1duasnue Joyiny vd-HIN 1duasnue Joyiny vd-HIN

wduosnue Joyiny vd-HIN

o WATIG,

HE

M 'NS;))\

D)

NS

NIH Public Access

Author Manuscript

Published in final edited form as:
Comput Stat Data Anal. 2013 July 1; 63: 63-80. doi:10.1016/j.csda.2013.01.023.

RECENT PROGRESS IN THE NONPARAMETRIC ESTIMATION
OF MONOTONE CURVES -WITH APPLICATIONS TO BIOASSAY
AND ENVIRONMENTAL RISK ASSESSMENT

Rabi Bhattacharya and Lizhen Lin
The University of Arizona and Duke University

Rabi Bhattacharya: rabi@math.arizona.edu; Lizhen Lin: lizhen@stat.duke.edu

Abstract

Three recent nonparametric methodologies for estimating a monotone regression function ~and
its inverse F1 are (1) the inverse kernel method DNP (Dette et al. (2005), Dette and Scheder
(2010)), (2) the monotone spline (Kong and Eubank (2006)) and (3) the data adaptive method
NAM (Bhattacharya and Lin (2010), (2011)), with roots in isotonic regression (Ayer et al. (1955),
Bhattacharya and Kong (2007)). All three have asymptotically optimal error rates. In this article
their finite sample performances are compared using extensive simulation from diverse models of
interest, and by analysis of real data. Let there be /m distinct values of the independent variable x
among /Vobservations y. The results show that if /72 is relatively small compared to A/then
generally the NAM performs best, while the DNP outperforms the other methods when mis O(N)
unless there is a substantial clustering of the values of the independent variable x.

1. Introduction

Consider the estimation of a monotone increasing regression function ~on an interval [a, 4],
F >0, based on observations (x; y), /=1, -, N, satisfying

yi=F(xp)+e;(j=1,--- ,N), (11

where a= x3 < X, < - < xp= bare nonstochastic and e (/= 1, -+, ) are independent mean
zero random variables; the distribution of e;may depend on x;. Suppose there are /m distinct
values of x; say a= 2 < - < Z = b, and njobservations y;for a given x=z; m + -+ + np =
N, m— oo. In particular, one may allow m= N. Assume Fhas a continuous second
derivative. It is known from the general theory of nonparametric regression without an order
restriction that the minimum MISE, or mean integrated squared error, of an estimate of ~
cannot be smaller than O(A/"#5), and that an estimate Ax) of A X) with an asymptotic

Normal distribution MAx), ¥2) can only attain a variance ¥ of order slightly larger than
ON45), e.g., N5 log log N) (See Eubank (1999) or Tsybakov (2010)). The optimal
estimators commonly used are Nadarya-Watson type kernel estimators with optimally
chosen bandwidths. Optimal cubic splines may also be used (Wahba (1990)), although fully
nonparametric frequentist inference based on them has been problematic (See, e.g., Eubank
(1999) and Kelly and Rice (1990)).
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It is a more delicate problem to construct optimal monotone estimates of ~and, especially,
of the inverse £~1. An important problem in bioassay and environmental risk assessment is
to estimate a level x= F1(p) of a drug or a chemical agent for which the response
probability Ax) is a given quantity p. In quantal bioassay, or environmental risk assessment,
for the level x;jof a drug or a chemical agent, y;is recorded as 1 for response and 0 for
nonresponse. In the next section we provide outlines of a number of recent methods which
yield asymptotically optimal rates of MISE and asymptotic variances for the estimation of ~
and F£L. In particular, the recent nonparametric adaptive method NAM developed by the
authors (Bhattacharya and Lin (2010), (2011), and Lin (2012)) and its smoother version
SNAM introduced here are compared with an interesting kernel based methodology DNP
due to Dette et al. (2005) and Dette and Scheder (2010), and with cubic splines. All these
methods attain asymptotically optimal MISEs under appropriate conditions. But asymptotics
only provide broad guidelines for large sample sizes, they cannot predict actual finite sample
performance for small and moderately large sample sizes. Such comparative performances
may only be studied by extensive simulation from diverse important models and by data
analysis. This is our focus in the present article. For relatively small and moderate sample
sizes, the classical CLT-based confidence intervals are difficult to compute as the estimation
of the standard error of the estimate requires estimating the derivative ~ of /~an object
which is highly sensitive to minor changes in the data. But we can show that in most cases
Efron’s bootstrap procedure (Efron (1979), (1981)) provides a valid and computationally
feasible alternative. In particular, for these cases the use of bootstrap provides the first fully
nonparametric frequentist inference for monotone cubic spline estimates.

The extensive simulation and data analysis carried out in this article provide the following
broad lessons. If n;(7=1, ---, m) are large relative to mthen the NAM/SNAM outperforms
DNP and the monotone spline. If on the other hand m is very large, say m= Nor O(N), then
the NAM is not quite applicable and the DNP outperforms a substitute of NAM, namely, the
adaptive average grouping method AAGM whose roots lie in a paper by Wright (1982) but
extended, made data adaptive and subjected to bootstrapping for inference in the present
article and in Lin (2012). For small and moderate sample sizes (=5, 10) the NAM and
DNP both mostly outperform the MLE (for the correctly specified model).

The following section provides outlines of the different methods under comparison. Section
3 exhibits results of extensive simulation with binary responses from four important models-
logistic, probit, beta, and Weibull-with values 5 and 10 of mand for values 5,10,25 of a
common n= n;(F/=1, -, m). The comparisons among NAM, DNP, Spline and MLE are by
lengths of confidence intervals for £~ 1(p) for an equidistant set of 11 values of pin [0,1].
This section also includes simulation results on the biases and variances of the upper and
lower confidence bounds for F1(p) estimated by the NAM and DNP using bootstrapping. It
uses 1000 samples from each model and for each of the 11 values of p. This provides
information on the stability of bootstrapping in the present context. The last section, Section
4, contains some examples of data analysis.

A finite sample comparison has been carried out among various kernel methods for
monotone estimates of £~1 in Dette and Scheder (2010). Apart from the DNP these methods
include those of Miller and Schmitt (1988) and Park and Park (2006). Although all these
methods attain asymptotic optimal rates, and the performance of Muller and Schmitt (1988)
is reasonably good, DNP seems to do the best.

The results in Section 3, 4 show that if /77is small relative to /7then the NAM and its smooth
version SNAM outperform the other two main methods, namely, the DNP and the monotone
spline. But if mis large relative to n, e.g., m= Nor O(N), while n= (X1), then the DNP
outperforms its competitors AAGM developed in Lin (2012), Chapter 6, and the monotone
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spline due to Kong and Eubank (2006) but with bootstrapping as used in Lin (2012) and
here.

Efron’s bootstrap may be proved valid for constructing confidence intervals for the three
methods considered here, and it seems to have been applied for the first time in these
contexts in Bhattacharya and Lin (2010), (2011), Lin (2012), and the present article.

It may be noted that most available data for environmental risk assessment involve very
small m but fairly large 7. For such cases the NAM is the same as the method due to
Bhattacharya and Kong (2007), sometimes referred to as the BK method. The estimation of
the so-called benchmark dosage, or BMD, may then be based on the BK method (See,
e.g.,Piegorsch et al. (2012)).

In a past study (See Bhattacharya and Lin (2011)), comparisons among NAM, DNP and the
MLE were carried out using bootstrapping from a single sample in each case. In contrast, the
present study is much more comprehensive and provides precise comparisons. First, it
includes the method of monotone splines with bootstrapping, rendering it fully
nonparametric. Also included in the comparisons are the kernel-smoothed version (SNAM)
of the NAM, and the AAGM (for m= O(N)).

Secondly, comparisons are made precise by looking at true confidence intervals
approximated for each of four important models (logistic, probit, beta, Weibull), for each of
eleven dosage levels, and for three different values of 7, using 4 x 11 x 3 sets of 1000
simulations each (Tables 1-24 and Figures 1-11). Third, since in dealing with real data only
one sample is available, we carry out in Section 3.2 a study of the stability of the bootstrap
based on 1000 simulations from each of eleven dosage levels from the logistic model. For
each of these 11 sets of 1000 simulations a bootstrap resample of size 1000 is used to
compute the average bias and variance of the lower and upper confidence bounds of the
NAM and the DNP (Tables 28-35). Fourth, the comparison between NAM and its smoother
version SNAM is provided in Tables 12-14 and Figures 25-27, for ten dosage levels for the
logistic model for n=5, 10, 25, and m = 10, based on 10 x 3 new sets of 1000 simulations
each. The SNAM seems to reduce the bias for small p, as expected under theoretical
considerations (See Bhattacharya and Lin (2011), Remark 3). Finally, to deal with large m,
MISEs of the DNP and the newly developed adaptive method AAGM are compared by
extensive simulations from the four models mentioned above for the case /m = 20, and for 7
=1,5,10,25,50. Bootstrapping is used in the two data examples in Section 4 to compare the
MISEs of the relevant methods, namely, DNP and AAGM in Example I, and NAM, DNP,
monotone Spline and the MLE, under the logistic model assumption for the latter, in
Example I1. Curiously, the AAGM holds its own against the DNP in Example I, which
seems to be in contrast with the findings based on simulations from the four models in
Section 3.3 for the case m= N.

One may extend the results to the case of a stochastic variable x under appropriate
assumptions; but for simplicity we assume xto be nonstochastic.

2. Descriptions of different methods

The recent methods we compare are (1) the NAM due to Bhatacharya and Lin (2010) which
has its origin in isotonic regression and the pool violators algorithm, or PAV. This is also
true for the AAGM which is applicable for large m. (2) The DNP due to Dette et al. (2005)
and Dette and Schedar (2010) is an inverse kernel method. (3) Apart from the use of
bootstrapping which ensures a fully nonparametric inference, the monotone spline
methodology used here is due to Kong and Eubank (2006).
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We give detailed statements of the NAM and AAGM in the first subsection because they
have not appeared in the literature in this generality earlier.

2.1. A Nonparametric Adaptive Method NAM and An Adaptive Average Grouping Method
AAGM

It was shown by Ayer et al. (1955) that, for a given set of weights w; (/=1, -, m), in the
isotonic regression problem (1.1) the minimize of

m

Z(yi — F(z:)*w; (2.1)

i=1

over the class of all monotone nondecreasing £ is given by

~ Dis<q<tYqW
F(z))=maxmin —=="9 19

ssi i Zssqgwq - @2

The estimate of the whole curve Fis obtained by linear interpolation in [R2)), Azx1)], /=
1, -+, m- 1. This also allows one to obtain an estimate 1 of the inverse curve F 1.
Consider also the usual estimate Az) of Az} as the mean of those observations yjfora
given xvalue z; That is,

F(z)=S:/ni (23)
where, Sjis the sum of those y;with x;= 2. We make the following assumption throughout.

Assumption 2.1. min; n/ max; n; is bounded away from zero, and (Zx1 — z)im (i=1, -, m
-1) are bounded away from zero and infinity.

In addition, the following assumption is used in this subsection.

Assumption 2.2. There is a neighborhood of zero on which the moment generating function
of e is uniformly bounded for all j.

For the quantal bioassay problem described in the Introduction, write 7= max n;. It was
shown in Bhattacharya and Kong (2007) that if m/7* — oo but m(n. log 7)Y/2 is bounded

then, with weights w; = 7; £-1(p) is asymptotically Normal M(F(p), v2). It turns out that

¥~ attains essentially the optimal rate O(A"#/5(log log A)®/5) only for the design in which m
is of order slightly larger than /4. Since such a restriction on the design may not be met in
practice, a new procedure was developed in Bhattacharya and Lin (2010) for the quantal
bioassay problem, which we now extend to the more general case of monotone regression
(1.2).

For values of /77 such that m/7/4 — oo, divide the set of msets (2, -, zp, ) into radjacent
nearly disjoint subgroups of approximately equal size s(r) each, where rand s(n) will be
specified later. They satisfy the approximate equality

m=~rs(n). (2.4)

For example, Group 1 comprises the zvalues (21, Zx1, 221, + Z(s(r)-1)r+1)s Zm), Group 2

I8 (21, 22, Zr2s 22720 " 5 Z(A)-1)r+2)s Zm)s =" Gr0~up ris (21, Zn 225 s Ay Zm)- Now
construct the linearly interpolated PAV estimate ~,of Fas above, but using only the y;’s
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belonging to the #th Group of zlevels (¢=1, ---, /). Then define the NAM estimates of F
and Flas F= (U1 Yi<xer Frand G = (U1) 3 gerer (F)72, respectively.

For the statement of the theorems below, the sign ~ indicates that the ratio of its two sides is
bounded away from zero and infinity.

Theorem 2.3. Let F be a function on[a, bl, F >0, and F’ continuous. Let Assumptions 2.1
and 2.2 hold. (a) If m/m* ~ 1 then, with r= 1, the MISE of F has the optimal rate O(N-*/3).
(b) If m/mM* — oo and m= o(rP?/(log n)®2) then, with r~ (mPIn)Y/, the MISE of F is

O( /V_4/5).

Theorem 2.4. Make the same assumptions as in Theorem 2.3 (a) If m/it'* ~ 1 then, with r=
1, the MISE of C has the optimal rate OUN-*®). (b) If m/m4 — oo, but m/?3 is bounded
away from infinity then, with r ~ (mPn)Y/®, the MISE of ¢ is O(N-45).

Theorem 2.5. Make the same assumptions as in Theorem 2.3. If m/mt!* — oo put m =
o(r?”1 \og log n) then, with r~ (mP1n)Y5I(log log n)®/>, ¢ is asymptotically Normal

MFYp), v2), wherey>=O(N~*3(log 1ogN)).

The proofs of these theorems are omitted as they are analogous to those for the special case
of Bernoulli distributed binary observations y;, in which case Ax) is the probability of
response (i.e., y=1) for a given dose level x (See Bhattacharya and Lin (2010) and Lin
(2012)).

For mof larger order than considered in Theorems 2.3-2.5, a different method, namely,
AAGM (the adaptive average grouping method) is employed. The original idea for this is
due to Wright (1982). By extending it, making it data adaptive, and using the bootstrap, the
results are made applicable in Lin (2012). Here one considers 8= x; < xp < --- < Xy = bin
the general model (1.1), with m distinct values of x, namely, a= z; < - < z,,= bassumed
to be equidistant for simplicity: zx1 — z;= (b— a)/m. Assume n;= nforall /=1, ---, m. Let
k be a positive integer, k< m. We divide the /7 dosages into approximate /m/k groups of
dosages (21, 22, *** , Zi), (Zis1, =+ 204), =+, €tC. If kis odd, then 2 = Z(kr1)i20 22 = Zher (k¥ 1)125

: o _akptzrpen o SUTDRRR2HE G de
ty Zj= Z(j-1)ke(ke1)20 " EEC. If kis even, then 21= 5 »Zj= 5 ,

Our new estimate of AZ) is fj at design points z;(f=1, ---, m/k (approximately)), where fj
is derived by the PAV algorithm applied to (Z;, J%j), 1<j<mik

We now define fj on [a, 4], by letting fg_,:fj, and linearly interpolating in (z; zj4) for all /.

Theorem 2.6. If F >0 and F’ is continuous on [a, b] and Assumptions 2.1 and 2.2 hold,
then with

k ~ (m*in) P =m/N3,  (25)

the estimates F and F~1 of F and F1, respectively, attain asymptotically minimal error rates
for m satisfying

m>cxN3/510gN, (2.6)

for an appropriate constant a.
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Proof. We refer to Wright (1982) and Lin (2012) for a proof.

Remark 2.1. The assumption /7= aAB> log NVin Theorem 2.6 complements the assumption
m= o(AB5) in Theorem 2.5.

Remark 2.2. In applications with real data the group size A may be decided on the basis of
estimates of the MISE for a range of reasonable values of 4.

2.2. Smoothed Nonparametric Adaptive method (SNAM)

The smoothed nonparametric adaptive method (SNAM) is a smoothed version of the NAM
method. Like the NAM, SNAM divides the distinct zvalues into rgroup in the same way.
For example, Group 1 comprises the zvalues (21, Zq1, 2241, " » Z(s(n)-1)r+1)» Zm)> Group 2
is (le 22, Zp2y 22420 """ Z(S(ﬂ)—l)f+2)l Zm)1 Ty GrOUp ris (Zl’ Zn Dp Z(S(ﬂ)/)l Zm)- The
SNAM estimate of the monotone regression function AX) is given by

Foy=0/1 Y F,,

1<t<r

where A#) is the smoothed B-K estimate which are obtained by kernel smoothing the B-K
curve. Note that such estimates are monotone so long as one picks a log-concave kernel
function K(x) (See Mukerjee (1988)). The estimates #;(¢= 1, -+, 1) are asymptotically
independent, since the only common points among the rGroups are 2, and z,, (See
Bhattacharya and Lin (2010)).

2.3. Kernel Based DNP Method

An important kernel-based method in estimating the effective dosage curve is the DNP
method (following the terminology in Dette and Scheder (2010)). Let the response to x;be y;
(0 or 1). The local linear estimator is obtained first by finding the solution to the following
minimization problem: for a small /7> 0, find the minimizer of

m

glliﬁnZK(x ;l’“")(yi — 1 - Ba(xi - 0% (27)
22 im1

where K(X) is a symmetric density on the real line R with a finite second moment, and /s

the bandwidth. The estimator Bl(x) of By is the estimator ?\(x) of AX). The p-th quantile £D,
= F1(p) is then estimated as

?(x) —u
hq

== 1 rp 1
EDpzfof_maKd ]dudx, (2.8)
where /17is small. Here Kyis a symmetric kernel with the same properties as K (e.g, Ky =
K). But ~and Ayare not of the same order, as shown below. Note that as /44 0, EBP

L Fx)—u

— u
converges to £, To understand this, observe that ha ¢ ha converges to the
Dirac measure 84 x(al) as /74 0, so that the inner integral converges to the indicator

function 1[;7_091(’6). The outer integral of this limit is the Lebesgue measure of the set {x:

?(x) < p} which equals the length of this interval. This method of monotonization of a
function ? is called monotone or measure-preserving rearrangement in Hardy et al. (1952).
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With an optimal choice of the bandwidth the estimate p — ED,, of £ 1 attains
asymptotically optimal error rates.

2.4. Monotone B-Spline Smoothing

Given theAregression model (1.1), the general smoothing spline problem is to find the
estimate £, of the function ~that minimizes the objective function (over the class of twice
differentiable functions)

1 u Xm g1/
7 =ZZ(yj—F N with [ JF(0dx, (2g)
j=1

where wjare positive weights and / is a smoothing parameter which controls the trade off
between the smoothness of the curve and the fidelity to the data.

The existence and characterizations of the solution to (2.9) without any shape constraint on
the regression function Fare derived in Wahba (1990) (Also see Eubank (1999)). When Fis
assumed to be monotone, an approach by Kong and Eubank (2007) and Kelly and Rice
(1990) with the use of the so-called B-spline basis B4, represents a monotone £ as a linear
combination of the basis functions B;4, with coefficients increasing with /. The existence
of such Fas a solution minimizing (2.9) can be easily shown.

For constructing confidence intervals using monotone spline estimates in quantal bioassay,
Kong and Eubank (2007) proposed a form of parametric Bayesian inference for deriving
confidence intervals. Our article constructs confidence intervals using the nonparametric
bootstrap, which may be shown to be valid and which makes the procedure fully
nonparametric. The optimal estimate of the smoothing parameter /is given by the GCV
(generalized cross validation) algorithm (See Eubank (1999)).

3. A summary of computation results

3.1. Comparison in Terms of True Confidence Intervals of Effective Dosages {

3.1.1. Comparisons among NAM, DNP, Spline and MLE—In this subsection, 95%
‘true’ confidence intervals are constructed for the NAM, DNP, Spline estimates and MLE of
the effective dosages C, with 1000 samples of data simulated from some important
parametric models. For each sample, NAM, DNP, Spline estimates and MLE of the effective
dosage curve are obtained for 11 equidistant response levels in [0.05,0.85]. For each of the
response level p, the lower confidence limits are given by the 2.5 percent quantile of the
1000 estimates and the upper confidence limits are given by the 97.5 percent quantile value
of the 1000 estimates for each method.

The data are simulated from the following four parametric models for the case m=5, n=5,
10, 25 and m=10, n=5, 10, 25. Here mstands for the number of dosages and s the
number of observations at each dosage. The parametric models are:

1. 1
Logistic model ©'(¥)= T+(exp(—a — B)) With a = =20, B = 10.

2. Probit model Ax) = ®((x - p)/o) withp = 0.5and o = 0.3.

3. Beta distribution F(x)=[ (B, )~ "7 (1 = 1 7)dn0 < x < l)with a = 2 and B
=3.

4. Weibull model AX) =1 - exp(—(Xa)P) with a =2 and g = 1.5.
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The comparisons are mainly carried out in terms of the length of the confidence interval for
each method. The first three rows of the following tables record the lengths of the
confidence intervals for the nonparametric estimates by NAM, DNP and Spline; the fourth
row records the difference D1 = the length of the CI for DNP - the length of CI for NAM;
and the last row records the difference D2 =the length of the CI for Spline - the length of ClI
for DNP.

As one can see from the results given in the following tables, for the most part, the NAM
method yields the narrowest confidence intervals when 7= 10, 25 for both of the case when
m=>5and m= 10 for for all four models. When =5, it seems that the DNP method works
better for most of the cases. The NAM and DNP methods in general perform better than the
monotone Spline method.

At the end of this subsection, some plots of the true confidence intervals for different
estimates are given. The lengths of confidence intervals are recorded in the previous tables.
For the case m =5, only the plots from the Probit model are given while for the case m =10
only the graphs from the Weibull model are provided due to the limited space. However, the
graphs exhibit similar patterns for the other models. The blue line in the middle is the true
effective dosage curve, the red line with circles represents the confidence interval for the
NAM estimate, the green line represents the confidence intervals for the MLE and the black
line represents the confidence interval for the DNP estimate. For the graphs where the NAM
confidence limits and the Spline (SP) confidence limits are compared, the blue lines
represent the confidence intervals for the Spline estimates.

3.1.2. Comparisons Between NAM and SNAM—Here we carry out the comparisons
between the true confidence intervals of C, by the NAM and SNAM. We only include the
results for the Logistic model. The results are similar for other models. The blue lines are the
confidence limits for the SNAM estimates while the red lines with circles are confidence
limits for the NAM estimates. The SNAM vyields slightly narrower confidence intervals
except for the lower values of responses p. For a relatively large adaptive estimate of C,
namely r= 3, the SNAM seems to provide a bias correction, especially for small p, but with
a slightly larger variance (Also see Remark 3 in Bhattacharya and Lin (2011)).

3.2. Bootstrap Stability

In this subsection, we record the variance and bias of bootstrap confidence limits with data
simulated from the Logistic model. First, we simulate 1000 samples of data from the true
Logistic model. For each of the simulated sample data, we calculate the bootstrap
confidence limits for the NAM and DNP methods for 11 equidistant response levels pin
[0.05, 0.85]. Therefore for each p, 1000 estimates for both of the lower confidence limit and
the upper confidence limits are obtained. We then calculate the variance of the lower limits
and variance of the upper limits of 95% confidence intervals. The bias compared to the true
confidence limits recorded in the first section are also obtained.
We have the following notation for the tables below.
VarlNAM,) - the variance of the NAM estimates of the lower confidence limit.
VarnlNAM_)) -the variance of the NAM estimates of the upper confidence limit.
Var(DNPy) - the variance of the DNP estimates of the lower confidence limit.
Var( DNP,)-the variance of the DNP estimates of the upper confidence limit.
Bias(NAM;,)-the Bias of the NAM estimates of the lower confidence limit.

Bias(NAM_)) -the Bias of the NAM estimates of the upper confidence limit.
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Bias(DNP;) - the Bias of the DNP estimates of the lower confidence limit.
Bias(DNPy)-the Bias of the DNP estimates of the upper confidence limit.

As one can see from the results, the bias and variance are fairly small except in a few cases
where pis very small.

3.3. True MISE for DNP and AAGM (the Adaptive Average Grouping Method)

In this subsection, we carry out the comparison between the DNP method and the AAGM
method in terms of true MISE. These two methods are more suitable for designs with
relatively larger number of m. Therefore, the number of dosage levels is taken to be fairly
large (/m = 20) in this comparison and »7is taken to be 1, 5, 10, 25 and 50 with data simulated
from the four parametric models described in Section 3.1 For the method of adaptive
grouping, the number of group K is taken to be 2 or 3. The results show that when n=1, 5,
10, the DNP method yields smaller MISE, while when 7= 25 and n= 50, the MISE of
AAGM estimates are smaller.

4. Analysis of Data Examples

4.1. Data Example: The space shuttle problem

We apply the DNP method and the AAGM method (k= 2, 3, 4) to estimating the probability
of O-ring failure under certain temperatures for the space shuttle disaster problem (See
Rogers Commission Report (1986)). We will first describe the statistical problem.

It was determined that in the disaster of the space shuttle Challenger, the explosion of the
shuttle was the result of O-ring failure, a splitting of a ring of rubber that seals different parts
of the external rocket motors together. The flight accident was believed to be caused by the
unusually cold weather (31°Fat the time of the launch). Previous O-ring failure data along
with temperature at launch time are collected for 23 prior flights. The object of the study is
to determine the probability of O-ring failure under certain temperatures and carry out
inference in terms of confidence intervals. Specifically, given the response probability 0.9 of
“no O-ring failure”, or probability 0.1 of “O-ring failure”, we aim to estimate the
corresponding temperature using the DNP method. We denote this target temperature as
70.1- We also wish to calculate the bootstrap 95% confidence interval on 7; 1. The results
are compared for the DNP method and the AAGM method.

After calculation, the estimate of 7 4 together with both the one-sided and two-sided 95%
bootstrap confidence intervals for this temperature given the level of probability of "no O-
ring failure’ of 0.9 are recorded in the following table for both of the DNP method and the
MAG method. We also calculated the mean squared error for the estimate of 7 1, the case &
= 4 of MAG yields the smallest MSE 1.5555 which is a little smaller that of the DNP
method which is 1.7076. This appears to be in variance with the finding in subsection 3.3. A
possible explanation is that even with large /mthe AAGM performs very well if the x values
are clustered.

Toa two-sided CI one-sided CI MSE
DNP 76.4760 [66.8798,81] [69.3642, 1.7076
AAGM (k=2) 755333 [69.1000,81] [70.0000, 6.7941
AAGM (k=3) 757333 [70.1667,81] [73.0133, 3.5065
AAGM (k=4) 77.2889 [69.6500,81] [72.9500, 1.5555*

Comput Stat Data Anal. Author manuscript; available in PMC 2014 July 01.
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4.2. Data Example Il

In this data example, the data set has /m = 15 dosages levels of the agent potassium bromate
(KBrO3) with x=[0, 0.00625, 0.0125, 0.025, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,
1]. The data set is from a micronucleus assay where the DNA damage of cells from KBrO;

is
le

recorded (See Platel et al. (2009)). Certain type of cells are exposed to the 15 different
vels of concentrations of KBrO; and the numbers of cells with DNA damages are

recorded. The proportions of responses are given by

p=l

101 18 40 48 66 91 74 88 129 131 133 130 133 128

We obtain the estimates of £, using NAM, DNP, Spline and MLE (Logistic model). The
estimated MISE for each method is calculated using Bootstrap. The results are recorded in

th
th

e following table. The MLE from the Logistic model yields the smallest MISE, however
e estimates are not consistent as one can see from the plots of confidence interval from

each method (blue lines). The NAM (r=3) yields the smallest MISE among the
nonparametric methods.

Effective dosage

1

08F

06F

04t

0.2+

4 L L L L L
0.01 0.02 0.03 0.04 0.05 0.06 0.07
Response probability
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Figure 1. [Probit]
[Probit Data]95% CI for NAM, DNP and MLE (m=5,n=5).
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Figure 2. [Probit]
[Probit Data]95% CI for NAM, DNP and MLE (m=5,n=10).
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Figure 3. [Probit]
[Probit Data]95% CI for NAM and SP (m=5,n=10).
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Figure 4. [Probit]
[Probit Data]95% CI for NAM, DNP and MLE (m=5,n=25).
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Figure5. [Probit]
[Probit Data]95% CI for NAM and SP (m=5,n=25).

Comput Stat Data Anal. Author manuscript; available in PMC 2014 July 01.

0.8

09



1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnuei\ Joyiny Vd-HIN

Bhattacharya and Lin

45

Page 17

P
N L
N n w n
1 1 1 1

Effective dosage ED

—
(A ]
T

1

1

1

0.1 0.2 0.3 0.4 05
Response probaility p

Figure 6. [Weibull]
[Weibull Data]95% CI for NAM, DNP, SP and MLE (m=10,n=5).
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Figure 7. [Weibull]
[Weibull Data]95% CI for NAM and SP (m=10,n=5).
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Figure 8. [Weibull]
[Weibull Data]95% CI for NAM, DNP, SP and MLE (m=10,n=10).

Comput Stat Data Anal. Author manuscript; available in PMC 2014 July 01.

0.6

0.7

0.8

0.9



1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnuei\ Joyiny Vd-HIN

Bhattacharya and Lin

Page 20

4

CHY

P

N
n
T

—
(A ]
T

Effective dosage ED
[

| 1 1

0.1 0.2 0.3 0.4 05
Response probaility p

Figure 9. [Weibull]
[Weibull Data]95% CI for NAM and SP (m=10,n=10).
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Figure 10. [Weibull]
[Weibull Data]95% CI for NAM, DNP, SP and MLE (m=10,n=25).
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Figure 11. [Weibull]
[Weibull Data]95% CI for NAM and SP (m=10,n=25).
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[Logistic Data]95% CI for m=10, n=5 for Smoothing curve and NAM curve(r=3).
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Figure 13. [L ogit]
[Logistic Data]95% CI for m=10, n=10 for Smoothing curve and NAM curve(r=3).
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Figure 14. [L ogit]
[Logistic Data]95% CI for m=10, n=25 for Smoothing curve and NAM curve(r=3).
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