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Abstract
The two main algorithms that have been considered for fitting constrained marginal models to
discrete data, one based on Lagrange multipliers and the other on a regression model, are studied
in detail. It is shown that the updates produced by the two methods are identical, but that the
Lagrangian method is more efficient in the case of identically distributed observations. A
generalization is given of the regression algorithm for modelling the effect of exogenous
individual-level covariates, a context in which the use of the Lagrangian algorithm would be
infeasible for even moderate sample sizes. An extension of the method to likelihood-based
estimation under L1-penalties is also considered.
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1. Introduction
The application of marginal constraints to multi-way contingency tables has been much
investigated in the last 20 years; see, for example, McCullagh and Nelder (1989); Liang et
al. (1992); Lang and Agresti (1994); Glonek and McCullagh (1995); Agresti (2002);
Bergsma et al. (2009). Bergsma and Rudas (2002) introduced marginal log-linear parameters
(MLLPs), which generalize other discrete parameterizations including ordinary log-linear
parameters and Glonek and McCullagh’s multivariate logistic parameters. The flexibility of
this family of parameterizations enables their application to many popular classes of
conditional independence models, and especially to graphical models (Forcina et al., 2010;
Rudas et al., 2010; Evans and Richardson, 2013). Bergsma and Rudas (2002) show that,
under certain conditions, models defined by linear constraints on MLLPs are curved
exponential families. However, naïve algorithms for maximum likelihood estimation with
MLLPs face several challenges: in general, there are no closed form equations for
computing raw probabilities from MLLPs, so direct evaluation of the log-likelihood can be
time consuming; in addition, MLLPs are not necessarily variation independent and, as noted
by Bartolucci et al. (2007), ordinary Newton-Raphson or Fisher scoring methods may
become stuck by producing updated estimates which are incompatible.
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Lang (1996) and Bergsma (1997), amongst others, have tried to adapt a general algorithm
introduced by Aitchison and Silvey (1958) for constrained maximum likelihood estimation
to the context of marginal models. In this paper we provide an explicit formulation of
Aitchison and Silvey’s algorithm, and show that an alternative method due to Colombi and
Forcina (2001) is equivalent; we term this second approach the regression algorithm.
Though the regression algorithm is less efficient, we show that it can be extended to deal
with individual-level covariates, a context in which Aitchison and Silvey’s approach is
infeasible, unless the sample size is very small. A variation of these algorithms, which can
be used to fit marginal log-linear models under L1-penalties, and therefore perform
automatic model selection, is also given.

Section 2 reviews marginal log-linear models and their basic properties, while in Section 3
we formulate the two algorithms, show that they are equivalent and discuss their properties.
In Section 4 we derive an extension of the regression algorithm which can incorporate the
effect of individual-level covariates. Finally Section 5 considers similar methods for L1-
constrained estimation.

2. Notations and preliminary results
Let Xj, j = 1, …, d be categorical random variables taking values in {1, …, cj}. The joint
distribution of X1, …, Xd is determined by the vector of joint probabilities π of dimension

, whose entries correspond to cell probabilities, and are assumed to be strictly
positive; we take the entries of π to be in lexicographic order. Further, let y denote the
vector of cell frequencies with entries arranged in the same order as π. We write the
multinomial log-likelihood in terms of the canonical parameters as

(see, for example, Bartolucci et al., 2007, p. 699); here n is the sample size, 1t a vector of
length t whose entries are all 1, and G a t × (t − 1) full rank design matrix which determines
the log-linear parameterization. The mapping between the canonical parameters and the joint
probabilities may be expressed as

where L is a (t − 1) × t matrix of row contrasts and LG = I t−1.

The score vector, s, and the expected information matrix, F, with respect to θ take the form

here Ω = diag(π) − ππ′.

2.1. Marginal log-linear parameters
Marginal log-linear parameters (MLLPs) enable the simultaneous modelling of several
marginal distributions (see, for example, Bergsma et al., 2009, Chapters 2 and 4) and the
specification of suitable conditional independencies within marginal distributions of interest
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(see Evans and Richardson, 2013). In the following let η denote an arbitrary vector of
MLLPs; it is well known that this can be written as

where C is a suitable matrix of row contrasts, and M a matrix of 0’s and 1’s producing the
appropriate margins (see, for example, Bergsma et al., 2009, Section 2.3.4).

Bergsma and Rudas (2002) have shown that if a vector of MLLPs η is complete and
hierarchical, two properties defined below, models determined by linear restrictions on η are
curved exponential families, and thus smooth. Like ordinary log-linear parameters, MLLPs
may be grouped into interaction terms involving a particular subset of variables; each
interaction term must be defined within a margin of which it is a subset.

Definition 1
A vector of MLLPs η is called complete if every possible interaction is defined in precisely
one margin.

Definition 2
A vector of MLLPs η is called hierarchical if there is a nondecreasing ordering of the
margins of interest M1, …, Ms such that, for each j = 1, … s, no interaction term which is a
subset of Mj is defined within a later margin.

3. Two algorithms for fitting marginal log-linear models
Here we describe the two main algorithms used for fitting models of the kind described
above.

3.1. An adaptation of Aitchison and Silvey’s algorithm
Aitchison and Silvey (1958) study maximum likelihood estimation under non-linear
constraints in a very general context, showing that, under certain conditions, the maximum
likelihood estimates exist and are asymptotically normal; they also outline an algorithm for
computing those estimates. Suppose we wish to maximize l(θ) subject to h(θ) = 0, a set of r
non-linear constraints, under the assumption that the second derivative of h(θ) exists and is
bounded. Aitchison and Silvey consider stationary points of the function l(θ) + h(θ)′λ ,
where λ is a vector of Lagrange multipliers; this leads to the system of equations

(1)

where θ̂ is the ML estimate and H the derivative of h′ with respect to θ. Since these are
non-linear equations, they suggest an iterative algorithm which proceeds as follows: suppose
that at the current iteration we have θ0, a value reasonably close to θ̂. Replace s and h with
first order approximations around θ0; in addition replace H (θ̂) with H(θ0) and the second
derivative of the log-likelihood with –F, minus the expected information matrix. The
resulting equations, after rearrangement, may be written in matrix form as
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where s0, F 0, H 0 and so on denote the corresponding quantities evaluated at θ0. To
compute a solution, Aitchison and Silvey (1958) exploit the structure of the partitioned
matrix, while Bergsma (1997) solves explicitly for θ̂ by substitution; in both cases, if we are
uninterested in the Lagrange multipliers, we get the updating equation

(2)

As noted by Bergsma (1997), the algorithm does not always converge unless some sort of
step length adjustment is introduced.

Linearly constrained marginal models are defined by K′ η = 0, where K is a matrix of full
column rank r ≤ t −1. The multinomial likelihood is a regular exponential family, so these
models may be fitted using the smooth constraint h(θ) = K′η(θ) = 0, which implies that

Remark 1—In the equation above we have replaced Ω with diag(π) by exploiting the fact
that η is a homogeneous function of π (see Bergsma et al., 2009, Section 2.3.4). If the
constrained model were not smooth then at singular points the Jacobian matrix R would not
be invertible, implying that H is not of full rank and thus violating a crucial assumption in
Aitchison and Silvey (1958). It has been shown (Bergsma and Rudas, 2002, Theorem 3) that
completeness is a necessary condition for smoothness.

Calculation of (2) may be simplified by noting that K′C does not need to be updated; in
addition, if we choose, for example, G to be the identity matrix of size t with the first
column removed, an explicit inverse of F exists:

where π̇ denotes the vector π with the first element removed; this expression may be
exploited when computing F−1H.

3.2. A regression algorithm
By noting that the Aitchison-Silvey algorithm is essentially based on a quadratic
approximation of l(θ) with a linear approximation of the constraints, Colombi and Forcina
(2001) designed an algorithm which they believed to be equivalent to the original, though no
formal argument was provided; this equivalence is proven in Proposition 1 below. Recall
that, by elementary linear algebra, there exists a (t −1) ×(t − r −1) design matrix X of full
column rank such that K′X = 0, from which it follows that η = Xβ for a vector of t − r −1
unknown parameters β. Let
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and s̄ = R′s, F̄ = R′F R respectively denote the score and information relative to η; then the
regression algorithm consists of alternating the following steps:

1. update the estimate of β by

(3)

where γ0 = η0 − Xβ0;

2. update θ by

(4)

Proposition 1—The updating equation in (2) is equivalent to the combined steps given in
(3) and (4).

Proof: First, consider matrices X and K such that the columns of X span the orthogonal
complement of the space spanned by the columns of K. Then we claim that for any
symmetric and positive definite matrix W

(5)

To see this, let U = W−1/2K and V = W1/2X and note that U ′V = K′X = 0, then (5) follows
from the identity U (U′U)−1U′ + V (V′V)−1V′ = I.

Now, recall s̄ = R′s and F̄ = R′F R, and note that

using this in the updating equation (2) enables us to rewrite it as

(6)

Set W = F ̄0 and note that (5) may be substituted into the first component of (6) and that its
equivalent formulation

may be substituted into the second component, giving
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This is easily seen to be the same as combining equations (3) and (4).

Remark 2—From the form of the updating equations (2), (3) and (4) it is clear that
Proposition 1 remains true if identical step length adjustments are applied to the θ updates.
This does not hold, however, if adjustments are applied to the β updates of the regression
algorithm.

3.2.1. Derivation of the regression algorithm—In a neighbourhood of θ0,
approximate l(θ) by a quadratic function Q having the same information matrix and the
same score vector as l at θ0,

Now compute a linear approximation of θ with respect to β in a neighbourhood of θ0,

(7)

substituting into the expression for Q we obtain a quadratic function in β. By adding and
subtracting R0Xβ0 and setting δ = β − β0, we have

A weighted least square solution of this local maximization problem gives (3); substitution
into (7) gives (4).

Remark 3—The choice of X is somewhat arbitrary because the design matrix XA, where A
is any non-singular matrix, implements the same set of constraints as X. In many cases an
obvious choice for X is provided by the context; otherwise, if we are not interested in the
interpretation of β, any numerical complement of K will do.

3.3. Comparison of the two algorithms
Since the matrices C and M have dimensions (t − 1) × u and u × t respectively, where the
value of u ≥ t depends upon the particular parametrization, the hardest step in the Aitchson-
Silvey’s algorithm is (K′C) diag(M π)−1M whose computational complexity is O(rut). In
contrast, the hardest step in the regression algorithm is the computation of R, which has
computational complexity O(ut2 + t3), making this procedure clearly less efficient. However,
the regression algorithm can be extended to models with individual covariates, a context in
which it is usually much faster than a straightforward extension of the ordinary algorithm;
see Section 4.

Note that because step adjustments, if used, are not made on the same scale, each algorithm
may take a slightly different number of steps to converge.
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3.4. Properties of the algorithms
Detailed conditions for the asymptotic existence of the maximum likelihood estimates of
constrained models are given by Aitchison and Silvey (1958); see also Bergsma and Rudas
(2002), Theorem 8. Much less is known about existence for finite sample sizes where
estimates might fail to exist because of observed zeros. In this case, some elements of π̂ may
converge to 0, leading the Jacobian matrix R to become ill-conditioned and making the
algorithm unstable.

Concerning the convergence properties of their algorithm, Aitchison and Silvey (1958, p.
827) noted only that it could be seen as a modified Newton algorithm and that similar
modifications had been used successfully elsewhere. However, it is clear from the form of
the updating equations that, if the algorithms converge to some θ*, then the constraints h(θ*)
= 0 are satisfied, and θ* is a stationary point of the constrained likelihood. In addition, as a
consequence of the Karush-Kuhn-Tucker conditions, if a local maximum of the constrained
objective function exists, then it will be a saddle point of the Lagrangian (see, for example,
Bertsekas, 1999).

To ensure that a stationary point β̂ reached by the algorithm is indeed a local maximum, one
could check that the observed information with respect to β is positive definite. An efficient
formula for computing the observed information matrix is given in Appendix A. Since the
log-likelihood of constrained marginal models is not, in general, concave, it might be
advisable to apply the algorithm to a range of starting values, in order to check that the
achieved maximum is the global one.

3.5. Extension to more general constraints
Occasionally, one may wish to fit general constraints on marginal probabilities without the
need to define a marginal log-linear parameterization; an interesting example is provided by
the relational models of Klimova et al. (2011). They consider constrained models of the
form h(θ) = A log(M π) = 0, where A is an arbitrary matrix of full row rank. Redefine

and note that, because A is not a matrix of row contrasts, h is not homogeneous in p, and
thus the simplification of Ω mentioned in Remark 1 does not apply. If the resulting model is
smooth, implying that K is a matrix of full column rank r everywhere in the parameter space,
it can be fitted with the ordinary Aitchison-Silvey algorithm. We now show how the same
model can also be fitted by a slight extension of the regression algorithm.

Let θ0 be a starting value and K̄0 be a right inverse of K′ at θ0; consider a first order
expansion of the constraints

and let X 0 be a matrix that spans the orthogonal complement of K0. Then, with the same
order of approximation,
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by solving the above equation for θ – θ0 and substituting into the quadratic approximation
of the log-likelihood, we obtain an updating equation similar to (3):

4. Modelling the effect of individual-level covariates
When exogenous individual-level covariates are available, it may be of interest to allow the
marginal log-linear parameters to depend upon them as in a linear model: ηi = C log(M πi) =
X iβ; here the matrix X i specifies how the non-zero marginal log-linear parameters depend
on individual specific information, in addition to structural restrictions such as conditional
independencies. Let yi, i = 1, …, n, be a vector of length t with a 1 in the entry
corresponding to the response pattern of the ith individual, and all other values 0; define y to
be the vector obtained by stacking the vectors yi, one below the other. Alternatively, if the
sample size is large and the covariates can take only a limited number of distinct values, yi
may contain the frequency table of the response variables within the sub-sample of subjects
with the ith configuration of the covariates; in this case n denotes the number of strata. This
arrangement avoids the need to construct a joint contingency table of responses and
covariates; in addition the covariate configurations with no observations are simply ignored.

In either case, to implement the Aitchison-Silvey approach, stack the X i matrices one below
the other into the matrix X, and let K span the orthogonal complement of X; as before, we
have to fit the set of constraints K′η = 0. However, whilst q, the size of β, does not depend
on the number of subjects, H is now of size [n(t −1) − q] × n(t −1), and its computation has
complexity O(n3t2u), where u ≥ t as before; in addition, the inversion of the [n(t − 1) − q] ×
[n(t − 1) − q]-matrix H′F−1H has complexity O(n3t3). With n moderately large, this
approach becomes almost infeasible.

For the regression algorithm, let θi denote the vector of canonical parameters for the ith

individual and  be the contribution to the log-likelihood. Note
that X i need not be of full column rank, a property which must instead hold for the matrix
X; for this reason our assumptions are much weaker than those used by Lang (1996), and
allow for more flexible models. Both the quadratic and the linear approximations must be
applied at the individual level; thus we set θi − θi0 = Ri0(Xiβ−ηi0), and the log-likelihood
becomes

where γi0 = ηi0 − Xiβ0, si = G′(yi − πi) and F i = G′ΩiG.

Direct calculations lead to the updating expression
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where . Thus, the procedure depends upon n only in that we have to
sum across subjects, and so the complexity is O(n(t2u + t3)).

As an example of the utility of the method described above, consider the application to
social mobility tables in Dardanoni et al. (2012). Social mobility tables are cross
classifications of subjects according to their social class (columns) and that of their fathers
(rows). The hypothesis of equality of opportunity would imply that the social class of sons is
independent of that of their fathers. Mediating covariates may induce positive dependence
between the social classes of fathers and sons, leading to the appearance of limited social
mobility; to assess this, Dardanoni et al. (2012) fitted a model in which the vector of
marginal parameters for each father-son pair was allowed to depend on individual
covariates, including the father’s age, the results of cognitive and non-cognitive test scores
taken by the son at school, and his academic qualifications. The analysis, based on the UK’s
National Child Development Survey, included 1,942 father-son pairs classified in a 3 × 3
table. All marginal log-linear parameters for the father were allowed to depend on father’s
age, the only available covariate for fathers; the parameters for the son and the interactions
were allowed to depend on all 11 available covariates. The fitted model used 76 parameters.

5. L1-penalized parameters
Evans (2011) shows that, in the context of marginal log-linear parameters, consistent model
selection can be performed using the so-called adaptive lasso. Since the adaptive lasso uses
L1-penalties, we might therefore be interested in relaxing the equality constraints discussed
above to a penalization framework, in which we maximize the penalized log-likelihood

for some vector of penalties ν = (νj) ≥ 0.

The advantage of penalties of this form is that one can obtain parameter estimates which are
exactly zero (Tibshirani, 1996). Setting parameters of the form η to zero corresponds to
many interesting submodels, such as those defined by conditional independences, (Forcina
et al., 2010; Rudas et al., 2010), we can therefore perform model selection without the need
to fit many models separately. For now, assume that no equality constraints hold for η, so
we can take X to be the identity, and β = η. This gives the quadratic form

approximating l(θ) as before. Then φ is approximated by
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and we can attempt to maximize φ by repeatedly solving the sub-problem of maximizing φ̃.
Now, because the quadratic form Q(η) is concave and differentiable, and the absolute value
function | · | is concave, coordinate-wise ascent is guaranteed to find a local maximum of φ̃
(Tseng, 2001). Coordinate-wise ascent cycles through j = 1, 2, …, t − 1, at each step
minimizing

with respect to ηj, with η1, …, ηj−1, ηj+1, …, ηt−1 held fixed. This is solved just by taking

where a+ = max{a, 0}, and η̌j minimizes Q with respect to ηj (Friedman et al., 2010). This
approach to the sub-problem may require a large number of iterations, but it is extremely
fast in practice because each step is so simple. If the overall algorithm converges, then by a
similar argument to that of Section 3.4, together with the fact that φ̃ has the same
supergradient as φ at η = η0, we see that we must have reached a local maximum of φ.

Since penalty selection for the lasso and adaptive lasso is typically performed using
computationally intensive procedures such as cross validation, its implementation makes fast
algorithms such as the one outlined above essential.
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Appendix A. Computation of the observed information matrix

Lemma 1
Suppose that A is a p×q matrix, and that y, b, x and u are column vectors with respective
lengths q, p, k and r. Then if A and b are constant,

(A.1)

Proof

The observed information matrix is minus the second derivative of the log-likelihood with
respect to β, that is

Since s depends on θ through both (y−nπ) and R, the above derivative has two main
components, where the one obtained by differentiating (y − nπ) is minus the expected
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information. Using the well known expression for the derivative of an inverse matrix, it only
remains to compute

where A = X′R′ and b = R′G′(y −nπ), giving

By two applications of (A.1), this is
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