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Abstract
In longitudinal cluster randomized clinical trials (cluster-RCT), subjects are nested within a higher
level unit such as clinics and are evaluated for outcome repeatedly over the study period. This
study design results in a three level hierarchical data structure. When the primary goal is to test the
hypothesis that an intervention has an effect on the rate of change in the outcome over time and
the between-subject variation in slopes is substantial, the subject-specific slopes are often modeled
as random coefficients in a mixed-effects linear model. In this paper, we propose approaches for
determining the samples size for each level of a 3-level hierarchical trial design based on ordinary
least squares (OLS) estimates for detecting a difference in mean slopes between two intervention
groups when the slopes are modeled as random. Notably, the sample size is not a function of the
variances of either the second or the third level random intercepts and depends on the number of
second and third level data units only through their product. Simulation results indicate that the
OLS-based power and sample sizes are virtually identical to the empirical maximum likelihood
based estimates even with varying cluster sizes. Sample sizes for random versus fixed slope
models are also compared. The effects of the variance of the random slope on the sample size
determinations are shown to be enormous. Therefore, when between-subject variations in outcome
trends are anticipated to be significant, sample size determinations based on a fixed slope model
can result in a seriously underpowered study.
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1. Introduction
Longitudinal cluster randomized trials in which subjects are repeatedly assessed over time
during the follow-up period as in a typical longitudinal cohort design (Feldman and
McKinlay, 1994) can result in a three level data structure: the repeated measures (level 1)
are nested within subjects (level 2) who in turn are nested within the randomized clusters,
such as clinics (level 3). Often, the primary goal in these studies is to compare the
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longitudinal trends in a continuous outcome between the control and experimental groups.
For example, in a cluster randomized trial to evaluate the effect of an intervention for
depression in the primary care setting, clinics were randomly assigned to a control or
intervention group and patients were repeatedly evaluated during follow up for change in
depression symptoms using the Hamilton rating scale for depression (Alexopoulos et al.,
2005; Dietrich et al., 2004). One of the study hypotheses was that the severity of depression
symptoms would decline more rapidly among subjects who were treated at the primary care
clinics assigned to the intervention compared to those who were treated with usual care.

Sample size and power calculations are essential in the proper design of a longitudinal
cluster randomized trial. For a repeatedly measured outcome that is a continuous variable,
data from the longitudinal cluster randomized trial can be analyzed by fitting a linear mixed
effects model. The difference in mean slopes between intervention groups is assessed by
including in the model an interaction term between the treatment and time effects. Heo and
Leon (2009) proposed an approach for determining the required number of clusters to detect
an intervention by time interaction under a fixed slope model. When the between-subject
heterogeneity in the individual slopes is substantial, however, a random slope coefficients
model may be more relevant (Laird and Ware, 1982; Longford, 1993; Murray et al., 2007).

Under this situation, Murray et al (2007) determined the minimum detectable effect size for
testing mean slope differences in a more comprehensive situation allowing for cluster-
specific random slopes. Roy et al (2007) also considered cluster- and subject-level random
effects and presented implicit formulas for sample size requirements based on critical
regions determined by χ2 distributions of feasible version generalized least square estimates.
Their sample determinations were based on approximate F distributions under alternative
hypotheses. Preisser et al (2003) considered special cases in which only two time
measurements, pre- and post-intervention, are considered. Their derivations were based on
the pre-post difference using generalized estimating equation.

In this paper, we: 1) derive explicit closed form power functions and sample size formulae
for all levels based on an ordinary least squares estimate (OLS) of the interaction effect
under a subject-specific random slope model when subjects are measured multiple times
during follow-up; 2) conduct an extensive simulation study to verify the statistical power
achieved with the estimated sample sizes where the empirical statistical power is based on
maximum likelihood estimates (MLE) considering varying cluster sizes and varying
magnitudes of statistical power; and 3) compare sample sizes under the fixed and random
slope coefficient models to assess the impact of the variance of the random slope on the
sample size requirements. This allows one to evaluate the consequence in terms of power of
designing a study using the fixed coefficient approach but fitting a random coefficient model
in the actual analysis.

2. Statistical Model
A three level mixed-effects linear model for outcome Y with subject-specific random slopes
can be expressed as follows (Hedeker and Gibbons, 2006):

where i = 1, 2, …, 2N3 is the index for the level three unit (e.g., clinic); j = 1, …, N2, is the
index for the level two unit (e.g., subject) nested within each i; and k = 1, 2, …, N1, is the
index for the level one unit (e.g., repeated outcomes) within each j. The intervention
assignment indicator variable Xijk = 0 and 1 if the i-th level three unit is assigned to a
control intervention and an experimental intervention, respectively; therefore Xijk = Xi for
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all j and k. Here we assume a balanced design so that Σi Xi = N3. In addition, it is assumed
that Tijk = Tk for all i and j, and that the time from T1 = 0 (the baseline) to Tend = N1 − 1 (the
last time point) increases by equal unit time intervals. These assumptions reduce the model
above to

(1)

With respect to the random effects, it is assumed that the error term eijk is normally

distributed as , the level two random intercept (i.e., subject-specific intercept) as

, the level three random intercept (i.e., cluster-specific intercept) as

 and the random slope (i.e., subject-specific slope) as . Among
these random components, it is further assumed that ui ⊥ uj(i) ⊥ eijk ⊥ νj(i), i.e., these four
random components are mutually independent. In addition, conditional independence is
assumed for all uj(i), νj(i) and eijk, whereas the ui are unconditionally independent. That is,
both uj(i) and νj(i) are independent over j conditional on ui, and eijk are independent over k
conditional on ui, νj(i) and uj(i). This modeling framework was also considered in Murray et
al (2007) which additionally allowed for cluster-specific random slopes. When the variance

of the random slope is equal to , model (1) reduces to the fixed slope model which
Heo and Leon (2009) previously considered. For the derivation of power function, we
assume that all of these variances are known.

For the fixed effects, the parameter ξ represents the intervention effect at baseline, and the
parameter τ represents the slope associated with the time effect, that is, the magnitude of the
change in outcome over time, in the control group. Finally, the intervention-by-time effect δ,
the parameter of primary interest, represents the difference in mean slopes of the outcome Y
between the intervention groups. The overall intercept (fixed) is denoted by β0.

Given that the parameter δ is of primary interest, the relevant null hypothesis can be
expressed as:

(2)

Under model (1), it can be shown that the elements of the mean vector for the outcome are
equal to:

(3)

and the elements of the covariance matrix are:

(4)

where 1(.) is an indicator function (see Appendix A for a proof). It follows that:

(5)

where , the variance of Y under the fixed slope model with .
Therefore, the correlations among the level two data, i.e., among outcomes from different
second level clusters (subjects) but the same third level cluster (clinic), can be expressed for
j ≠ j′ as follows:
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The correlations among the level one data, i.e., among outcomes measured at different time
points on the same subject nested within clinics, can be expressed for k ≠ k′ as:

Under the fixed slope model, i.e., when , the correlations reduce to the following,
respectively:

(6)

and

(7)

3. Ordinary Least Square Estimate and its Variance
The ordinary least square (OLS) estimate δ̂ of the interaction effect is the difference in mean
slopes between the two groups: that is,

(8)

where η̂g(g = 0,1) is the OLS estimate of the slope for the outcome Y in the g-th group in
which Xi = g. Specifically, for i in the g-th group,

(9)

where: 1) Ȳg (g = 0,1) is the overall group mean of the outcome Y for the g-th group; 2)

 is the “mean” time point; and 3)  is the
“population variance” the time variable T. Based on equations (4) and (5), it can be shown
that the OLS estimate δ̂ is unbiased, i.e., E(δ̂) = E(η̂1 − η̂0) = (τ + δ) − τ = δ (see Appendix
B for a proof). Furthermore, the sampling distribution of OLS estimate δ̂ is normal since it is
a linear combination of normally distributed Yijk and even if Yijk’s are correlated. In the
present case with a perfectly balanced design, the OLS estimate (9) is the mean of subject-
specific slope estimates whose large sample properties are similar to those of generalized
least square estimates of the mean of random slopes even when the variance components are
unknown (Gumpertz and Pantula, 1989).
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The variance of η̂g can be obtained based on equation (5) as follows (see Appendix C for a
proof):

(10)

It is notable that the variance of η̂g does not depend on either the first or the second level

random intercept, i.e., either  or . The variance of η̂g can be expressed as:

It follows that

(11)

since η̂1 and η̂0 are independent of each other. Although the approaches to the derivations
are different, this variance function reduces to that of equation (4) in Murray et al (2007) if
the variance of the cluster-specific random slopes is zero in their model. This implies that
the variance of the OLS estimate does not indeed depend on the variances of the two
intercepts. Furthermore, equation (11) is a natural extension of equation (11) in
Schlesselman et al. (1973) in which only two levels, subjects and repeated measures were
considered.

4. Power and sample size
The following test statistic D, based on (8) and (11), can be used to test the null hypothesis
(2):

If the four variance components,  and , are known, then the test statistic D is
normally distributed with mean δ/se(δ̂)and variance 1, since the estimated slope difference δ̂
= η̂1 − η̂0 is normally distributed. Thus, under the null hypothesis (2), D ~ N(0, 1) and under
the alternative hypothesis of δ ≠ 0, D ~ N(δ/se(δ̂), 1).

The power of the test statistic D, denoted by ϕ, can therefore be written as follows:

(12)

where α is a two-sided significance level; β represents the probability of a type II error; Φ is
the cumulative distribution function (CDF) of a standard normal distribution and Φ−1 is its
inverse. We assume that: 1) δ = |δ| > 0; and 2) the probability below a critical value, Φ−1(α/
2), in the other side under the alternative hypothesis is negligible and thus assumed to be 0.
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The effect size is defined as:

(13)

and the ratio of the random slope variance to the sum of the other variances as

(14)

Then, the power function (12) can be re-expressed as follows:

(15)

When  or rτ = 0, the effect size Δ is identical to the standardized effect size for the
slope difference δ and the power function (15) reduces to that derived by Heo and Leon
under a fixed slope model. The power function increases with Δ (13) and ρ1 (7) but

decreases with rτ (14) or with the random slope variance .

It follows that when hypothesis testing is based on D with a two-sided significance level α,
the required sample size per group for the third level unit N3, for a desired statistical power
ϕ can be calculated from equation (15) as:

(16)

More precisely, N3 is the smallest integer greater than the right hand side of equation (16).
Note that the level 3 sample size is inversely associated with ρ1 (7) and N2, the sample size
of the level 2 unit. It follows that N2 can be expressed as:

(17)

However, the sample size for the level one data, N1, needs to be determined in an iterative
manner because Varp(T) is a function of N1. Specifically, an iterative solution for N1 must
satisfy the following equation:

(18)

5. Simulation study
We conducted simulation studies to verify the sample size N3 (16) and the power function
(15) under perfectly balanced design and under varying cluster sizes as well. We first
determined N3 for a two-sided significance level α = 0.05 and a nominal power ϕ = 0.8
under the following combinations: ΔTend = Δ(N1 − 1) = 0.4, 0.5, 0.6; N2 = 10, 20; N1 = 5,
7, 9; ρ1 = 0.4, 0.6; rτ = 0.1, 0.2, while without loss of generality, σ = 1, ρ2 = 0.2, β0 = ξ = 0,
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and τ = −1 in model (1) remained fixed. Values for  and  were determined through ρ2
(6) and ρ1 (7). The full factorial number of combinations of the simulation parameters is 72.
The effect size of the interaction Δ is specified as a standardized between-group mean
difference ΔTend = Δ(N1 − 1) at the end of trial under a fixed slope model. Effect sizes in
the range of 0.4–0.6 have generally been referred to as medium (Cohen, 1988). We
generated 1000 simulated data sets for each combination of the above parameters. Although
the combinations of the parameters are somewhat arbitrarily selected, 1000 simulations are
commonly considered in simulation studies (Burton et al., 2006).

Each simulated data set was produced by first estimating N3 using equation (16) for ϕ = 0.8
under a specific factorial combination of simulation parameters and then generating outcome
data sets with the estimated N3 in accordance to model (1): Yijk = β0 + ξXi + τTk + δXiTk +
νj(i)Tk + ui + uj(i) + eijk. We fit this model using SAS PROC MIXED with the maximum
likelihood estimation option and retained the resulting p-values for testing the null
hypothesis (2). However, all variance components are assumed to be unknown to reflect real
data analysis situations. We denoted the p-value by ps(δ) for the s-th simulated data set (s =
1, 2, .., 1000) and computed the empirical power ϕ as follows:

(19)

This empirical power was compared with the theoretical power ϕ on which the estimated N3
was based. We note that ϕ is never less than the pre-specified power of 0.8 since N3 is the
smallest integer greater than the right hand side of equation (16).

In addition, the procedures above were repeated to examine the validity of the derived
sample size formulas under varying nominal statistical power ranging from 0.6 to 0.9 with
selected combinations of the simulation parameters above. We also conducted simulations
with varying clusters sizes (i.e., varying number of subjects across clusters) randomly drawn
from uniform distributions for effect sizes ΔTend ranging from 0.4 to 0.9. In this case, we
first determined N2 for a given number of clusters N3 (instead of determining N3 for given
N2) and then considered a uniform random variable U(a, b) with expectation N2 to draw
varying cluster sizes N2; the integer values of a and b were determined as follows: a = N2 −
floor(3N2 /4) and b = N2 + floor(3N2 /4) so that a > 0 and E{U(a, b)} = (a + b)/2 = N2,
where floor(x) returns the greatest integer smaller than or equal to x.

6. Simulation study results
Table 1 summarizes the empirical power ϕ (19) and the theoretical power ϕ (15) based on
the estimated N3 which was determined from equation (16) and the assumed simulation
parameters above for a nominal 80% statistical power. The simulation-based empirical
power estimates are virtually identical to the theoretical power as reflected by the negligible
differences in the average values shown in the last row of Table 1. Furthermore, among the
results from the 72 different combinations of the simulation parameters (Table 1), only two
(<5%) of the absolute differences, |ϕ − ϕ|, were beyond the 95% confidence limit,

. Thus, the proposed formulae for sample size and power are
very accurate under the conditions that were considered. In every case, the theoretical power
is no less than 0.8, since the power calculations were based on “integer” value of N3.

As one would expect, the required sample size for N3 decreases with increasing effect size
Δ for a given level of power. It also decreases with increasing correlation ρ1; for example,
when N2 = 5, N1 = 10, and ΔTend = 0.4, (or Δ = 0.4/4 = 0.1) the respective sample sizes
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requirements for 80% power for the level three data (N3), were 26, and 22 for ρ1 = 0.4 and
0.6. Furthermore, the theoretical power is identical for various combinations of N2 and N3
that yield the same product. For example, each of the following pairs of (N2, N3) with the
same product of 100: (N2 = 10, N3 = 10) and (N2 = 20, N3 = 5) yielded identical power of
0.809 when N1 = 5, ρ1 = 0.4, ΔTend = 0.6 (or Δ = 0.6/4 = 0.15) (Table 1). Therefore, the
sample sizes are exchangeable between N2 and N3. However, the effect of rτ is substantial in
that N3 increases by >~50% – <~100% when rτ ranges from 0.1–0.2 under the conditions
considered here.

Table 2 presents results under varying statistical power and shows that the empirical power
is very close to theoretical power regardless of the nominal statistical power and other
parameters. Results presented in Table 3 confirm that the derived sample size formulas are
valid even when clusters sizes are unbalanced as long as as an average cluster size is equal
to N2 computed based on equations (17).

7. Comparison of sample sizes between random and fixed slope models
To systematically examine the effect of the slope variance ratio rτ on N3, we defined a
sample size ratio R(N3) between random fixed slope models based on equation (16) as
follows:

Of note, the ratio is not a function of the effect size Δ. Under the assumption that the value
of T increases from 0 to Tend = N1 − 1 by unit time increments, the population variance of T
reduces to Varp(T) = (N1 − 1)(N1 +1)/12 which yields:

(20)

Thus, R(N3) is an increasing function of rτ, ρ1 and N1. Table 4 shows that the effect of N1
on the sample size ratio R(N3) is greatest for larger rτ because the variance of the outcome
increases quadratically with N1 or T (4) and the magnitude of the increase in the variance is
larger for larger rτ.

8. Discussion
The power function (15) derived using the OLS estimates (9) was shown in our simulation
studies to be accurate compared to the empirical power based on the maximum likelihood
estimates (MLE) even with unknown variances and varying cluster sizes N2, and varying
nominal statistical power (Tables 1–3). Although we did not formally demonstrate the
equivalence between the OLS and MLE approaches for estimating the intervention-by-time
interaction effect δ the two methods yielded identical unbiased estimates in our simulation
studies. Furthermore, another simulation study with the same combination of the parameters
as in Table 1 using restricted maximum likelihood estimates (REML) yielded virtually
identical statistical power (results not shown). In addition, differences in the standard errors
obtained based on between equation (11) and the MLE approach were negligible.
Furthermore, the standard error estimates were also unbiased (results not shown). All
together, the size of the test statistic D is unbiased.

The derived explicit sample size formulas were, therefore, valid under various nominal
statistical power (Table 2), and thus may be able to be readily applied for any combination
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of model parameters beyond those considered in the simulation study (section 6). Therefore,
the OLS based power function and sample size approach with known variance components
can be applied to designing a longitudinal cluster-RCT that will be analyzed based on a
mixed effects linear model with random slopes applying restricted or unrestricted maximum
likelihood parameter estimation with unknown variance components. Furthermore, the
sample size should be applicable to the case of a two-level data structure by replacing N3 =
1 in equation (17) (Schlesselman, 1973).

It follows that the proposed approach is also accurate for determining the required sample
sizes for any of the levels in the 3-level longitudinal cluster randomized trial as shown in
Table 3. Through the ratio rτ, the effect of the variance of the random slope on N3 is
enormous (Table 2) especially for larger N3, i.e., for longer trials. For example, the ratio is
as high as 27 even for small rτ = 0.1 and ρ1 = 0.3 when N3 = 13. This finding shows that
designing a study using the fixed coefficient approach can substantially be underpowered if
the between-subject variability in longitudinal trends are anticipated to be significant.
Therefore, the inclusion and exclusion criteria for enrolling subjects into the trial should be
carefully taken into consideration to minimize the heterogeneity in the subjects’ anticipated
outcome trajectories. It the between-subject variability in slopes is expected to be negligible
based on the results of pilot studies or knowledge acquired through clinical experience, the
fixed slope sample size formula in (Heo and Leon, 2009), which is a special case of equation
(16) with rτ = 0, can be applied. However, when the time interval is not necessarily unity
unlike the situation considered in this paper, increasing N1 for a given duration does indeed
reduce N3; that is, more observations per subject for a given time frame increase the
statistical power.

The effects of the two correlations ρ1 and ρ2, often referred to as intra class correlations
(ICC), on the sample size determinations depend in general on the parameters which will be
tested and the statistical models as well. Even though ρ1 and ρ2 have negative and no effect
on the sample size, respectively, in the current situation, their effects on the sample size are
not trivial for testing a main intervention effect (Heo and Leon, 2008; Teerenstra et al.,
2008). Therefore, careful attention should be paid to the assessment of ICC in the context of
the study objectives of the clinical trial (Campbell et al., 2005; Resnicow et al., 2010).

Although the intercept between the two groups should virtually be identical (i.e., ξ = 0) due
to random allocation of the interventions, the sample size approach does not necessarily
require ξ = 0 because the slope difference is independent from the intercept. Furthermore,
the statistical model in general does not have to require that the two intercepts meet at
baseline. Nevertheless, the condition ξ = 0 may be necessary, if not essential, for
determination of the reference effect size.

The statistical power function depends on the number of second and third level data units
only through their product, i.e., N3N2 (equations 16 and 17). Therefore, as far as testing the
intervention by time interaction is concerned, the recruitment plan can be very flexible,
which is useful in designing a longitudinal cluster RCT. For example, recruitment of N3N2 =
100 subjects per group would yield identical statistical power for the following different
combinations of sample sizes: N2 = 25 subjects per clinic and N3 = 4 clinics; N2 = 10
subjects and N3 = 10 clinics; N2 = 5 subjects and N3 = 20 clinics. Therefore, one can design
a cluster RCT in a variety of research settings given that different combinations of number
of clinics and subjects can yield the same level of power. In this paper, however, it is
implicitly assumed that N3 >2. When N3 = 2, the sample size approach proposed by Preisser
et al (2003) could also be applied although their approach does not necessarily coincide with
ours because: 1) a different correlation structure for the outcome variables was assumed; and
2) the pre-post difference was not scaled by the corresponding time difference.
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Model (1) requires the fewest number of parameters in a class of random slope models for
analysis of three level data from a cluster-longitudinal study. However, it does not
necessarily reflect more complex situations such as when mutual and conditional
independence should be relaxed. To this end, other factors such as alternative within-subject
correlation structures (e.g., autocorrelation structure), attrition problems (Roy et al., 2007)
and costs associated with recruitment (Konstantopoulos, 2009) should clearly be taken into
consideration for an optimal design of a cluster-RCT (Raudenbush and Liu, 2000).
However, these important issues are beyond the scope of the present paper. To apply our
sample size under an autoregressive correlation structure which assumes that the correlation
decreases with time, the average correlation could be used in lieu of ρ1. Nevertheless, it is
unknown if this intuitive strategy would yield reasonably well approximated sample sizes.
Roy et al (2007) extensively discussed the impact of attrition on the sample size with
approximate F distributions for diverse situations: subject- and cluster-specific random non-
linear time trends under both within and between cluster randomizations. In other multi-
level trial situations the publically available software titled “Optimal Design Software”,
available from the William T. Grant Foundation developed by Stephen Raudenbush and
colleagues can be applied to determine sample sizes that allow for covariate adjustments
which are based on noncentral F-distributions.

In conclusion, the proposed explicit and easily implementable formulae for sample sizes
(16,17,18) and the power function (15) can be applied to designing cluster-randomized
clinical trials even with varying cluster sizes that intend to compare mean slopes of
outcomes ver time between two intervention groups in a three level data structure when
between-subject variability in the slopes should be taken into consideration.
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Appendix A: Derivations of covariance and variance in equations (4) and (5)
First, we have Cov(Yijk, Yi′ j′ k′) = Cov(ui + uj(i) + νj(i)Tk + eijk, ui′ + uj′(i′) + νj′(i′)Tk′ +
ei′ j′ k′) = Cov(ui, ui) + Cov(uj(i), uj′(i′)) + Cov(νj(i)Tk, νj′(i′)Tk′)+Cov(eijk, ei′ j′ k′). It is
because covariances between the other pairs of terms are all 0 due to the mutual

independence assumption. Second,  since ui are independent over i.

Third,  since uj(i) and uj′(i′) are independent: 1) regardless
of equality of j and j′ when i ≠ i′; or 2) if j ≠ j′when i = i′ owing to the conditional
independence. This reasoning with respect to application of the conditional independence
assumption can be extended to the other covariances as follows:

 and .
Therefore, equation (4) holds. Finally, Cov(Yijk, Yi′ j′ k′) = Var(Yijk) by definition only
when i = i′ and j = j′ and k = k′. Therefore, equation (5) holds.

Appendix B: Proof of unbiasedness of OLS estimate E(δ̂) = E(η̂1 − η̂0) = (τ +
δ) − τ = δ

If g = 0, then Xi = 0 for all cluster i in group 0. Therefore, based on equation (3), we have
E(Yijk) = β0 + τTk, E(Ȳ0) = β0 + τT ̄ and subsequently E(Yijk − Ȳ0) = τ(Tk − T̄). It follows
that E(η̂0) = τ, i.e., we have based on equation (9):
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Similarly, if g = 1, then Xi = 1 for all cluster i in group 1. Therefore, E(Yijk) = β0 + ξ + τTk
+ δTk, E(Ȳ1) = β0 + ξ + τT̄ + δT̄ and subsequently E(Yijk − Ȳ1) = τ(Tk − T̄) + δ(Tk − T̄). If
follows again based on equation (9) that E(η̂1) = τ + δ. Therefore, E(δ̂) = E(η̂1 − η̂0) = (τ +
δ) − τ = δ.

Appendix C: Proof of equation (10) of the sampling variance of η̂g, that is,
Var(η^g)=σe2N3N2N1Varp(T)+στ2N3N2

Let Wk = (Tk − T ̄), then we have: ; and

.

Observing that Y is independent over i, we decompose the variance of the numerator of η̂g
as follows:

Now, recall equation (4), that is,

It follows that

since , where . As for B, we have
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The last term is due to  since . It is easy to see that C = 0

since . Hence, we have

The last equation is due to:

It follows that equation (10) above holds.
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Table 4

Ratio of sample size N3 between random and fixed slope: R(N3)

rτ N1

ρ1

0.3 0.5 0.7

0.1 5 2.4 3.0 4.3

9 9.6 13.0 21.0

13 27.0 37.4 61.7

0.2 5 3.9 5.0 7.7

9 18.1 25.0 41.0

13 53.0 73.8 122.3

0.3 5 5.3 7.0 11.0

9 26.7 37.0 61.0

13 79.0 110.2 183.0

N1 = the number of level one units (repeated measures) per subjects; ρ1 = correlation among level one data under a fixed slope model (7); rτ = the

ratio of the random slope variance to the sum of the other variances (14), i.e., .
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