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a b s t r a c t

Consider a repairable system operating under a maintenance strategy that calls for
complete preventive repair actions at pre-scheduled times and minimal repair actions
whenever a failure occurs. Under minimal repair, the failures are assumed to follow
a nonhomogeneous Poisson process with an increasing intensity function. This paper
departs from the usual power-law-process parametric approach by using the constrained
nonparametric maximum likelihood estimate of the intensity function to estimate the
optimum preventive maintenance policy. Several strategies to bootstrap the failure times
and construct confidence intervals for the optimal maintenance periodicity are presented
and discussed. Themethodology is applied to a real data set concerning the failure histories
of a set of power transformers.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Consider a nonhomogeneous Poisson process (NHPP) having an increasing intensity λ(t) and hence a convex mean
function Λ(t) =

 t
0 λ(u) du, and let Ni(t) be K independent realizations observed along possibly overlapping time intervals

0 ≤ t ≤ Ti (1 ≤ i ≤ K). This paper deals with the construction of bootstrap confidence intervals (CIs) for a functional
τ = τ [λ(·)] based on the constrained nonparametric maximum likelihood estimate (NPMLE) of λ(t). Its motivation comes
from the problem of estimating the optimal periodicity τ of perfect preventive maintenance (PM) for a repairable system
that is subject to minimal repair (MR) after each failure.

Repairable systems are allowed to experience more than one failure throughout their life. After each failure, a
maintenance activity is necessary for the system to return to operating condition. Usually, such activity repairs just the
damaged part of the equipment, leaving it in the same condition as it was just before the failure. This kind of repair is usually
calledMR. On the other hand, a plannedmaintenance activity, referred to as PM renews the entire system and brings it to as
good as new condition. Determining the optimalmaintenance time of a repairable system has been of interest since the early
work of Barlow and Hunter (1960). More precisely, suppose that underMR the system failures aremodeled as an NHPPwith
an increasing intensity λ(t) and let CPM and CMR be the fixed costs of the PM andMR actions. In order tominimize the system
operational cost per unit of time, PMs should be performed periodically every τ units of time, where τ is the solution of

τλ(τ) −

 τ

0
λ(u) du = CPM/CMR (1)
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(cf. Barlow and Hunter, 1960 or Gilardoni and Colosimo, 2007). Since the intensity λ(t) is typically unknown, in practice one
obtains an estimate λ̂(t) based on the failure histories of one ormore realizations of the systemunder consideration and uses
it to compute an estimate of τ by solving (1)with λ̂ instead ofλ. Gilardoni and Colosimo (2007, 2011) consider both paramet-
ric and nonparametric estimation of τ . For the former, they use a power law process (PLP) intensity λ(t) = (β/θ) (t/θ)β−1

(cf. Crow, 1974 or Rigdon and Basu, 2000). On the other hand, their nonparametric approach first pools or superimposes the
K failure histories into one realization using the Total Time on Test (TTT) transform. Based on this one realization, they follow
Cowling et al. (1996) to bootstrap the failure times in the TTT scale and compute a kernel estimate and bootstrap confidence
bands for the intensity of the superimposed process. These confidence bands are then transformed back to the original time
scale using the TTT inverse transformation. Finally, the bands for the intensity of the original process are plugged into (1)
to obtain the desired intervals for τ . However, this approach has the drawback that the monotonicity restriction on λ(t),
without which (1) may not have a solution, is not taken into account by the kernel estimates used in the process.

The unconstrained NPMLE of the mean function Λ(t) is the Nelson–Aalen estimate, i.e., the step function having jumps
of size (1/number of realizations at risk) at each observed event time (cf. Aalen, 1978, Ramlau-Hansen, 1983 or Aalen et al.,
2008). On the other hand, NPMLEs of the intensity function of an NHPP subject to monotonicity constraints have been
considered in Boswell (1966) and Bartoszynski et al. (1981). When only one realization is observed, Boswell (1966) showed
that the constrained NPMLE of λ(t) is the right derivative of the greatest convex minorant (GCM) of the unconstrained
NPMLE. Later, Bartoszynski et al. (1981) obtained an expression for the constrained NPMLE when several realizations of the
NHPP are observed along overlapping time intervals. Recently, Gilardoni andColosimo (2011) showed that the TTT transform
provides the right connection between the algorithm of Boswell and that of Bartoszynski et al. More precisely, they showed
that the algorithm to obtain the constrained NPMLE in the many realizations setup can be described as follows. First, the
many realizations are superimposed in the TTT scale. Based on this one realization, one then uses Boswell’s algorithm to
estimate the intensity of the superimposed process. Finally, to obtain the constrained NPMLE of the intensity of the original
process, one goes back to the original time scale using the inverse of the TTT transformation.

Based on the constrained NPMLE of the intensity function, we propose several strategies to obtain bootstrap samples of
τ . On the one hand, we canwork in the original time scale and draw a bootstrap sample of the systems by drawing randomly
with replacement K of the observed systems, say N∗

1 (t), . . . ,N∗

K (t), based on which we can then compute the constrained
NPMLE λ̂∗(t) and plug it into (1) to get a bootstrap sample τ ∗ of the estimate of the optimal maintenance time. On the other
hand, we can first superimpose the systems in the TTT scale and use Boswell’s algorithm to compute the constrained NPMLE
of the intensity of the superimposed process, say λ̂S(s). Then, by analogy to Cowling et al. (1996), we can generate an NHPP
with intensity λ̂S(s) and use the simulated failure times and again Boswell’s algorithm to compute a bootstrap sample λ̂∗

S (s).
Finally, λ̂∗

S (s) is transformed back into the original time scale to get an estimate λ̂∗(t) of the intensity of the original process,
which is plugged into (1) to get the desired bootstrap sample τ ∗. In a sense, the question between these two strategies is
whether to bootstrap first and pool second or vice versa.

Most of the literature on repairable systems considers a parametric approach using the PLP intensity. Recent examples are
Yu et al. (2007, 2008), Pan and Rigdon (2009) and Ryan et al. (2011). Further developments regarding optimal maintenance,
which will not be pursued here, can be found in Gerstack (1977), Sloan (2008), Colosimo et al. (2010) and Tsai et al.
(2011). From a purely mathematical point of view, the problem of finding the NPMLE of the intensity of an NHPP under
a monotonicity restriction is formally the same as that of estimating a density function under the same kind of constraint,
which is solved in the fundamental work of Barlow et al. (1972). Although it is not obvious, these two problems are also
equivalent to that of estimating a monotonic hazard function based on right censored data, which is addressed by Tsai
(1988). Hall and Huang (2001) follow a different approach to constrained estimationwhich is based on kernel estimates and
hence does not rely upon maximum likelihood.

The rest of this paper is organized as follows. Sections 2 and 3 contain brief reviews of the derivation of the constrained
NPMLE, respectively, of the determination of the optimal periodicity of PM. Section 4 describes in detail the strategies used
to generate the bootstrap samples of τ , including the twomentioned above and three others that are slight modifications of
the second one. Section 5 describes a Monte Carlo experiment that was run to study the performance of the nonparametric
bootstrap CIs and to compare them with the parametric CI based on the PLP and maximum likelihood asymptotics.
Section 6 gives an application of the methodology to a real data set consisting of the failure histories of 40 electrical power
transformers from a Brazilian electrical power company (cf. Fig. 1 and Gilardoni and Colosimo, 2007, 2011; Tsai et al.,
2011). Section 7 contains some concluding remarks and, finally, we include in an Appendix a proof of the form of the
constrained NPMLE estimate of the intensity function that is self-contained, in the sense that it only requires knowledge
of some elementary properties of convex sets.

2. Nonparametric inference for an increasing intensity function

There are basically twoways to observe data from a repairable system, depending onwhether data collection ceases after
a specified number of failures n or at some predetermined time T . These sampling schemes are said to be failure, respectively,
time truncated (cf. Rigdon and Basu, 2000). Although many inference procedures require only slight adjustments depending
on which sampling scheme was selected, the distinction is crucial for us because the constrained NPMLE does not exist in
the failure truncated case (cf. Bartoszynski et al., 1981). Hence, from now on we will consider just the time truncated case.
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Fig. 1. Failure histories of electrical power transformers. Dots represent failure times. Time unit is 1000 h.

Suppose first that only one system is observed and let N(t) =
n

j=1 I(t ≥ tj) be the number of failures up to time t ,
where 0 < t1 < · · · < tn < T are the observed failure times. Since for a time truncated system the at risk process is
Y (t) = I (0 ≤ t ≤ T ), it follows from Aalen (1978, Section 5) that the log-likelihood is

ℓ(λ) =

 T

0
log Y (s) dN(s) +

 T

0
log λ(s) dN(s) −

 T

0
λ(s)Y (s) ds

=

n
i=1

log λ(ti) −

 T

0
λ(u) du, (2)

where we have omitted an additive constant that does not depend on λ(·) (see also Rigdon and Basu, 2000). The uncon-
strained NPMLE of Λ(t), in the sense of Scholz (1980), is the step function Λ̃(t) = N(t). Since its derivative is almost every-
where zero, the unconstrained NPMLE of λ(t) does not exist. However, depending on the type of restriction imposed on λ(t),
the constrained NPMLE might exist. Indeed, Boswell (1966) showed that the maximum of (2) among increasing intensities
is attained for a right continuous step function λ̂(t) which has jumps at a subset of the ti’s and such that λ̂(0) = 0 and

λ̂(tj) = max
1≤h≤j

min
j≤k≤n+1

k − h
tk − th

, (3)

where we put t0 = 0 and tn+1 = T . An alternative representation of the constrained NPMLE is λ̂(t) = Λ̂′(t + 0), where
Λ̂(t) = sup{f (t) : f is convex and f (u) ≤ Λ̃(u) for all u} is the GCM of Λ̃(t) (see Fig. 2(a)). In Appendixwe give a direct proof
of both (3) and the GCM representation using only some elementary properties of convex sets. In practice, λ̂(t) is computed
using the following algorithm:

• Set i0 = 0;
• Repeat until iE+1 = n + 1 :

Set ih+1 to be the index which minimizes the slopes between
(tih , ih − 1) and (ti, i − 1) (i = ih + 1, . . . , n + 1);

• The constrained NPMLE is then given by λ̂(t) = (ij+1 − ij)/(tij+1 − tij) whenever tij < t ≤ tij+1 .

 (4)

Suppose now that we observe K independent realizations of the same NHPP truncated at possibly different times
T1, . . . , TK . Let the ith realization be Ni(t) =

ni
j=1 I(t ≥ tij), where tij is the time of the jth failure of the ith system. The

log-likelihood is now

ℓ(λ) =

K
i=1

ni
j=1

log λ(tij) −

K
i=1

 Ti

0
λ(u) du. (5)

Define the TTT transformation R by R(t) =
K

i=1 min(t, Ti), and its generalized inverse by R−1(s) = inf{t : R(t) ≥ s}.
Gilardoni and Colosimo (2011) showed that (5) is equivalent to

ℓ(λ) = c +

K
i=1

ni
j=1

log λS(sij) −

 S

0
λS(s) ds, (6)
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Fig. 2. NPMLEs of (a) the mean function ΛS(s) for the single realization of the superimposed process in the TTT scale; (b) the mean function Λ(t) of the
original process; (c) the intensity λ(t) in the original time scale and (d) D(t) (cf. Eq. (8)) and optimal PM time.

where sij = R(tij), λS(s) = λ[R−1(s)] and S = R(max{T1, . . . , TK }) =
K

i=1 Ti. Noting that λ(t) is increasing if and only
if λS(s) is too, and comparing (2) with (6), one concludes that the computation of the constrained NPMLE in the many
realizations setup can be reduced to the single realization setup discussed before. Essentially, one defines the superimposed
process NS(s) =

K
i=1 Ni[R−1(s)] and its intensity λS(s) = λ[R−1(s)], uses the algorithm (4) to compute the constrained

NPMLE λ̂S(s), and then goes back to the original time scale by letting λ̂(t) = λ̂S[R(t)]. This process is illustrated in Fig. 2(a)–(c)
for the power transformers data set.

3. Optimal maintenance time

As before, let N(t) be the number of failures up to time t and suppose that under MR, N(t) is an NHPP with intensity λ(t)
andmean function Λ(t) =

 t
0 λ(u) du. Since preventive maintenance can only be justified by the fact of system degradation

over time, we also assume that λ(t) is increasing and hence that Λ(t) is convex. Suppose now that the system will be in
operation for T units of time, with T large, and assume that it is decided to perform PM every τ units of time. In order to
compute the expected cost C(0,T ](τ ) of this maintenance strategy, write (0, T ] = (0, τ ] ∪ (τ , 2τ ] ∪ · · · ∪ ((m − 1)τ ,mτ ] ∪

(mτ , T ], where m = [T/τ ] is the largest integer smaller than or equal to T/τ , and let CPM and CMR be the fixed costs of
performing a PM, respectively, an MR action. Now, since a PM performed at t = kτ renews the process, one expects to have
EN(τ ) = Λ(τ ) failures in each interval (kτ , (k + 1)τ ]. Hence, the expected cost of operating the system in that interval is
CMR Λ(τ ) + CPM and the total expected cost over (0, T ] is

C(0,T ](τ ) = m{CMR Λ(τ ) + CPM} + CMR Λ(T − mτ),

where the last term is the cost associatedwith the failures in the interval (mτ , T ]. Dividing by T and taking limits as T → ∞

we get the expected cost per unit of time over an infinite horizon

H(τ ) = lim
T→∞

C(0,T ](τ )

T
=

CMR Λ(τ ) + CPM

τ
. (7)

Therefore, provided that λ(t) is continuous, the optimal PM periodicity is obtained by solving

D(τ ) = τλ(τ) − Λ(τ ) =
τ 2

CMR
H ′(τ ) +

CPM

CMR
=

CPM

CMR
. (8)

More generally, if λ(t) is a step function, as will be the case later on, the optimal periodicity τOPT is any time such that
D(τ ) < CPM/CMR for τ < τOPT and D(τ ) > CPM/CMR for τ > τOPT.
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Once we have estimates λ̂(t) and Λ̂(t) =
 t
0 λ̂(u) du, the natural estimate of the optimal PM periodicity is obtained by

minimizing Ĥ(τ ) = [CMR Λ̂(τ ) + CPM]/τ . Since parametric estimates of the intensity function will typically be continuous,
the optimal τ will be in this case the solution of D̂(τ ) = τ λ̂(τ ) − Λ̂(τ ) = CPM/CMR. On the other hand, as mentioned
above, some care is needed for the constrained NPMLE discussed in Section 2 because D̂(τ ) will be discontinuous. More
precisely, using the notation in (4), suppose that the constrained NPMLE of λ(t) in the original time scale is given by
λ̂(τ ) = (ij+1 − ij)/(tij+1 − tij) for tij < τ < tij+1 , where 0 = i0 < i1 < · · · < iE < iE+1 = n+1 are the indices of the extreme
points of the GCM. Then it is easy to check that Λ̂(τ ) = ij + (τ − tij)(ij+1 − ij)/(tij+1 − tij) whenever tij < τ < tij+1 . Hence,
D̂(τ ) = τ λ̂(τ ) − Λ̂(τ ) = tij(ij+1 − ij)/(tij+1 − tij) − ij is also a step function. It follows that in order to minimize Ĥ(τ ), we
search for the first tij such that D̂(tih) < CPM/CMR for h < j and D̂(tih) > CPM/CMR for h ≥ j (see Fig. 2(d)). If no such tij exists,
i.e., if D̂(tE+1) ≤ CPM/CMR, all we can conclude is that the optimal periodicity is either greater than the maximum truncation
time or is infinite. We also note here that in theory the optimal periodicity may not be unique if there is a tij for which D̂(tij)
is exactly equal to CPM/CMR, but this event has probability zero under the NHPP model.

4. Bootstrap methods

Weconsider five different strategies to bootstrap the estimates of the optimal periodicity. The first one, denoted belowby
boot.sys, bootstraps the systems or realizations in the original time scale as if they were clustered data (cf. Field andWelsh,
2007). More precisely, suppose that the data consists of failure times tij and truncation times Ti (1 ≤ j ≤ ni, 1 ≤ i ≤ K).
We first sample with replacement K integers between 1 and K , say i∗1, . . . , i

∗

K . Based on the set of (possibly repeated) failure
times ti∗h ,j and truncations Ti∗h , we compute the TTT transform and the estimates λ̂∗

S (s) and λ̂∗(t) of the intensities in the TTT

and original time scale and, finally, we use λ̂∗(t) to compute a bootstrap estimate τ̂ ∗ of the optimal periodicity. Here, as well
as in the rest of this section, the expressions in Section 2 must be adjusted to account for the possibility of repeated failure
times. For instance, the numerator in (3) should be fk − fh, where fi is the number of failures up to and including ti.

All other strategies resample failure times from the superimposed process in the TTT time scale. The second one, denoted
by boot+n+t, generates TTT failure times s∗1, . . . , s

∗

n∗ by simulating an NHPP whose intensity function is the constrained
NPMLE λ̂S(s) computed with the original data set. Recall that to generate an NHPP with intensity λ̂S(s) and mean function
Λ̂S(s) truncated in (0, S), one first generates n∗

∼ Poisson(Λ̂S(S)) and then obtains the TTT failure times as the order
statistics of a size n∗ i.i.d. random sample from the cdf Λ̂S(s)/Λ̂S(S), 0 < s < S, where S =

K
i=1 Ti is the truncation time of

the superimposed process. Once these failure times are obtained, we use (3) or (4) to compute λ̂∗

S (s), then the inverse TTT
transform to get λ̂∗(t) and finally the procedure described at the end of Section 3 to get a resample τ̂ ∗ of the estimate of the
optimal periodicity.

The last three strategies are variants of the one just described. More precisely, the third one, boot−n+t, proceeds exactly
as does boot+n+t except for the fact that n∗ is kept fixed and equal to n, the number of failures in the original data set. The
fourth one, boot+n−t, differs from boot+n+t only in that, instead of resampling the TTT failure times s∗1, . . . , s

∗

n∗ from the
cdf Λ̂(s)/Λ̂(S), they are the order statistics of a size n∗ random sample with replacement from the set of original TTT failure
times {sij : 1 ≤ i ≤ K , 1 ≤ j ≤ ni}. Finally, the last strategy boot−n−t both keeps n∗

= n fixed and resamples from the
original TTT failure times. We note that in a somewhat different context, namely that of bootstrapping a kernel estimate
of λ(t), Cowling et al. (1996) consider resampling procedures which are analogous to the strategies boot+n+t, boot−n+t
and boot−n−t.

The strategies boot+n+t and boot−n+t require to sample from the cdf Λ̂S(s)/Λ̂S(S) (0 < s < S). This can be done
easily: since λ̂S(s) is a step function, the corresponding pdf λ̂S(s)/Λ̂S(S) can bewritten as amixture of uniform distributions.

5. Monte Carlo simulation

In this sectionwe describe someMonte Carlo simulations in order to compare the five resamplingmethods. Failure times
were generated for 36 = 3× 2× 2× 3 different scenarios. These were defined considering (i) three parametric models, (ii)
either K = 40 or K = 80 systems, (iii) either equal or unequal truncation times, and (iv) truncation times giving on average
roughly 0.5, 1.0 or 2.0 expected failures per system.

For the parametric models, we used a PLP intensity λ(t) = (β/θ) (t/θ)β−1, a log-linear intensity λ(t) = exp{α + βt},
and an increasing bounded intensity

λ(t) = α


1 −

1
√
1 + t/β


. (9)

The parameter values were set at β = 2 and θ = 24 for the PLP, α = −4.5 and β = 0.1 for the log-linear, and α = 0.6 and
β = 80 for the bounded intensity model. These are roughly the MLEs obtained by fitting each of these models to the power
transformers data set. In all cases we used a cost ratio CPM/CMR = 1/16, giving actual optimal periodicities of preventive
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Table 1
Simulation results for PLP intensity λ(t) = βtβ/θβ , β = 2, θ = 24.

Point Est. Equal truncation times Unequal truncation times
K = 40 K = 80 K = 40 K = 80

T 17 24 34 17 24 34 Ttr 1.36 Ttr 1.92 Ttr T ∗
tr 1.36 T ∗

tr 1.92 T ∗
tr

E(N) ≈ 20 40 80 40 80 160 20 40 80 40 80 160

τ̂PLP MRE 0.049 0.023 0.014 0.025 0.013 0.005 0.043 0.028 0.011 0.022 0.016 0.006
IQR.RE 0.195 0.141 0.137 0.121 0.099 0.093 0.189 0.155 0.145 0.121 0.109 0.099

τ̂NP MRE 0.052 0.051 0.059 0.024 0.050 0.025 0.085 0.091 0.078 0.042 0.044 0.034
IQR.RE 0.535 0.531 0.531 0.437 0.434 0.436 0.582 0.568 0.573 0.469 0.464 0.466

90% CI

Parametric-PLP MRL 0.430 0.352 0.331 0.285 0.239 0.231 0.444 0.382 0.355 0.295 0.263 0.249
1 − α̂ 0.911 0.896 0.884 0.917 0.896 0.896 0.908 0.896 0.892 0.895 0.893 0.906

Boot+n+t MRL 1.059 1.058 1.056 0.905 0.914 0.897 1.197 1.161 1.133 1.006 0.964 0.956
1 − α̂ 0.897 0.882 0.881 0.973 0.969 0.974 0.848 0.849 0.868 0.959 0.961 0.964

Boot−n+t MRL 0.969 1.013 1.040 0.855 0.887 0.885 1.103 1.111 1.109 0.960 0.940 0.944
1 − α̂ 0.893 0.880 0.883 0.973 0.969 0.972 0.844 0.849 0.868 0.957 0.960 0.963

Boot+n−t MRL 1.001 0.987 0.980 0.870 0.878 0.860 1.118 1.084 1.048 0.958 0.925 0.920
1 − α̂ 0.787 0.773 0.775 0.880 0.859 0.860 0.740 0.733 0.771 0.852 0.845 0.856

Boot−n−t MRL 0.887 0.928 0.956 0.822 0.855 0.842 1.003 1.030 1.022 0.907 0.899 0.896
1 − α̂ 0.765 0.767 0.766 0.867 0.853 0.857 0.722 0.724 0.765 0.842 0.841 0.854

Boot.sys MRL 0.974 0.977 0.965 0.863 0.867 0.850 1.107 1.076 1.032 0.950 0.916 0.898
1 − α̂ 0.781 0.768 0.766 0.875 0.854 0.857 0.736 0.729 0.763 0.850 0.843 0.852

Results based onM = 3000 simulations. In all cases the bootstrap sample size is B = 1000. MRE, IQR.RE, MRL and (1− α̂) stand respectively for themedian
and interquartile range of the relative error, the median relative length of the 90% CI (i.e. length divided by actual τ ) and the observed coverage. Ttr are the
truncation times of the power transformers data set. T ∗

tr is Ttr replicated twice.

maintenance equal to τ = 6.00, 8.04 and 5.99 for, respectively, the PLP, loglinear and bounded intensities. We note that
although other bounded intensities have been considered previously in the literature, e.g., λ(t) = α[1 − exp(−t/β)] by
Pulcini (2001), they are difficult to simulate from. This is because, as mentioned above, simulating an NHPP truncated in
(0, T ) requires sampling from the cdf Λ(t)/Λ(T ) (0 < s < S). This is typically achieved by sampling a Uniform(0, 1)
random variate u and solving the equation Λ(t)/Λ(T ) = u, which does not have an explicit solution for Pulcini’s intensity.
On the other hand, in the case of the bounded intensity (9), the mean number of failures is Λ(t) = α[t − 2β

√
1 + t/β] and

hence the equation Λ(t)/Λ(T ) = u has for 0 < t < T the unique solution t = uΛ(T )/α + 2β + 2
√

β
√
uΛ(T )/α + 2β .

For each of the three parametric models and K = 40 systems, we considered three scenarios each for the two cases of
equal and unequal truncation times. Equal truncation times were set to be T = 17, 24, and 34 for the PLP, T = 17, 24, and
30 for the loglinear, and T = 17, 24, and 36 for the bounded intensity function. As mentioned before, these values were set
in such a way that the expected failures per system are roughly 0.5, 1.0, and 2.0. Unequal truncation times were set to be
a multiple of the truncation times in the power transformers data set. The multiplication constant was set to be c = 1.00,
1.36, and 1.92 for the PLP, c = 1.00, 1.25, and 1.60 for the loglinear, and c = 1.00, 1.42, and 2.07 for the bounded intensity
case. Again, these values were set to have on average roughly 0.5, 1.0, and 2.0 expected failures per system. Finally, we also
considered scenarios with K = 80 systems by replicating twice the truncation times considered before when K = 40.

The failure times for each of the 36 scenarioswere simulatedM = 3000 times. For each simulation, the estimated optimal
periodicity was resampled B = 1000 for each of the five strategies discussed in the previous section. Bootstrap 90% CIs were
defined by the 5% and 95% quantiles of the bootstrap sample. Then, for each scenario and each strategy, we computed the
observed coverage 1− α̂ and themedian relative CI length (MRL, i.e., median CI length divided by the actual τ ). We note that
since τ̂ may be infinite with positive probability no matter the scenario considered, the average CI length actually estimates
∞. Hence, themedian length ismore appropriate than the average length as ameasure of efficiency. For comparison,we also
computed the parametric CI assuming a PLP process. To do this, we reparametrized the PLP intensity in terms of η = logβ
and ν = log θ , computed MLEs η̂ and ν̂ by maximizing numerically the PLP likelihood and obtained the estimate of the
optimal periodicity as

τ̂PLP = θ̂


CPM

(β̂ − 1)CMR

1/β̂

= eν̂


CPM

(eη̂ − 1)CMR

e−η̂

(10)

(cf. Gilardoni and Colosimo, 2007). Finally, in order to build CIs, the asymptotic variance of τ̂PLP was obtained by using the
Delta Method and the (η, ν) observed information matrix.

Tables 1–3 show the results of the Monte Carlo study. MRE, IQR.RE, MRL, and (1− α̂) stand, respectively, for the median
and interquartile range of the relative error, the median relative length of the 90% CI (i.e., length divided by actual τ ),
and the observed coverage. Ttr are the truncation times of the power transformers data set. T ∗

tr is Ttr replicated twice.
For completeness, we also included in these tables information about the parametric estimate τ̂PLP and the nonparametric
estimate of τ . In this case, for each point estimatewe report themedian and the interquartile range of the relative estimation
error (i.e., of the difference between the estimate and the actual τ divided by τ ).
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Table 2
Simulation results for loglinear intensity λ(t) = exp{α + βt}, α = −4.5, β = 0.1.

Point Est. Equal truncation times Unequal truncation times
K = 40 K = 80 K = 40 K = 80

T 17 24 30 17 24 30 Ttr 1.25 Ttr 1.60 Ttr T ∗
tr 1.25 T ∗

tr 1.60 T ∗
tr

E(N) ≈ 20 40 80 40 80 160 20 40 80 40 80 160

τ̂PLP MRE −0.163 −0.272 −0.272 −0.186 −0.288 −0.274 −0.236 −0.290 −0.251 −0.259 −0.305 −0.247
IQR.RE 0.276 0.111 0.132 0.182 0.072 0.095 0.157 0.128 0.149 0.103 0.085 0.104

τ̂NP MRE −0.028 −0.035 −0.023 −0.024 −0.036 −0.037 −0.008 −0.018 −0.014 −0.014 −0.011 −0.015
IQR.RE 0.549 0.541 0.558 0.469 0.472 0.443 0.608 0.576 0.599 0.506 0.487 0.479

90% CI

Parametric-PLP MRL 0.519 0.251 0.255 0.370 0.166 0.180 0.337 0.271 0.276 0.223 0.183 0.196
1 − α̂ 0.650 0.167 0.159 0.524 0.018 0.023 0.428 0.177 0.243 0.191 0.018 0.067

Boot+n+t MRL 1.055 1.062 1.063 0.929 0.947 0.935 1.155 1.160 1.150 1.030 1.019 0.999
1 − α̂ 0.976 0.977 0.974 0.973 0.974 0.976 0.971 0.975 0.976 0.975 0.975 0.972

Boot−n+t MRL 0.981 1.032 1.046 0.892 0.929 0.925 1.089 1.120 1.137 0.997 1.000 0.990
1 − α̂ 0.961 0.970 0.972 0.960 0.968 0.972 0.960 0.968 0.973 0.966 0.971 0.969

Boot+n−t MRL 1.003 0.997 1.007 0.875 0.901 0.892 1.078 1.079 1.081 0.968 0.956 0.955
1 − α̂ 0.881 0.882 0.880 0.910 0.907 0.920 0.854 0.866 0.870 0.905 0.908 0.906

Boot−n−t MRL 0.930 0.967 0.981 0.848 0.880 0.885 1.024 1.048 1.069 0.943 0.938 0.947
1 − α̂ 0.957 0.874 0.871 0.895 0.903 0.918 0.832 0.860 0.861 0.898 0.901 0.903

Boot.sys MRL 0.987 0.986 0.993 0.870 0.894 0.884 1.071 1.068 1.068 0.962 0.959 0.947
1 − α̂ 0.876 0.877 0.871 0.910 0.902 0.916 0.852 0.864 0.859 0.900 0.900 0.898

Results based onM = 3000 simulations. In all cases the bootstrap sample size is B = 1000. MRE, IQR.RE, MRL and (1− α̂) stand respectively for themedian
and interquartile range of the relative error, the median relative length of the 90% CI (i.e. length divided by actual τ ) and the observed coverage. Ttr are the
truncation times of the power transformers data set. T ∗

tr is Ttr replicated twice.

Table 3
Simulation results for bounded intensity λ(t) = α[1 − (1 + t/β)−0.5

], α = 0.6, β = 80.

Point Est. Equal truncation times Unequal truncation times
K = 40 K = 80 K = 40 K = 80

T 17 24 36 17 24 36 Ttr 1.42 Ttr 2.07 Ttr T ∗
tr 1.42 T ∗

tr 2.07 T ∗
tr

E(N) ≈ 20 40 80 40 80 160 20 40 80 40 80 160

τ̂PLP MRE 0.062 0.048 0.035 0.041 0.034 0.025 0.068 0.050 0.027 0.044 0.035 0.025
IQR.RE 0.197 0.157 0.124 0.130 0.102 0.091 0.196 0.154 0.130 0.127 0.104 0.095

τ̂NP MRE 0.044 0.062 0.070 0.037 0.038 0.030 0.089 0.074 0.079 0.029 0.054 0.050
IQR.RE 0.538 0.564 0.541 0.467 0.466 0.455 0.606 0.575 0.568 0.467 0.469 0.477

90% CI

Parametric-PLP MRL 0.445 0.364 0.319 0.296 0.243 0.221 0.466 0.380 0.336 0.306 0.258 0.238
1 − α̂ 0.921 0.885 0.884 0.923 0.885 0.885 0.902 0.896 0.904 0.894 0.880 0.894

Boot+n+t MRL 1.073 1.103 1.089 0.928 0.938 0.925 1.234 1.196 1.155 1.036 1.000 0.997
1 − α̂ 0.895 0.901 0.880 0.975 0.971 0.972 0.856 0.873 0.881 0.969 0.968 0.972

Boot−n+t MRL 0.974 1.052 1.064 0.878 0.911 0.911 1.135 1.139 1.135 0.986 0.976 0.984
1 − α̂ 0.895 0.897 0.878 0.970 0.969 0.971 0.853 0.870 0.881 0.966 0.967 0.970

Boot+n−t MRL 1.027 1.045 1.010 0.896 0.901 0.893 1.153 1.119 1.086 1.000 0.969 0.952
1 − α̂ 0.792 0.788 0.765 0.876 0.867 0.868 0.749 0.759 0.761 0.858 0.860 0.859

Boot−n−t MRL 0.918 0.982 0.988 0.837 0.875 0.871 1.041 1.048 1.049 0.939 0.943 0.935
1 − α̂ 0.770 0.777 0.760 0.861 0.859 0.864 0.730 0.748 0.756 0.848 0.854 0.858

Boot.sys MRL 1.009 1.019 0.990 0.886 0.898 0.879 1.149 1.105 1.067 1.004 0.966 0.943
1 − α̂ 0.787 0.783 0.775 0.871 0.864 0.863 0.744 0.757 0.752 0.855 0.855 0.859

Results based onM = 3000 simulations. In all cases the bootstrap sample size is B = 1000. MRE, IQR.RE, MRL and (1− α̂) stand respectively for themedian
and interquartile range of the relative error, the median relative length of the 90% CI (i.e. length divided by actual τ ) and the observed coverage. Ttr are the
truncation times of the power transformers data set. T ∗

tr is Ttr replicated twice.

The observed coverage and MRL for the case of K = 40 equally truncated systems are shown in Fig. 3. Below we
summarize the main findings. Of course, our conclusions are limited to the scenarios considered above.

• As should be expected, the parametric CI is the best one under the PLP model. Indeed, in all 12 PLP scenarios, the
parametric CI gave observed coverages between 0.884 and 0.917, hence quite close to the 90% nominal coverage, while
the corresponding CI lengths were roughly between one-half and one-fourth those of the best nonparametric CI. The
results in Table 3 indicate that the parametric CI also performedwell for the bounded intensity scenarios. For some choice
of parameter values, almost all observed failures are located in a time period where the PLP and the bounded intensities
are very similar. Our results in the next section suggest that this happens too for the power transformer application.
However, the parametric CI performed badly for the loglinear model, sometimes with almost null observed coverages.
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Fig. 3. Median relative length and descriptive confidence levels for K = 40 and equal truncation times: (a) and (b) are for the PLP, (c) and (d) for the
log-linear and (e) and (f) for the bounded intensity model. Nominal coverage is 90%.

• Although resampling the systems in the original time scale (i.e.,boot.sys)may be acceptable for largeK , it tends to behave
always worst than, for instance, boot−n+t.

• Increasing the truncation times has little effect, if any, on the performance of the nonparametric point and interval
estimates. This is probably due to the facts that (i) nonparametric estimates behave locally and (ii) the estimation of
τ depend on the values of λ̂(t) for t < τ . Of course, this is true so long as the truncation times are greater than the
optimal τ .

• Across the different simulation scenarios, the bootstrap strategies boot+n+t or boot−n+t perform at least as well,
and in some cases much better, than any of the other three (see, for instance, the PLP case with K = 40 systems). In
other words, resampling the failure times from the cdf Λ̂S(s)/Λ̂S(S) is better than resampling from the actual times.
Finally, among the two strategies that resample from the cdf Λ̂S(s)/Λ̂S(S), boot−n+t seems to behave slightly better
than boot+n+t.

6. Application

Here we consider the data set consisting of n = 21 failure times for K = 40 power transformers (see Fig. 1). The electric
company operating the transformers provided the cost ratio CPM/CRM = 1/15 necessary to obtain τ in (1).

NPMLEs of themean functionΛ(t) and the intensity λ(t) are shown in Fig. 2(b) and (c). The corresponding estimates D̂(t)
and τ̂NP = 7.396 are shown in Fig. 2(d). We also adjusted the three parametric models discussed previously by numerically
maximizing the corresponding likelihood functions. The MLEs were θ̂ = 24.366, β̂ = 1.995, and τ̂PLP = 6.286 for the PLP;
α̂ = −4.505, β̂ = 0.094, and τ̂loglin = 8.586 for the loglinear; and α̂ = 0.561, β̂ = 73.138, and τ̂bounded = 6.140 for
the bounded intensity model. Fig. 4(a) shows the unconstrained NPMLE estimate of Λ(t) along with the three parametric
estimates and suggests that the PLP and bounded intensitymodels adjust better to the data than the loglinearmodel. Fig. 4(b)
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Fig. 4. Estimates of Λ(t) for the observed failure times: (a): NPMLE, PLP, loglinear, and bounded model estimates against time, (b): PLP against bounded
model estimates, (c)–(e): parametric against NPMLE estimates, (f): nonparametric estimate of H(t)/CMR , the mean cost per unit of time measured in CMR
monetary units.

shows the parametric estimates of Λ(t) for the observed failure times for the PLP and bounded intensity models. Since the
points lie almost exactly on the line y = x, this suggests that for the range of values considered in this data set the two
models are to a large extent indistinguishable. We note that this finding is consistent with the simulation results reported
in the previous section.

The maximized log-likelihoods were ℓ̂PLP = −87.671, ℓ̂loglin = −88.913, and ℓ̂bounded = −87.639. Since all three models
have exactly two parameters, the Bayesian information criterion (BIC) to compare them differs from the log-likelihoods by
the same constant. Hence, assuming equal prior probabilities for the three models and diffuse priors for the parameters, we
can interpret the likelihoods as being approximately proportional to the posterior probabilities of the models. These would
give probabilities 0.431, 0.124, and 0.445 for the PLP, loglinear and boundedmodels, respectively. Hence, even if the PLP and
bounded intensity models adjust better, it is not possible to totally dismiss the loglinear model. Moreover, the diagnostic
plots of the parametric estimates Λ̂PLP(tij), Λ̂bounded(tij) and Λ̂loglin(tij) against the unconstrained NPMLE estimate, shown in
Fig. 4(c)–(e), leave some doubt about the quality of the three parametric fits.

The parametric 90% CI based on the Delta Method and (10) was 5.203 < τ < 7.593, which is based on an estimated
error equal to 0.115 for log τ̂PLP. On the other hand, the 90% CI using the boot−n+t was 5.235 < τ < 10.894. We note
that the difference between the two CIs seems to be almost exclusively along the upper tail of the sampling distributions,
in the sense that the two lower limits are quite similar. Given the small number of failures and the previous observations
about the fit of the three parametric models, we feel that the parametric CI may be misleading in the sense that it may fail
to capture all the uncertainty in the data.

To conclude this section, we note that the constrained NPMLE of Λ(t) can be plugged into (7) to obtain a nonparametric
estimate of the expected cost per unit of time. Note that since Λ̂(t) is piecewise linear, the estimate ĤNP(t)will be piecewise
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hyperbolic (see Fig. 4(f)). For the estimates considered above, the estimated costs per unit of time (1000 h), measured in
CMR monetary units, are 0.0131 for τ̂NP = 7.396, 0.0144 for τ̂PLP = 6.286, 0.0162 for τ̂loglin = 8.586, and 0.0146 for
τ̂bounded = 6.140. Even if the differences between the costs may seem small, one should consider here that it may have
a large financial impact for a company that operates many transformers over a very long horizon.

7. Final remarks

This paper presented a bootstrap nonparametric approach to constructing CIs for functionals of the intensity of an NHPP
subject to a monotonicity constraint. When several realizations of the NHPP are observed, our results suggest that one
should first pool or superimpose the realizations using the TTT time transform and then bootstrap the one realization of this
superimposed process. In a sense, this is consistent with the fact that, in the context of kernel estimation of the intensity
function, there is substantial evidence that one should pool first and estimate second and not vice versa (see, for instance,
Chiang et al., 2005 or Gilardoni and Colosimo, 2011).

Among the four different bootstrap strategies that resample the TTT superimposed failure times, we conclude that one
should always resample the times from the cdf Λ̂S(s)/Λ̂S(S) (0 < s < S), although whether resampling the total number
of failures n∗ from a Poisson distribution with mean Λ̂S(S) or keeping it fixed and equal to the observed number of failures
has little impact on the length and coverage of the CIs. Based on this, we found in Section 5 that the strategy boot−n+twas
marginally better than boot+n+t, but any of those two performed much better than the other three bootstrap procedures
studied. In Section 6, we found a nonparametric CI for the optimal maintenance time for a real data set, improving, in our
view, on some parametric CIs that have been reported previously in the literature. We note that one of the advantages of
the TTT transform is that the corresponding bootstrap CIs are quite fast to compute (about 13 s on R running under Linux
on a 2.40 GHz Intel core i5 processor for the transformers data set). Finally, as a side note, in Section 5 we introduced a new
bounded intensity model for the NHPP which, unlike other such intensities, is easy to simulate from.
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Appendix. Proof of (3)

Here we prove that the constrained NPMLE of λ(t) is given by (3). We begin by reviewing some basic facts about convex
sets (cf. Ferguson, 1967 or Rao, 1967). The convex envelope C(A) of a set A is the set of all points x that are convex linear
combinations (clc) of elements of A, i.e., all x such that there exist an integer r, a1, . . . , ar ∈ A, and nonnegative weights
w1, . . . , wr with

r
i=1 wi = 1 such that x =

r
i=1 wiai. An element of C(A) is said to be an extreme point if it cannot be

written as a clc of any two different elements of C(A). The boundary of C(A) is the set formed by all extreme points and all
those points which are the clc of at most two elements of C(A).

Given an increasing intensity λ(t), define λ∗(t) = λ(max{ti : ti ≤ t}). Since L(λ) ≤ L(λ∗), this implies that the con-
strained NPMLE λ̂(t) ought to be a step function. It is also easy to prove that

 T
0 λ̂(u) du = n (see, for instance, Gilardoni and

Colosimo, 2011, Proposition 3).
Let A = {(t, y) ∈ R2

: y ≥ Λ̃(t)} be the epigraph of Λ̃(t) and denote by (t1, 0) = (ti1 , i1 − 1), (ti2 , i2 − 1), . . . ,
(tiE+1 , iE+1 − 1) = (T , n) the extreme points of C(A), ordered so that 1 = i0 < i1 < · · · < iE < iE+1 = n + 1. To prove that
(3) gives the constrained NPMLE of λ(t), note that with this notation (3) is equivalent to

λ̂(t) =
ij+1 − ij
tij+1 − tij

(A.1)

(i.e. the slope of the straight line through (tij , ij − 1) e (tij+1 , ij+1 − 1)) whenever tij ≤ t < tij+1 . Hence, we need to show that
for any increasing step function λ(t) we have that ℓ(λ̂) ≥ ℓ(λ).

It follows from (A.1) and (2) that

ℓ(λ̂) =

n
i=1

log λ̂(ti) −

 tn+1

0
λ̂(u) du

=

E
j=0

(ij+1 − ij) log
ij+1 − ij
tij+1 − tij

−

E
j=0

(tij+1 − tij)
ij+1 − ij
tij+1 − tij

=

E
j=0

(ij+1 − ij)


log

ij+1 − ij
tij+1 − tij

− 1


. (A.2)
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On the other hand, for any increasing step function λ(t),

ℓ(λ) =

n
i=1

[log λi − (ti+1 − ti)λi] =

E
j=0

ij+1−1
i=ij

[log λi − (ti+1 − ti)λi] , (A.3)

where we have defined λi = λ(ti) (0 ≤ λ1 ≤ · · · ≤ λn).
To finish the proof we will show that every term in (A.2) is not less than the corresponding term in (A.3). To do this, note

that since the indices ij correspond to extreme points of C(A), for any ti such that tij ≤ ti < tij+1 (equivalently, for any i such
that ij ≤ i < ij+1) wemust have that the point (ti, i−1) lies above or over the straight line through the points (tij , ij −1) and
(tij+1 , ij+1 − 1). Otherwise, at least one of the points (tij , ij − 1) or (tij+1 , ij+1 − 1) would not be extreme. Hence, we conclude
that

ti − tij ≤ (tij+1 − tij)
i − ij

ij+1 − ij
, (A.4)

whenever ij ≤ i < ij+1. Taking this observation into account, a generic term in (A.3) must satisfy

ij+1−1
i=ij

[log λi − (ti+1 − ti)λi] =

ij+1−1
i=ij

log λi − (tij+1 − tij)λij+1−1 +

ij+1−1
i=ij

(ti − tij)(λi − λi−1)

≤

ij+1−1
i=ij

log λi − (tij+1 − tij)

λij+1−1 −

ij+1−1
i=ij

i − ij
ij+1 − ij

(λi − λi−1)


=

ij+1−1
i=ij

log λi −
tij+1 − tij
ij+1 − ij

(ij+1 − ij)λij+1−1 −

ij+1−1
i=ij

(i − ij)(λi − λi−1)


=

ij+1−1
i=ij

log λi −
tij+1 − tij
ij+1 − ij

(ij+1 − ij)λij+1−1 −

ij+1−1
i=ij


(i − ij)λi − (i − 1 − ij)λi−1 − λi−1


=

ij+1−1
i=ij

log λi −
tij+1 − tij
ij+1 − ij

(ij+1 − ij)λij+1−1 − (ij+1 − 1 − ij)λij+1−1 + λij−1 +

ij+1−1
i=ij

λi−1


=

ij+1−1
i=ij

log λi −
tij+1 − tij
ij+1 − ij

ij+1−1
i=ij

λi =

ij+1−1
i=ij


log λi −

tij+1 − tij
ij+1 − ij

λi



≤

ij+1−1
i=ij


log

ij+1 − ij
tij+1 − tij

− 1


= (ij+1 − ij)


log

ij+1 − ij
tij+1 − tij

− 1


,

as was to be shown. Here, the first inequality follows from (A.4) and the fact that λi − λi−1 ≥ 0, while the second inequality
follows from the fact that log x − ax ≤ log(1/a) − 1 whenever x, a > 0.
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