into matrix recursions. In this particular case this can be achieved
by writing ∆ ∈ Sn as ∆ = vech∗(v), with v = math∗(∆) ∈ RN . With this change of variables, the
expression (3.10) becomes

T ∗cHt · vech∗(v) = v + T ∗cHt−1 · vech∗(BTv). (3.13)

Let ct ∈MN be the matrix associated to the linear operator T ∗cHt ◦vech∗ : RN → RN . In view of (3.13),
the matrices {ct}t∈{1,...,T} are determined by the recursions

ct = IN + ct−1B
T . (3.14)

Once the family {ct}t∈{1,...,T} has been computed, it can be used in (3.8) by noticing that

T ∗cHt ·∆ = ct ·math∗(∆).

Regarding (3.11), let At ∈ MN2, N be the matrix associated to the linear operator vec ◦ T ∗AHt ◦ vech∗ :

RN → RN2

. Given that

vec(vηTt−1) = vec(INvηTt−1) =
(
ηt−1 ⊗ IN

)
vec(v) =

(
ηt−1 ⊗ IN

)
v,

the recursion (3.11) implies that the family {At}t∈{1,...,T} is determined by

At =
(
ηt−1 ⊗ IN

)
+At−1B

T (3.15)

and hence, once it has been computed, it can be used in (3.8) by noticing that

T ∗AHt ·∆ = mat (At ·math∗(∆)) ,

where we recall that mat denotes the inverse of the vec operator. Finally, let Bt ∈ MN2, N be the

matrix associated to the linear operator vec ◦ T ∗BHt ◦ vech∗ : RN → RN2

. The family {Bt}t∈{1,...,T} is
determined by

Bt = (vech(Ht−1)⊗ IN ) +Bt−1B
T , and hence, T ∗BHt ·∆ = mat (Bt ·math∗(∆)) . (3.16)

The computability constraints. In the particular case of the VEC(1,1) model, the existence of the
matrix recursions (3.14)–(3.16) associated to (3.10)–(3.12) makes the computation of (3.8) relatively
easy. For more general models, the matrix recursions are not easily available and one is forced to work
directly with (the analog of) (3.10)–(3.12). In those cases, if we deal with a long time series sample, the
computation of the gradient (3.8) may turn out numerically very expensive since it consists of the sum of
T terms T ∗θHt ·∇Ht

lt, each of which is made of the sum of the t terms recursively defined in (3.10)–(3.12).
A major simplification can be obtained if we restrict ourselves in the estimation process to matrices B
whose top eigenvalue is in norm smaller than one. The defining expressions for the differential operators
T ∗θHt show that in that situation, only a certain number of iterations, potentially small, is needed to
compute the gradients with a prescribed precision. This is particularly visible in the expressions (3.5)–
(3.7) where the dependence on the powers of B makes very small many of the involved summands
whenever the spectrum of B is strictly contained in the unit disk. This is the reason why we will
impose this as an additional estimation constraint. The details of this statement are spelled out in the
proposition below that we present after the summary of the constraints that we will impose all along
the paper on the model (3.1):



Multivariate GARCH estimation via a Bregman-proximal trust-region method 9

(SC) Stationarity constraints: IN (1− εAB)− (A+B)(A+B)T � 0 for some small εAB > 0.

(PC) Positivity constraints: math(c)− εcIn � 0, Σ(A)− εAIn2 � 0, and Σ(B)− εBIn2 � 0, for some
small εA, εB , εc > 0.

(CC) Computability constraints: IN (1− ε̃B)−BBT � 0 for some small ε̃B > 0.

Proposition 3.4 Let t ∈ N be a fixed lag and let T ∗θHt be the differential operators defined by applying
t times the recursions (3.10)-(3.12). Consider now the operators T ∗θH

k
t obtained by truncating the

recursions (3.10)-(3.12) after k iterations, k < t. If we assume that the coefficients c, A, and B satisfy
the constraints (SC), (PC), and (CC) then the error committed in the truncations can be estimated
using the following inequalities satisfied by the operator norms:

‖T ∗cHt − T ∗cHk
t ‖op ≤ 2(1− ε̃B)k

ε̃B
, (3.17)

‖E
[
T ∗AHt − T ∗AHk

t

]
‖op ≤ 2(1− ε̃B)k‖c‖

εAB
, (3.18)

‖E
[
T ∗BHt − T ∗BHk

t

]
‖op ≤ 2(1− ε̃B)k‖c‖

εAB
. (3.19)

Notice that the last two inequalities estimate the error committed in mean. As consequence of these
relations, if we allow a maximum expected error δ in the computation of the gradient (3.8) then a lower
bound for the number k of iterations that need to be carried out in (3.10)–(3.12) is:

k = max

 log
(
ε̃Bδ
2

)
log(1− ε̃B)

,
log
(
ε̃BεABδ

2εc

)
log(1− ε̃B)

 . (3.20)

Remark 3.5 The estimate (3.20) for the minimum number of iterations needed to reach a certain
precision in the computation of the gradient is by no means sharp. Numerical experiments show that
the figure produced by this formula is in general too conservative. Nevertheless, this expression is still
very valuable for it explicitly shows the pertinence of the computability constraint (CC).

Remark 3.6 We emphasize that the constraints (SC), (PC), and (CC) are sufficient conditions for
stationarity, positivity, and computability, respectively, but by no means necessary. For example (SC)
and (CC) could be replaced by the more economical (but also more restrictive) condition that imposes
A,B ∈ S+N with λmax(A + B) ≤ (1 − εAB). In this situation it can be easily shown that λmax(B) < 1
and hence the computability constrained is automatically satisfied.

4 Calibration via Bregman matrix divergences

In this section we present an efficient optimization method that, given a sample z, provides the parameter
value θ̂ corresponding to the VEC(1,1) model that fits it best by maximizing the quasi-loglikelihood (3.3)
subjected to the constraints (SC), (PC), and (CC). It can be proved under certain regularity hypothe-

ses (see [Gou97, page 119]) that the quasi-loglikelihood estimator θ̂ is consistent and asymptotically
normal: √

T (θ̂ − θ0) −−→
dist

N(0,Ω0) where Ω0 = A−10 B0A
−1
0 , with (4.1)

A0 = Eθ0

[
−∂

2lt(θ0)

∂θ∂θT

]
and B0 = Eθ0

[
∂lt(θ0)

∂θ

∂lt(θ0)

∂θT

]
. (4.2)
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These matrices are usually consistently estimated by replacing the expectations by their empirical means
and the true value of the parameter θ0 by the estimator θ̂:

Â0 = − 1

T

T∑
i=1

∂2lt(θ̂)

∂θ∂θT
, B̂0 =

1

T

T∑
i=1

∂lt(θ̂)

∂θ

∂lt(θ̂)

∂θT
.

4.1 Constrained optimization via Bregman divergences

The optimization method that we will be carrying out to maximize the quasi-loglikelihood is based on
the use of Burg’s matrix divergence. This divergence is presented, for example, in [KSD09a] and it
is a particular instance of a Bregman divergence. Bregman divergences are of much use in the context
of machine learning (see for instance [DT07, KSD09b] and references therein).

In our situation we have opted for this technique as it allows for a particularly efficient treatment of
the constraints in our problem, avoiding the need to solve additional secondary optimization problems.
In order to make this more explicit it is worth mentioning that we also considered different approaches
consisting of optimizing quadratically penalized local first or second order models with the positive
semidefinite constraints (PS), (SC), and (CC); since we were not able to find a closed form expression
for the optimization step induced by this constrained local model, we were forced to use Lagrange
duality. Even though the constraints admit a simple conic formulation that allowed us to explicitly
formulate the problem, this approach finally resulted in a problem that is much more computationally
demanding than just incorporating the constraints into the primal scheme using Bregman divergences,
as we propose below.

Definition 4.1 Let X,Y ∈ Sn and φ : Sn −→ R a strictly convex differentiable function. The Breg-
man matrix divergence associated to φ is defined by

Dφ(X,Y ) := φ(X)− φ(Y )− trace
(
∇φ(Y )T (X − Y )

)
.

Bregman divergences are used to measure distance between matrices. Indeed, if we take the squared
Frobenius norm as the function φ, that is φ(X) := ‖X‖2, then Dφ(X,Y ) := ‖X − Y ‖2. Other example
is the von Neumann divergence which is the Bregman divergence associated to the entropy of
the eigenvalues of a positive definite matrix; more explicitly, if X is a positive definite matrix with
eigenvalues {λ1, . . . , λn}, then φ(X) :=

∑n
i=1(λi log λi − λi). In our optimization problem we will be

using Burg’s matrix divergence (also called the LogDet divergence or Stein’s loss in the statistics
literature [JS61]) which is the Bregman divergence obtained out of the Burg entropy of the eigenvalues
of a positive definite matrix, that is φ(X) := −

∑n
i=1 log λi, or equivalently φ(X) := − log det(X). The

resulting Bregman divergence over positive definite matrices is

DB(X,Y ) := trace(XY −1)− log det(XY −1)− n. (4.3)

The three divergences that we just introduced are examples of spectral divergences, that is, the function
φ that defines them can be written down as the composition φ = ϕ ◦ λ, where ϕ : Rn −→ R is
differentiable strictly convex function and λ : Sn −→ Rn is the function that lists the eigenvalues of X
in algebraically decreasing order. It can be seen (see Appendix A in [KSD09a]) that spectral Bregman
matrix divergences are invariant by orthogonal conjugations, that is, for any orthogonal matrix Q ∈ On:

Dφ(QTXQ,QTY Q) = Dφ(X,Y ).

Burg divergences are invariant by an even larger group since

DB(MTXM,MTYM) = DB(X,Y ),
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for any square non-singular matrix M . Additionally, for any non-zero scalar α:

DB(αX,αY ) = DB(X,Y ).

The use of Bregman divergences in matrix constrained optimization problems is substantiated by
replacing the quadratic term in the local model, that generally uses the Frobenius distance, by a Bregman
divergence that places the set outside the constraints at an infinite distance. More explicitly, suppose
that the constraints of a optimization problem are formulated as a positive definiteness condition A � 0
and that we want to find

arg min
A�0

f(A),

by iteratively solving the optimization problems associated to penalized local models of the form

fA(n)(A) := f
(
A(n)

)
+
〈
∇f

(
A(n)

)
, A−A(n)

〉
+
L

2
Dφ(A,A(n)). (4.4)

If in this local model we take φ(X) := ‖X‖2 and the elastic penalization constant L is small enough, the
minimizer arg minA�0 fA(n)(A) is likely to take place outside the constraints. However, if we use Burg’s

divergence DB instead, and A(n) is positive definite, then so is arg minA�0 fA(n)(A) for no matter what

value of the parameter L. This is so because as A approaches the constraints, the term Dφ(A,A(n))
becomes increasingly close to infinity producing the effect that we just described; see Figure 4.1 for an
illustration. The end result of using Bregman divergences is that they reduce a constrained optimization
problem to a series of local unconstrained ones.

Figure 4.1: The blue function is subjected to the constraint x ≥ 400 and, being strictly increasing, attains its minimum
at x = 400. On the left hand side we use a standard quadratically penalized local model of the function and
we see that its minimum is attained outside the constrained domain. On the right hand side we replace the
quadratic penalization by a Bregman divergence that forces the local model to exhibit its optimum at a point
that satisfies the constraints.
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4.2 Bregman divergences for VEC models

Before we tackle the VEC estimation problem, we add to (SC), (PC), and (CC) a fourth constraint
on the variable c ∈ RN that makes compact the optimization domain:

(KC) Compactness constraint: KIN −math(c) � 0 for some K ∈ R.

In practice the constant K is taken as a multiple of the Frobenius norm of the covariance matrix of the
sample. This is a reasonable choice since by (3.2), in the stationary regime c = (IN −A−B)vech(Γ(0));
moreover, by the constraint (SC) and (2.5) we have

‖c‖ = ‖(IN −A−B)vech(Γ(0))‖ ≤ ‖IN −A−B‖op‖vec‖op‖Γ(0)‖ ≤ 2‖Γ(0)‖.

Now, given a sample z and a starting value for the parameters θ0 = (c0, A0, B0), our goal is finding
the minimizer of minus the quasi-loglikelihood f(θ) := −logL(z;θ), subjected to the constraints (SC),
(PC), (CC), and (KC). We will worry about the problem of finding a preliminary estimation θ0
later on in Section 4.4. As we said before, our method is based on recursively optimizing penalized
local models that incorporate Bregman divergences that ensure that the constraints are satisfied. More
specifically, the estimate of the optimum θ(n+1) after n iterations is obtained by solving

θ(n+1) = arg min
θ∈RN×MN×MN ,

f̃ (n)(θ), (4.5)

where f̃ (n) is defined by:

f̃ (n)(θ) = f(θ(n)) + 〈∇f(θ(n)),θ − θ(n)〉+
L1

2
DB(IN − (A+B)T (A+B), IN − (A(n) +B(n))T (A(n) +B(n)))

+
L2

2
DB(Σ(A),Σ(A(n))) +

L3

2
DB(Σ(B),Σ(B(n))) +

L4

2
DB(IN −BTB, IN −B(n)TB(n))

+
L5

2
DB(math(c),math(c(n))) +

L6

2
DB(KIN −math(c),KIN −math(c(n))). (4.6)

Notice that for the sake of simplicity we have incorporated the constraints in the divergences with the
constraint tolerances εAB , εA, εB , ε̃B , and εc set equal to zero.

The local optimization problem in (4.5) is solved by finding the value θ0 for which

∇f̃ (n)(θ0) = 0. (4.7)

A long but straightforward computation shows that the gradient ∇f̃ (n)(θ) is given by the expressions:

∇Af̃ (n)(θ) = ∇Af(θ(n))− L1(A+B)

((
IN − (A(n) +B(n))T (A(n) +B(n))

)−1
−
(
IN − (A+B)T (A+B)

)−1)
+
L2

2
Σ∗
(

Σ(A(n))−1 − Σ(A)−1
)
, (4.8)

∇B f̃ (n)(θ) = ∇Bf(θ(n))− L1(A+B)

((
IN − (A(n) +B(n))T (A(n) +B(n))

)−1
−
(
IN − (A+B)T (A+B)

)−1)
+
L3

2
Σ∗
(

Σ(B(n))−1 − Σ(B)−1
)
− L4B

((
IN −B(n)TB(n)

)−1
−
(
IN −BTB

)−1)
, (4.9)

∇cf̃
(n)(θ) = ∇cf(θ(n)) +

L5

2
math∗

(
math(c(n))−1 −math(c)−1

)
−L6

2
math∗

(
(KIN −math(c(n)))−1 − (KIN −math(c))−1

)
, (4.10)
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where ∇θf(θ(n)) = −∇θlogL(z;θ(n)) is provided by the expressions in Proposition 3.3. We will nu-
merically find the solution of the equation (4.7) using the Newton-Raphson algorithm, which requires

computing the tangent map to ∇f̃ (n)(θ). In order to do so, let g
(n)
1 (A,B), g

(n)
2 (A,B), and g

(n)
3 (c)

be the functions in the right hand side of the expressions (4.8), (4.9), and (4.10), respectively, and

g(n)(A,B, c) :=
(
g
(n)
1 (A,B), g

(n)
2 (A,B), g

(n)
3 (c)

)
; additionally, define the map Λ(A) : MN → MN by

Λ(A) := IN −ATA, as well as

Ξ
(n)
A (∆) = −∆

(
Λ
(
A(n)

)−1
− Λ(A)−1

)
+AΛ(A)−1

(
∆T (A) +AT∆

)
Λ(A)−1, (4.11)

XA(∆) = Σ∗
(
Σ(A)−1Σ(∆)Σ(A)−1

)
, (4.12)

for any A,∆ ∈MN . A straightforward computation shows that:

T(A,B)g
(n)
1 · (∆A,∆B) =

(
L1Ξ

(n)
A+B(∆A) +

L2

2
XA(∆A), L1Ξ

(n)
A+B(∆B)

)
, (4.13)

T(A,B)g
(n)
2 · (∆A,∆B) =

(
L1Ξ

(n)
A+B(∆A), L1Ξ

(n)
A+B(∆B) +

L3

2
XB(∆B) + L4Ξ

(n)
B (∆B)

)
, (4.14)

Tcg
(n)
3 ·∆c =

L5

2
math∗

(
math(c)−1math(∆c)math(c)−1

)
+
L6

2
math∗

(
(KIN −math(c))−1math(∆c)(KIN −math(c))−1

)
.(4.15)

In obtaining these equalities we used that the tangent map to the matrix inversion operation inv(X) :=
X−1 is given by TX inv ·∆ = −X−1∆X−1 and hence

TAΛ(A)−1 ·∆A = Λ(A)−1
(
∆T
AA+AT∆A

)
Λ(A)−1 and TAΣ(A)−1 ·∆A = −Σ(A)−1Σ(∆A)Σ(A)−1.

The use of the tangent maps (4.13)–(4.15) in a numerical routine that implements the Newton-Raphson
method requires computing the matrix associated to the linear map T(A,B,c)g

(n). A major part in this

task, namely the matrix associated to the map Ξ(n) in (4.11), admits a closed form expression that
avoids a componentwise computation. Indeed:

vec(Ξ
(n)
A (∆)) = −

[(
Λ
(
A(n)

)−1
− Λ(A)−1

)
⊗ IN

]
vec(∆) +

[(
AΛ(A)−1

)T ⊗AΛ(A)−1
]
KNNvec(∆)

+
[
Λ(A)−1T ⊗AΛ(A)−1AT

]
vec(∆), (4.16)

where KNN is the (N,N)-commutation matrix (see [MN79]). This expression implies that the matrix

Ξ̃
(n)
A ∈MN2 associated to the linear map Ξ

(n)
A : MN →MN is given by

Ξ̃
(n)
A = −

[(
Λ
(
A(n)

)−1
− Λ(A)−1

)
⊗ IN

]
+
[(
AΛ(A)−1

)T ⊗AΛ(A)−1
]
KNN+

[
Λ(A)−1T ⊗AΛ(A)−1AT

]
.

(4.17)
In order to obtain (4.16), we used the following properties of the vec operator:

vec(AB) =
(
BT ⊗ I

)
vec(A), vec(ABC) =

(
CT ⊗A

)
vec(A) and vec(AT ) = KNNvec(A),

for any A,B,C ∈MN . We have not found a closed formula for the matrices associated to the other linear
maps that constitute (4.13)–(4.15) and hence they need to be obtained in a componentwise manner by
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applying them to all the elements of a canonical basis. Let X̃A, ˜T(A,B,c)g(n), and T̃cg
(n)
3 be the matrices

associated to XA, T(A,B,c)g
(n), and Tcg

(n)
3 , respectively. Then, by (4.13)–(4.15), we have:

˜T(A,B,c)g(n) =


L1Ξ̃

(n)
A+B + L2

2 X̃A L1Ξ̃
(n)
A+B 0

L1Ξ̃
(n)
A+B L1Ξ̃

(n)
A+B + L3

2 X̃B + L4Ξ̃
(n)
B 0

0 0 T̃cg
(n)
3

 . (4.18)

Using this matrix, the solution θ0 of (4.7) is the limit of the sequence {θ(n, k)}k∈N := {(A(n, k), B(n, k), c(n, k))}k∈N
constructed using the prescription θ(n, 1) = θ(n) = (A(n), B(n), c(n)) and by iteratively solving the linear
systems:

˜Tθ(n, k)g(n) ·

 vec(A(n, k+1))
vec(B(n, k+1))

c(n, k+1)

 = −vec
(
∇f̃ (n)(θ(n, k))

)
+ ˜Tθ(n, k)g(n) ·

 vec(A(n, k))
vec(B(n, k))

c(n, k)

 . (4.19)

Remark 4.2 Since the tangent map Tθg
(n) can be assimilated to the Hessian of f̃ (n), its matricial

expression T̃θg(n) in (4.18) should be symmetric. When this matrix is actually numerically constructed,
the part resulting from the matrix identity (4.17) is automatically symmetric. The rest, that comes
out of a componentwise study, may introduce numerical differences that slightly spoil symmetricity and
that, in practice, has a negative effect in the performance of the optimization algorithm as a whole.

That is why we strongly advice to symmetrize by hand T̃θg(n) once it has been computed.

4.3 Performance improvement: BFGS and trust-region corrections

The speed of convergence of the estimation algorithm presented in the previous section can be sig-
nificantly increased by enriching the local model with a quadratic BFGS (Broyden-Fletcher-Goldfarb-
Shanno) type term and by only accepting steps of a certain quality measured by the ratio between the
actual descent and that predicted by the local model (see [CGT00] and references therein).

The BFGS correction is introduced by adding to the local penalized model f̃ (n)(θ) defined in (4.6),
the BFGS Hessian proxy H(n) iteratively defined by:

H(n) = H(n−1) +
y(n−1)y(n−1)T

y(n−1)T s(n−1)
− H(n−1)s(n−1)s(n−1)TH(n−1)

s(n−1)TH(n−1)s(n−1)
.

with H(0) an arbitrary positive semidefinite matrix and where s(n−1) := θ(n) − θ(n−1) and y(n−1) :=
∇f(θ(n))−∇f(θ(n−1)). More specifically, we replace the local penalized model f̃ (n)(θ) by

f̂ (n)(θ) := f̃ (n)(θ) +
1

2

(
θ − θ(n)

)T
H(n)

(
θ − θ(n)

)
,

whose gradient is obviously given by:

ĝ(n)(θ) := ∇f̂ (n)(θ) = ∇f̃ (n)(θ) +H(n)
(
θ − θ(n)

)
= g̃(n)(θ) +H(n)

(
θ − θ(n)

)
,

with g̃(n)(θ) = ∇f̃ (n)(θ) given by (4.8)–(4.10). Using this corrected local penalized model, the solution
of the optimization problem will be obtained by iteratively computing

θ(n+1) = arg min
θ∈RN×MN×MN ,

f̂ (n)(θ). (4.20)
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This is carried out by finding the solution θ0 of the equation

ĝ(n)(θ0) = g̃(n)(θ0) +H(n)
(
θ0 − θ(n)

)
= 0. (4.21)

using a modified version of the Newton-Raphson iterative scheme spelled out in (4.19). Indeed, it is

easy to show that θ0 is the limit of the sequence {θ(n, k)}k∈N constructed exactly as in Section 4.2 where
the linear systems (4.19) are replaced by(

˜Tθ(n, k)g(n) + H̃(n)

)
· ˜
θ(n, k+1) = −vec

(
∇f̃ (n)(θ(n, k))

)
+ H̃(n) · θ̃(n) + ˜Tθ(n, k)g(n) · θ̃(n, k). (4.22)

where
˜
θ(n, k+1) =

 vec(A(n, k+1))
vec(B(n, k+1))

c(n, k+1)

 and H̃(n) ∈M2N2+N denotes the matrix associated to H(n) that

satisfies

vec
(
H(n) · θ

)
= H̃(n) ·

 vec(A)
vec(B)

c

 for any θ = (A,B, c).

Important remark: the Newton-Raphson method and the constraints. In Section 4.1 we
explained how the use of Bregman divergences ensures that at each iteration, the extremum of the
local penalized model satisfies the constraints of the problem. However, the implementation of the
Newton-Raphson method that provides the root of the equation (4.21) does not, in general, respect the
constraints, and hence this point requires special care.

In the construction of our optimization algorithm we have used the following prescription in order
to ensure that all the elements of the sequence {θ(n, k)}k∈N that converge to the root θ0 satisfy the

constraints: given θ(n, 1) = θ(n) (that satisfies the constraints) let θ(n, 2) be the second value in the

Newton-Raphson sequence obtained by solving the linear system (4.22). If the value θ(n, 2) thereby
constructed satisfies the constraints it is then accepted and we continue to the next iteration; otherwise
we set

θ(n, 2) := θ(n, 1) +
θ(n, 2) − θ(n, 1)

2
(4.23)

iteratively until θ(n, 2) satisfies the constraints. Notice that by repeatedly performing (4.23), the value

θ(n, 2) hence constructed is closer and closer to θ(n, 1); since this latter point satisfies the constraints, so
will at some point θ(n, 2). This manipulation that took us from θ(n, 1) to θ(n, 2) in a constraint compliant
fashion has to be carried out at each iteration to go from θ(n, k) to θ(n, k+1).

Trust-region iteration acceptance correction: given an starting point θ0 we have given a prescrip-
tion for the construction of a sequence {θ(n)}n∈N that converges to the constrained minimizer of minus
the quasi-loglikelihood f(θ) := −logL(z;θ). We now couple this optimization routine with a trust-region
technique. The trust-region algorithm provides us with a systematic method to test the pertinence of
an iteration before it is accepted and to adaptively modify the strength of the local penalization in order
to speed up the convergence speed. In order to carefully explain our use of this procedure consider first
the local model (4.5) in which all the constants L1, . . . , L6 that manage the strength of the constraint
penalizations are set to a common value L. At each iteration of (4.20) compute the adequacy ratio
ρ(n) defined as

ρ(n) :=
f(θ(n))− f(θ(n−1))

f̂ (n)(θ(n))− f̂ (n)(θ(n−1))
(4.24)

which measures how close the descent in the target function in the present iteration is to the one
exhibited by the local model f̂ (n). The values that can be obtained for ρ(n) are classified into three
categories that determine different courses of action:
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1. Too large step ρ(n) < 0.01: there is too much dissimilarity between the local penalized model
and the actual target function. In this situation, the iteration update is rejected by setting
θ(n) = θ(n−1) and the penalization is strengthened by doubling the constant: L = 2L

2. Good step 0.01 ≤ ρ(n) ≤ 0.9: the iteration update is accepted and the constant L is left
unchanged.

3. Too small step 0.9 ≤ ρ(n): the iteration update is accepted but given the very good adequacy
between the local penalized model and the target function we can afford loosening the penalization
strength by setting L = 1

2L as the constant that will be used in the next iteration.

Remark 4.3 Even though the definition of the adequacy ratio in (4.24) uses the full penalized local

models f̂ (n), we have seen that in practice the linear approximation suffices to obtain good results.

4.4 Preliminary estimation

As any optimization algorithm, the one that we just presented requires a starting point θ(0). The
choice of a good preliminary estimation of θ(0) is particularly relevant in our situation since the quasi-
loglikelihood exhibits generically local extrema and hence initializing the optimization algorithm close
enough to the solution may prove to be crucial in order to obtain the correct solution.

Given a sample z = {z1, . . . , zT }, a reasonable estimation for θ(0) can be obtained by using the
following two steps scheme:

1. Find a preliminary estimation of the conditional covariance matrices sequence {H1, . . . ,HT }
out of the sample z. This can be achieved by using a variety of existing non-computationally intensive
techniques. A non-exhaustive list is:

(i) Orthogonal GARCH model (O-GARCH): introduced in [Din94, AC97, Ale98, Ale03]; this technique
is based on fitting one-dimensional GARCH models to the principal components obtained out of
the sample marginal covariance matrix of z.

(ii) Generalized orthogonal GARCH model (GO-GARCH) [vdW02]: similar to O-GARCH, but in this
case the one-dimensional modeling is carried out not for the principal components of z but for its
image with respect to a transformation V which is assumed is assumed to be just invertible (in
the case of O-GARCH is also orthogonal) and it is estimated directly via a maximum likelihood
procedure, together with the parameters of the one-dimensional GARCH models. GO-GARCH
produces better empirical results than O-GARCH but it lacks the factoring estimation feature that
O-GARCH has, making it more complicated for the modeling of large dimensional time series and
conditional covariance matrices.

(iii) Independent component analysis (ICA-GARCH): [WYL06, GFGPP08] this model is based on a
signal separation technique [Com94, HO97] that turns the time series into statistically independent
components that are then treated separately using one dimensional GARCH models.

(iv) Dynamic conditional correlation model (DCC): introduced in [TT02, Eng02], this model proposes a
dynamic behavior of the conditional correlation that depends on a small number of parameters and
that nevertheless is still capable of capturing some of the features of more complicated multivariate
models. Moreover, a version of this model [ES01] can be estimated consistently using a two-step
approach that makes it suitable to handle large dimensional problems.

Another method that is widely used in the context of financial log-returns is the one advocated by
Riskmetrics [Ris96] that proposes exponentially weighted moving average (EWMA) models for the time
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evolution of variances and covariances; this comes down to working with IGARCH type models with a
coefficient that is not estimated but proposed by Riskmetrics and that is the same for all the factors.

2. Estimation of θ(0) out of z and H = {Ht}t∈{1,...,T} using constrained ordinary least squares.
If we have the sample z and a preliminary estimation of the conditional covariances {Ht}t∈{1,...,T}, a

good candidate for θ(0) = (A(0), B(0), c(0)) is the value that minimizes the sum of the Euclidean norms
st := ‖ht −

(
c +Aηt−1 +Bht−1

)
‖2, that is,

s(A,B, c; z, H) =

T∑
t=2

st(A,B, c; z, H) =

T∑
t=2

‖ht −
(
c +Aηt−1 +Bht−1

)
‖2,

subjected to the constraints (SC), (PC), (CC), and (KC). This minimizer can be efficiently found by
using the Bregman divergences based method introduced in Sections 4.1 through 4.3 with the function
s(A,B, c; z, H) replacing minus the log-likelihood. However, we emphasize that unlike the situation
in the log-likelihood problem, the choice of a starting point in the optimization of s(A,B, c; z, H) is
irrelevant given the convexity of his function.

As a consequence of these arguments, the preliminary estimation θ(0) is obtained by iterating (4.20)
where in the local model (4.6) the map f is replaced by s. This scheme is hence readily applicable once
the gradient of s, provided by the following formulas, is available:

∇As = 2

T∑
t=2

[
Aηt−1η

T
t−1 + cηTt−1 +Bht−1η

T
t−1 − htη

T
t−1
]
,

∇Bs = 2

T∑
t=2

[
chTt−1 +Aηt−1h

T
t−1 +Bht−1h

T
t−1 − hth

T
t−1
]
,

∇cs = 2

T∑
t=2

[
c +Aηt−1 +Bht−1 − ht

]
.

5 Numerical experiments

In this section we illustrate the estimation method presented in Section 4 with various simulations that
give an idea of the associated computational effort and of the pertinence of the VEC model in different
dimensions.

The data set. We have used in our experiments the daily closing prices between January 3, 2005 and
December 31, 2009 (that is, 1258 date entries) of the stock associated to the companies Alcoa, Apple,
Abbott Laboratories, American Electric, Allstate, Amgen, Amazon.com, and Avon. All these stocks are
traded at the NYSE in US dollars and, in the last date of our sample, they were all constituents of the
S&P500 index. The quotes are adjusted with respect to dividend payments and stock splits. Figure 5.1
represents graphically the data set.

Computational effort associated to the estimation method. In table 5.1 we have gathered the
required computing time and the necessary gradient calls to fit VEC(1,1) models to the log-returns of
our data set in different dimensions. In the n = 1 column we present the results associated to fitting a
VEC model to the log-returns of the first element of the data set; the same in the n = 2 column with
respect to the log-returns of the first two elements of the data set, and so on. The stopping criterion
for the algorithm is established by setting a termination tolerance on the function value equal to 10−5.
The last row of the table shows how the algorithm becomes increasingly costlier with the dimensionality
of the problem when the BFGS correction is dropped.The results of this experiment suggest that the
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Figure 5.1: Stock quotes used in the numerical experiments. The quotes represent closing prices adjusted with respect to
dividend payments and stock splits. Source: Yahoo Finance.
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trust-region correction speeds up the algorithm and the BFGS modification makes the convergence rate
dimensionally independent.

Computation time and gradient calls

n = 1 (3 parameters) n = 2 (21 parameters) n = 3 (78 parameters) n = 4 (210 parameters) n = 5 (465 parameters) n = 6 (903 parameters)

Grad. calls Time Grad. calls Time Grad. calls Time Grad. calls Time Grad. calls Time Grad. calls Time

Full method 50 1.45 sec 97 58 sec 99 3 min 9 sec 94 18 min 85 73 min 105 5 hrs 36 min

No BFGS 106 2.30 sec 281 159 sec 378 8 min 57 sec 404 47 min 534 298 min 591 22 hr

Table 5.1: Computation time and gradient calls required when running the estimation method presented in Section 4,
with and without the BFGS correction. The simulations were carried out using a nonparallelized Matlab script
on an Apple computer endowed with two double core 3 GHz processors, 64 bits.

Variance minimizing portfolios, proxy replication, and spectral sparsity. As we have already
pointed out several times, the main concern when using VEC models lays in the overabundance of
parameters, whose number may easily be bigger than the sample size in standard applications, even
when dealing with low dimensional problems. This lack of parsimony already appears when dealing
with our data set for it contains 1257 historical log-returns, while the VEC(1,1) model requires 1596
parameters in dimension seven and 2628 in dimension 8.

The goal of the following experiment consists of assessing how serious this problem is. More explicitly,
we will study how the pertinence of VEC as a modeling tool evolves with the increase in dimensionality,
when compared with other more parsimonious and widely used alternatives, namely:

• Exponentially Weighted Moving Average (EWMA) model for the conditional covariance matrices
with the autroregressive coefficient λ = 0.94 proposed by Riskmetrics [Ris96] for daily data.

• Orthogonal GARCH model (OGARCH), as in [Din94, AC97, Ale98, Ale03].

• Dynamic conditional correlation model (DCC) of [TT02, Eng02].

These modeling approaches will be tested by evaluating:

• Comparative performance in the construction of dynamic variance minimizing port-
folios: all the models that we just enumerated and that take part in our comparison share the
form

zt = H
1/2
t εt with {εt} ∼ IIDN(0, In), (5.1)

where {Ht} is a predictable matrix process. What changes from model to model is the specifi-
cation that determines the dynamical behavior of {Ht}; in the particular case of VEC(1,1), that
specification is spelled out in (3.1). When (5.1) is fitted to the log-returns associated to our data
set, the matrices {Ht} provide an (model dependent) estimate of the conditional covariance of the
log-returns process. Moreover, it is not difficult to show that if w = (w1, . . . , wn)′ is a weights
vector such that

∑n
i=1 wi = 1, then the conditional variance of the net returns process of the

associated portfolio is given by {wTAtw}, where At is the matrix whose (i, j) entry Atij is given
by

Atij = exp

(
n∑
k=1

hikhjk

)
− 1,

with htij the (i, j) entry of the matrix Ht. A dynamic variance minimizing portfolio is a weights
vector wt defined as the solution at each time step of the optimization problem

arg min
w∈Rn,

∑n
i=1 wi=1

wTAtw. (5.2)
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A straightforward application of Lagrange duality shows that the solutions wt of (5.2) are given
by either the zero eigenvectors of At, or by

wt =
1

iTA−1t i
A−1t i, (5.3)

when At is invertible, where i is an n-dimensional vector made exclusively out of ones. In our
numerical experiment we will always fall in the situation contemplated in (5.3) and it is this
expression that we will use to construct the dynamic variance minimizing portfolios associated
to each of the different models that we are testing. Figure 5.2 shows the conditional variance
of the net returns process associated to the variance minimizing portfolios corresponding to the
different models under consideration. It is tempting to say that the most performing model is the
one for which the conditional variance is consistently smaller; however, given that the conditional
variance is model dependent, these quantities are not directly comparable and it is only the marginal
variances of the optimal portfolios that can be put side to side. This comparison is carried out
in table 5.2 in which we see that VEC allows the construction of portfolios with smaller variances
than those corresponding to the other models in all the dimensions considered.

Variance of optimal portfolios (×10−4)

n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

EWMA 5.03 1.72 1.50 1.44 1.49 1.59 1.62

OGARCH 5.29 1.75 1.50 1.42 1.42 1.45 1.50

DCC 4.96 1.74 1.47 1.37 1.38 1.40 1.43

VEC 4.91 1.70 1.39 1.22 1.15 1.15 1.12

Table 5.2: Marginal variance of the net returns associated to the variance minimizing portfolios corresponding to the
different models.

• Goodness of fit between the associated conditional volatilities and the absolute values
of the log-returns used as a proxy for conditional volatility: following [MZ69, GN86, AB97,
MCV02], we evaluate the performance of the different models by considering the absolute values of
portfolio returns as a proxy for conditional volatility and by checking how the different proposals
coming from the models under scrutiny fit this proxy. Even though it is well known [AB97]
that this is a very noisy proxy for volatility, this approach provides us with quick and simple
to implement ways to compare different modeling approaches. The first one consists of fitting
each of the models to the first i assets with i ∈ {1, 2, . . . , 8} and computing the mean Euclidean
distance (MSE) between the model associated conditional volatility and the proxy values; the
results of this experiment are presented in table 5.3 where we see that VEC produces a smaller
MSE in all the dimensions considered, even surprisingly at dimensions 7 and 8 where the number
of parameters to be estimated is bigger than the sample size. The plausibility of this result is
visually emphasized in figure 5.3 where we have depicted the conditional volatilities of one of the
assets in our data set (AA) obtained out of the models under consideration in dimension 8, as
well as of a one-dimensional GARCH model; these volatilities are graphically compared with the
proxy.

Finally, we have ranked the different models by studying their efficiency in modeling the volatility of
constant random portfolios; more especifically, at each dimension i, i ∈ {1, 2, . . . , 8}, we randomly
choose i weights using standard normally distributed variables and we appropriately normalize
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Figure 5.2: Conditional volatility of the net returns associated to the dynamic variance minimizing portfolios constructed
by fitting different models to the log-returns of our eight dimensional data set. The VEC estimation was
carried out setting a termination tolerance on the function value equal to 10−5 and using an OGARCH based
OLS preliminary estimation, as explained in Section 4.4.
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Figure 5.3: Conditional volatility of the asset Alcoa (AA) obtained out of eight dimensional modelings. The graphics
EWMA, OGARCH, DCC, and VEC represent the volatility obtained as the square root of the (1, 1) compo-
nents of the 8×8 conditional covariance matrices associated to those models. GARCH represents the volatility
associated to a one-dimensional GARCH modeling of the log-returns of AA, and PROXY shows the absolute
value of the AA log-returns.
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Mean square error with respect to proxy (×10−4)

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

EWMA 5.19 4.31 3.23 2.71 3.03 2.89 3.42 3.39

OGARCH 5.08 4.33 3.24 2.71 3.02 2.88 3.44 3.38

DCC 5.08 4.23 3.17 2.66 2.98 2.85 3.39 3.43

VEC 5.08 4.17 3.12 2.59 2.91 2.68 3.17 3.16

Table 5.3: Mean square errors committed when modeling the absolute values of the returns with the conditional variance
associated to the different models.

them so that their sum equals to one. We then use the conditional covariance matrices provided
by each of the models under consideration to compute the (model based) conditional volatility
of the portfolio. We then regress the proxy for the portfolio volatility, namely the absolute value
of the portfolio returns, on the various portfolio volatilities provided by the different models and,
using the suggestion in [MCV02] we declare as the best model the one that produces the highest
coefficient of determination R2. As the chosen proxy is know to be very noisy [AB97] the obtained
R2 coefficients are rather small (typically between 0.2 and 0.3). Using this criterion, we randomly
generated 5,000 portfolios at each dimension, and we recorded the percentage rate of relative
success of each model with respect to the others. The results of the experiment are presented in
table 5.4 and show the superiority of VEC in all the dimensions considered.

Success rate in modeling random portfolios (%)

Number of assets n=8 n=7 n=6 n=5 n=4 n=3 n=2

Number of VEC parameters 2628 1596 903 465 210 78 21

DCC 25.70 32.20 32.00 32.27 17.70 24.10 24.50

EWMA 1.27 0.9 0 0 0 0.3 0

OGARCH 28.18 19.40 8.30 7.87 3.70 21.80 22.80

VEC 44.85 47.50 59.70 59.83 78.60 53.80 52.70

Table 5.4: Percentage rate of relative success of each model with respect to the others in modeling the volatility of random
portfolios. For each dimension n, we randomly generated 5,000 portfolios and we considered as the best model
the one that produced the highest coefficient of determination R2 when regressing the absolute values of the
corresponding returns on the conditional covariances associated to the each model. VEC consitently presents
the highest success rate regardless of the dimension.

• Spectral sparsity and high dimensional estimation: a major surprise revealed by these
numerical experiments is that the estimated models provide good empirical performance despite
the highly unfavorable ratio between the sample size and the number of parameters to be estimated.
In order to investigate the reasons for such a counterintuitive but pleasing phenomenon, we plotted
the eigenvalues of Σ(A) and Σ(B) for n between 4 to 8. These plots, displayed in Figure 5.4, show
that the estimators Σ(Â) and Σ(B̂) of Σ(A) and Σ(B) are spectrally very sparse, that is, have a
very low rank. Thus, the solutions of the estimation problem are exactly the same as the ones
we would have obtained under additional a priori rank constraints, a setting that would have
implicitly reduced the dimension of the parameter space by a large factor. This suggests that
in our particular empirical situation, the number of parameters that are actually independent is
much smaller than the number of entries in the coefficient matrices A, B and c, which makes
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possible the use of small relative sample sizes in the VEC context. The most obvious explanation
for this phenomenon stems from the well-known fact that the conditional covariance matrices
Ht corresponding to stock market returns present spectral accumulation (in small dimensional
settings) or sparsity (in large dimensions). This seems to make the positive semi-definiteness
constraints on Σ(A) and Σ(B) highly active, which enforces a large number of eigenvalues to be
equal to zero.

Notice further that the proportion of nonzero eigenvalues of Σ(Â) and Σ(B̂) decreases very slowly
as a function of the parameter space dimension and shows no particular abrupt transition when
the dimension/sample size ratio becomes large. This phenomenon suggests that the constrained
maximum likelihood approach is very stable for this hard estimation problem. On the other
hand, pushing theses ideas further along the lines of recent works in sparse estimation and matrix
completion problems [CR09, CT10], one might expect that explicitly enforcing the spectral sparsity
of the estimators might improve their performance for dimensions much larger than the ones
explored in the present work. A rigorous treatment of these observations is needed and will be
the subject of further research in a forthcoming paper.

6 Conclusions

In this paper we provided an adequate explicit formulation of the estimation problem for VEC models
and developed a Bregman-proximal trust-region method to solve it. This combination of techniques pro-
vides a robust optimization method that can be surely adapted with good results to more parsimonious
multivariate volatility models.

We carried out numerical experiments based on stock market returns that show the applicability of
the proposed estimation method in specific practical situations. Additionally, our numerical experiments
reveal how the empirically well documented spectral accumulation in the covariance structure of stock
quotes implies, in the context of VEC modeling, implicit nonlinear constraints in the parameter space
that make this parametric family competitive even in the presence of a highly unfavorable ratio between
the sample size and the number of parameters to be estimated. The comparison has been carried
out with respect to other standard and more parsimonious multivariate conditionally heteroscedastic
families, namely, EWMA, DCC, and OGARCH. An in-depth study of this phenomenon will be the
subject of a forthcoming publication.
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Figure 5.4: Eigenvalues of Σ(A) and Σ(B) for n between 4 to 8. The spectral sparsity evidenced in these plots suggests
nonlinear constraints in the parameter space which explain the good empirical performance of the models
despite the highly unfavorable ratio between the sample size and the number of parameters to be estimated.
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7 Appendix

7.1 Proof of Proposition 2.1

We start with the proof of (i) by using the following chain of equalities in which we use the symmetric
character of both A and math(m):

〈A+ diag(A),math(m)〉 = trace(Amath(m)) + trace(diag(A)math(m))

=

n∑
i,j=1

Aijmath(m)ji +Aijδijmath(m)ji

=
∑
i<j

Aijmath(m)ij +
∑
i>j

Aijmath(m)ij + 2

n∑
i=j=1

Aijmath(m)ij

= 2
∑
i≥j

Aijmath(m)ij = 2
∑
i≥j

Aijmσ(i,j) = 2

N∑
q=1

Aσ−1(q)mq

= 2〈vech(A),m〉,

as required. In order to prove (ii), note that the identity that we just showed ensures that

〈A,math(m)〉 = 2〈vech(A),m〉 − 〈diag(A),math(m)〉. (7.1)

At the same time

〈diag(A),math(m)〉 = trace(diag(A)math(m)) =

n∑
i=1

Aiimath(m)ii =

n∑
i=1

Aiimσ(i,i)

=
∑
i≥j

diag(A)ijmσ(i,j) =

N∑
q=1

diag(A)σ−1(q)mq

=

N∑
q=1

vech(diag(A))qmq = 〈vech(diag(A)),m〉,

which substituted in the right hand side of (7.1) proves the required identity. Finally, expression (2.3)
follows directly from (ii) and as to (2.4) we observe that

1

2
〈A+ diag(A),math(m)〉 =

1

2
trace((A+ diag(A))math(m))

=
1

2
trace(Amath(m)) +

1

2
trace(diag(A)math(m))

=
1

2
(trace(Amath(m)) + trace(Adiag(math(m))))

=
1

2
〈A,math(m) + diag(math(m))〉,

which proves (2.4). Regarding the operator norms we will just prove (2.5) and (2.6) as the rest can be
easily obtained out of these two combined with the expressions (2.3) and (2.4). We start by noticing
that for any nonzero A = (aij) ∈ Sn:

‖vech(A)‖2

‖A‖2
=

∑n
i>j=1 a

2
ij +

∑n
i=1 a

2
ii

2
∑n
i>j=1 a

2
ij +

∑n
i=1 a

2
ii

= 1−
∑n
i>j=1 a

2
ij

2
∑n
i>j=1 a

2
ij +

∑n
i=1 a

2
ii

.
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Since the last summand in the previous expression is always positive we have that

‖vech‖op = sup
A∈Sn,A6=0

‖vech(A)‖
‖A‖

= 1,

the supremum being attained by any diagonal matrix (
∑n
i>j=1 a

2
ij = 0 in that case). Consider now

v = vech(A). Then:

‖math(v)‖2

‖v‖2
=

‖A‖2

‖vech(A)‖2
=

2
∑n
i>j=1 a

2
ij +

∑n
i=1 a

2
ii∑n

i>j=1 a
2
ij +

∑n
i=1 a

2
ii

= 1 +

∑n
i>j=1 a

2
ij∑n

i>j=1 a
2
ij +

∑n
i=1 a

2
ii

. (7.2)

When we let A ∈ Sn vary in the previous expression, we obtain a supremum by considering matrices with

zeros in the diagonal (
∑n
i=1 a

2
ii = 0) and by choosing

∑n
i>j=1 a

2
ij → ∞, in which case ‖A‖2

‖vech(A)‖2 → 2.

Finally, as the map vech : Sn → RN is an isomorphism, (7.2) implies that

‖math‖op = sup
v∈RN ,v 6=0

‖math(v)‖
‖v‖

= sup
A∈Sn,A6=0

‖A‖
‖vech(A)‖

=
√

2. �

7.2 Proof of Proposition 2.3

We just need to verify that (2.11) satisfies (2.12). Let k, l ∈ {1, . . . , n} be such that k ≥ l. Then,

(A vech(H))σ(k,l) =
∑
i≥j

Aσ(k,l),σ(i,j)Hij =
∑
i≥j

Aσ(k,l),σ(i,j)
Hij +Hji

2

=
1

2

∑
i≥j

Aσ(k,l),σ(i,j)Hij +
1

2

∑
i≥j

Aσ(k,l),σ(i,j)Hji

=
1

2

∑
i>j

Aσ(k,l),σ(i,j)Hij +
∑
i=j

Aσ(k,l),σ(i,j)Hij +
1

2

∑
i<j

Aσ(k,l),σ(j,i)Hij

=
∑
i>j

(Σ(A)kl)ijHij +
∑
i=j

(Σ(A)kl)ijHij +
∑
i<j

(Σ(A)kl)ijHij = trace(Σ(A)klH),

as required. �

7.3 Proof of Proposition 2.4

We start with the following Lemma:

Lemma 7.1 Let A ∈ Mn2 . The orthogonal projections Pn2(A) ∈ Sn2 and Pnn2(A) ∈ Snn2 of A onto the
spaces of symmetric and n-symmetric matrices with respect to the Frobenius inner product (2.1) are
given by:

Pn2(A) =
1

2
(A+AT ) (7.3)

(Pnn2(A))kl =
1

4
(Akl +ATkl +Alk +ATlk), (7.4)

for any block (Pnn2(A))kl of Pnn2(A), k, l ∈ {1, . . . , n}.
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Proof. In order to prove (7.3) it suffices to check that 〈A− Pn2(A), B〉 = 0 for any B ∈ Sn2 . Indeed,

〈A− Pn2(A), B〉 = trace(AB)− 1

2
trace(AB)− 1

2
trace(ATB) = 0.

The result follows from the uniqueness of the orthogonal projection. Regarding (7.4) we check that
〈A−Pnn2(A), B〉 = 0, for any B ∈ Snn2 . Given that for any k, l ∈ {1, . . . , n} the block (AB)kl is given by
(AB)kl =

∑n
r=1AkrBrl we have

〈A− Pnn2(A), B〉 = trace(AB)− trace(Pnn2(A)B) =

n∑
i=1

trace(AB)ii − trace(Pnn2(A)B)ii

=

n∑
i,j=1

trace(AijBji)− trace((Pnn2(A))ijBji) =

n∑
i,j=1

trace(AijBji)

−
n∑

i,j=1

[
1

4
trace(AijBji) +

1

4
trace(ATijBji) +

1

4
trace(AjiBji) +

1

4
trace(ATjiBji)

]
= 0,

where we used that, due to the n-symmetricity of B trace(ATijBji) = trace(BTjiAij) = trace(AijBji) and

n∑
i,j=1

trace(AjiBji) = trace(AjiBij) = trace(AijBij).

Analogously
∑n
i,j=1 trace(ATjiBji) = trace(AijBij). �

Now, in order to prove Proposition 2.4, consider A ∈MN and B ∈Mn2 . Since the image of the map
Σ lies in S2n2 we have that 〈B − Pnn2(B),Σ(A)〉 = 0 and hence

〈Σ∗(B), A〉 = 〈B,Σ(A)〉 = 〈Pnn2(B) + B − Pnn2(B),Σ(A)〉 = 〈Pnn2(B),Σ(A)〉 = 〈Σ∗(Pnn2(B)), A〉.

This identity allows us to restrict the proof of (2.4) to the n-symmetric elements B ∈ Snn2 . Hence let
B ∈ Snn2 and let σ̃ be the extension of the map σ defined in (2.2). Then,

〈Σ(A),B〉 =

n∑
k,l=1

〈Σ(A)kl,Bkl〉 =

n∑
k,l=1

trace(Σ(A)klBTkl) =

n∑
k,l,i,j=1

(Σ(A)kl)ij(Bkl)ij

=

n∑
k,l,i,j=1

1

2

[
Aσ̃(k,l),σ̃(i,j) +Aσ̃(k,l),σ̃(i,j)δij

]
(Bkl)ij

=

n∑
k,j=1

 n∑
i<j

1

2
Aσ̃(k,l),σ(j,i)(Bkl)ji +

n∑
i=j=1

Aσ̃(k,l),σ(i,j)(Bkl)ij +
1

2

n∑
i>j

Aσ̃(k,l),σ(i,j)(Bkl)ij


=

n∑
k,j=1

n∑
i≥j

Aσ̃(k,l),σ(i,j)(Bkl)ji

=

n∑
i≥j

[
n∑
k<l

Aσ(l,k),σ(j,i)(Blk)ji +

n∑
k=l=1

Aσ(k,l),σ(i,j)(Bkl)ij +

n∑
l<k

Aσ(k,l),σ(i,j)(Bkl)ij

]

=

n∑
i≥j

 n∑
k≥l

Aσ(k,l),σ(i,j)(Bkl)ij −
n∑

k=l=1

Aσ(k,l),σ(i,j)(Bkl)ijδkl


=

N∑
p,q=1

[
2Ap,qBp,q −Ap,qBp,qδpr1(σ−1(p)),pr2(σ

−1(p))

]
= trace(2ABT −AB̃T ) = 〈A, 2B − B̃〉,
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which proves the statement. We emphasize that in the fourth and sixth equalities we used the n-
symmetry of B. The equality (2.14) is proved in a straightforward manner by verifying that Σ̃−1 ◦Σ =

IMN
and Σ ◦ Σ̃−1 = ISn

n2
using the defining expressions (2.2) and (2.14). �

7.4 Proof of Proposition 3.1

Using the property of the operator Σ stated in Proposition 2.3, the second equality in (3.1) can be
rewritten as:

vech(Ht) = vech(math(c)) +Avech(zt−1z
T
t−1) +Bvech(Ht−1)

= vech(math(c)) + vech(Σ(A) • (zt−1z
T
t−1)) + vech(Σ(B) •Ht−1),

or, equivalently:
Ht = math(c) + Σ(A) • (zt−1z

T
t−1) + Σ(B) •Ht−1.

In view of this expression and in the terms of the statement of the proposition, it suffices to show
that both Σ(A) • (zt−1z

T
t−1) and Σ(B) •Ht−1 are positive semidefinite provided that Ht−1 is positive

semidefinite. Regarding Σ(A) • (zt−1z
T
t−1), consider v ∈ Rn2

. Then

〈v,Σ(A) • (zt−1z
T
t−1)v〉 =

n2∑
i,j=1

vi(Σ(A) • (zt−1z
T
t−1))ijvj =

n2∑
i,j=1

vi trace(Σ(A)ij(zt−1z
T
t−1))vj

=

n2∑
i,j=1

vi trace(zTt−1Σ(A)ijzt−1)vj =

n2∑
i,j,k,l=1

viz
T
t−1,k(Σ(A)ij)klzt−1,lvj

= 〈v ⊗ zt−1,Σ(A)(v ⊗ zt−1)〉,

which is greater or equal to zero due to the positive semidefiniteness hypothesis on Σ(A). In the last
equality we used (2.10).

As to Σ(B) • Ht−1, we start by noticing that Ht−1 = Et−1[zt−1z
T
t−1] and hence Σ(B) • Ht−1 =

Σ(B) •Et−1[zt−1z
T
t−1]. This equality, as well as the linearity of the conditional expectation allows us to

use virtually the same argument as above. Indeed, for any v ∈ Rn2

〈v,Σ(B) •Ht−1v〉 =

n2∑
i,j=1

vi trace(Σ(B)ijEt−1[zt−1z
T
t−1])vj =

n2∑
i,j=1

Et−1[vi trace(Σ(B)ijzt−1z
T
t−1)vj ]

= Et−1[〈v ⊗ zt−1,Σ(B)(v ⊗ zt−1)〉],

which is greater or equal to zero due to the positive semidefiniteness hypothesis on Σ(B). �

7.5 Proof of Proposition 3.2

We start by noticing that the VEC(1,1) model is by construction a white noise and hence it suffices
to establish the stationarity of the variance. Indeed, for any t, h ∈ N we compute the autocovariance
function Γ:

Γ(t, t+ h) := E
[
ztz

T
t+h

]
= E

[
Et

[
H

1/2
t εtεt+hH

1/2
t+h

]]
= E

[
H

1/2
t Et [εtεt+h]H

1/2
t+h

]
= δh0E

[
H

1/2
t H

1/2
t+h

]
. (7.5)
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Consequently, we just need to prove the existence of a solution for which Γ(t, t) = E [Ht] or, equivalently
E[ht], is time independent. We first notice that

E[ht] = E
[
c +Aηt−1 +Bht−1

]
= E [c +Aht−1 +Bht−1]+AE

[
ηt−1 − ht−1

]
= E [c +Aht−1 +Bht−1] ,

since AE
[
ηt−1 − ht−1

]
= 0 by (7.5). Now, for any k > 0

E[ht] = c + (A+B)E [ht−1] =

k∑
j=0

(A+B)jc + (A+B)k+1E [ht−k−1] .

If all the eigenvalues of A+B are smaller than one in modulus then (see, for example [Lüt05, Appendix
A.9.1])

k∑
j=0

(A+B)jc −−−−→
k→∞

(IN −A−B)−1c, and (A+B)k+1E [ht−k−1] −−−−→
k→∞

0,

in which case E[ht] is time independent and

Γ(0) = math(E[ht]) = math((IN −A−B)−1c).

The sufficient condition in terms of the top singular value σmax(A + B) of A + B is a consequence of
the fact that (see for instance [HJ94, Theorem 5.6.9]) |λ(A + B)| ≤ σmax(A + B), for any eigenvalue
λ(A+B) of A+B. �

7.6 Proof of Proposition 3.3

The chain rule implies that for any perturbation ∆ in the θ direction

dθlt ·∆ = dHt lt(Ht(θ)) · TθHt ·∆ = 〈∇Ht lt, TθHt ·∆〉 = 〈T ∗θHt · ∇Ht lt,∆〉,

which proves that ∇θlt = T ∗θHt · ∇Ht
lt and hence (3.8) follows. We now establish (3.9) by showing

separately that

∇Ht
log(det(Ht)) = H−1t and ∇Ht

(
−1

2
zTt H

−1
t zt

)
=

1

2

(
H−1t ztz

T
t H
−1
t

)
. (7.6)

In order to prove the first expression we start by using the positive semidefinite character of Ht in order
to write Ht = V DV T . V is an orthogonal matrix and D is diagonal with non-negative entries; it has
hence a unique square root D1/2 that we can use to write Ht = V DV T = (V D1/2)(V D1/2)T . Let δ ∈ R
and ∆ ∈ Sn. We have

log(det(Ht + δ∆)) = log(det((V D1/2)(V D1/2)T + δ∆))

= log(det((V D1/2)(In + δ(D−1/2V T )∆(V D−1/2))(V D1/2)T ))

= log(det(V D1/2) det(In + δ(D−1/2V T )∆(V D−1/2)) det(V D1/2)T )

= log(det((V D1/2)(V D1/2)T ) det(In + δ(D−1/2V T )∆(V D−1/2)))

= log(det(Ht) det(In + δΞ)),

with Ξ := (D−1/2V T )∆(V D−1/2). This matrix is symmetric and hence normal and diagonalizable; let
{λ1, . . . , λn} be its eigenvalues. We hence have that

dHt ·∆ =
d

dδ

∣∣∣∣
δ=0

log(det(Ht + δ∆)) =
d

dδ

∣∣∣∣
δ=0

log(det(Ht)) + log

(
n∏
i=1

(1 + δλi)

)
=

d

dδ

∣∣∣∣
δ=0

n∑
i=1

log(1 + δλi)

=

n∑
i=1

λi = trace((D−1/2V T )∆(V D−1/2)) = trace((V D−1/2)(D−1/2V T )∆) = trace(H−1t ∆),
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which proves ∇Ht log(det(Ht)) = H−1t . Regarding the second expression in (7.6) we define f(Ht) :=
− 1

2zTt H
−1
t zt and note that

df(Ht) ·∆ =
d

dt

∣∣∣∣
t=0

− 1

2
zTt (Ht + t∆)−1zt =

d

dt

∣∣∣∣
t=0

− 1

2
zTt (In + tH−1t ∆)−1H−1t zt

=
d

dt

∣∣∣∣
t=0

− 1

2
zTt (In + tH−1t ∆)−1H−1t zt =

d

dt

∣∣∣∣
t=0

− 1

2

∞∑
k=0

(−1)ktkzTt (H−1t ∆)kH−1t zt

=
1

2
zTt H

−1
t ∆H−1t zt =

1

2
trace(H−1t ztz

T
t H
−1
t ∆),

which implies that ∇Ht
f = 1

2

(
H−1t ztz

T
t H
−1
t

)
, as required.

In order to prove (3.10)–(3.12) we notice that the second equation in (3.1) can be rewritten using
the vech and math operators as

Ht = math
(
c +Aηt−1 +Bvech(Ht−1)

)
. (7.7)

We now show (3.10). Let v ∈ RN and ∆ ∈ Sn arbitrary. Identity (7.7) and the linearity of the various
mappings involved imply that TcHt · v = math (v +Bvech(TcHt−1 · v)) and hence

〈T ∗cHt ·∆,v〉 = 〈∆, TcHt · v〉 = 〈∆,math (v +Bvech(TcHt−1 · v))〉
= 〈math∗(∆) + T ∗cHt−1 · vech∗(BTmath∗(∆)),v〉.

The proof of (3.11) follows a similar scheme. By (7.7) we have that for any M ∈MN :

TAHt ·M = math
(
Mηt−1 +Bvech(TAHt−1 ·M)

)
. (7.8)

Consequently, for any ∆ ∈ Sn

〈T ∗AHt ·∆,M〉 = 〈∆, TAHt〉 = 〈∆,math
(
Mηt−1 +Bvech(TAHt−1 ·M)

)
〉

= 〈math∗(∆) · ηTt−1 + T ∗AHt−1 · vech∗(BTmath∗(∆)),∆〉.

Finally, (3.12) is proved analogously replacing (7.8) by its B counterpart, namely,

TBHt ·M = math (Mvech(Ht−1) +Bvech(TBHt−1 ·M)) . �

7.7 Proof of Proposition 3.4

An inductive argument using (3.10)–(3.12) guarantees that for any t, k ∈ N, k ≤ t

TcH
∗
t ·∆ =

k∑
i=1

Bi−1Tmath∗(∆) + T ∗cHt−k · vech∗(Bk Tmath∗(∆)), (7.9)

T ∗AHt ·∆ =

k∑
i=1

Bi−1Tmath∗(∆) · ηTt−i + T ∗AHt−k · vech∗(Bk Tmath∗(∆)), (7.10)

T ∗BHt ·∆ =

k∑
i=1

Bi−1Tmath∗(∆) · vech(Ht−i)
T + T ∗BHt−k · vech∗(Bk Tmath∗(∆)), (7.11)

The first expression with k = t and the norm estimate (2.8) imply that

‖TcH∗t ·∆‖ =

∥∥∥∥∥
t∑
i=1

Bi−1Tmath∗(∆)

∥∥∥∥∥ ≤ √2

t∑
i=1

‖B‖i−1op ‖∆‖ ≤
√

2‖∆‖
1− ‖B‖op

. (7.12)
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We now use (7.9) for an arbitrary k as well as (2.7) and (7.12) and write

‖(T ∗cHt − T ∗cHk
t ) ·∆‖ = ‖T ∗cHt−k · vech∗(Bk Tmath∗(∆))‖

≤ ‖T ∗cHt−k‖op‖vech∗‖op‖B‖kop‖math∗‖op‖∆‖ ≤
2‖∆‖‖B‖kop
1− ‖B‖op

. (7.13)

The computability constraint (CC) implies that ‖B‖op ≤ 1 − ε̃B and hence ‖T ∗cHt − T ∗cH
k
t ‖op ≤

2(1− ε̃B)k/ε̃B . A straightforward computation shows that if we want this upper bound for the error to
be smaller than a certain δ > 0, that is 2(1− ε̃B)k/ε̃B < δ then it suffices to take

k >
log
(
ε̃Bδ
2

)
log(1− ε̃B)

. (7.14)

We now tackle the estimation of the truncation error in mean in the A variable. Firstly, we recall that
by (7.5) and in the presence of the stationarity constraint E[ηt] = E[ht] = (IN −A−B)−1c. The first
consequence of this identity is that if we take the expectations of both (7.10) and (7.11) we see that
‖E [T ∗AHt ·∆] ‖ and ‖E [T ∗BHt ·∆] ‖ are determined by exactly the same recursions and hence the error
estimations for both variables are going to be the same. Also, by (7.10)

‖E [T ∗AHt ·∆] ‖ =

∥∥∥∥∥
t∑
i=1

Bi−1Tmath∗(∆) · E[ηTt−i]

∥∥∥∥∥ ≤ √2‖∆‖‖E[ht]‖
t∑
i=1

‖B‖i−1op

≤
√

2‖∆‖‖(IN −A−B)−1c‖/ε̃B ≤
√

2‖∆‖‖c‖/εAB ε̃B . (7.15)

The last inequality is a consequence of the constraints (SC) and (PC). Indeed,

‖(IN −A−B)−1c‖ =

∥∥∥∥∥
∞∑
i=0

(A+B)ic

∥∥∥∥∥ ≤
∞∑
i=0

‖(A+B)‖iop ‖c‖ ≤
∞∑
i=0

(1− εAB)i‖c‖ =
‖c‖
εAB

.

Now, by (7.10) and (7.15),

‖E
[
(T ∗AHt − T ∗AHk

t ) ·∆
]
‖ = ‖E

[
T ∗AHt−k · vech∗(Bk Tmath∗(∆))

]
‖

≤ ‖T ∗AHt−k‖op‖vech∗‖op‖B‖kop‖math∗‖op‖∆‖ ≤
2‖∆‖‖c‖
εAB ε̃B

(1− ε̃B)k, (7.16)

which proves (3.18). If we want this upper bound for the error to be smaller than a certain δ > 0, we
have to make the number of iterations k big enough so that

2‖c‖
εAB ε̃B

(1− ε̃B)k < δ that is (1− ε̃B)k =
δεAB ε̃B

2‖c‖
≤ δεAB ε̃B

2εc
.

This relation, together with (7.14) proves the estimate (3.20). �

References

[AB97] T. G. Andersen and T. Bollerslev. Answering the skeptics: yes, standard volatility models
do provide accurate forecasts. Journal of Empirical Finance, 4:115–158, 1997.

[AC97] Carol Alexander and A. M. Chibumba. Multivariate orthogonal factor GARCH. Preprint,
University of Sussex, 1997.



Multivariate GARCH estimation via a Bregman-proximal trust-region method 33

[Ale98] Carol Alexander. Orthogonal GARCH. In Carol Alexander, editor, Mastering Risk, vol-
ume 2, pages 21–38. Financial Times-Prentice Hall, 1998.

[Ale03] Carol Alexander. Principal component models for generating large covariance matrices.
Economic Notes, 31(2):337–359, 2003.
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