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Abstract

It is well-known that the estimated GARCH dynamics exhibit common patterns. Starting from

this fact we extend the Dynamic Conditional Correlation (DCC) model by allowing for a cluster-

ing structure of the univariate GARCH parameters. The model can be estimated in two steps,

the first devoted to the clustering structure, and the second focusing on correlation parameters.

Differently from the traditional two-step DCC estimation, we get large system feasibility of the

joint estimation of the whole set of model’s parameters. We also present a new approach to

the clustering of GARCH processes, which embeds the asymptotic properties of the univariate

quasi-maximum-likelihood GARCH estimators into a Gaussian mixture clustering algorithm.

Unlike other GARCH clustering techniques, our method logically leads to the selection of the

optimal number of clusters.
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1 Introduction

The Dynamic Conditional Correlation GARCH (DCC) model (Engle, 2002) has recently become

one of the most popular tools for the estimation of multivariate asset volatility dynamics (for

applications see, e.g., Cappiello et al., 2006; Billio et al., 2006; Billio and Caporin, 2009; Franses

and Hafner, 2009; Pesaran and Pesaran, 2007; some theoretical results are in Engle and Sheppard,

2001; McAleer et al., 2008; Aielli, 2006, 2011). The basic idea of the DCC modeling approach is

to obtain first the variance process via simple univariate specifications, and, then to build a model

for the correlation process from some appropriate function of the univariate variance standardized

returns. As a direct advantage of such a modeling strategy, we obtain a two-step estimation

procedure that is feasible with large systems: in the first step, the univariate variance processes are

estimated one at a time, and, then, in the second step, the correlation process is estimated from

the estimated standardized returns provided by the first step. Under appropriate specifications of

the correlation process such as the cDCC specification adopted in this paper (Aielli, 2006, 2011),

the two-step estimation procedure is shown to have desirable theoretical and empirical properties.

Most proposed extensions of the DCC model have been developed with the aim of providing

more flexibility to the model of the correlation process. Two examples are the Asymmetric DCC

model by Cappiello et al. (2006), and the Flexible DCC model by Billio et al. (2006); see also Billio

and Caporin (2009), Engle and Kelly (2009) and Franses and Hafner (2009) for other applications.

In particular, with the Flexible DCC model a rather rich parametrization of the correlation process

is obtained by relying on a priori knowledge of the presence of some asset partition. The focus

of this paper is different: we aim at improving the flexibility of the DCC modeling approach by

focusing attention on the “variance side,” rather than on the “correlation side,” of the DCC model.

Our final interest is to avoid, or reduce, the loss of efficiency (if any) that potentially affects the

traditional two-step DCC estimator; in fact, in that case, the variance processes are estimated one

at a time and independently from the information embedded in the correlation dynamics. With this

aim in mind, we take our cue from the well-known fact that the univariate estimates of GARCH

dynamic parameters are often similar. We then allow the specification of the cDCC model to

take advantage of this empirical finding by assuming that there can be assets in the selected asset

sample that share common GARCH dynamics. We call this assumption variance clustering (VC)

assumption, and the resulting model, VC-cDCC model. If the number of clusters is equal to the

number of assets, we obtained the cDCC model as a special case of the VC-cDCC model. Given an

estimate of the underlying asset variance clustering structure, the joint estimation of the whole set

2



of model dynamic parameters — including the variance dynamic parameters and the correlation

dynamic parameters — becomes possible.

Under a fully Bayesian framework, Bauwens and Rombouts (2007) recently addressed the esti-

mation of the underlying GARCH dynamic clustering structure. The refined clustering approach

proposed by the authors makes heavy use of Monte Carlo Markov Chain (MCMC) methods. As

a result, their approach is computationally intensive, in particular with a large number of assets.

A mixed frequentist-bayesian approach is proposed by Brownless (2010), in which the parameters

of a set of GARCH processes are modeled as functions of observed regressors and unobserved id-

iosyncratic shocks. On the contrary, in our paper we adopt a fully frequentist approach, with the

explicit aim of providing a fast and friendly clustering methodology, in accordance with the motiva-

tions behind the DCC estimation paradigm, as originally proposed by Engle (2002). Our clustering

algorithm constitutes a new contribution to the literature on the clustering of GARCH processes,

or, in more general terms, on the clustering of financial time series (see Liao (2005) for a survey on

time series clustering). We know from Elie and Jeantheau (1995) that the asymptotic distribution

of the univariate Quasi Maximum Likelihood (QML) GARCH estimator is Gaussian. Therefore,

a possible choice is to consider a Gaussian mixture (GM) clustering framework. Unlike Bauwens

and Rombouts (2007), who specify a GM model for the observed series as a consequence of the

assumption of Gaussian conditionally distributed returns, our GM model is specific to the sample

of the univariate QML estimates of the GARCH dynamic parameters. We thus change the focus

of the GM clustering from the return process to the GARCH estimators. As a result, our approach

is more flexible since we are working on a distribution-free GARCH framework where asymptotic

properties of the QMLE univariate GARCH estimators are valid anyway. We also point out that,

to estimate the peculiar mixture component covariance matrix implied by our GM model specifi-

cation, we resort to an appropriate combination of standard univariate QML estimation outputs.

Furthermore — and differently from other ad hoc, non-Bayesian GARCH clustering techniques (e.g.,

Otranto, 2008) — our clustering methodology logically leads to a BIC-based selection procedure

for the identification of the optimal number of clusters.

In order to deal with many assets, however, the reduction of the parameter dimensionality

allowed by the variance clustering structure generally is not enough to allow the joint estimation

of the variance/correlation dynamic parameters. The infeasibility is due to the fact that the di-

mensionality of the variance/correlation intercept parameters is O(N2), where N is the number

of series. Following Aielli (2006), we successfully solve this problem by resorting to an ad hoc
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generalized profile QML estimator (Severini, 1998). We thus treat the variance/correlation in-

tercept parameters as nuisance parameters, and the variance/correlation dynamic parameters as

parameters of interest. We then replace the nuisance parameters in the model quasi-log-likelihood

with an estimator that can be easily computed conditionally on the parameters of interest, and

that is shown to possess some relevant properties. Thanks to such an estimation device, the joint

estimation of the variance/correlation dynamic parameters becomes feasible (we call it the joint

VC-cDCC estimator). The joint VC-cDCC estimator is shown to be superior to the traditional

two-step cDCC estimator on the basis of both simulations and applications to real data.

For the joint VC-cDCC estimator to be feasible, it is required that the number of clusters is

small, which, fortunately, is precisely what happens when dealing with large systems. An estimator

of the VC-cDCC model that is feasible irrespective of the number of clusters is, however, also

suggested in this paper (the sequential VC-cDCC estimator). With the sequential estimator, the

asset variance dynamics are still estimated jointly, but separately from the correlation process. As

objective functions for the variance dynamic parameters we adopt univariate composite likelihoods

(Pakel et al., 2011). A special case of the sequential estimator is the traditional two-step cDCC

estimator. The sequential estimator is extremely rapid to compute, and, surprisingly, does not cause

any sensible loss of efficiency with respect to the joint estimator. From a theoretical perspective,

this finding seems to suggest that the dynamic variance parameter and the dynamic correlation

parameter are practically orthogonal (with respect to the adopted pseudo-likelihood).

The rest of the paper is organized as follows: section 2 introduces the VC-cDCC model; sec-

tions 3-4 describe the VC-cDCC estimator and discuss simulation results; section 5 reports some

applications to real data, and, finally, section 6 concludes.

2 The VC-cDCC Model

Before introducing the VC-cDCC model we review the DCC modelling approach. Denote by

yt = [y1,t, . . . , yN,t]� the N × 1 vector of the asset returns at time t, and assume that

Et−1[yt] = 0 , Et−1[yty
�
t] = Ht,

where Et[ · ] is the conditional expectation on yt, yt−1, . . . The asset conditional covariance matrix

can be written as

Ht = D1/2
t Rt D

1/2
t , (1)
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where Rt = [ρij,t] is the asset conditional correlation matrix, and Dt = diag(h1,t, . . . , hN,t) is the

diagonal matrix of the asset conditional variances. By construction, Rt is the conditional covariance

matrix of the asset standardized returns, that is, Et−1[εtε
�
t] = Rt, where εt = [ε1,t, . . . , εN,t]

� , and

εi,t = yi,t/
�
hi,t.

Engle (2002), following Bollerslev (1990), suggests modelling the right hand side of Eq. 1 rather

than Ht directly. The resulting model is called the DCC model. In this work, we adopt the cDCC

specification proposed by Aielli (2006, 2011), and then later used in empirical applications by Engle

et al. (2009), Engle and Kelly (2009), and Hafner and Reznikova (2010).

2.1 The cDCC Model

The cDCC model assumes that the elements ofDt follow GARCH(P,Q) processes, Bollerslev (1986),

hi,t = wi +
P�

p=1

ai,p y
2
i,t−p +

Q�

q=1

bi,q hi,t−q (2)

where the GARCH parameters, wi, ai,p, and bi,q, are non-negative to ensure positivity of hi,t. We

further assume weakly stationarity of yi,t, that is, parameters satisfy
�P

p=1 ai,p+
�Q

q=1 bi,q < 1. We

note that, under stationarity, wi can be reparametrized as

wi =



1−
P�

p=1

ai,p −
Q�

q=1

bi,q



τi, τi ≥ 0, (3)

and where it can be easily proved that

τi = E[y2i,t] (4)

and τi is the stationary second order moment of yi,t. We then define the cDCC correlation process

as

ρij,t =

(1− αij − βi,j) sij,t−1 + αijεi,t−1εj,t−1 + βijρij,t−1�
{(1− αii − βii) sii,t−1 + αiiε

2
i,t−1 + βiiρii,t−1}{(1− αjj − βjj) sjj,t−1 + αjjε

2
j,t−1 + βjjρjj,t−1}

,

(5)

where

sij,t = sij/
√
qi,t qj,t (6)

and

qi,t = (1− αii − βii) + αii ε
2
i,t−1 qi,t−1 + βii qi,t−1 .

5



We collect the parameters of the correlation process in the matrices A = [αij ], B = [βij ] and

S = [sij ]. The representation in (5) of ρij,t highlights that the cDCC model combines into a

correlation-like ratio, a sort of GARCH device for both the relevant innovations and the past

correlations (the numerator and the terms in braces at the denominators of eq (5), respectively).

We also note that the denominator of sij,t is an ad hoc correction required for tractability.1 For

Rt = [ρij,t] to be a proper correlation matrix2 we must impose that A, B and (ιι� − A − B) ⊙ S

are positive semi-definite, where ⊙ denotes the element-wise (Hadamard) matrix product, and ι

denotes the N × 1 unit vector. To achieve identification, S must have unit diagonal elements

sii = 1, i = 1, 2, . . . , N. If αij = α and βij = β for i ≤ j = 1, 2, . . . , N , the model is called Scalar

cDCC. In the last case, Rt is a proper correlation matrix provided that S is positive semi-definite,

α ≥ 0, β ≥ 0 and α+β ≤ 1. Setting α = β = 0 yields the Constant Conditional Correlation (CCC)

model of Bollerslev (1990), where Rt = S at each point in time.

It can be shown that the cDCC model satisfies

S = E[{Q∗
t εt }{Q

∗
t εt }

�], (7)

where Q∗
t = diag(

√
q1,t, . . . ,

√
qN,t). This property plays a crucial role in the construction of reason-

able large system estimators (see section 4.1). For further details on the cDCC model properties,

see Aielli (2011).

2.2 The VC-cDCC Model

As we state in the introduction, we assume that the N assets are grouped into K clusters. Assets

within a given cluster share a common GARCH dynamic, whereas assets belonging to different clus-

ters can exhibit different GARCH dynamics. Our purpose is to combine the cDCC dynamic with a

restriction on the possible GARCH dynamics followed by the N assets. We stress that our modelling

approach is different from several contributions of the MGARCH literature that focused on corre-

lation dynamic parameters. If we introduce variance clustering into the cDCC model we obtain the

Variance Clustering cDCC model (VC-cDCC). Denote as Ci = [ai1, ai2, . . . , aiP , bi1, bi2, . . . , biQ]�

the (P + Q) × 1 vector collecting the GARCH dynamic parameters of the i-th asset. We assume

1Compared with the traditional — and equivalent — representation of ρij,t in terms of rescaled elements of the

correlation driving process, Qt (see Engle, 2002, Aielli, 2006, 2011), the representation of ρij,t provided here is more

immediate and clearly highlights the construction process of the correlation dynamic.
2A correlation matrix is a positive semi-definite matrix with unit diagonal elements.
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that for any pair (Ci, Cj)

Ci = Cj if πi = πj , (8)

where πi ∈ {1, 2, . . . ,K}, i = 1, 2, . . . , N . The partition vector, π = [π1,π2, . . . ,πN ]�, arranges the

N assets into the K clusters. The k-th cluster is defined as the subset of assets {yit : πi = k}.

The size of the k-th cluster is Nk =
�N

i=1 I(πi = k), where I(·) is the indicator function. It holds

that
�K

k=1Nk = N . To simplify the notation it is convenient to allow for empty clusters, so that

K � N . We denote by µk the vector of GARCH parameters common to the assets included in the

k-th cluster. By definition, it holds that Ci = µπi , i = 1, 2, . . . , N . The set of VC-cDCC GARCH

dynamic parameters is thus given by µi, i = 1, 2, . . . ,K. If πi �= πj for i < j = 2, . . . , N , that is,

no common GARCH dynamics, we get the cDCC model, which is therefore a special case of the

VC-cDCC model. 3

2.3 VC-cDCC Estimation

We assume that P and Q are known (typically P = Q = 1), and we arrange the unknown VC-cDCC

parameters

(τ, S, C,φ,π),

where τ = [τ1, τ2, . . . , τN ]� is the vector of the asset unconditional variances (see 4), C = [C1 : C2 :

. . . : CN ] is the (P +Q)×N matrix of the GARCH dynamic parameters,4 where : is the horizontal

matrix concatenation operator, and φ is the vector stacking the distinct elements of the correlation

dynamic parameter matrices, (A,B). The notation we adopt for the representation of the entire

set of model parameters is redundant. In fact, the parameter matrix C contains replicated columns

if the selected assets have a clustering structure. Nevertheless, to simplify the notation and the

description of the estimation step, we maintain the matrix C, while we stress that the VC-cDCC

GARCH parameters are those in the vectors µi, i = 1, 2, . . . ,K. We also note that in the limiting

case of the cDCC model, all columns of C are different given the assets do not show evidence of a

clustering structure.

Unless N is very small, the joint QML estimation of the VC-cDCC variance and correlation

parameters is infeasible. The problem is in fact even more complex, given that the partition vector

must also be estimated. As a feasible though no longer efficient estimation strategy, we consider a

3As we will show in the next sections, given a sample of assets, we estimate the number of clusters. Therefore,

the cDCC model is one of the possible outcome in which all clusters are singleton.
4If the GARCH orders P and Q differ across the N assets, the missing elements are replaced by zeros in the C

matrix.
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two-step approach, called VC-cDCC estimator for short. The first step focuses on the estimation

of the partition vector, denoted as π̂ = [π̂1, π̂2, . . . , π̂N ]�, on the basis of the univariate GARCH

estimates of the parameters in C. The second step focuses on the estimation of the cDCC model

of Aielli (2006) subject to

Ci = Cj if π̂i = π̂j , (9)

which are the constraints induced by the clustering structure estimated in the first step. The above

equation is thus the estimated counterpart of the variance clustering constraint of Eq. 8. Thanks

to variance clustering, even for large N , we are able to jointly estimate the whole set of model

dynamic parameters (variance and correlation dynamic parameters). This is a relevant advantage

against the traditional cDCC estimator for large systems, where the variance process and the

correlation process are separately estimated. In the following sections, we address the estimation

of the partition vector and of the other model parameters, supporting the proposed approach with

a simulation study.

3 Estimating the Partition Vector

The VC-cDCC model assumes that a set of assets is clustered with respect to the dynamic evolu-

tion of their GARCH variances, as summarized by the univariate GARCH parameters (intercept

excluded). Thus, we face the problem of grouping the assets starting from the sample of the uni-

variate GARCH estimates. One possible objection to our final purpose is the lack of clustering

patterns across estimated GARCH parameters. For instance, the first panel of Figure 1 reports

the scatter plot of the univariate QML estimates of GARCH(1,1) parameters on 100 stock returns

series. The graph does not show any clear cluster. The second panel of Figure 1 is very similar to

the first one, but derives from 100 simulated series clustered into four groups. This result is due to

the estimation error of the GARCH parameters, and thus on their dispersion around the true data

generating process values. Therefore, the estimation error could be responsible for the apparent

absence of clusters within a set of GARCH(1,1) estimated parameters. Furthermore, we know that

in large samples, the estimation error of the univariate QML GARCH estimator is approximately

Gaussian. This fact provides a strong motivation for constructing an ad hoc algorithm for the clus-

tering of GARCH processes based on Gaussian mixture (GM) models. The algorithm we propose

below, called the GARCH-GM clustering algorithm, provides an estimate of the groups and thus

of the partition vector π. The clustering algorithm we propose is also robust to the limiting case

of absence of clusters (which leads to the cDCC model). In that case, the clustering algorithm will
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return a partition vector identifying a set of singleton clusters.

3.1 The GARCH-GM Clustering Algorithm

Denote as (τ̃i, C̃i) the univariate QMLE of the GARCH parameter of the i-th asset. We then model

the entire set of the C̃i’s as iid with GM pdf

K�

k=1

ωk × f(C̃i;µk, Σ̃(µk)/T ), i = 1, 2, . . . , N, (10)

where T is the length of the series, f(·;µ,Ξ) is the Gaussian pdf with mean µ and covariance matrix

Ξ, and ωk, k = 1, 2, ...K are the mixture weights satisfying
�K

k=1 ωk = 1. Denoting as

{(ω̃k, µ̃k), k = 1, . . . , K̂} (11)

an estimate of the parameters in (10), the partition vector is estimated through the GM clustering

outputs by setting

π̂i = argmax k=1,2,...,K̂ f(C̃i; µ̃k, Σ̃(µ̃k)/T ). (12)

Here, π̂i, is the index of the Gaussian component with the largest contribution to the GM likelihood

when evaluated at C̃i (see, among others, Xu and Wunsch, 2009, and therein cited references).

Note that the component covariance matrix, Σ̃(µk), is modeled as a function of the mean of the

component. The parameters in (12) are thus the means, the weights and the number of the

components (there are no component covariance parameters to estimate). We stress that the

number of components, K, is assumed unknown.

We motivate now the choice of (10) as a model for the C̃i’s. Under general conditions (see Elie

and Jeantheau 1995) the estimation error,5 C̃i − C0
i , satisfies

√
T (C̃i − C0

i )
A
∼ N(0,Σ(C0

i )), (13)

where we assume that the asymptotic covariance matrix, Σ(C0
i ), depends on C0

i only (this as-

sumption is satisfied, for instance, if Ci and τi are orthogonal). Suppose, then, that: i) the return

processes are independent, ii) the assets are drawn at random from the considered market, and iii)

Pr(C0
i = µ0

k) = ω0
k, k = 1, 2, . . . ,K (this is the true distribution of the GARCH dynamic param-

eters in the considered market), and iv) Eq. 13 holds. Then, if Σ̃(·) is a good approximation of

Σ(·), it follows that, for large T , the C̃i’s are approximately iid with GM probability density func-

tion given by (10). Assumption iii), which implies a discrete GARCH dynamic distribution within

5A zero superscript denotes true values.
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the market, is not restrictive in that for sufficiently large K, we can approximate any continuous

distribution on the (P +Q)-simplex of R(P+Q+1).6 However, assumptions i-ii (also adopted in the

clustering approach of Bauwens and Rombouts, 2007) are typically violated in financial applica-

tions: assets are normally correlated and, for instance, portfolios are not randomly created. In the

following section, we present a simulation study showing that the performances of the GARCH-GM

clustering algorithm turn out to be largely unaffected by violations of assumptions i and ii.

Given the model construction, to determine the optimal values (11) a BIC-based selection

procedure is a logical choice. Compute the MLEs of (10) for a set of possible values of K and

denote them as

{(ω̃K
k , µ̃K

k ), k = 1, . . . ,K}. (14)

Then we estimate K as

K̂ = min {K = 1, 2, . . . : BICK < BICK+1} , (15)

where

BICK = −2
N�

i=1

log
K�

k=1

ω̃K
k × f(C̃i; µ̃

K
k , Σ̃(µK

k )/T ) + {(K − 1) +K(P +Q)}× logN. (16)

Finally, given the estimated K̂ we set

(ω̃k , µ̃k ) = (ω̃K̂
k , µ̃K̂

k ), k = 1, 2, . . . , K̂.

The definition adopted for K̂ provides a stopping rule that activates when BICK̂+1 is reached.

If BICK is a convex function of K, then K̂ is a global minimizer of BICK . Furthermore, for

small K̂ (as it is typically the case; see section 5.3) this stopping rule also induces a computational

advantage since it strongly reduces the estimation time. If BICK is infeasible (for example, for

K > N , when the GM log-likelihood is ill-conditioned), we set BICK = ∞. Recalling that there

are no parameters to take into account for the component covariance matrices, the number of

parameters in the BIC formula, (K−1)+K(P +Q), is equal to the number of free mixture weights

plus the number of parameters in the component means.

In order to complete the description of the clustering algorithm, we have to define Σ̃(·). An

appropriate specification of Σ̃(·) should be feasible and possess desirable analytical and/or statistical

properties. As a possible solution, we propose to set

Σ̃(x) =
N�

i=1

ψi(x)× Σ̃i , ψi(x) = ||x− C̃i||
−1

� N�

i=1

||x− C̃i||
−1, (17)

6Recall that the P +Q GARCH dynamic parameters are non-negative and that their sum must be less than one.
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where || · || is the Euclidean norm and Σ̃i is the QML sandwich estimator of the asymptotic co-

variance matrix of C̃i. We stress that, by this specification of Σ̃(·), all inputs we need in order to

run our clustering algorithm are the estimated univariate GARCH dynamic parameters and their

corresponding estimated covariance matrices. Noting that ψi(x) ≥ 0 and that
�N

i=1 ψi(x) = 1, it

follows that Σ̃(x) is a weighted mean of Σ̃1, . . . , Σ̃N . By inspection of the formula of ψi(x), it is

easily proved that, under consistency of (C̃i, Σ̃i), it holds

plimT−→∞, Σ̃(µ0
πi
) = Σ(µ0

πi
), (18)

where i = 1, 2, . . . , N , that is, Σ̃(µ0
πi
) is consistent, as T −→ ∞, if evaluated at the true value

of the component mean. Hence, for sufficiently large T , locally, in a neighborhood of the true

component mean, Σ̃(·) is a good approximation of Σ(·). By construction, Σ̃(x) is strictly positive

definite uniformly on the (P + Q)-simplex of R(P+Q+1). Thus, compared with other traditional

specifications of the component covariance matrix such as the heteroskedastic GM clustering (see

below), the GM log-likelihood keeps well-conditioned irrespective of critical quantities; the minimum

cluster size, for example. As an important consequence of this property, our clustering algorithm

remains feasible even in the case of no common GARCH dynamics, K̂ ≥ N . Furthermore, we notice

that, for increasing T , the dispersion of the component decreases, which means that the accuracy

of the estimated partition vector increases with T . It is worth noting that, for such a property

to hold, the number of assets does not need to increase (N is always kept fixed in the discussion

above).

3.2 Simulation Study

In this section, we compare the performances of the GARCH-GM clustering algorithm with those

of other simpler GM clustering techniques, namely, heteroskedastic (HE) GM clustering and ho-

moskedastic (HO) GM clustering. HE-GM clustering is computed replacing Σ(µk) in model (10)

with a free, positive semi-definite, component-specific parameter matrix Σk, k = 1, 2, . . . ,K. The

number of parameters entering the BIC formula in this case is (K−1)+K(P +Q)+K(P +Q)(P +

Q+1)/2. In contrast, HO-GM clustering is computed replacing Σ(µk) in (10) with a free, positive

semi-definite parameter matrix Σ, common to all components. The number of distinct parameters

entering the BIC formula in this case is (K− 1)+K(P +Q)+ (P +Q)(P +Q+1)/2. To maximize

the univariate GARCH quasi-log-likelihood, we adopt a grid-based choice for the starting values.

This procedure reduces the risk of choosing as optimal parameters those associated with a local

maxima; see Paolella (2010) for a discussion on the local maxima in GARCH QML estimation.
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3.2.1 Data Generating Processes

For the simulation experiments, we consider two data generating processes, one for large datasets,

where N = 100, and another one for small datasets, where N = 10. The variance processes are

assumed GARCH(1,1) with parameters set as in Table 1. These parameter settings are coherent

with the estimation output provided by the real datasets employed in this paper (see section 5.1).

To introduce dependence across the simulated assets, we assume constant conditional correlations,

which we set as

sij = s = 0, .3, .6, .9, i < j = 2, . . . , N.

Forcing s to vary in a range of admissible values allows us to check whether the GARCH-GM

clustering performances are affected by violations of the assumption of independence across the

return processes. We then generate the variance standardized returns as εt = R1/2
t zt, where R1/2

t

is Cholesky’s square root of Rt, and where the elements of zt are iid standardized Student’s t-

distributed with ν = 9 degrees of freedom. We preferred the Student density to be consistent with

the empirical evidences of leptokurtosis in financial returns series. For each parameter constellation,

we generate 500 independent samples. Furthermore, to limit the computation time, we run the BIC-

selection procedure only for K = 1, 2, 3, 5, 8, 13 on the large datasets, and only for K = 1, 2, 3, 5, 8

on the small datasets.

3.2.2 Performance Criteria

We evaluate the performances of the clustering algorithm by comparing the estimated number of

clusters, K̂, with the true number of clusters, K0. Furthermore, we consider a measure of incorrect

partition, which we define as

Ψ̂ =
1

N(N + 1)/2

�

i<j=2,...,N

|p0ij − p̂ij |,

where 



p0ij = I(π0

i = π0
j );

p̂ij = I(π̂i = π̂j ).
(19)

A smaller Ψ̂ is associated to a better fit of π̂ to π0. It holds 0 ≤ Ψ̂ ≤ 1, where Ψ̂ = 0 if and only if

π̂ = π0. The actual maximum of Ψ̂ is less than one and it depends on π0. We note that Ψ̂ does not

require that the compared partitions need have the same number of clusters. See Xu and Wunsch

(2009) for other approaches and methods to evaluate the performances of clustering algorithms.
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3.2.3 Results

An illustrative plot relative to the considered clustering methods is reported in Figure 2, while

additional graphs are included in the Appendix. We start from the the GARCH-GM clustering

(see Figure 2). As expected, for small sample sizes (T = 250), the dispersion of the univariate QML

estimators is too large for the asset GARCH dynamics to be correctly partitioned. The estimated

number of clusters is incorrect (the smallest BIC is for K = 3, whereas the true number of clusters

is K0 = 2). On the other hand, in the cases of T = 1250 and T = 2500, the number of clusters is

correctly detected, and the asset GARCH dynamics are accurately partitioned. By comparing the

shape and the dispersion of the component contour plots with the related clusters, the choice of

Σ̃(µ̃k) as component covariance matrix estimator seems appropriate.

Moving to HE-GM clustering, we note that the component covariance matrix is correctly spec-

ified but, unfortunately, for this clustering technique to be feasible, it is required that K̂ is not too

large with respect to N , and that the cluster sizes are not too small.7 Figure A.1 illustrates the

behavior of the HE-GM clustering relying on the same simulated dataset used with the GARCH-

GM clustering. In spite of the correct specification of the component covariance matrix, some odd

behaviors can arise. In fact, there are positively correlated clusters whose shape is opposite the

stochastic properties of the GARCH(1,1) QMLE. However, for T = 2500 the number of clusters

is correctly detected (the smallest BIC is for K = 2 = K0), and the asset GARCH dynamics are

accurately partitioned.

Finally, in the HO-GM clustering, we observe that, thanks to homoskedasticity, this procedure

remains feasible even for small cluster sizes. However, the misspecification of the component covari-

ance matrix can be substantial (see Figure A.2), as shown by the presence of positively correlated

clusters, and by the fact that many observations fall outside the 90% component contour plots.

Even for large T the number of clusters is overestimated.

By analyzing in greater detail the simulation results of the large dataset experiment (see Fig-

ure 3), we note that GARCH-GM clustering and HE-GM clustering have similar performances.

However, there is a slight preference for the GARCH-GM clustering in terms of percentage of in-

correct allocations. In contrast, the HE-GM clustering is slightly preferred in terms of estimated

number of clusters. Note that, as long as the asset cross-correlation increases, the performances of

both clustering algorithms improve. For s = 0.9, the GARCH-GM clustering globally outperforms

HE-GM clustering in terms of both incorrect partition and estimated number of clusters. The

7As a consequence, the HE-GM clustering is not robust to the absence of clusters.
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performances of HO-GM clustering in terms of incorrect allocations are satisfactory, and they are

almost unaffected by changes in the asset cross-correlation. In terms of the estimated number of

clusters, however, HO-GM clustering exhibits a marked tendency to overestimate the true value.

Moving to the small dataset experiment (see Figure 4), GARCH-GM clustering strongly outper-

forms HO-GM clustering in terms of both incorrect allocations and estimated number of clusters.

The HO-GM clustering confirms the previous results, that is, the overestimation of the true number

of clusters. Because of the large number of parameters to estimate with respect to the number of

observations, HE-GM clustering is infeasible in this experiment.

In summary, for reasons of flexibility and the performances in both the simulation experiments,

GARCH-GM clustering seems to be globally the best method among the three considered clustering

techniques. In the case of large datasets with approximately balanced clusters, HE-GM clustering

can be a valid alternative to the GARCH-GM clustering. However, we stress that a-priori the

number of clusters and their sizes are not known, an element favouring the use of the GARCH-GM

clustering method.

3.3 Consistency

As a further issue, we are interested in evaluating the consistency of the estimated partition vector

for T −→ ∞ given a set of selected assets. We do not provide a rigorous proof of consistency, but

confine ourself to noting that, under consistency of the univariate GARCH QMLEs (see Elie and

Jeantheau, 1995), for increasing T , the C̃is concentrate around their true values with increasing

probability. Therefore, for a fixed set of assets (given a choice of N) and for sufficiently large T , any

“well-constructed” clustering algorithm should be capable of correctly detecting the true underlying

GARCH dynamic partition. Suppose as an ideal example that there are exactly N assets; those

assets have Ndistinct GARCH dynamics that spread out according to a Gaussian scatter-plot. For

large T , the univariate GARCH estimators are close to the true values and, then they too spread out

according to a Gaussian scatter-plot. In this case, both HO-GM clustering and HE-GM clustering

outcomes are driven by the Gaussianity of the scatter-plot of the univariate GARCH estimates.

Particularly, they both select the incorrect one-cluster partition as the best partition. In contrast,

since the dispersion of the GARCH-GM component is a decreasing function of T , for large T the

GARCH-GM clustering is capable of correctly detecting the absence of clusters. An example is

given in Figure A.3, where for T = 1250 and T = 2500 the absence of clusters is correctly detected,

illustrates this property.
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4 Estimating the Constrained cDCC Model

The second step of the VC-cDCC estimator focuses on the estimation of the cDCC model subject

to the equality constraints in Eq. 9. Even under such equality constraints, unless N is very small,

the dimension of the cDCC parameter space is too large for the joint QML estimator always to be

feasible. This limitation depends mainly on the need to estimate the elements in the parameter

matrix S (that enter in the intercept of the dynamic correlations). In fact, S contains N(N − 1)/2

parameters, and is thus of order O(N2). On the other hand, the remaining model parameters

include N unconditional variances, 2K dynamic GARCH parameters, and 2 parameters in the case

of Scalar cDCC parametrization. Following Aielli (2006) we restore feasibility by resorting to a

generalized profile QML estimator.

4.1 Generalized Profile Dynamic Parameter Estimation

In cDCC estimation, we treat the dynamic parameters, (C,φ), as parameters of interest and the

intercept parameters, (τ, S), as nuisance parameters. Note that our purpose is to jointly estimate

both the GARCH and correlation dynamic parameters. Denote the cDCC quasi-log-likelihood as

L(τ, S, C,φ), and suppose the availability of an estimator of (τ, S) conditionally on (C,φ), de-

noted as (τ̂(C,φ), Ŝ(C,φ)). The function, L(τ̂(C,φ), Ŝ(C,φ), C,φ), called a generalized profile quasi-log-

likelihood (Severini 1998), is a function of (C,φ) only. The estimator of (C,φ) is

(Ĉ, φ̂) = argmax(C,φ) L(τ̂(C,φ), Ŝ(C,φ), C,φ) (20)

subject to Ci = Cj if π̂i = π̂j , i, j = 1, 2, . . . , N , i �= j. The (unconditional) estimator of (τ, S), is

(τ̂ , Ŝ) =
�
τ̂(Ĉ,φ̂), Ŝ(Ĉ,φ̂)

�
, (21)

which is the same as the value of the conditional estimator of (τ, S) at the end of the generalized

profile quasi-log-likelihood maximization.

The feasibility of (τ̂ , Ŝ, Ĉ, φ̂) depends on the number of parameters of the generalized profile

quasi-log-likelihood, which is (P+Q)K̂+dim(φ), and on the feasibility of the conditional estimator.

Note that, for large N , as in our focus, K̂ turns out to be typically small (e.g., K̂ ≤ 5 with N = 100

— see section 5). Hence, for suitably restricted φ (e.g., under scalar correlation dynamics) the

computation of (Ĉ, φ̂) does not pose any particular problem. A standard choice for the conditional

estimator would be to define (τ̂(C,φ), Ŝ(C,φ)) as the QML estimator of (τ, S) conditionally on (C,φ),

namely,

(τ̂(C,φ), Ŝ(C,φ)) = argmax(τ,S) L(τ, S, C,φ). (22)
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In this case, the objective function in Eq. 20 is the traditional profile quasi-log-likelihood. Unfortu-

nately, the computation of such a conditional estimator requires the solution of a highly non-linear

O(N2) maximization problem, and, then it is infeasible for large N . As a feasible conditional esti-

mator, we suggest the following specification, which is constructed relying on the property of the

cDCC model given in Eq. 7. For fixed (C,φ),

1) set τ̂(C,φ) = τ̃ = [τ̃1, . . . , τ̃N ]� ;

2) set Ŝ(C,φ) = T−1�T
t=1{Q̃

∗
t ε̃t }{Q̃

∗
t ε̃t }

�, where

(a) ε̃∗t = [ε̃∗1,t, . . . , ε̃
∗
N,t]

�;

(b) ε̃∗1,t = yi,t/
�
h̃1,t;

(c) h̃i,t = (1−
�P

p=1 aip −
�Q

q=1 bi,q) τ̃i +
�P

p=1 ai,p y
2
i,t−p +

�Q
q=1 bi,q h̃i,t−q;

(d) Q̃∗
t = diag(

�
q̃1,t, . . . ,

�
q̃N,t);

(e) q̃i,t = (1− αii − βii) + αii ε̃
2
it−1q̃i,t−1 + βii q̃i,t−1.

The estimator τ̂(C,φ) = τ̃ in 1) is the vector of the univariate QML intercept parameter estimators

computed only once at the beginning of the GARCH-GM clustering algorithm. Since τ̃ does not

depend on (C,φ), it does not need to be recomputed at each evaluation of the generalized profile

quasi-log-likelihood. The estimator Ŝ(C,φ) is defined as the sample counterpart of S evaluated at

(C,φ) (see Eq. 7). Since Ŝ(C,φ) depends on (C,φ), it must be recomputed at each evaluation

of the generalized profile quasi-log-likelihood. Note, however, that the recursions required by the

evaluation of Ŝ(C,φ) are not computationally complex. Furthermore, if Q∗
t εt is second moment

ergodic (see Aielli, 2011), for known τ0 the estimator Ŝ(C,φ) satisfies

plim Ŝ(C0,φ0) = S0. (23)

This property is a direct consequence of Eq. 7, and of the fact that, by definition, Ŝ(C0,φ0) is the

sample covariance matrix of the true unobserved vector Q∗
t εt . Building on this property, a heuristic

proof of consistency of the VC-cDCC estimator will be provided in section 4.3.

We now discuss three possible variants of the estimator just introduced.

4.1.1 Feasibility Irrespective of K̂

A VC-cDCC estimator that is feasible irrespective of K̂ can be obtained treating (τ, C, S) as a

nuisance parameter and φ as a parameter of interest. Denoted as (τ̂φ, Ŝφ, Ĉφ) the conditional
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estimator of the nuisance parameter, where Ĉφ is subject to (9), the estimator of φ is computed as

φ̂ = argmaxφ L(τ̂φ, Ŝφ, Ĉφ,φ), (24)

and the unconditional estimator of (τ, S, C) is computed as

(τ̂ , Ŝ, Ĉ) = (τ̂φ̂, Ŝφ̂, Ĉφ̂). (25)

A feasible specification of (τ̂φ, Ŝφ, Ĉφ) is the following one, where Li(τi, Ci) denotes the univariate

quasi-log-likelihood of yit. For fixed φ,

i) set τ̂φ = τ̃ ;

ii) set Ĉφ = Ĉ = [µ̂π̂1 : µ̂π̂2 : . . . : µ̂π̂N ], where

µ̂k = argmaxµ

N�

i=1

I(π̂i = k)× Li(τ̃i, µ), k = 1, . . . , K̂;

iii) set Ŝφ = Ŝ(Ĉ,φ), where Ŝ(C,φ) is defined as in point 2 of section 4.1.

The main difference between the estimator defined by Eqs. 20-21, points 1-2 (hereafter, joint

VC-cDCC estimator) and the estimator defined by equations (24-25), points i-iii (hereafter, sequen-

tial VC-cDCC estimator), is that, with the joint estimator, all dynamic parameters of the model

are estimated jointly, whereas, with the sequential estimator, the dynamic variance parameters and

the dynamic correlation parameters are estimated in subsequent steps. The calculations required

by the sequential estimator are much faster than those required by the joint estimator. In particu-

lar, the computation of Ĉφ = Ĉ reduces to K̂ small size maximizations,8 where the k-th objective

function is the sum of the univariate quasi-log-likelihoods of the assets belonging to the k-th cluster,

also called univariate composite likelihood (see Pakel et al., 2011). In the case of scalar correlation

dynamics, the generalized profile quasi-log-likelihood in Eq. 24 turns out to be a function of two

variables only, irrespective of N . For K̂ ≥ N (that is, possibly no common GARCH dynamics)

the sequential estimator coincides with the traditional large system cDCC estimator (Aielli, 2006).

According to the notation adopted in this paper, the cDCC estimator is computed replacing step

ii) above with

ii’) set Ĉφ = Ĉ = [C̃1 : C̃2 : . . . : C̃N ].

Finally, we note that, from a computational point of view, both the joint and the sequential

estimators benefit from the availability of a good starting value for the parameters in C, that is,

the set of the component means provided as an output of the GARCH-GM clustering.
8Each maximization determines P +Q parameters.
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4.1.2 Bivariate Composite Likelihood

As shown by Engle et al. (2009), especially for large N , profiling the cDCC quasi-likelihood, as in

the joint estimator and in the sequential estimator described above, can result in a large bias of the

estimated correlation innovation parameters. This problem can be strongly alleviated by profiling

the so-called bivariate composite cDCC quasi-log-likelihood. We thus replace L(τ, S, C,φ) in Eq.

20 and Eq. 24 with
N�

i=2

Li,i−1(τ, S, C,φ), (26)

where Li,j(τ, S, C,φ) is the quasi-log-likelihood of the cDCC submodel of (yi,t, yj,t). The resulting

approach is referred to as the bivariate composite likelihood approach (see Engle et al., 2009, for a

general discussion). With respect to the calculations involved by the full cDCC quasi-log-likelihood,

the adoption of the bivariate composite quasi-log-likelihood results in a dramatic reduction of CPU

time, especially for large N .

4.1.3 Variance Targeting.

Recalling that τi is the unconditional variance of yit (see section 2.1), τ̃ in points 1 and i can be

replaced by τ̂ = [τ̂1, . . . , τ̂N ]�, where

τ̂i = T−1
T�

t=1

y2i,t. (27)

Such an estimation device is known as variance targeting (Engle and Mezrich, 1996). Variance

targeting is proved to have good empirical performance, especially under misspecifications (see

Francq et al., 2009). Hereafter, if τ̂ is used in place of τ̃ , then the VC-cDCC estimator is called

targeted VC-cDCC estimator.

4.2 Simulation Study

In this section, using Monte Carlo methods, we compare the VC-cDCC estimators described above

and the traditional cDCC estimator. The considered estimators are computed in the related bivari-

ate composite versions. In summary, we find that the joint VC-cDCC estimator and the sequential

VC-cDCC estimator both perform similarly in practice and better than the cDCC estimator. The

targeted VC-cDCC estimators are recommendable with respect to the corresponding non-targeted

versions, especially when dealing with large systems. The fact that the joint estimator and the

sequential estimator are empirically equivalent means that there is no sensible loss of efficiency due
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to estimating the model’s dynamic parameters in two steps. We stress that the sequential estimator

is extremely rapid to compute and is feasible irrespective of K̂.

We consider two simulation experiments, one for large N and another for small N , both with

GARCH parameters and t-distributed returns as in section 3.2.1. A scalar dynamic governs the

correlation process with parameters

α = .02; β = .97; sij = s = .3 i < j = 2, . . . , N.

These correlation settings are coherent with typical cDCC estimation outputs. For each experiment,

we generate M = 500 series of length T = 1250.

To measure the performances of the estimated variance process, we adopt the following mean

absolute errors

V ARMAE =
1

N

N�

i=1

���ĥi,T+1 − hi,T+1

��� (28)

and

CORRMAE =
1

N(N − 1)/2

�

i<j=2,...,N

|ρ̂ij,T+1 − ρij,T+1| , (29)

where ĥi,T+1 and ρ̂ij,T+1 are the out-of-sample estimates of, hi,T+1 and ρij,T+1, respectively, based

on y1, y2, . . . , yT . We also compare the density plots of the parameter estimators.

4.2.1 Results

Figure 5 refers to the large dataset experiment. All plots show that the joint VC-cDCC estimator

and the corresponding sequential VC-cDCC estimators provide the same empirical performances

in practice. On the contrary, the performances of the targeted VC-cDCC estimators and of the

corresponding non-targeted versions can be different, with a preference for the targeted estimator.

Consider the variance results in plot (1): the VC-cDCC out-of-sample predictions, both targeted

and non-targeted, perform better than the cDCC variance prediction (the V ARMAE density of

the VC-cDCC estimators is more shifted towards zero than the corresponding cDCC density). As

expected, thanks to variance clustering, the VC-cDCC parameter estimators are more concentrated

around the true values than the corresponding cDCC estimators (see plots [3], [5] and [7] in Figure

5). Because of the estimation error in the partition vector, the behavior of the VC-cDCC estimator

can be less regular than the one of the cDCC estimator, as shown by the bimodality of the VC-cDCC

estimators of bi (see plot [7]). The targeted estimators are generally well centered around the true

values, whereas the non-targeted versions can exhibit rather large relative biases (see plots [3] and

[7]). Focusing now on the correlation results, there is no apparent increase of prediction efficiency
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due to the variance clustering (see plot [2]). As for the correlation parameters, the targeted VC-

cDCC density plots and the corresponding cDCC density plots are well centered on the true values

and they are almost identical in practice (see plots [4], [6] and [8]). The non-targeted VC-cDCC

estimators instead exhibit a rather large relative bias in the estimation of α (see plot [6]).

The simulation results for small N are reported in Figure A.4 in the Appendix. They confirm

the fact that there is little difference between the joint VC-cDCC estimation and the sequential VC-

cDCC estimation. The best variance predictions here are provided not only by the non-targeted VC-

cDCC estimators, but also the targeted VC-cDCC estimators outperform the cDCC estimator (see

plot [1]). As expected, in the case of the second cluster, which includes one asset only, the estimation

error in the partition vector makes the VC-cDCC variance parameter estimators performances worse

than the corresponding cDCC estimator (see the right quadrants in plots [5] and [7]). As noted in

the case of the large dataset, the correlation performances appear to be unaffected by allowing for

variance clustering (see plots [2], [4], [6] and [8]).

4.3 Consistency

A rigorous proof of consistency of the VC-cDCC estimator is quite difficult to provide. Here we

confine ourself to sketch a heuristic proof that holds under high level assumptions. Consider the

joint VC-cDCC estimator and suppose, for simplicity, that (π0, τ0) is known. The cDCC quasi-

log-likelihood is then denoted as L(S,C,φ). Suppose that (i) the limits in probability, plim Ŝ(C,φ)

and plimT−1L(S,C,φ), are finite in a neighborhood of (C0,φ0) and (S0, C0,φ0), respectively, and

(ii) plim T−1L(S,C,φ) has a unique maximum at (S0, C0,φ0) (the latter is a common assumption

in QML settings, which holds, e.g., under the conditions for QML consistency in Bollerslev and

Wooldridge, 1992). Then

plimT−1L(Ŝ(C,φ), C,φ) = plimT−1L(plim Ŝ(C,φ), C,φ) (30)

≤ plimT−1L(S0, C0,φ0),

where the equality follows from Wooldridge (1994, Lemma A.1). Now, recalling that plim Ŝ(C0,φ0) =

S0 (see Eq. 23), it follows that the rescaled generalized profile quasi-log-likelihood, plimT−1L(Ŝ(C,φ), C,φ),

has a unique maximum in (C0,φ0). This proves the local consistency of (Ĉ, φ̂) = argmax(C,φ)L(Ŝ(C,φ), C,φ)

provided that point-wise convergence can be turned into uniform. As for consistency of Ŝ, from

Wooldridge (1994, Lemma A.1) and Eq. 23, it follows that, if plim Ŝ(C,φ) is finite in a neighborhood

of (C0,φ0) and (Ĉ, φ̂) is consistent, then plim Ŝ = plim Ŝ(Ĉ,φ̂) = plim Ŝ(C0,φ0) = S0. If (π0, τ0) is
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replaced by (π̂, τ̃) or (π̂, τ̂), consistency of (Ĉ, φ̂) holds under conditions for consistency of two-step

M-estimators such as those given in Wooldridge (1994, Theorem 4.3). For consistency of π̂, see

section 3.3. Consistency of τ̃ holds under Elie and Jeantheau (1995). If τ̂ is used in place of τ̃ ,

since τ̂2i is the sample variance of yi,t, consistency of τ̂ holds under second moment ergodicity of

yit, i = 1, 2, . . . , N .

5 Applications to Real Data

In this section, we compare the empirical performances of the VC-cDCC estimator and those of

the cDCC estimator. In summary, according to the considered performance criteria, we find that

the targeted VC-cDCC estimators always perform either equal or better than the cDCC estimator.

As anticipated by the simulation evidence, the difference between the joint VC-cDCC estimators

and the corresponding sequential versions is negligible. In contrast to the simulation results, the

estimation of the correlation process is markedly improved by allowing for variance clustering. This

somewhat surprising outcome depends, in our opinion, on the rolling estimation strategy adopted.

We believe that the targeted version is less sensible to large changes in the assets unconditional

variances. Furthermore, within the simulations the unconditional variances remained fixed, while

in the real data case, the unconditional variances might change over time, with a possible impact

on the model ranking.

5.1 Datasets and Compared Estimators

We consider a large dataset of N = 100 randomly selected equities from the S&P 1500 Index.

These equities belong either to the industrial or to the consumer good sectors, and their daily

total returns are available from January 2001 to December 2007. Therefore, this dataset has an

expectation on the number of clusters, which is equal to 2. The sample period thus includes 1770

daily returns. For the same period, we consider also a small dataset of equity indices: the nine

S&P 500 SPDR’s sector indices and the S&P 500 index itself (see Table A.10 in the Appendix

for the detailed list of the considered assets). On the two datasets, we estimate both cDCC and

VC-cDCC models. For the second model, we consider both the joint estimators of the number

of clusters and of the other model parameters, denoted as cDCCV C , as well as the estimators

of model parameters conditionally on a a priori defined number of clusters denoted as cDCCK .

Estimating models with a fixed number of clusters allows a deeper understanding of the behavior of

the VC-cDCC estimator. Another interesting question is whether the data driven partition of the

21



VC-cDCC estimator outperforms some relevant a priori partition criterion. To shed some light on

this aspect, we also estimate on the large dataset a VC-cDCC model with a priori fixed partition

vector denoted as cDCC∗. The a priori partition is given by the sector partition into industrial

equities (53 assets) and consumer good equities (47 assets). For all of these estimators we also

consider the related targeted version (see section 4.1.3) denoted by a superscript “Trg”. Thus, for

example, the targeted VC-cDCC estimator is denoted as cDCCTrg
V C . We evaluate all estimators in

their bivariate composite version (see section 4.1.2) assuming GARCH(1,1) variance processes and

scalar correlation dynamics.

5.2 Performance Criteria

We compare the several model estimators by means of out-of-sample prediction criteria. In partic-

ular, we consider pairwise comparison tests of equal predictive ability (see Diebold and Mariano,

1995, and Patton and Sheppard, 2009, for applications in MGARCH models) and regression-based

specification tests, such as the Engle-Colacito regression (Engle and Colacito, 2006), the dynamic

quantile test (Engle and Manganelli, 2001), and the LM test of ARCH effects on portfolio returns.

We consider as portfolio specifications the equally weighted portfolio, denoted as EW, the minimum

variance portfolio with short selling, denoted as MV, and the minimum variance portfolio without

short selling, denoted as MV∗. The weight vector of the EW portfolio is w0
t = w = ι/N . The weight

vector of the MV portfolio is w0
t = {H0

t }
−1ι/(ι�{H0

t }
−1ι), and, then it is an explicit function of

the conditional covariance matrix. Finally, the weight vector of the MV∗ portfolio is a non-closed

function of the conditional covariance matrix, and it must be numerically computed. During the

computation of the portfolio weights, H0
t is replaced by an estimate. Since the EW weights do not

depend on H0
t , they are free from estimation errors. In the following, we report a description of the

adopted comparison criteria. The symbol Ĥ(m)
t denotes the out-of-sample estimate of H0

t , which

is computed applying the m-th estimator on a rolling window of t̄ de-meaned observed returns,

ŷt−1, ŷt−2, . . . , ŷt−t̄, where ŷt−j = zt−j − z̄t−1, and zt−j is the vector of the observed return at time

t − j and z̄t−1 = t̄−1�t̄
j=1 zt−j . We adopt a rolling window of length t̄ = 1250. The number of

estimated forecasts for each estimator is then T̄ = T − t̄ = 520, roughly corresponding to two years

of data.
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5.2.1 Pairwise Comparison Tests of Equal Predictive Ability

Denote as d(m)
t the loss due to predicting H0

t with Ĥ(m)
t , and set

d̄(m) = T̄−1
T�

t=t̄+1

d(m)
t .

The null hypothesis

H
0 : E

�
d̄(m)

− d̄(n)
�
= 0

is a null of equal predictive ability for the estimators Ĥ(m)
t and Ĥ(n)

t . Under appropriate conditions

(see Diebold and Mariano, 1995), a test statistic for H0 is

√

T̄ (d̄(m) − d̄(n))�
V AR[

√

T̄ (d̄(m) − d̄(n))]
∼ N(0, 1),

where V AR[
√

T̄ (d̄m − d̄n)] is a heteroskedasticity and autocorrelation consistent estimate of the

variance of
√

T̄ (d̄m − d̄n). Negative values of the test statistic provide evidence in favor of Ĥ(m)
t

against Ĥ(n)
t . As possible specifications of d(m)

t we consider score-based losses as in Amisano and

Giacomini (2007), and MSE-based losses as in Diebold and Mariano (1995) and Patton and Shep-

pard (2009).

� Amisano-Giacomini losses. Given our dynamic correlation setting, we decide to compute

two separate score-based losses, one for the asset variance process and another for the asset corre-

lation process, both computed under Gaussianity. The loss for the variance process is

d(m)
t = V ARSCORE(m)

t =
N�

i=1

�
log ĥ(m)

i,t + ŷ2i,t/ĥ
(m)
i,t

�
, (31)

where ĥ(m)
it is the out-of-sample estimate of hit. The loss for the correlation process is

d(m)
t = CORRSCORE(m)

t = log |R̂(m)
t |+ ε̂(m)�

t {R̂(m)
t }

−1ε̂(m)
t , (32)

where ε̂(m)
t =

�
ŷ1,t/

�
ĥ(m)
1,t , . . . , ŷN,t/

�
ĥ(m)
N,t

��
. The loss for the correlation process depends on the

estimated variances through ε̂(m)
t . We also consider a score-based loss for EW portfolio returns,

defined as

d(m)
t = EWSCORE(m)

t = log(w� Ĥ(m)
t w) +

�
w�ŷt

�2
/(w Ĥ(m)

t w), (33)

where w is the vector of the EW portfolio weights. The definition of the losses for MV portfo-

lio returns and MV∗ portfolio returns, denoted as MVSCORE and MVSCORE∗, respectively, is
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analog, with the caveat that in these cases, the vector of the portfolio weights is the appropriate

function of Ĥ(m)
t . Given any of such score-based losses, under Gaussianity d̄(m) is minimum in large

samples if and only if Ĥ(m)
t = H0

t .

� Diebold-Mariano losses. The Amisano-Giacomini score-based loss accounts for misspeci-

fications in either the model of Ht, or the asset conditional distribution, or both. A loss function

that accounts for misspecification in the model of Ht only is the Diebold-Mariano MSE-based loss.

Again we consider a loss for the variance process and a loss for the correlation process. The variance

loss is

d(m)
t = V ARMSE(m)

t =
1

N

N�

i=1

�
ŷ2i,t − ĥ(m)

i,t

�2
, (34)

and the correlation loss is

d(m)
t = CORRMSE(m)

t =
1

N(N − 1)/2

�

i<j=2,...,N

�
ε̂(m)
i,t ε̂(m)

j,t − ρ̂(m)
ij,t

�2
, (35)

where ρ̂(m)
ij,t is the out-of-sample estimate of ρij,t. The correlation loss depends on the estimated

variances through ε̂(m)
t . The portfolio MSE-based loss is defined as

d(m)
t = EWMSE(m)

t =
��

ŵ�
tŷt

�2
− ŵ�

t Ĥ
(m)
t ŵt

�2
. (36)

The definition of the losses for MV portfolio returns and MV∗ portfolio returns, denoted as

MVMSE and MVMSE∗, respectively, is analog. Given any of such MSE-based losses, d̄(m) is

minimum in large samples if and only if Ĥ(m)
t = H0

t .

The previously described loss functions requires as an input the true and unknown variances or

correlations. Those have been replaced by quantities measured using the observed returns. Such a

choice is clearly suboptimal since the proxy we are using is contaminated by a noise. However, as

discussed in Patton and Sheppard (2009), the previous loss functions are robust to the noise of the

volatility proxy used. Alternatively, other approaches could have been considered, such as the use

of realized variances as in Laurent et al. (2010), but that require the availability of high frequency

data.

5.2.2 Regression-based Specification Tests

� Engle-Colacito regression. Consider the regression model {(ŵ�
tŷt)

2/(ŵ�
t Ĥ

(m)
t ŵt)}−1 = γ+ξt,

where ξt is an innovation term. By construction, γ is zero if Ĥ(m)
t = H0

t . Hence, the significance of a

test of γ = 0, where HAC-robust standard errors are required, provides evidence of misspecification.
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� Dynamic quantile test. The α × 100% Value-at-Risk (VaR) at time t for a given portfolio,

w0�
t yt, is denoted as VaR0

t (α) and is defined as the α×100%-quantile of the conditional distribution

of w0�
t yt. Under Gaussianity it holds VaR0

t (α) = Φ−1(α)
�
w0�
t H

0
t w

0
t , where Φ(·) is the standard

Gaussian distribution function. Define HITt = 1 if ŵ�
tŷt < �V aRt(α) and HITt = 0 otherwise,

where �V aRt(α) is the estimated VaR. The dynamic quantile test is an F -test of the hypothesis

that all coefficients as well as the intercept are zero in a regression of {HITt − α} on its past, the

current VaR and any other variables. In this paper, fifteen lags and the current VaR are used.

Rejecting the null provides evidence of model misspecification.

� Portfolio ARCH effect test. If the model is correctly specified, the series of the square

standardized portfolio returns, (w0�
t yt)

2/(w0�
t H0

t w
0
t ), is serially uncorrelated, or w0�

t yt exhibits no

ARCH effects. Rejecting the null of no serial correlation of (ŵ�
tŷt)

2/(ŵ�
t Ĥ

(m)
t ŵt), then show evidence

of model misspecification. We fit the test using fifteen lags on the squared residuals.9

5.3 Results

5.3.1 Large Dataset

Figure 6 reports the univariate estimates of the GARCH(1,1) dynamic parameters computed on

the whole sample period. The figure also shows the contour plots of the estimated best GM model.

The estimated number of clusters is K̂ = 3. Accordingly, most of the rolling window estimates

of K oscillate between three and five with the large dataset (see Figure 7). In order to limit

the calculations, the BIC-selection procedure is run only for K = 1, 2, 3, 5, 8, 13 rather than for

K = 1, . . . , N , which does not cause any notable loss of generality, as shown by the fact that the

rolling window estimate of K is almost always less than 13 (see Figure 7).

Table 2 refers to the Amisano-Giacomini tests computed for the joint VC-cDCC estimator.

Our particular focus is on the comparison of the VC-cDCC estimators with data driven parti-

tion, denoted as cDCCV C and cDCCTrg
V C , with the traditional cDCC estimator. We first discuss

the results relative to the targeted VC-cDCC estimators (see the left column of Table 2). The

V ARSCORE table shows that allowing for variance clustering does not provide sensible improve-

ments with respect to the cDCC estimator. The test statistic comparing cDCCTrg
V C and cDCC

9The actual size of all considered regression-based tests can be different from the nominal size because of the

estimation error due to replacing H
0
t with Ĥ

(m)
t .
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is equal to −.61, which is in favor of cDCCTrg
V C (the sign is negative) but is not significant at

the 5% level. The CORRSCORE table shows different results. The correlation predictions are

sensibly improved by allowing for variance clustering (the last column of the table is all negative

and strongly significant). Among the considered VC-cDCC estimators, cDCCTrg
V C provides the sec-

ond best performance against cDCC, with a test statistic equal to -6.69 (the best performance is

provided by cDCC3 with a test statistic equal to -6.72). The good performance of the a priori

partitioned estimator, cDCCTrg
∗ , is a fictitious effect. Note, in fact, that the overall best estimator

is the one-cluster estimator, cDCCTrg
1 , as shown in the CORRSCORE table (the elements in the

first row are all negative and significant), suggesting that the a priori sector partition basically

acts as a random partition. Since there are only two clusters in the a priori partition, the loss of

efficiency of cDCCTrg
∗ with respect to the well-specified estimator cDCCTrg

1 is small. This conjec-

ture is supported by the fact that the sign of most pairwise comparison tests between cDCCTrg
∗

and cDCCTrg
1 is in favor of cDCCTrg

1 . As for the results from the portfolio-based pairwise com-

parisons (see EVSCORE, MVSCORE and MVSCORE∗ in Table 2), the test to cDCCTrg
V C and

cDCC, though not significant, is in favor of cDCCTrg
V C . The results relative to the non-targeted

VC-cDCC estimators (see the right column of Table 2) indicate that the overall message is that

the performances are worse than those of the corresponding targeted versions. These results are

in accordance with the simulation evidence discussed in the previous sections. Table A.1 in the

Appendix reports the Amisano-Giacomini pairwise comparison tests computed for the sequential

VC-cDCC estimators. In accordance with the simulation evidence, the pattern of the results is

very similar to that obtained with the joint estimators.

The results from the Diebold-Mariano pairwise comparison tests (see Table 3 for an example)

are analogous to — though less decisive than — those from the Amisano-Giacomini tests. In

particular, it is confirmed that the performance of the sequential estimators are very similar to

that of the corresponding joint estimators, and that the targeted estimators perform better than

the corresponding non-targeted estimators. Provided that the targeting is applied, the prediction

of the correlation process is significantly improved by allowing for variance clustering (see the last

column of the left CORRSCORE table). As desired, cDCCTrg
V C significantly outperforms cDCC.

Note that the a priori partitioned estimator, cDCCTrg
∗ , is significantly better than cDCC, but it

is also significantly worse than the one-cluster estimator, cDCCTrg
1 . This difference supports the

conjecture that the good performances of the sector partition are fictitious. As for the results from

the regression-based tests (Table 4 includes some examples), note that in all tests the performances
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of the targeted VC-cDCC estimators are either equal or better than those of the cDCC estimator.

In both targeted and non-targeted cases, the overall message from the pairwise comparison tests

is that the estimators with fixed K ≤ 3 provide the best performances (most of the dark grey cells

are concentrated on the rows related to such estimators). Since the rolling window estimates of

the VC-cDCC estimator are mostly larger than three (see Figure 6), they seem to suggest that

the performances of the VC-cDCC estimator could be sensibly improved by correcting it for the

overestimation of the number of clusters already shown via simulation (see Figure 3).

5.3.2 Small Dataset

The univariate estimates of the GARCH(1,1) dynamic parameters for the whole sample period are

plotted in Figure 6. The estimated number of clusters is K̂ = 2, and, accordingly, most of the rolling

window estimates of K are equal to two (see Figure 7). In order to speed up the calculations, the

BIC-selection procedure is run forK = 1, 2, 3, 5, 8. With respect to the large dataset, the superiority

of the targeted estimators with respect to the corresponding non-targeted versions appears to be

less marked, which is in accordance with the simulation results reported in section 4.2. According

to all the considered comparison criteria, including the regression-based tests, all the considered

VC-cDCC estimators, either joint or sequential, as well as targeted or non-targeted, perform equal

to or better than the cDCC estimator. In particular, in the ten considered pairwise comparison

tests, cDCCTrg
V C significantly beats cDCC three times in the sequential version and four times in

the joint version; cDCCV C significantly beats cDCC five times in the sequential version and six

times in the joint version.

As in the case of the large datasets, the estimators with a fixed, small number of clusters

perform generally better than the remaining estimators. Furthermore, most statistically significant

comparisons are related to the estimators with fixed K ≤ 2, which seems to confirm that the

VC-cDCC estimator can be improved by correcting it for the overestimation of the number of

clusters.

6 Conclusions

We propose an estimation methodology to improve the performances of the traditional cDCC es-

timator for large systems by allowing for assets sharing the same dynamic variance parameters.

The suggested estimator is fully frequentist, easy to implement, and endowed with good statistical

properties. We first cluster the assets into groups, and then we estimate the model parameters
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subject to constant within-group variance dynamic parameters. The adopted clustering algorithm

is new. It exploits the asymptotic properties of the univariate GARCH quasi-maximum-likelihood

estimator, and thus it is distribution-free. Furthermore, in contrast to other clustering methodolo-

gies, the algorithm leads to the choice of the optimal number of clusters. Thanks to the equality

parameter constraints induced by the estimated variance clustering structure, we are capable of

jointly estimating the whole set of model dynamic parameters. Simulations and applications to

real data are included, which show that the suggested estimator allows some improvements in

terms of efficiency with respect to the traditional cDCC estimator, where the variance dynamics

are estimated one at a time and separately from the correlation dynamics.
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Underlying variance clustering structure
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Figure 1: On the left: plot of estimates of univariate GARCH(1,1) dynamic parameters from

N = 100 series of real data. The dataset is the equity dataset described in section 5.1. On the

right: plot of estimates of univariate GARCH(1,1) dynamic parameters from simulated data. The

DGP underlying the simulated series provides for K0 = 4 distinct GARCH dynamics, namely,

µ0
1 = (.13, .56) for N1 = 13 assets, µ0

2 = (.11, .73) for N2 = 39 assets, µ0
3 = (.03, .96) for N3 = 42

assets, and µ0
4 = (.14, 0) for N4 = 6 assets. The simulated correlation process is set as constant

and equal to sij = s = .3 for all asset pairs.
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GARCH-GM clustering
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ãi

 T=2500; K=1; BIC=−0.66.

0 1
0

1

b̃i

ãi
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Figure 2: Univariate QML GARCH(1,1) dynamic parameter estimates from simulated data and

related GARCH-GM component contour plots. The DGP variance parameters are set as in Table

1 - Large dataset, with constant conditional correlations set as s0ij = s = .3 for all asset pairs. The

true number of clusters is K0 = 2. The component contour plots are drawn in correspondence to

the Gaussian confidence sets of level .50, .75, .90. The lower triangle of each plot is the admissible

parameter space, {(a, b) : a ≥ 0, b ≥ 0, a+ b < 1}.
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Clustering estimation performances

N = 100
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Figure 3: Percentage of incorrect allocations, Ψ̂, and of estimated number of clusters, K̂, arranged

in ascending order. Straight lines for the GARCH-GM clustering; dashed lines for the HE-GM

clustering, and dash-dotted lines for the HO-GM clustering. The true number of clusters is K0 = 2.
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Clustering estimation performances
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Figure 4: Percentage of incorrect allocations, Ψ̂, and estimated number of clusters, K̂, arranged in

ascending order. Straight lines for the GARCH-GM clustering; dash-dotted lines for the HO-GM

clustering. The true number of clusters is K0 = 2. The due to large number of parameters, the

HE-GM clustering is infeasible for N = 10.
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Variance/correlation estimation performances

N = 100
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Figure 5: cDCC estimator in straight dotted lines; targeted joint VC-cDCC estimator in straight

lines; targeted sequential VC-cDCC estimator in dashed lines; non-targeted joint VC-cDCC esti-

mator in dashed dotted lines; non-targeted sequential VC-cDCC estimator in dotted lines.
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Estimates of GARCH(1,1) dynamic parameters from real data
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Figure 6: Univariate QML estimates of GARCH(1,1) dynamic parameters obtained from real data.

The contour plots are relative to the components of the estimated GM-GARCH model (K̂ = 3 on

the left; K̂ = 2 on the right). The component contour plots are drawn in correspondence to the

Gaussian confidence sets of level .50, .75, .90.

Estimated number of clusters from real data
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Figure 7: Rolling window estimates of the number of clusters.
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Large dataset (N = 100) Small dataset (N = 10)

K0 = 2 K0 = 2

N0
1 = 66, N0

2 = 34 N0
1 = 9, N0

2 = 1

τ0i = 1, i = 1, . . . , N τ0i = 1 i = 1, . . . , N

(a0i , b
0
i ) = (.05, .90), i = 1, . . . , N0

1 (a0i , b
0
i ) = (.06, .93), i = 1, . . . , N0

1

(a0i , b
0
i ) = (.18, .54), i = N0

1 + 1, . . . , N0
1 +N0

2 (a0i , b
0
i ) = (.12, .85), i = N0

1 + 1 = N0
1 +N0

2

Table 1: DGP variance parameter values.
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Amisano-Giacomini pairwise comparison tests

N = 100; joint dynamic parameter estimation.

V ARSCORE
cDCCTrg

1 cDCCTrg
2 cDCCTrg

3 cDCCTrg
5 cDCCTrg

∗ cDCCTrg
V C cDCC

cDCCTrg
1 – 0.77 0.54 0.49 -1.42 -0.38 -0.53

cDCCTrg
2 – – 0.13 -0.04 -1.61 -1.29 -1.06

cDCCTrg
3 – – – -0.30 -1.03 -2.54 -1.50

cDCCTrg
5 – – – – -1.04 -2.75 -1.39

cDCCTrg
∗ – – – – – -0.02 -0.35

cDCCTrg
V C – – – – – – -0.61

cDCC – – – – – – –

cDCC1 cDCC2 cDCC3 cDCC5 cDCC∗ cDCCV C cDCC

cDCC1 – 0.76 0.29 0.03 -1.28 -1.05 -0.02

cDCC2 – – -0.34 -0.45 -1.70 -1.98 -0.48

cDCC3 – – – -0.37 -1.10 -2.71 -0.37

cDCC5 – – – – -0.56 -2.17 -0.11

cDCC∗ – – – – – -0.41 0.51

cDCCV C – – – – – – 1.75

cDCC – – – – – – –

CORRSCORE
cDCCTrg

1 cDCCTrg
2 cDCCTrg

3 cDCCTrg
5 cDCCTrg

∗ cDCCTrg
V C cDCC

cDCCTrg
1 – -2.45 -2.89 -3.96 -3.15 -3.96 -5.84

cDCCTrg
2 – – -2.32 -4.20 0.87 -4.19 -6.53

cDCCTrg
3 – – – -1.39 2.24 -2.74 -6.72

cDCCTrg
5 – – – – 3.37 -1.81 -6.66

cDCCTrg
∗ – – – – – -3.48 -6.00

cDCCTrg
V C – – – – – – -6.69

cDCC – – – – – – –

cDCC1 cDCC2 cDCC3 cDCC5 cDCC∗ cDCCV C cDCC

cDCC1 – 2.36 1.48 1.49 -1.05 0.87 0.27

cDCC2 – – -0.69 0.24 -3.37 -0.91 -1.21

cDCC3 – – – 0.92 -2.38 -0.71 -1.10

cDCC5 – – – – -2.01 -2.57 -3.07

cDCC∗ – – – – – 1.49 0.70

cDCCV C – – – – – – -1.08

cDCC – – – – – – –

EWSCORE
cDCCTrg

1 cDCCTrg
2 cDCCTrg

3 cDCCTrg
5 cDCCTrg

∗ cDCCTrg
V C cDCC

cDCCTrg
1 – 1.64 1.70 1.04 -0.88 1.05 0.26

cDCCTrg
2 – – 1.36 0.06 -2.73 0.06 -0.70

cDCCTrg
3 – – – -2.04 -2.06 -2.06 -2.12

cDCCTrg
5 – – – – -1.48 -0.01 -1.23

cDCCTrg
∗ – – – – – 1.50 0.52

cDCCTrg
V C – – – – – – -1.21

cDCC – – – – – – –

cDCC1 cDCC2 cDCC3 cDCC5 cDCC∗ cDCCV C cDCC

cDCC1 – 0.82 0.18 -1.14 -0.61 -1.25 -0.69

cDCC2 – – -1.01 -2.01 -1.90 -2.10 -1.59

cDCC3 – – – -2.17 -0.71 -2.33 -1.58

cDCC5 – – – – 0.76 -0.67 1.65

cDCC∗ – – – – – -0.85 -0.33

cDCCV C – – – – – – 1.81

cDCC – – – – – – –

MVSCORE
cDCCTrg

1 cDCCTrg
2 cDCCTrg

3 cDCCTrg
5 cDCCTrg

∗ cDCCTrg
V C cDCC

cDCCTrg
1 – 0.49 -0.70 0.39 0.10 -0.13 -0.20

cDCCTrg
2 – – -1.18 0.05 -0.43 -0.58 -0.45

cDCCTrg
3 – – – 1.28 0.71 0.75 0.18

cDCCTrg
5 – – – – -0.35 -0.87 -0.61

cDCCTrg
∗ – – – – – -0.14 -0.21

cDCCTrg
V C – – – – – – -0.20

cDCC – – – – – – –

cDCC1 cDCC2 cDCC3 cDCC5 cDCC∗ cDCCV C cDCC

cDCC1 – -1.84 -2.65 -1.86 -0.91 -2.15 -1.13

cDCC2 – – -1.66 -0.73 1.07 -1.13 -0.18

cDCC3 – – – 1.19 2.42 0.73 1.22

cDCC5 – – – – 1.47 -0.69 0.51

cDCC∗ – – – – – -1.84 -0.80

cDCCV C – – – – – – 0.82

cDCC – – – – – – –

MVSCORE∗

cDCCTrg
1 cDCCTrg

2 cDCCTrg
3 cDCCTrg

5 cDCCTrg
∗ cDCCTrg

V C cDCC

cDCCTrg
1 – -0.64 -0.38 -0.01 -1.44 -0.73 -0.68

cDCCTrg
2 – – 0.24 0.63 0.15 -0.15 -0.46

cDCCTrg
3 – – – 0.54 -0.11 -0.54 -0.60

cDCCTrg
5 – – – – -0.42 -1.44 -0.86

cDCCTrg
∗ – – – – – -0.27 -0.46

cDCCTrg
V C – – – – – – -0.40

cDCC – – – – – – –

cDCC1 cDCC2 cDCC3 cDCC5 cDCC∗ cDCCV C cDCC

cDCC1 – -2.05 -1.42 -0.81 -0.22 -1.57 -0.95

cDCC2 – – 0.54 1.16 1.90 0.31 0.19

cDCC3 – – – 0.96 1.42 -0.30 -0.16

cDCC5 – – – – 0.75 -1.35 -0.68

cDCC∗ – – – – – -1.55 -0.95

cDCCV C – – – – – – 0.03

cDCC – – – – – – –

Table 2: Negative (resp., positive) values provide evidence in favor of the model in row (resp.,

column); white cells denote equal predictive ability at 5% level; grey cells denote rejection of the

null of equal predictive ability at 5% level.
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Diebold-Mariano pairwise comparison tests

N = 100; joint dynamic parameter estimation.

V ARMSE
cDCCTrg

1 cDCCTrg
2 cDCCTrg

3 cDCCTrg
5 cDCCTrg

∗ cDCCTrg
V C cDCC

cDCCTrg
1 – -0.98 -0.65 -1.64 0.81 -1.81 -1.52

cDCCTrg
2 – – 0.02 -1.53 1.20 -1.75 -1.15

cDCCTrg
3 – – – -2.28 0.84 -2.73 -1.20

cDCCTrg
5 – – – – 1.63 -0.91 0.20

cDCCTrg
∗ – – – – – -1.79 -1.72

cDCCTrg
V C – – – – – – 0.47

cDCC – – – – – – –

cDCC1 cDCC2 cDCC3 cDCC5 cDCC∗ cDCCV C cDCC

cDCC1 – -2.40 -1.35 -2.00 -1.78 -2.20 -1.49

cDCC2 – – -0.12 -1.38 1.67 -1.63 -0.55

cDCC3 – – – -2.63 0.98 -3.04 -0.76

cDCC5 – – – – 1.70 -0.64 1.02

cDCC∗ – – – – – -1.89 -1.18

cDCCV C – – – – – – 1.17

cDCC – – – – – – –

CORRMSE
cDCCTrg

1 cDCCTrg
2 cDCCTrg

3 cDCCTrg
5 cDCCTrg

∗ cDCCTrg
V C cDCC

cDCCTrg
1 – -0.84 -0.84 -1.46 -2.38 -1.71 -2.92

cDCCTrg
2 – – -0.61 -1.85 -0.53 -2.12 -3.62

cDCCTrg
3 – – – -1.27 0.18 -2.98 -4.33

cDCCTrg
5 – – – – 0.80 -1.84 -3.90

cDCCTrg
∗ – – – – – -1.19 -2.91

cDCCTrg
V C – – – – – – -3.78

cDCC – – – – – – –

cDCC1 cDCC2 cDCC3 cDCC5 cDCC∗ cDCCV C cDCC

cDCC1 – 1.97 1.36 0.95 -1.05 0.47 0.25

cDCC2 – – -0.16 0.05 -2.74 -1.10 -0.92

cDCC3 – – – 0.19 -2.13 -1.83 -1.25

cDCC5 – – – – -1.38 -1.68 -2.80

cDCC∗ – – – – – 1.09 0.69

cDCCV C – – – – – – -0.25

cDCC – – – – – – –

EWMSE
cDCCTrg

1 cDCCTrg
2 cDCCTrg

3 cDCCTrg
5 cDCCTrg

∗ cDCCTrg
V C cDCC

cDCCTrg
1 – 1.47 1.63 0.93 -0.95 0.94 0.22

cDCCTrg
2 – – 1.42 -0.02 -2.33 0.01 -0.81

cDCCTrg
3 – – – -2.29 -1.95 -2.29 -2.42

cDCCTrg
5 – – – – -1.32 0.15 -1.35

cDCCTrg
∗ – – – – – 1.34 0.48

cDCCTrg
V C – – – – – – -1.35

cDCC – – – – – – –

cDCC1 cDCC2 cDCC3 cDCC5 cDCC∗ cDCCV C cDCC

cDCC1 – 0.22 -0.28 -1.52 -1.11 -1.64 -1.04

cDCC2 – – -0.86 -1.85 -1.59 -1.91 -1.37

cDCC3 – – – -2.19 -0.77 -2.30 -1.46

cDCC5 – – – – 0.85 -0.36 2.09

cDCC∗ – – – – – -0.92 -0.33

cDCCV C – – – – – – 2.03

cDCC – – – – – – –

MVMSE
cDCCTrg

1 cDCCTrg
2 cDCCTrg

3 cDCCTrg
5 cDCCTrg

∗ cDCCTrg
V C cDCC

cDCCTrg
1 – -0.07 -1.01 -0.12 -1.06 -0.40 -0.02

cDCCTrg
2 – – -0.89 -0.08 -0.17 -0.32 0.02

cDCCTrg
3 – – – 0.77 0.86 0.79 0.61

cDCCTrg
5 – – – – -0.05 -0.25 0.07

cDCCTrg
∗ – – – – – -0.21 0.10

cDCCTrg
V C – – – – – – 0.29

cDCC – – – – – – –

cDCC1 cDCC2 cDCC3 cDCC5 cDCC∗ cDCCV C cDCC

cDCC1 – -1.48 -2.34 -1.45 -1.03 -2.15 -1.39

cDCC2 – – -1.24 -0.37 0.48 -1.16 -0.62

cDCC3 – – – 1.03 1.97 0.62 0.51

cDCC5 – – – – 0.73 -0.59 -0.36

cDCC∗ – – – – – -1.84 -0.78

cDCCV C – – – – – – 0.17

cDCC – – – – – – –

MVMSE∗

cDCCTrg
1 cDCCTrg

2 cDCCTrg
3 cDCCTrg

5 cDCCTrg
∗ cDCCTrg

V C cDCC

cDCCTrg
1 – -1.02 0.03 0.19 -1.42 -0.67 -0.15

cDCCTrg
2 – – 0.78 0.85 0.56 0.45 0.84

cDCCTrg
3 – – – 0.27 -0.55 -0.74 -0.17

cDCCTrg
5 – – – – -0.62 -1.39 -0.32

cDCCTrg
∗ – – – – – -0.05 0.38

cDCCTrg
V C – – – – – – 0.41

cDCC – – – – – – –

cDCC1 cDCC2 cDCC3 cDCC5 cDCC∗ cDCCV C cDCC

cDCC1 – -2.32 -1.58 -1.32 -0.89 -2.15 -1.77

cDCC2 – – 0.11 0.38 1.29 -0.42 -0.77

cDCC3 – – – 0.65 1.18 -0.62 -1.04

cDCC5 – – – – 0.83 -1.16 -1.45

cDCC∗ – – – – – -1.80 -1.41

cDCCV C – – – – – – -0.59

cDCC – – – – – – –

Table 3: Negative (resp., positive) values provide evidence in favor of the model in row (resp.,

column); white cells denote equal predictive ability at 5% level; grey cells denote rejection of the

null of equal predictive ability at 5% level.
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Regression-based specification tests

N = 100; joint dynamic parameter estimation.

ENGLE-COLACITO REGRESSION
cDCCTrg

1 cDCCTrg
2 cDCCTrg

3 cDCCTrg
5 cDCCTrg

∗ cDCCTrg
V C cDCC

EW 1.90 1.97 1.95 2.03 1.97 2.01 2.27

MV 3.16 3.22 3.52 3.47 3.15 3.49 4.26

MV
∗ 1.47 1.64 1.76 1.83 1.54 1.87 2.64

cDCC1 cDCC2 cDCC3 cDCC5 cDCC∗ cDCCV C cDCC

EW 2.37 2.28 2.23 2.28 2.38 2.29 2.27

MV 4.17 4.49 4.63 4.47 4.13 4.45 4.26

MV
∗ 2.69 2.86 2.79 2.66 2.65 2.74 2.64

PORTFOLIO ARCH EFFECT TEST
cDCCTrg

1 cDCCTrg
2 cDCCTrg

3 cDCCTrg
5 cDCCTrg

∗ cDCCTrg
V C cDCC

EW 37.03 36.33 35.73 36.31 36.89 36.31 35.77

MV 17.60 16.53 17.25 16.32 18.28 19.27 21.63

MV
∗ 32.00 36.92 26.16 26.08 32.64 27.51 31.62

cDCC1 cDCC2 cDCC3 cDCC5 cDCC∗ cDCCV C cDCC

EW 33.53 36.64 35.98 36.67 35.04 36.06 35.77

MV 24.69 19.85 17.49 18.35 25.87 22.32 21.63

MV
∗ 29.18 31.86 26.70 28.07 30.54 28.48 31.62

1% DYNAMIC QUANTILE TEST

cDCCTrg
1 cDCCTrg

2 cDCCTrg
3 cDCCTrg

5 cDCCTrg
∗ cDCCTrg

V C cDCC

EW 1.76 1.80 1.80 1.84 1.77 1.80 1.84

MV 0.91 0.88 1.03 0.75 0.92 1.24 2.02

MV
∗ 1.36 1.38 1.49 1.53 1.29 1.53 2.37

cDCC1 cDCC2 cDCC3 cDCC5 cDCC∗ cDCCV C cDCC

EW 1.85 1.85 1.84 1.85 1.84 1.85 1.84

MV 0.47 0.65 2.19 1.72 0.95 2.12 2.02

MV
∗ 1.89 2.31 2.09 2.32 2.53 2.34 2.37

5% DYNAMIC QUANTILE TEST

cDCCTrg
1 cDCCTrg

2 cDCCTrg
3 cDCCTrg

5 cDCCTrg
∗ cDCCTrg

V C cDCC

EW 0.72 0.71 0.71 0.71 0.72 0.71 0.71

MV 1.42 1.71 0.87 0.87 1.19 1.21 2.36

MV
∗ 1.81 1.60 1.25 1.26 1.36 1.19 1.54

cDCC1 cDCC2 cDCC3 cDCC5 cDCC∗ cDCCV C cDCC

EW 1.11 0.71 0.97 0.97 1.10 0.97 0.71

MV 0.96 1.09 0.92 1.33 1.76 1.99 2.36

MV
∗ 1.33 1.21 1.22 1.70 1.12 1.41 1.54

Table 4: White cells denote insignificance at 5% level, light grey cells denote significance at 5%

level and dark grey cells denote significance at 1% level.
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A Additional Figures and Tables

Heteroskedastic GM clustering

N = 100
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Figure A.1: Univariate QML GARCH(1,1) dynamic parameter estimates from simulated data and

related HE-GM component contour plots. The DGP variance parameters are set as in Table 1 -

Large dataset, with constant conditional correlations set as s0ij = s = .3 for all asset pairs. The

true number of clusters is K0 = 2. The component contour plots are drawn in correspondence to

the Gaussian confidence sets of level .50, .75, .90. The lower triangle of each plot is the admissible

parameter space, {(a, b) : a ≥ 0, b ≥ 0, a+ b < 1}.
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Homoskedastic GM clustering

N = 100
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ãi

 T=1250; K=2; BIC=−345.99.

0 1
0

1

b̃i

ãi
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Figure A.2: Univariate QML GARCH(1,1) dynamic parameter estimates from simulated data and

related HO-GM component contour plots. The DGP variance parameters are set as in Table 1 -

Large dataset, with constant conditional correlations set as s0ij = s = .3 for all asset pairs. The

true number of clusters is K0 = 2. The component contour plots are drawn in correspondence to

the Gaussian confidence sets of level .50, .75, .90. The lower triangle of each plot is the admissible

parameter space, {(a, b) : a ≥ 0, b ≥ 0, a+ b < 1}.
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GARCH-GM clustering

N = 5; no common GARCH dynamics
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Figure A.3: Univariate QML estimates of GARCH(1,1) dynamic parameters from simulated data

and related GARCH-GM component contour plots. There are N = 5 assets without common

GARCH dynamics. The DGP variance parameter settings are (a01, b
0
1) = (.05, .92), (a02, b

0
2) =

(.12, .87), (a03, b
0
3) = (.2, .7), (a04, b

0
4) = (.15, .3), (a05, b

0
5) = (.4, .2). The simulated correlation process

is constant, with constant conditional correlations set as sij = s = .3 for all asset pairs. The crosses

denote the true GARCH dynamics and the dots denote the univariate QML GARCH estimates.

The component contour plots are drawn in correspondence to the Gaussian confidence sets of level

.50, .75, .90. The lower triangle of each plot is the admissible parameter space, {(a, b) : a ≥ 0, b ≥

0, a+ b < 1}.
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Variance/correlation estimation performances

N = 10
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Figure A.4: cDCC estimator in straight dotted lines; targeted joint VC-cDCC estimator in straigth

lines; targeted sequential VC-cDCC estimator in dashed lines; non-targeted joint VC-cDCC esti-

mator in dashed dotted lines; non-targeted sequential VC-cDCC estimator in dotted lines.
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Amisano-Giacomini pairwise comparison tests

N = 100; sequential dynamic parameter estimation.

V ARSCORE
cDCCTrg

1 cDCCTrg
2 cDCCTrg

3 cDCCTrg
5 cDCCTrg

∗ cDCCTrg
V C cDCC

cDCCTrg
1 – 0.41 0.27 0.20 -1.94 -0.64 -0.76

cDCCTrg
2 – – -0.01 -0.20 -1.41 -1.56 -1.28

cDCCTrg
3 – – – -0.25 -0.91 -2.49 -1.60

cDCCTrg
5 – – – – -0.91 -2.82 -1.54

cDCCTrg
∗ – – – – – -0.13 -0.48

cDCCTrg
V C – – – – – – -0.74

cDCC – – – – – – –

cDCC1 cDCC2 cDCC3 cDCC5 cDCC∗ cDCCV C cDCC

cDCC1 – 0.67 0.18 0.01 -0.61 -1.08 -0.11

cDCC2 – – -0.40 -0.42 -0.98 -1.97 -0.53

cDCC3 – – – -0.25 -0.44 -2.57 -0.40

cDCC5 – – – – -0.19 -2.15 -0.31

cDCC∗ – – – – – -0.84 0.06

cDCCV C – – – – – – 1.56

cDCC – – – – – – –

CORRSCORE
cDCCTrg

1 cDCCTrg
2 cDCCTrg

3 cDCCTrg
5 cDCCTrg

∗ cDCCTrg
V C cDCC

cDCCTrg
1 – -2.33 -3.01 -3.99 -3.41 -4.06 -5.66

cDCCTrg
2 – – -2.46 -4.48 0.53 -4.54 -6.53

cDCCTrg
3 – – – -2.89 2.00 -3.46 -6.40

cDCCTrg
5 – – – – 3.19 -0.96 -6.20

cDCCTrg
∗ – – – – – -3.34 -5.67

cDCCTrg
V C – – – – – – -6.16

cDCC – – – – – – –

cDCC1 cDCC2 cDCC3 cDCC5 cDCC∗ cDCCV C cDCC

cDCC1 – 1.57 1.24 1.07 0.63 0.56 0.47

cDCC2 – – 0.10 0.28 -1.34 -0.50 -0.29

cDCC3 – – – 0.36 -1.02 -1.02 -0.45

cDCC5 – – – – -0.88 -2.36 -1.13

cDCC∗ – – – – – 0.35 0.31

cDCCV C – – – – – – 0.13

cDCC – – – – – – –

EWSCORE
cDCCTrg

1 cDCCTrg
2 cDCCTrg

3 cDCCTrg
5 cDCCTrg

∗ cDCCTrg
V C cDCC

cDCCTrg
1 – 1.22 1.53 0.82 -1.25 0.66 -0.20

cDCCTrg
2 – – 1.41 -0.07 -2.43 -0.35 -1.32

cDCCTrg
3 – – – -2.12 -2.07 -2.36 -2.56

cDCCTrg
5 – – – – -1.47 -0.63 -1.91

cDCCTrg
∗ – – – – – 1.30 0.15

cDCCTrg
V C – – – – – – -1.79

cDCC – – – – – – –

cDCC1 cDCC2 cDCC3 cDCC5 cDCC∗ cDCCV C cDCC

cDCC1 – 0.86 0.19 -1.17 0.07 -1.40 -1.01

cDCC2 – – -1.13 -2.01 -1.20 -2.23 -1.91

cDCC3 – – – -2.42 -0.18 -2.71 -2.12

cDCC5 – – – – 1.17 -0.89 0.41

cDCC∗ – – – – – -1.38 -1.06

cDCCV C – – – – – – 1.03

cDCC – – – – – – –

MVSCORE
cDCCTrg

1 cDCCTrg
2 cDCCTrg

3 cDCCTrg
5 cDCCTrg

∗ cDCCTrg
V C cDCC

cDCCTrg
1 – 0.31 -0.77 -0.40 -0.07 -0.36 -0.32

cDCCTrg
2 – – -1.20 -0.78 -0.32 -0.75 -0.54

cDCCTrg
3 – – – 0.24 0.76 0.41 0.07

cDCCTrg
5 – – – – 0.38 0.15 -0.10

cDCCTrg
∗ – – – – – -0.34 -0.30

cDCCTrg
V C – – – – – – -0.17

cDCC – – – – – – –

cDCC1 cDCC2 cDCC3 cDCC5 cDCC∗ cDCCV C cDCC

cDCC1 – -2.01 -2.53 -1.98 -0.39 -2.19 -1.02

cDCC2 – – -1.43 -0.94 1.85 -1.06 0.24

cDCC3 – – – 0.43 2.61 0.54 1.35

cDCC5 – – – – 2.02 0.01 1.18

cDCC∗ – – – – – -2.24 -0.97

cDCCV C – – – – – – 1.09

cDCC – – – – – – –

MVSCORE∗

cDCCTrg
1 cDCCTrg

2 cDCCTrg
3 cDCCTrg

5 cDCCTrg
∗ cDCCTrg

V C cDCC

cDCCTrg
1 – -0.78 -0.70 -0.16 -1.20 -0.93 -0.87

cDCCTrg
2 – – 0.09 0.52 0.43 -0.26 -0.60

cDCCTrg
3 – – – 0.66 0.35 -0.44 -0.66

cDCCTrg
5 – – – – -0.12 -1.28 -0.95

cDCCTrg
∗ – – – – – -0.60 -0.71

cDCCTrg
V C – – – – – – -0.49

cDCC – – – – – – –

cDCC1 cDCC2 cDCC3 cDCC5 cDCC∗ cDCCV C cDCC

cDCC1 – -1.90 -1.41 -0.80 0.75 -1.58 -0.92

cDCC2 – – 0.55 1.07 2.25 0.24 0.17

cDCC3 – – – 0.88 1.73 -0.34 -0.15

cDCC5 – – – – 1.02 -1.15 -0.59

cDCC∗ – – – – – -1.86 -1.12

cDCCV C – – – – – – 0.05

cDCC – – – – – – –

Table A.1: Negative (resp., positive) values provide evidence in favor of the model in row (resp.,

column); white cells denote equal predictive ability at 5% level; grey cells denote rejection of the

null of equal predictive ability at 5% level.
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Diebold-Mariano pairwise comparison tests

N = 100; sequential dynamic parameter estimation.

V ARMSE
cDCCTrg

1 cDCCTrg
2 cDCCTrg

3 cDCCTrg
5 cDCCTrg

∗ cDCCTrg
V C cDCC

cDCCTrg
1 – -1.48 -1.00 -1.93 0.29 -2.10 -1.98

cDCCTrg
2 – – 0.10 -1.47 1.36 -1.70 -1.23

cDCCTrg
3 – – – -2.30 0.99 -2.74 -1.38

cDCCTrg
5 – – – – 1.78 -0.89 0.01

cDCCTrg
∗ – – – – – -1.94 -1.99

cDCCTrg
V C – – – – – – 0.27

cDCC – – – – – – –

cDCC1 cDCC2 cDCC3 cDCC5 cDCC∗ cDCCV C cDCC

cDCC1 – -2.45 -1.39 -2.01 -1.64 -2.20 -1.53

cDCC2 – – -0.14 -1.35 1.89 -1.59 -0.60

cDCC3 – – – -2.54 1.10 -2.96 -0.82

cDCC5 – – – – 1.78 -0.60 0.87

cDCC∗ – – – – – -1.97 -1.30

cDCCV C – – – – – – 1.02

cDCC – – – – – – –

CORRMSE
cDCCTrg

1 cDCCTrg
2 cDCCTrg

3 cDCCTrg
5 cDCCTrg

∗ cDCCTrg
V C cDCC

cDCCTrg
1 – -0.81 -0.95 -1.58 -2.58 -1.83 -2.92

cDCCTrg
2 – – -0.82 -2.36 -0.56 -2.54 -3.79

cDCCTrg
3 – – – -1.44 0.19 -3.03 -4.23

cDCCTrg
5 – – – – 0.84 -1.87 -3.85

cDCCTrg
∗ – – – – – -1.23 -2.86

cDCCTrg
V C – – – – – – -3.70

cDCC – – – – – – –

cDCC1 cDCC2 cDCC3 cDCC5 cDCC∗ cDCCV C cDCC

cDCC1 – 1.84 1.27 0.88 -0.27 0.39 0.28

cDCC2 – – -0.13 0.05 -2.03 -1.09 -0.76

cDCC3 – – – 0.19 -1.43 -1.84 -1.05

cDCC5 – – – – -0.96 -1.66 -2.60

cDCC∗ – – – – – 0.49 0.36

cDCCV C – – – – – – -0.00

cDCC – – – – – – –

EWMSE
cDCCTrg

1 cDCCTrg
2 cDCCTrg

3 cDCCTrg
5 cDCCTrg

∗ cDCCTrg
V C cDCC

cDCCTrg
1 – 1.13 1.46 0.92 -1.27 0.60 -0.29

cDCCTrg
2 – – 1.40 0.04 -2.06 -0.45 -1.52

cDCCTrg
3 – – – -1.81 -1.90 -2.49 -2.77

cDCCTrg
5 – – – – -1.53 -0.80 -2.08

cDCCTrg
∗ – – – – – 1.13 0.03

cDCCTrg
V C – – – – – – -1.95

cDCC – – – – – – –

cDCC1 cDCC2 cDCC3 cDCC5 cDCC∗ cDCCV C cDCC

cDCC1 – 0.43 -0.11 -1.35 -0.15 -1.69 -1.30

cDCC2 – – -0.86 -1.80 -0.70 -2.12 -1.82

cDCC3 – – – -2.38 0.02 -2.80 -2.23

cDCC5 – – – – 1.32 -0.96 0.02

cDCC∗ – – – – – -1.63 -1.32

cDCCV C – – – – – – 0.86

cDCC – – – – – – –

MVMSE
cDCCTrg

1 cDCCTrg
2 cDCCTrg

3 cDCCTrg
5 cDCCTrg

∗ cDCCTrg
V C cDCC

cDCCTrg
1 – -0.53 -1.12 -1.09 -0.51 -0.90 -0.20

cDCCTrg
2 – – -0.56 -0.99 0.43 -0.58 0.11

cDCCTrg
3 – – – -0.29 1.08 0.02 0.48

cDCCTrg
5 – – – – 1.01 0.45 1.11

cDCCTrg
∗ – – – – – -0.80 -0.14

cDCCTrg
V C – – – – – – 0.75

cDCC – – – – – – –

cDCC1 cDCC2 cDCC3 cDCC5 cDCC∗ cDCCV C cDCC

cDCC1 – -2.03 -2.39 -1.88 -0.28 -2.05 -1.33

cDCC2 – – -0.70 -0.74 1.94 -0.73 0.07

cDCC3 – – – -0.05 2.55 0.13 0.64

cDCC5 – – – – 1.93 0.17 0.85

cDCC∗ – – – – – -2.14 -1.32

cDCCV C – – – – – – 0.60

cDCC – – – – – – –

MVMSE∗

cDCCTrg
1 cDCCTrg

2 cDCCTrg
3 cDCCTrg

5 cDCCTrg
∗ cDCCTrg

V C cDCC

cDCCTrg
1 – -1.07 -0.17 0.05 -0.35 -0.80 -0.39

cDCCTrg
2 – – 0.72 0.74 0.95 0.28 0.67

cDCCTrg
3 – – – 0.23 0.05 -0.66 -0.24

cDCCTrg
5 – – – – -0.12 -1.22 -0.36

cDCCTrg
∗ – – – – – -0.57 -0.27

cDCCTrg
V C – – – – – – 0.38

cDCC – – – – – – –

cDCC1 cDCC2 cDCC3 cDCC5 cDCC∗ cDCCV C cDCC

cDCC1 – -2.05 -1.76 -1.25 0.25 -2.06 -1.75

cDCC2 – – -0.10 0.24 2.12 -0.47 -0.76

cDCC3 – – – 0.64 1.89 -0.47 -0.95

cDCC5 – – – – 1.33 -1.02 -1.28

cDCC∗ – – – – – -2.09 -1.84

cDCCV C – – – – – – -0.59

cDCC – – – – – – –

Table A.2: Negative (resp., positive) values provide evidence in favor of the model in row (resp.,

column); white cells denote equal predictive ability at 5% level; grey cells denote rejection of the

null of equal predictive ability at 5% level.

47



Regression-based specification tests

N = 100; sequential dynamic parameter estimation.

ENGLE-COLACITO REGRESSION
cDCCTrg

1 cDCCTrg
2 cDCCTrg

3 cDCCTrg
5 cDCCTrg

∗ cDCCTrg
V C cDCC

EW 1.94 1.99 1.99 2.05 1.99 2.05 2.27

MV 3.21 3.25 3.60 3.54 3.20 3.51 4.26

MV
∗ 1.50 1.66 1.84 1.85 1.56 1.91 2.64

cDCC1 cDCC2 cDCC3 cDCC5 cDCC∗ cDCCV C cDCC

EW 2.37 2.27 2.25 2.28 2.35 2.30 2.27

MV 4.25 4.53 4.65 4.41 4.14 4.44 4.26

MV
∗ 2.72 2.88 2.83 2.68 2.60 2.77 2.64

PORTFOLIO ARCH EFFECT TEST
cDCCTrg

1 cDCCTrg
2 cDCCTrg

3 cDCCTrg
5 cDCCTrg

∗ cDCCTrg
V C cDCC

EW 35.60 35.32 35.11 34.80 35.61 35.24 35.77

MV 18.24 16.58 16.59 18.78 19.31 19.45 21.63

MV
∗ 31.15 34.99 25.92 24.40 32.70 25.77 31.62

cDCC1 cDCC2 cDCC3 cDCC5 cDCC∗ cDCCV C cDCC

EW 33.01 35.35 34.93 35.06 33.86 35.16 35.77

MV 25.07 23.34 17.26 21.76 26.41 22.61 21.63

MV
∗ 28.50 30.48 26.37 25.40 28.64 26.91 31.62

1% DYNAMIC QUANTILE TEST

cDCCTrg
1 cDCCTrg

2 cDCCTrg
3 cDCCTrg

5 cDCCTrg
∗ cDCCTrg

V C cDCC

EW 1.76 1.80 1.80 1.84 1.81 1.80 1.84

MV 0.90 0.88 0.55 2.02 0.92 0.87 2.02

MV
∗ 1.28 1.66 1.49 1.52 1.29 1.53 2.37

cDCC1 cDCC2 cDCC3 cDCC5 cDCC∗ cDCCV C cDCC

EW 1.85 1.85 1.84 1.84 1.85 1.84 1.84

MV 0.47 0.91 1.78 1.61 0.95 2.15 2.02

MV
∗ 1.89 2.51 2.09 2.54 2.33 2.33 2.37

5% DYNAMIC QUANTILE TEST

cDCCTrg
1 cDCCTrg

2 cDCCTrg
3 cDCCTrg

5 cDCCTrg
∗ cDCCTrg

V C cDCC

EW 0.71 0.71 0.71 0.71 0.72 0.71 0.71

MV 0.97 1.79 0.78 0.68 0.73 0.99 2.36

MV
∗ 1.80 1.36 1.13 1.15 1.15 1.19 1.54

cDCC1 cDCC2 cDCC3 cDCC5 cDCC∗ cDCCV C cDCC

EW 1.10 0.97 0.97 0.97 1.10 0.97 0.71

MV 1.12 1.20 1.12 1.44 1.58 1.98 2.36

MV
∗ 1.32 1.21 1.12 1.55 1.13 1.41 1.54

Table A.3: White cells denote insignificance at 5% level, light grey cells denote significance at 5%

level and dark grey cells denote significance at 1% level.
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Amisano-Giacomini pairwise comparison tests

N = 10; joint dynamic parameter estimation.

V ARSCORE
cDCCTrg

1 cDCCTrg
2 cDCCTrg

3 cDCCTrg
5 cDCCTrg

8 cDCCTrg
V C cDCC

cDCCTrg
1 – -0.40 -1.00 -0.53 -0.37 -0.32 -1.95

cDCCTrg
2 – – -1.59 -0.61 -0.29 0.30 -1.74

cDCCTrg
3 – – – 0.18 0.35 2.18 -1.67

cDCCTrg
5 – – – – 0.72 0.72 -1.50

cDCCTrg
8 – – – – – 0.37 -1.51

cDCCTrg
V C – – – – – – -1.81

cDCC – – – – – – –

cDCC1 cDCC2 cDCC3 cDCC5 cDCC8 cDCCV C cDCC

cDCC1 – -0.09 -0.12 -0.21 -0.21 -0.12 -1.94

cDCC2 – – -0.13 -0.29 -0.29 -0.09 -1.80

cDCC3 – – – -0.37 -0.37 0.09 -1.69

cDCC5 – – – – -0.18 0.27 -1.26

cDCC8 – – – – – 0.28 -1.21

cDCCV C – – – – – – -2.03

cDCC – – – – – – –

CORRSCORE
cDCCTrg

1 cDCCTrg
2 cDCCTrg

3 cDCCTrg
5 cDCCTrg

8 cDCCTrg
V C cDCC

cDCCTrg
1 – -0.53 -2.68 -0.47 -0.51 -0.64 -5.36

cDCCTrg
2 – – -2.87 -0.16 -0.26 -0.21 -5.39

cDCCTrg
3 – – – 2.45 2.02 3.09 -5.31

cDCCTrg
5 – – – – -0.30 0.08 -5.56

cDCCTrg
8 – – – – – 0.19 -5.56

cDCCTrg
V C – – – – – – -5.52

cDCC – – – – – – –

cDCC1 cDCC2 cDCC3 cDCC5 cDCC8 cDCCV C cDCC

cDCC1 – -0.63 -1.23 -0.83 -0.36 -1.07 -3.58

cDCC2 – – -0.96 -0.59 -0.04 -0.80 -3.59

cDCC3 – – – 0.35 0.75 0.63 -3.82

cDCC5 – – – – 0.94 0.16 -4.17

cDCC8 – – – – – -0.40 -4.26

cDCCV C – – – – – – -3.88

cDCC – – – – – – –

EWSCORE
cDCCTrg

1 cDCCTrg
2 cDCCTrg

3 cDCCTrg
5 cDCCTrg

8 cDCCTrg
V C cDCC

cDCCTrg
1 – 0.79 0.71 0.51 0.50 0.77 -0.55

cDCCTrg
2 – – -0.92 -0.10 -0.01 -0.19 -1.37

cDCCTrg
3 – – – 0.16 0.20 1.01 -1.30

cDCCTrg
5 – – – – 0.36 0.07 -1.14

cDCCTrg
8 – – – – – -0.02 -1.11

cDCCTrg
V C – – – – – – -1.37

cDCC – – – – – – –

cDCC1 cDCC2 cDCC3 cDCC5 cDCC8 cDCCV C cDCC

cDCC1 – 0.83 0.86 0.61 0.58 0.86 0.77

cDCC2 – – 0.71 0.22 0.20 0.27 -0.58

cDCC3 – – – -0.00 0.02 -0.72 -0.72

cDCC5 – – – – 0.11 -0.16 -0.42

cDCC8 – – – – – -0.16 -0.40

cDCCV C – – – – – – -0.67

cDCC – – – – – – –

MVSCORE
cDCCTrg

1 cDCCTrg
2 cDCCTrg

3 cDCCTrg
5 cDCCTrg

8 cDCCTrg
V C cDCC

cDCCTrg
1 – 0.20 -1.87 -1.96 -2.36 -0.21 -2.60

cDCCTrg
2 – – -2.06 -2.43 -2.66 -0.71 -2.63

cDCCTrg
3 – – – -0.01 -0.76 1.92 -2.55

cDCCTrg
5 – – – – -1.13 2.12 -2.37

cDCCTrg
8 – – – – – 2.38 -2.32

cDCCTrg
V C – – – – – – -2.72

cDCC – – – – – – –

cDCC1 cDCC2 cDCC3 cDCC5 cDCC8 cDCCV C cDCC

cDCC1 – 0.29 -1.48 -1.77 -1.33 -0.74 -2.40

cDCC2 – – -1.71 -2.03 -1.71 -1.11 -2.47

cDCC3 – – – -0.15 0.43 1.45 -2.47

cDCC5 – – – – 0.79 1.60 -2.38

cDCC8 – – – – – 1.30 -2.42

cDCCV C – – – – – – -2.73

cDCC – – – – – – –

MVSCORE∗

cDCCTrg
1 cDCCTrg

2 cDCCTrg
3 cDCCTrg

5 cDCCTrg
8 cDCCTrg

V C cDCC

cDCCTrg
1 – -1.13 -1.97 -2.57 -1.40 -1.17 -2.11

cDCCTrg
2 – – -1.71 -2.86 -1.24 -0.43 -1.99

cDCCTrg
3 – – – -1.31 0.28 1.74 -1.87

cDCCTrg
5 – – – – 2.16 2.88 -1.54

cDCCTrg
8 – – – – – 1.13 -1.85

cDCCTrg
V C – – – – – – -2.10

cDCC – – – – – – –

cDCC1 cDCC2 cDCC3 cDCC5 cDCC8 cDCCV C cDCC

cDCC1 – -0.92 -1.09 -1.58 -1.22 -1.20 -1.96

cDCC2 – – -0.78 -1.47 -1.00 -0.91 -1.82

cDCC3 – – – -1.37 -0.59 0.07 -2.16

cDCC5 – – – – 1.19 1.26 -1.72

cDCC8 – – – – – 0.57 -1.92

cDCCV C – – – – – – -2.08

cDCC – – – – – – –

Table A.4: Negative (resp., positive) values provide evidence in favor of the model in row (resp.,

column); white cells denote equal predictive ability at 5% level; grey cells denote rejection of the

null of equal predictive ability at 5% level.
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Amisano-Giacomini pairwise comparison tests

N = 10; sequential dynamic parameter estimation.

V ARSCORE
cDCCTrg

1 cDCCTrg
2 cDCCTrg

3 cDCCTrg
5 cDCCTrg

8 cDCCTrg
V C cDCC

cDCCTrg
1 – -0.70 -1.42 -1.01 -0.81 -0.63 -1.48

cDCCTrg
2 – – -1.65 -1.10 -0.71 0.02 -1.45

cDCCTrg
3 – – – 0.23 0.49 2.17 -1.27

cDCCTrg
5 – – – – 0.83 1.18 -1.33

cDCCTrg
8 – – – – – 0.78 -1.39

cDCCTrg
V C – – – – – – -1.55

cDCC – – – – – – –

cDCC1 cDCC2 cDCC3 cDCC5 cDCC8 cDCCV C cDCC

cDCC1 – -0.32 -0.66 -0.67 -0.68 -0.62 -1.00

cDCC2 – – -0.82 -0.83 -0.84 -0.65 -1.22

cDCC3 – – – -0.36 -0.49 0.55 -1.49

cDCC5 – – – – -0.39 0.54 -1.36

cDCC8 – – – – – 0.60 -1.39

cDCCV C – – – – – – -1.35

cDCC – – – – – – –

CORRSCORE
cDCCTrg

1 cDCCTrg
2 cDCCTrg

3 cDCCTrg
5 cDCCTrg

8 cDCCTrg
V C cDCC

cDCCTrg
1 – -1.17 -3.33 -2.02 -1.85 -1.25 -4.18

cDCCTrg
2 – – -3.16 -1.80 -1.57 -0.35 -4.23

cDCCTrg
3 – – – 1.79 1.74 3.29 -3.84

cDCCTrg
5 – – – – 0.14 1.75 -4.14

cDCCTrg
8 – – – – – 1.48 -4.17

cDCCTrg
V C – – – – – – -4.39

cDCC – – – – – – –

cDCC1 cDCC2 cDCC3 cDCC5 cDCC8 cDCCV C cDCC

cDCC1 – -0.74 -1.98 -1.85 -1.69 -1.52 -2.11

cDCC2 – – -1.97 -1.92 -1.75 -1.49 -2.17

cDCC3 – – – 0.03 0.11 1.60 -1.39

cDCC5 – – – – 0.19 1.44 -2.01

cDCC8 – – – – – 1.22 -2.24

cDCCV C – – – – – – -2.20

cDCC – – – – – – –

EWSCORE
cDCCTrg

1 cDCCTrg
2 cDCCTrg

3 cDCCTrg
5 cDCCTrg

8 cDCCTrg
V C cDCC

cDCCTrg
1 – 0.81 0.74 0.53 0.54 0.79 -0.00

cDCCTrg
2 – – -0.70 -0.22 -0.09 -0.11 -0.55

cDCCTrg
3 – – – 0.12 0.19 0.78 -0.43

cDCCTrg
5 – – – – 0.54 0.19 -0.61

cDCCTrg
8 – – – – – 0.06 -0.67

cDCCTrg
V C – – – – – – -0.55

cDCC – – – – – – –

cDCC1 cDCC2 cDCC3 cDCC5 cDCC8 cDCCV C cDCC

cDCC1 – 0.80 0.87 0.63 0.64 0.82 0.61

cDCC2 – – 0.77 0.29 0.34 0.17 0.27

cDCC3 – – – -0.01 0.07 -0.93 -0.02

cDCC5 – – – – 0.58 -0.26 -0.05

cDCC8 – – – – – -0.31 -0.50

cDCCV C – – – – – – 0.23

cDCC – – – – – – –

MVSCORE
cDCCTrg

1 cDCCTrg
2 cDCCTrg

3 cDCCTrg
5 cDCCTrg

8 cDCCTrg
V C cDCC

cDCCTrg
1 – 0.11 -2.33 -2.41 -2.96 -0.47 -2.48

cDCCTrg
2 – – -2.34 -2.77 -3.19 -0.87 -2.52

cDCCTrg
3 – – – 0.73 -0.07 2.13 -2.21

cDCCTrg
5 – – – – -1.60 2.31 -2.19

cDCCTrg
8 – – – – – 2.83 -2.06

cDCCTrg
V C – – – – – – -2.64

cDCC – – – – – – –

cDCC1 cDCC2 cDCC3 cDCC5 cDCC8 cDCCV C cDCC

cDCC1 – 0.16 -1.96 -2.20 -2.12 -1.24 -2.28

cDCC2 – – -2.09 -2.35 -2.34 -1.51 -2.40

cDCC3 – – – -0.02 -0.13 1.88 -1.64

cDCC5 – – – – -0.17 2.17 -1.93

cDCC8 – – – – – 2.81 -1.90

cDCCV C – – – – – – -2.73

cDCC – – – – – – –

MVSCORE∗

cDCCTrg
1 cDCCTrg

2 cDCCTrg
3 cDCCTrg

5 cDCCTrg
8 cDCCTrg

V C cDCC

cDCCTrg
1 – -1.31 -2.13 -3.09 -2.67 -1.38 -1.81

cDCCTrg
2 – – -1.76 -3.18 -2.86 -0.72 -1.68

cDCCTrg
3 – – – -1.37 -0.80 1.67 -1.38

cDCCTrg
5 – – – – 0.75 3.38 -1.04

cDCCTrg
8 – – – – – 2.97 -1.18

cDCCTrg
V C – – – – – – -1.80

cDCC – – – – – – –

cDCC1 cDCC2 cDCC3 cDCC5 cDCC8 cDCCV C cDCC

cDCC1 – -1.11 -1.58 -2.06 -2.06 -1.30 -1.77

cDCC2 – – -1.38 -1.94 -1.95 -1.04 -1.64

cDCC3 – – – -1.94 -2.57 1.55 -1.83

cDCC5 – – – – -0.79 3.03 -0.78

cDCC8 – – – – – 3.15 -0.46

cDCCV C – – – – – – -2.26

cDCC – – – – – – –

Table A.5: Negative (resp., positive) values provide evidence in favor of the model in row (resp.,

column); white cells denote equal predictive ability at 5% level; grey cells denote rejection of the

null of equal predictive ability at 5% level.
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Diebold-Mariano pairwise comparison tests

N = 10; joint dynamic parameter estimation.

V ARMSE
cDCCTrg

1 cDCCTrg
2 cDCCTrg

3 cDCCTrg
5 cDCCTrg

8 cDCCTrg
V C cDCC

cDCCTrg
1 – -0.30 -1.19 -0.81 -0.80 -0.54 -1.55

cDCCTrg
2 – – -1.00 -0.78 -0.79 -0.26 -1.39

cDCCTrg
3 – – – 0.58 0.29 1.09 -0.96

cDCCTrg
5 – – – – -0.34 0.59 -1.46

cDCCTrg
8 – – – – – 0.62 -1.39

cDCCTrg
V C – – – – – – -1.50

cDCC – – – – – – –

cDCC1 cDCC2 cDCC3 cDCC5 cDCC8 cDCCV C cDCC

cDCC1 – -0.19 -0.67 -0.76 -0.68 -0.25 -0.47

cDCC2 – – -0.60 -0.95 -0.78 -0.02 -0.46

cDCC3 – – – -0.41 -0.25 0.78 -0.04

cDCC5 – – – – 0.18 0.96 0.17

cDCC8 – – – – – 0.81 0.13

cDCCV C – – – – – – -0.45

cDCC – – – – – – –

CORRMSE
cDCCTrg

1 cDCCTrg
2 cDCCTrg

3 cDCCTrg
5 cDCCTrg

8 cDCCTrg
V C cDCC

cDCCTrg
1 – 0.83 0.61 0.90 0.91 0.84 -2.90

cDCCTrg
2 – – -1.84 0.96 0.97 0.14 -2.20

cDCCTrg
3 – – – 1.11 1.09 2.11 -2.20

cDCCTrg
5 – – – – 0.98 -0.95 -1.86

cDCCTrg
8 – – – – – -0.96 -1.80

cDCCTrg
V C – – – – – – -2.21

cDCC – – – – – – –

cDCC1 cDCC2 cDCC3 cDCC5 cDCC8 cDCCV C cDCC

cDCC1 – 0.87 0.92 0.90 0.90 0.86 -2.69

cDCC2 – – 1.00 0.93 0.92 -0.13 -1.55

cDCC3 – – – 0.85 0.86 -1.03 -1.40

cDCC5 – – – – 0.85 -0.93 -1.25

cDCC8 – – – – – -0.93 -1.23

cDCCV C – – – – – – -1.56

cDCC – – – – – – –

EWMSE
cDCCTrg

1 cDCCTrg
2 cDCCTrg

3 cDCCTrg
5 cDCCTrg

8 cDCCTrg
V C cDCC

cDCCTrg
1 – 0.85 0.19 -0.42 -0.32 0.72 -1.28

cDCCTrg
2 – – -0.87 -1.52 -1.43 -0.20 -1.48

cDCCTrg
3 – – – -1.44 -1.21 0.96 -1.44

cDCCTrg
5 – – – – 0.53 1.44 -1.27

cDCCTrg
8 – – – – – 1.42 -1.32

cDCCTrg
V C – – – – – – -1.53

cDCC – – – – – – –

cDCC1 cDCC2 cDCC3 cDCC5 cDCC8 cDCCV C cDCC

cDCC1 – 0.53 0.74 -0.27 -0.27 0.66 0.03

cDCC2 – – 0.69 -0.79 -0.80 0.49 -0.42

cDCC3 – – – -1.39 -1.47 -0.44 -1.15

cDCC5 – – – – 0.09 0.95 0.54

cDCC8 – – – – – 0.99 0.52

cDCCV C – – – – – – -0.78

cDCC – – – – – – –

MVMSE
cDCCTrg

1 cDCCTrg
2 cDCCTrg

3 cDCCTrg
5 cDCCTrg

8 cDCCTrg
V C cDCC

cDCCTrg
1 – 0.48 -1.32 -0.82 -1.91 -0.09 -1.67

cDCCTrg
2 – – -1.61 -1.73 -1.69 -0.98 -1.89

cDCCTrg
3 – – – 0.58 -0.69 1.32 -1.63

cDCCTrg
5 – – – – -1.07 0.84 -1.66

cDCCTrg
8 – – – – – 1.29 -1.36

cDCCTrg
V C – – – – – – -1.96

cDCC – – – – – – –

cDCC1 cDCC2 cDCC3 cDCC5 cDCC8 cDCCV C cDCC

cDCC1 – 0.54 -1.36 -1.52 -0.66 -0.72 -1.45

cDCC2 – – -1.68 -1.92 -1.26 -1.17 -1.75

cDCC3 – – – 0.48 1.16 1.68 -1.20

cDCC5 – – – – 1.19 1.08 -1.26

cDCC8 – – – – – -0.32 -1.87

cDCCV C – – – – – – -2.22

cDCC – – – – – – –

MVMSE∗

cDCCTrg
1 cDCCTrg

2 cDCCTrg
3 cDCCTrg

5 cDCCTrg
8 cDCCTrg

V C cDCC

cDCCTrg
1 – 0.10 -0.60 -0.97 0.17 -0.31 -1.63

cDCCTrg
2 – – -1.28 -1.50 0.22 -1.10 -1.76

cDCCTrg
3 – – – -0.25 1.46 0.83 -1.63

cDCCTrg
5 – – – – 1.06 1.06 -1.47

cDCCTrg
8 – – – – – -0.70 -1.96

cDCCTrg
V C – – – – – – -1.79

cDCC – – – – – – –

cDCC1 cDCC2 cDCC3 cDCC5 cDCC8 cDCCV C cDCC

cDCC1 – 0.02 -1.15 -0.97 -0.11 -0.63 -1.86

cDCC2 – – -1.42 -1.11 -0.18 -0.92 -1.94

cDCC3 – – – 0.44 1.57 1.51 -2.17

cDCC5 – – – – 0.99 0.56 -2.10

cDCC8 – – – – – -0.89 -2.43

cDCCV C – – – – – – -2.33

cDCC – – – – – – –

Table A.6: Negative (resp., positive) values provide evidence in favor of the model in row (resp.,

column); white cells denote equal predictive ability at 5% level; grey cells denote rejection of the

null of equal predictive ability at 5% level.
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Diebold-Mariano pairwise comparison tests

N = 10; sequential dynamic parameter estimation.

V ARMSE
cDCCTrg

1 cDCCTrg
2 cDCCTrg

3 cDCCTrg
5 cDCCTrg

8 cDCCTrg
V C cDCC

cDCCTrg
1 – -0.27 -1.35 -0.83 -0.92 -0.79 -1.72

cDCCTrg
2 – – -1.38 -0.72 -0.91 -0.59 -1.47

cDCCTrg
3 – – – 0.93 0.55 1.43 -0.83

cDCCTrg
5 – – – – -0.96 0.18 -1.58

cDCCTrg
8 – – – – – 0.45 -1.33

cDCCTrg
V C – – – – – – -1.58

cDCC – – – – – – –

cDCC1 cDCC2 cDCC3 cDCC5 cDCC8 cDCCV C cDCC

cDCC1 – -0.21 -1.09 -0.85 -0.85 -0.58 -0.88

cDCC2 – – -1.19 -0.86 -0.90 -0.43 -0.93

cDCC3 – – – 0.60 0.43 1.29 0.33

cDCC5 – – – – -0.43 0.50 -0.65

cDCC8 – – – – – 0.59 -0.54

cDCCV C – – – – – – -0.66

cDCC – – – – – – –

CORRMSE
cDCCTrg

1 cDCCTrg
2 cDCCTrg

3 cDCCTrg
5 cDCCTrg

8 cDCCTrg
V C cDCC

cDCCTrg
1 – 0.72 0.31 0.66 0.69 0.72 -0.70

cDCCTrg
2 – – -1.81 0.60 0.67 0.12 -1.50

cDCCTrg
3 – – – 0.92 0.93 2.20 -1.17

cDCCTrg
5 – – – – 0.92 -0.59 -2.71

cDCCTrg
8 – – – – – -0.66 -2.91

cDCCTrg
V C – – – – – – -1.54

cDCC – – – – – – –

cDCC1 cDCC2 cDCC3 cDCC5 cDCC8 cDCCV C cDCC

cDCC1 – 0.85 0.83 0.80 0.80 0.74 0.65

cDCC2 – – 0.79 0.76 0.76 -0.69 0.43

cDCC3 – – – 0.70 0.71 -0.96 -0.43

cDCC5 – – – – 0.52 -0.85 -1.55

cDCC8 – – – – – -0.84 -1.50

cDCCV C – – – – – – 0.55

cDCC – – – – – – –

EWMSE
cDCCTrg

1 cDCCTrg
2 cDCCTrg

3 cDCCTrg
5 cDCCTrg

8 cDCCTrg
V C cDCC

cDCCTrg
1 – 0.84 0.07 -0.46 -0.34 0.46 -1.23

cDCCTrg
2 – – -0.83 -1.63 -1.47 -0.50 -1.42

cDCCTrg
3 – – – -1.40 -1.06 0.69 -1.40

cDCCTrg
5 – – – – 0.65 1.33 -1.24

cDCCTrg
8 – – – – – 1.26 -1.28

cDCCTrg
V C – – – – – – -1.46

cDCC – – – – – – –

cDCC1 cDCC2 cDCC3 cDCC5 cDCC8 cDCCV C cDCC

cDCC1 – 0.47 0.31 -0.41 -0.33 0.25 -0.50

cDCC2 – – -0.01 -0.95 -0.87 -0.21 -1.02

cDCC3 – – – -1.52 -1.62 -0.27 -1.97

cDCC5 – – – – 0.74 0.89 -0.19

cDCC8 – – – – – 0.86 -0.76

cDCCV C – – – – – – -1.18

cDCC – – – – – – –

MVMSE
cDCCTrg

1 cDCCTrg
2 cDCCTrg

3 cDCCTrg
5 cDCCTrg

8 cDCCTrg
V C cDCC

cDCCTrg
1 – 0.36 -1.75 -0.61 -2.20 -0.33 -1.65

cDCCTrg
2 – – -1.86 -1.79 -1.97 -1.05 -1.91

cDCCTrg
3 – – – 1.32 0.55 1.57 -1.39

cDCCTrg
5 – – – – -1.42 0.15 -1.69

cDCCTrg
8 – – – – – 1.17 -1.34

cDCCTrg
V C – – – – – – -2.06

cDCC – – – – – – –

cDCC1 cDCC2 cDCC3 cDCC5 cDCC8 cDCCV C cDCC

cDCC1 – 0.37 -1.52 -1.53 -1.17 -0.94 -1.42

cDCC2 – – -1.77 -1.89 -1.59 -1.27 -1.79

cDCC3 – – – 1.09 1.10 1.99 0.49

cDCC5 – – – – 0.32 1.07 -0.72

cDCC8 – – – – – 1.11 -1.56

cDCCV C – – – – – – -2.17

cDCC – – – – – – –

MVMSE∗

cDCCTrg
1 cDCCTrg

2 cDCCTrg
3 cDCCTrg

5 cDCCTrg
8 cDCCTrg

V C cDCC

cDCCTrg
1 – -0.03 -0.96 -1.19 -1.04 -0.46 -1.46

cDCCTrg
2 – – -1.43 -2.01 -1.86 -0.88 -1.54

cDCCTrg
3 – – – 0.02 0.22 1.15 -1.16

cDCCTrg
5 – – – – 0.29 1.89 -1.16

cDCCTrg
8 – – – – – 1.65 -1.22

cDCCTrg
V C – – – – – – -1.61

cDCC – – – – – – –

cDCC1 cDCC2 cDCC3 cDCC5 cDCC8 cDCCV C cDCC

cDCC1 – -0.12 -1.70 -1.65 -1.51 -0.95 -1.74

cDCC2 – – -1.80 -1.74 -1.60 -1.04 -1.77

cDCC3 – – – 0.75 0.24 2.63 -0.55

cDCC5 – – – – -0.46 1.89 -1.48

cDCC8 – – – – – 2.37 -0.89

cDCCV C – – – – – – -2.33

cDCC – – – – – – –

Table A.7: Negative (resp., positive) values provide evidence in favor of the model in row (resp.,

column); white cells denote equal predictive ability at 5% level; grey cells denote rejection of the

null of equal predictive ability at 5% level.
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Regression-based specification tests

N = 10; joint dynamic parameter estimation.

ENGLE-COLACITO REGRESSION
cDCCTrg

1 cDCCTrg
2 cDCCTrg

3 cDCCTrg
5 cDCCTrg

8 cDCCTrg
V C cDCC

EW 0.64 0.62 0.65 0.61 0.60 0.63 1.00

MV 1.91 2.04 2.23 2.02 2.15 2.04 2.91

MV
∗ 0.80 0.90 1.00 0.93 0.88 0.91 1.57

cDCC1 cDCC2 cDCC3 cDCC5 cDCC8 cDCCV C cDCC

EW 0.93 0.92 0.92 0.91 0.90 0.93 1.00

MV 2.10 2.23 2.25 2.38 2.43 2.27 2.91

MV
∗ 1.09 1.21 1.22 1.27 1.26 1.26 1.57

PORTFOLIO ARCH EFFECT TEST
cDCCTrg

1 cDCCTrg
2 cDCCTrg

3 cDCCTrg
5 cDCCTrg

8 cDCCTrg
V C cDCC

EW 10.06 11.04 11.10 11.57 11.66 11.09 11.98

MV 10.23 10.22 12.71 13.46 12.36 10.74 48.12

MV
∗ 12.59 12.78 13.44 12.72 13.24 12.67 19.24

cDCC1 cDCC2 cDCC3 cDCC5 cDCC8 cDCCV C cDCC

EW 11.33 12.42 12.67 13.19 13.35 12.46 11.98

MV 13.56 14.66 27.68 26.73 26.21 20.63 48.12

MV
∗ 14.92 15.15 17.54 16.35 16.69 15.53 19.24

1% DYNAMIC QUANTILE TEST

cDCCTrg
1 cDCCTrg

2 cDCCTrg
3 cDCCTrg

5 cDCCTrg
8 cDCCTrg

V C cDCC

EW 1.25 1.25 1.24 1.25 1.24 1.25 1.44

MV 0.65 0.77 1.43 0.97 0.87 1.59 2.36

MV
∗ 1.29 1.94 1.05 1.26 1.05 1.94 1.72

cDCC1 cDCC2 cDCC3 cDCC5 cDCC8 cDCCV C cDCC

EW 1.44 1.44 1.44 1.44 1.44 1.44 1.44

MV 0.94 0.87 2.29 2.07 1.75 1.72 2.36

MV
∗ 1.83 1.32 1.57 1.86 1.86 1.33 1.72

5% DYNAMIC QUANTILE TEST

cDCCTrg
1 cDCCTrg

2 cDCCTrg
3 cDCCTrg

5 cDCCTrg
8 cDCCTrg

V C cDCC

EW 2.19 2.18 2.18 2.19 2.19 2.18 2.45

MV 0.97 1.03 0.90 1.82 1.22 1.03 1.41

MV
∗ 1.56 1.56 1.77 1.78 1.78 1.77 2.41

cDCC1 cDCC2 cDCC3 cDCC5 cDCC8 cDCCV C cDCC

EW 2.46 2.45 2.45 2.45 2.45 2.45 2.45

MV 1.30 1.33 1.30 1.32 1.06 1.36 1.41

MV
∗ 2.18 2.46 2.20 1.96 1.97 2.47 2.41

Table A.8: White cells denote insignificance at 5% level, light grey cells denote significance at 5%

level and dark grey cells denote significance at 1% level.
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Regression-based specification tests

N = 10; sequential dynamic parameter estimation.

ENGLE-COLACITO REGRESSION
cDCCTrg

1 cDCCTrg
2 cDCCTrg

3 cDCCTrg
5 cDCCTrg

8 cDCCTrg
V C cDCC

EW 0.73 0.73 0.76 0.75 0.75 0.73 1.00

MV 2.21 2.34 2.62 2.44 2.59 2.36 2.91

MV
∗ 0.98 1.10 1.27 1.22 1.19 1.13 1.57

cDCC1 cDCC2 cDCC3 cDCC5 cDCC8 cDCCV C cDCC

EW 0.98 0.98 0.99 0.99 0.98 0.99 1.00

MV 2.33 2.45 2.67 2.81 2.89 2.56 2.91

MV
∗ 1.23 1.35 1.50 1.57 1.58 1.46 1.57

PORTFOLIO ARCH EFFECT TEST
cDCCTrg

1 cDCCTrg
2 cDCCTrg

3 cDCCTrg
5 cDCCTrg

8 cDCCTrg
V C cDCC

EW 9.05 9.92 10.00 10.37 10.39 9.97 11.98

MV 9.07 9.39 13.51 14.55 12.50 10.09 48.12

MV
∗ 11.24 11.46 12.50 11.41 11.60 11.28 19.24

cDCC1 cDCC2 cDCC3 cDCC5 cDCC8 cDCCV C cDCC

EW 10.09 11.13 11.39 11.82 11.87 11.19 11.98

MV 11.79 13.76 38.30 37.27 37.96 28.24 48.12

MV
∗ 13.33 13.76 17.47 16.09 16.97 14.88 19.24

1% DYNAMIC QUANTILE TEST

cDCCTrg
1 cDCCTrg

2 cDCCTrg
3 cDCCTrg

5 cDCCTrg
8 cDCCTrg

V C cDCC

EW 1.25 1.25 1.24 1.24 1.24 1.24 1.44

MV 0.64 0.76 2.03 1.17 1.36 1.60 2.36

MV
∗ 1.29 1.75 1.32 1.05 0.89 1.94 1.72

cDCC1 cDCC2 cDCC3 cDCC5 cDCC8 cDCCV C cDCC

EW 1.45 1.18 1.44 1.44 1.44 1.44 1.44

MV 0.81 0.75 1.88 1.84 1.90 1.52 2.36

MV
∗ 1.55 1.55 1.45 1.87 1.70 1.57 1.72

5% DYNAMIC QUANTILE TEST

cDCCTrg
1 cDCCTrg

2 cDCCTrg
3 cDCCTrg

5 cDCCTrg
8 cDCCTrg

V C cDCC

EW 2.19 2.18 2.18 2.19 2.18 2.18 2.45

MV 0.73 1.09 0.66 1.14 1.25 1.11 1.41

MV
∗ 1.55 1.55 1.77 1.77 1.77 1.77 2.41

cDCC1 cDCC2 cDCC3 cDCC5 cDCC8 cDCCV C cDCC

EW 2.45 2.45 2.44 2.45 2.45 2.44 2.45

MV 1.16 1.18 1.22 0.81 1.05 1.26 1.41

MV
∗ 2.18 2.46 2.39 1.96 2.14 2.48 2.41

Table A.9: White cells denote insignificance at 5% level, light grey cells denote significance at 5%

level and dark grey cells denote significance at 1% level.
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Datasets

LARGE DATASET (N = 100) SMALL DATASET (N = 10)

Industrial equities Consumer good equities S&P 500 Index and related sector SPDR’s

1 BRUSH ENGD.MATERIALS WD-40 CONSUMER DISCRETIONARY SPDR

2 FISERV LEGGETT&PLATT CONSUMER STAPLES SPDR

3 CON-WAY GREEN MNT.COF.ROASTERS ENERGY SPDR

4 CLARCOR M/I HOMES FINANCIALS SPDR

5 COMMSCOPE THE HERSHEY COMPANY HEALTCARE SPDR

6 AUTOMATIC DATA PROC. LANCE INDUSTRIALS SPDR

7 NATIONAL INSTS. CALLAWAY GOLF MATERIALS SPDR

8 ON ASSIGNMENT RC2 TECHNOLOGY SPDR

9 CYBERSOURCE HNI UTILITIES SPDR

10 SFN GROUP POLARIS INDS. S&P 500 COMPOSITE

11 FTI CONSULTING MDC HDG.

12 DELUXE DECKERS OUTDOOR

13 ROBERT HALF INTL. FORD MOTOR

14 IRON MNT. HJ HEINZ

15 JACOBS ENGR. K-SWISS ’A’

16 NEWPORT CHURCH & DWIGHT CO.

17 ROCK-TENN ’A’ SHS. COLGATE-PALM.

18 STERICYCLE KIMBERLY-CLARK

19 LINCOLN ELECTRIC HDG. HARLEY-DAVIDSON

20 CATERPILLAR BRUNSWICK

21 BELDEN SCOTTS MIRACLE-GRO

22 G & K SVS.’A’ SARA LEE

23 MOOG ’A’ TIMBERLAND ’A’

24 CUMMINS BRIGGS & STRATTON

25 GEO GROUP TYSON FOODS ’A’

26 PARKER-HANNIFIN CLOROX

27 SYKES ENTERPRISES THOR INDUSTRIES

28 HUB GROUP ’A’ GOODYEAR TIRE & RUB.

29 TELEDYNE TECHS. REYNOLDS AMERICAN

30 ALEX.& BALDWIN ESTEE LAUDER COS.’A’

31 KNIGHT TRANSPORTATION TOLL BROS.

32 CINTAS KID BRANDS

33 PERKINELMER LA-Z-BOY

34 WW GRAINGER MANNATECH

35 BEMIS CORN PRODUCTS INTL.

36 PREC.CASTPARTS NIKE ’B’

37 CURTISS WRIGHT ARCTIC CAT

38 EMCOR GROUP LIZ CLAIBORNE

39 PARK ELECTROCHEMICAL ELECTRONIC ARTS

40 ARROW ELECTRONICS SMITHFIELD FOODS

41 BALDOR ELECTRIC ETHAN ALLEN INTERIORS

42 TECHNITROL SCHWEITZER-MAUDUIT INT.

43 CARLISLE COS. COCA COLA ENTS.

44 KIRBY DREW INDS.

45 LAWSON PRODUCTS FOSSIL

46 COMFORT SYS.USA TOOTSIE ROLL

47 MEADWESTVACO ARCHER-DANLS.-MIDL.

48 KAMAN ’A’

49 ENCORE WIRE

50 CLEAN HARBORS

51 HEARTLAND EXPRESS

52 CUBIC

53 ACTUANT ’A’

Table A.10: Assets included in the large dataset and in the small dataset. The assets in the large

datasets are randomly selected equities from the industrial and consumer good components of the

S&P 1500 Index.
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