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Abstract

A novel family of twelve mixture models with random covasgat nested in the linedrcluster-weighted model
(CWM), is introduced for model-based clustering. The lime@WM was recently presented as a robust alternative
to the better known linear Gaussian CWM. The proposed faofilmodels provides a unified framework that also
includes the linear Gaussian CWM as a special case. Maxinkefihbbod parameter estimation is carried out within
the EM framework, and both the BIC and the ICL are used for rhselection. A simple andfective hierarchical
random initialization is also proposed for the EM algoritifhe novel model-based clustering technique is illustrate
in some applications to real data. Finally, a simulationlgtior evaluating the performance of the BIC and the ICL is
presented.
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1. Introduction

In direct applications of finite mixture models (see Titbgion et al., 1985, pp. 2—3), we assume that each mixture-
component represents a group (or cluster) in the origint@l. dehe term “model-based clustering” has been used to
describe the adoption of mixture models for clustering amreroften, to describe the use of a family of mixture models
for clustering (see Fraley & Raftery, 1998 and McLachlan &fad, 1988). An overview of mixture models is given
in Everitt & Hand (1981), Titterington et Al. (1985), McLdah & Peel (2000), and Frithwirth-Schnatter (2006).

This paper focuses on data arising from a real-valued rangamor(Y, X')’ : Q — R%?, having joint density
p (Y, X), whereY is the response variable aiXds the vector of covariates. Standard model-based clagtegthniques
assume tha®@ can be partitioned int@& groupsQ;, ..., Qc. As for finite mixtures of linear regressions (see, e.g.,

ILeisch/2004 and Frithwirth-Schnalter, 2006, Chapter 8asgaime that, for eadhy, the dependence of on x can
be modeled by

Y =,u(X;ﬂg) + &g = Pog + P1gX + &g
wherey = (Bog.Big) . (X Bg) = E (YIX = x,Q) is the linear regression function ag is the error variable,
independent with respect ¥, with zero mean and finite constant variamgeg =1,...,G. However, as highlighted
in (2000), finite mixtures of linear regressions aegiequate for most of the applications because they assume
assignment independendbe probability for a pointy, x’)’ to be generated by one of the mixture components has
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to be the same for all covariates valuesin other words, the assignment of the data points to theersifias to be
independent of the covariates.

Here, diferently from finite mixtures of linear regressions, we assuandom covariates having a parametric
specification. This allows foassignment dependencthe covariate distributions of the mixture components can
also be distinct. In the framework of mixture models withdam covariates, the cluster weighted model (CWM,;

\Gershenfeld, 1997), with equation

G G
P X) = > mgp(y, XIQg) = D" 7 (¥IX, Qg) P(XI). (1)
g=1 g=1

also called saturated mixture regression modél by Wed€lZR@onstitutes a reference approach to model the joint

den3|ty In 1), normality of bottp (y|x Qq) and p(xIQ) is commonly assumed (see, elg.. Gershenfeld.|1997 and
IEIM) Alternatlveli/ In al. (2012) psmalso the use of thalistribution which provides, as other

approache as, 2013, 20114a, b), more tdlitisg for groups of observations with longer than

normal tails or noise data (see, elg.. Zellner, 1976, Labgk,1989| Peel & McLachlan, 2000, McLachlan & Peel,
(2000, Chapter 7, Chatzis & Varvarigou, 2008, And Greselingrassid, 2010). In particular, the authors consider

{g+1
%)

p(¥IX. Qq) = hi (YIX; €4, 4g) = - (2)
(v48)” {1+ 6y (x: Bo) s 73

and

p(XI%) = hw, (x; g, vg) = ; s 3)
(m/g)z [1 +6 (X, JTo% Eg)] :

with £ = {,39, } dg = {yg,):g}, 6[y,,u(x;ﬁg);o-é] = [y—,u(x;ﬂg)] /o-g, andd(x yg,):g) (x yg) ):51 (x —yg).
Thus, [2) is the density of a (generalized) univartadéstribution, with location parametgar(x, ,Bg), scale parameter

O'S, andZq degrees of freedom, whilkl(3) is the density of a multivaralistribution with location parametgy, inner
product matrixtq, andvy degrees of freedom. By substitutitig (2) abd (3) ififo (1), W& the lineat CWM

G
P X ) = D mghe (vix: &4, Zo) Py, (% D, vg) (4)
g=1

where the set of all unknown parameters is denote@yby {y,,...,¥g}, with ¢, = {ng,fq, _{g,ﬂg,vg}. Recent

developments in CWMs can be found.in PUrizo (20114), Punzo & istudlas (2014a]), Punzo & Ingrassia (2015a,b),
'Subedi et dl[(2013, 20115), and Ingrassia &t al. (2015).

In this paper, we introduce a family of twelve linear CWMsaihed from[(#) by imposing convenient component
distributional constraints. Ify,vq — oo, the linear Gaussian (normal) CWM is obtained as a specss.cdhe
resulting models are easily interpretable and appropidatgescribing various practical situations. In particutbey
also allow us to infer if the group-structure of the data i tluthe contribution oK, Y|X, or both.

The paper is organized as follows. In Secfibn 2, we recallehbdsed clustering according to the CW approach,
and give some preliminary results. In Sectidn 3, we intredihe novel family of models. Model fitting in the EM
paradigm is presented in Sectioh 4, related computatispas are addressed in Secfibn 5, and model selection
is discussed in Sectidd 6. In Sectidn 7 some applicationsabdata are illustrated. In Sectibh 8 simulations for a
comparison between BIC and ICL are described. Finally, ictiBe[d, we give a summary of the paper and some
directions for further research.




2. Preliminary results for model-based clustering

This section recalls some basic ideas on model-based thgccording to the CWM approach and provides
some preliminary results that will be useful for definitiamdgustification of our family of models.

Let (yl, x’l)/ yees (yN, x§\,)' be a sample of sizhl from (@). Oncey is estimated (fixed), the posterior probability
that the generic unityn, x;,)’, n = 1,..., N, comes from componefly is given by

0= P (2 ) = "D o) biders) o e )
; P (¥ X0 )

These probabilities, which depend on both marginal and itiondl densities, represent the basis for clustering and
classification.

The following two propositions, which generalize some tessgiven in Ingrassia et al. (2012), require the prelim-
inary definition of

G
pMXim£.¢) = " mghe (Mx: €4, Zo) (6)
g=1
and .
p(x; 7!"?»1’) = Z”ghtd (X; Jg, Vg)» (7)
o1

which correspond to a finite mixture of linearegressions and a finite mixture of multivariatdistributions & =
{r1,...,meal, € =161 &ch (= {41, ... &l @ = {U1,..., ¥}, andy = {v1, ..., vG}), respectively .

Proposition 1. Givenr, ¢, andy, if hy (YIX; €1,41) = -+ = he(YIX; &g, Zc) = hi (YIX; €, &), then model€§4) and (@)
generate the same posterior probabilities.

Proor. If the component conditional densities do not dependgnthen the posterior probabilities for the lindar
CWM in (@) can be written as

7gh (Y& Dy, (xn; g, vg) ngh, (xn; g, vg)

Tng = = s

G G

Z”jhx,(élnpéﬁf,/ﬁhtd (Xn;ﬂj,vj) Zﬂ'jhtd (Xn;ﬂj,vj)

j=1 j=1
which correspond to the posterior probabilities for mofi! ( O
Proposition 2. Givengz, £, and{, if hy (X, d1,v1) = -+ = hy (X;d6,v6) = hy, (x;d,v), then model€d) and (6)

generate the same postérior probabilities.

Proor. If the component marginal densities do not depenfgrthen the posterior probabilities for the ling&@@WM
in (@) can be written as

mghy (Yn|Xn;§ga§g) hy UL,V nght (Yn|xn;§g,§g)
Tng = 3 =75 >
Db (Yol €5, 45) M O 9) > b (Yol xo: 5,.45)
=1 =1
which correspond to the posterior probabilities for mol@! ( O

Note that the results in Propositibh 1 4id 2 are not resttiiehet distribution; in fact, they can be easily extended
to the general CWM in{1). Further, some results about thetiogl between linear Gaussian (PICWMs and finite
mixture of regressions are giveriin Ingrassia et al. (20&®jlly, it is important to underline that up to now there are
no theoretical results on the identifiability for linear CV8Mhowever, since they can be seen as mixture models with
random covariates, the resultd in Hen 000, Section@®é¥2.a) can apply.
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3. The family of linear CWMs
This section introduces the novel family of mixture modedsained from the linearCWM. In (@), let us consider:
e component conditional densitighaving the same parameters for@j,
e component marginal densitig having the same parameters for@},
e degrees of freedow, tending to infinity for eaclfy, and
o degrees of freedomy tending to infinity for eaclf),.

By combining such constraints, we obtain twelve parsimosiand easily interpretable linear CWMs that are appro-
priate for describing various practical situations; theyschematically presented in Table 1 along with the number o
parameters characterizing each component of the CW deaitiopo For instance, ify, {g — oo for eachQg, we are
assuming a normal distribution for the component condéti@and marginal densities; furthermore, we can assume
different linear models (in terms gf, andas) in each cluster while keeping the densityXfqual between clusters.
From a notational viewpoint, this leads to a linear CWM thatlvave simply denoted &N-EV: the first two letters
represent the distribution of|Qg andY|X, Qg (N =Normal andt =t), respectively, while the second two denote the
distribution constraint between clusterssfEqual and \&Variable) forX|Qg andY|X, Qq, respectively.

Only two of the models given in Tablé NN-VV and tt-VV, have been developed previously; the former cor-
responds to the linear Gaussian CWM of Gershehfeld (199f)evthe latter coincides with the line&ICWM in
IIngrassia et al| (2012). Furthermore, in principle theeesixteen models arising from the combination of the afore-
mentioned constraints; nevertheless, four of them — thésehnshould be denoted as EE — do not make sense. Indeed,
they lead to a single cluster regardless of the valu&. dfinally, we remark that whe@ = 1, it results VV= VE = EV
regardless of the chosen distribution.

4. Estimation via the EM algorithm

The EM algorithm|(Dempster etlal., 1977) is the standard tmomaximum likelihood (ML) estimation of the
parameters for mixture models. This section describes Mealgorithm for the most general modiVV. Details
for all the other models are given[in Appendiy A.

In the EM framework, the generic observatign, x;,)’ is viewed as being incomplete; its complete counterpart
is given by(yn, X, Z,, Un, Vi)', Wherez, is the component-label vector in whiahy = 1 if (Yn, x;) comes from the
gth componentz,q = 0 otherwise), whilau, andv, arise from the standard theory of the (multivariate)stribution
according to which

. 0'2
Yn |Xn7 Vin, Zng = 1 ind. N[/J (Xn;ﬂg)» V_g] (8)
n
4y g
Vilzg=1 "¢ G 2929 9
n|Zng ammd 2. 2 |. (9)
forn=1,...,N, and
; X
Xn lun, Zg=1 ind. (ﬂg’ u—g) (10)
n
Unlg=1 "% cammd 2, 2), (11)

forn=1,...,N. Because of the conditional structure of the complete-ahatdel given by distribution§{8)Y. (9L (110),
and [11), the complete-data log-likelihood can be decomgas

e(9) = o) e (€) b (0) + e (8) 1 1) @)
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Model X|Qyq YIX, Qg Number of free parameters

Identifier Density Constraint Density Constraint X Y|x weights
tt-VV t Variable t Variable G(d+%52+1) + G@d+3) + G-1
tt-VE t Variable t Equal G(d+%%+1) + d+3 + G-1
tt-EV t Equal t Variable ~ d+%P .1 4+ G@+3) + G-1

NN-VV ~ Normal Variable Normal Variable G (d + @) + Gd+2 + G-1

NN-VE Normal Variable Normal Equal G (d + @) + d+2 + G-1

NN-EV  Normal Equal Normal Variable d+ d(d—z*l) + Gd+2 + G-1

tN-VV t Variable  Normal Variable G (d + @ + 1) + GW+2 + G-1
tN-VE t Variable  Normal Equal G (d + @ + 1) + d+2 + G-1
tN-EV t Equal  Normal Variable d+%%4+1 + G@+2 + G-1
Nt-VV ~ Normal Variable t Variable G (d + @) + GW+3) + G-1
Nt-VE  Normal \Variable t Equal G (d + @) + d+3 + G-1
Nt-EV  Normal  Equal t Variable d+ 4D + G@W+3) + G-1

Table 1: Overview of linear CWMs. In “model identifier”, thesi and second letters represent, respectively, the glesfsi|Qg andY|x, Qg (hereN =Normal), while the third and fourth letters
indicate, respectively, ifi (x;ﬂg, vg) andh; (ylx;fg,gg) are assumed to be Eqedl or VariablesV between groups.



where

zng{— In (27) + IV, — IN 07 = V6 [yn,,u (xn;ﬂg) : o-é]},

G
2,
n=1 g=1
ShS 4\ o, ¢
Igc(é’):ZZzng[—lnl"(zg)+§g Eg+—(lnvn Vi) — Invy |,
n=1 g=1

N G
l4c (12) = % Z Z Zng [—d In(27) + dInuy — In |Eg| - uné(xn,yg; Eg)]

n=1 g=1
and VG
Vi Vi
|5c(1/) = ZZZ"Q[_MF(EQ)JF Egln Eg Eg (Inup —up) - Inun].
n=1 g=1
4.1. E-step

The E-step, on thé& + 1)th iteration, requires the calculation of
Qv w®) = Eyeo [le () [va X0)' . (v X0 |

In order to do this, we need to calculaE@m (an Vi, xn), Eyw (Vn ¥n, Xns Zn), By (Vn [Yn, Xn, Zn). Ey (Un[Xn, z1)
G, whereU,, = InU, andV,, = In V,. It follows that

(13)

andE (Un [Xn, zn), forn=1,...,Nandg=1,...,
.

Ey (an [Yn, Xn)
7Ph (anXn,f(k) (k)) (Xn;ﬂék)"’gk)) (14)
P (¥ Xn: 9% ’

K
vig

E%(k) (Vn |Yn, Xn, Zng = 1)
&0+ 8 [yn 1 (%0 BY) 1 50| 4o

and
E‘?(k) (Un lyn, Xns Zng = 1) = uﬂg
N
(16)

Vg0 + 6 (%o, 1§ 28

where the expectations arffected (see the subscript) using the curreryg(ﬁ)tfor ¥ (n=1,...,Nandg=1,...,G).
Regarding the last two expectations, from the standardytmothe gamma distribution, we have that

K
i

4 M4
k) _ [¢]
IV + [ > ] In( 5 (17)

E%(k) (vn |Yn, Xn, Zng = 1)
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and

Elf(k) (Un lxn, an = 1) = Uﬂg

W 1 d 0, g
Inu®) + l//( * ] |n(v‘9’2+ ] (18)

wherey (s) = [T (s) /9] /T (9) is the Digamma function.
Using the results froni{14) t6 (1 7) to calculdiel(13), we hifneet:

Q¥ y®) = Qu(m y®) + Qo (&y™®) + Qs (£ y™M) + Qu (8 9¥) + Qs (v 9¥), (19)
where
N G
Qu(my®) = > Wiy, (20)
n=1 g=1
N G
2 (£9M) = >0 Qo (£ 9), (21)
n=1 g=1
N G
5 (290) = D7 w8Qan (2 9Y). (22)
n=1 g=1
N G
5 (3:99) = 3 D 74 Qun (9614 ) (23)
n=1 g=1
and
N G
(n9®) = > > 19 Qsn (ve:y®). (24)
n=1 g=1
with 1
Qon (fg; 'g(k)) = E {_ In (2n) +~\7$1kg) —In O'S — Vngd [Yn»# (Xn;ﬂg) ; O'S]}
and

Qun (W5 y¥) = [ din (2r) + dul - In [Eg| - Ungd (Xn, p1g: Zg)]|

and where, on ignoring terms not involviggandyg, respectively,
N :

Qun (25 9%) = mr(‘;) T [v(g v+ (v - )
n=1 |

and

Qsn (VQ;{/(")) InF(Eg) Eg an_Zg + 29 [ —Inul + Z In uld - u(k) |
4.2. M-step
On the M-step, at thé + 1)th iteration, it follows from [IP) thatr®+D, gk+D +D) 9D and kD can be

computed independently of each other, by separate coasioleof [20), [Z1),[22) [(23), anf{R4), respectively. The
solutions forn('”l) {,-‘S‘*l), andﬂg“l) exist in closed form. Only the updateg<+ and Vé Y need to be computed
iteratively.

The updated estimates of the mixture weights are

ﬂ,ékJrl) _ Z ® /n (25)
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while those ofy, g =1,...,G, result

N N
p§D =3 rulxa > 78l (26)
n=1 n=1
and
N , N
k+1 k), (K k+1 k+1 k), (K
E0D = 30U (6, = D) (xo - D) [ D 190, (27)
n=1 n=1

where, as motivated for examplmmma, the troerdaatory’, rﬂg of (21) has been changed to yield a
significantly faster convergence for the EM algorithm.
Regarding the updated estimateggfg = 1,...,G, maximization of [(21l), after some algebra, yields

N N N -1
(K)\ /) ¢ (K (/0K 3
Z ngvfwg Z ngvfwg Z ngvfwg
(k1) n=1 _n=l n=1
ﬂ - N N N
DI DI DI
n=1 n=1 n=1
N N N
k) K k) (K K)\ (K
Y el Y i
1 1 -1
. n= . _ n= n: - , (28)
(K)\ AK) (K)\AK) (k) k)
Z ng\’gg Z ng\’gg Z ng\’gg
n=1 n=1 n=1
N N
(K)\/(K) (9,
Z V(gy” Z ng\’gg
k+1 1 k+1 1
Bog = By (29)
(K)y (k) ()4 (K)
Z ngvfwg Z ngVﬁg
n=1 n=1
and
N
k k) (K k+1 kel) o )y AK
D = A o (85 )] (30)
n=1 n=1

where the denominator df (B0) has been modified in line withtwias explained for equatidn (27).
As said before, because we are acting in the most generalrcaggch the degrees of freedotg andvy are
inferred from the data, we need to numerically solve the gous

S
§ _a y¥)=0 (31)
and

N, 5
Za_ (vgry®) =0, (32)

(D as the respective solutions of

which correspond to finding*® andv

(k) (K)
¢[§g - 1]—|n[§g - 1]:0 (33)



and

N
Vg 1
—(//(2) In—+1 —(Z (Inud) - ulg) +
Ny~ 7
YK
g

(k)+d n +d
o550 %50

5. Computational issues and partition evaluation

WhereN(k) = an(k) g=1...,G

This section presents some issues concerning practicimemtation of the EM algorithm described in Secfibn 4

(see alsG ADpENA )

5.1. Estimating the degrees of freedom

Code for all of the analyses presented herein was writtdreiiRtcomputing environmeri Development Core Team,
) and a numerical search for the estimates of the degféegdom was carried out using theiroot command
in thestats package. This command is based on the Fortran subratsinein described bﬁhml’o In order
to expedite convergence, the range of valuesdpfy, v, andZ was restricted t¢2, 200]. Previous work in the context
of model-based clustering (see Andrews & McNicholas, 2@t some experiments whose results are not reported
here suggest that these restrictions do not hamper clagsifigperformance and show that the upper limit of 200 does
not thwart the recovery of an underlying normal structure.

5.2. EMinitialization

Itis well known that the choice of starting values represamtimportant issue in the EM algorithm. The standard
initialization consists of selecting a value #!” (see, e.gl, Bagnato & Punzo, 2013). An alternative appraaohe

natural in the authors’ opinion, is to specify a value#3t, n = 1, ..., N (seé McLachlan & Pe€l, 2000, p. 54). Within
this approach, and due to the structure of our family of lif@&/Ms, we propose a random-hierarchical initialization
procedure that helps in obtaining the natural ranking antbadjkelihoods.

For a fixedG, we start by consideriny N-VE andNN-EV, because the former is nested in all of the VE-models,
the latter is nested in all of the EV models, and both are deistall of the VV-models. FoNN-VE and NN-
EV only, a random initialization is repeated 10 times, froifietent random positions, and the solution maximizing
the likelihood among these 10 runs is selected. Note thainesrlined by Andrews et al. (2011), mixtures based
on the multivariate distribution are more sensitive to bad starting values thair Gaussian counterparts. Thus,
by considering random initialization only for the above ratsdof typeNN, we prevent the possible failure of the
algorithm due to poor starting values for models of tiytetN, andtt. In each run, thé\ vectorsz? are randomly
drawn from a multinomial distribution with probabilitis/G, .. ., 1/G). Once the EM-estimat&®*'c andh; "=V
of the posterior probabilities have been obtained for timesdels, we can compute the maximarposteriori(MAP)
classification, say MAPTNNVE ) = ZWNVE and MAP(ThEY) = ZEY, where

1 if max{Tyi{ occursin compone
MAP (Tog) =g = j (7o) poney
0 otherwise.

Then, the hierarchical initialization procedure proceadsording to the scheme in Figurk 1, where each arrow is
directed from the model used for initialization to the modebe estimated. Thug,)"V* is used to initialize the EM

of bothtN-VE andNt-VE, obtainingZyV® andZ,;VE, respectively, whil&*F" is used to initialize the EM of both
tN-EV andNt-EV, leading tozy = andZy; =V, respectively. Also, following the same principle, the rabdetween
NN-VE andNN-EV leading to the maximum likelihood is used to initializeetEM for NN-VV. Without going into
further details on this hierarchical procedure, in the &ep the model betweeNt-VV, tN-VV, tt-VE, andtt-EV
leading to the maximum likelihood is used to initialize thid IBf tt-VV.
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tN-VE

e
/ NN-VE
Nt-VE
/ Y
tt-wv
/ NN-WV
Nt-WV

/ NEV
tt-EV
/NN—EV

Nt-EV

Figure 1: Relationships among the models in the hierartiidzalization strategy. Arrows are oriented from the nebdsed for initialization to
the model to be estimated.

5.3. Convergence criterion

The Aitken acceleration procedumMZG) is usegbtonate the asymptotic maximum of the log-likelihood
at each iteration of the EM algorithm. Based on this estimaigecision can be made regarding whether or not the
algorithm has reached convergence; that is, whether orheolog-likelihood is stficiently close to its estimated
asymptotic value. The Aitken acceleration at iteratida given by

[keD) _ ()

) _
S TR TC=,

wherel®D [0 andI®D are the log-likelihood values from iteratiokst+ 1, k, andk — 1, respectively. Then, the
asymptotic estimate of the log-likelihood at iteratiom 1 (Bohning et al., 1994) is given by

1
(k+1) _ (K k+1) _ (K
() = +—1_a(k)(| 199).

Inthe analyses in Sectih 7, we follbw McNichdlas (2010) stug our algorithms whelf*? —1®) < €, with € = 0.05.

6. Model selection and clustering performance

In model-based clustering, model selection criteria araroonly used to choice the best model and to select the
number of groups. Among them, we will adopt the Bayesianrmfation criterion (BIC, Schwalrz, 1978)

BIC = 2| @) —minN,
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Where@ is the ML estimate of, | @) is the maximized observed-data log-likelihood, ands the overall number
of free parameters in the model (see the last three columFehile[1), and the integrated completed likelihood (ICL;

Biernacki et al., 2000) in the formulation given by Andrewd&Nicholas (20101)

N

G
ICL ~ BIC+ )" " MAP (Tog) INTrg. (35)
n=1 g=1

A different ICL definition is used by Baek & Mclachlan (2011). Thetdefinitions difer on whether or not it is
the MAP of the fuzzy clustering in the first part of the entrogyis not immediately clear fror Biernacki etlal.
M) which definition is correct. We have chosen the foatiah in [35%) because it appears more widely adopted in
literature (see, e.d., McNicholas & Murphy, 2008, 2010; Niitélas & Subedi, 2012).

In order to evaluate the clustering performance in caseshichwhe true classification is known, the adjusted
Rand index (ARI| Hubert & Arabie, 1985), and the misclasatiian rate will be taken into account. We recall that
the ARI has an expected value of 0 and perfect classificatmrdwesult in a value equal to 1.

7. Applications to real data

This section illustrates some real data applications ofahely of linear CWMs defined in Sectidg 3.

7.1. Student data

The first application concerns data coming from a survel ef 270 students attending a statistics course at the
Department of Economics and Business of the University ¢gddia in the academic year 2Q2012. The question-
naire included seven items, but the analysis we presenivimity concerns the following subset of variables:

GENDER= gender of the respondent;
HEIGHT = height of the respondent, measured in centimeters;
WEIGHT = weight of the respondent, measured in kilograms;
HEIGHT.F = height of respondent’s father, measured in centimeters.

There areG = 2 groups of respondents with respect to the GENDER varialljg:= 119 males andNg = 151
females. The considered data are availablec@p: //www.economia.unict.it/punzo/. In the following, the two
groups will be simply referred to &y andGg, respectively. Moreover, we shall focus first on the joirstdbutions

of WEIGHT and HEIGHT, then on HEIGHT and HEIGHT.F. In both seeios, data will be assumed unlabeled with
respect to GENDER. However, the true labels will be usefuef@luating the quality of the obtained clustering.

7.1.1. First scenario: HEIGHT and WEIGHT

Figure[2 concerns the observed labeled data. This grapkioetsentation will be simply referred to as the CW-
plot. The top of FigurEl2 displays a bar plot of the HEIGHT whte, including the overall empirical marginal density
as well as the empirical marginal densities, &y andGg, weighted according to their sizes; bars are color-coded,
using a gray scale, with respect to the GENDER variable. Weark that many students tend to approximate their
height to “classical” values, such as 155, 160, 170, 175sarmh. For classification purposes, the variable HEIGHT
separates the two groups quite well. The bottom of FiglreZeatter plot of HEIGHT and WEIGHT, where male and
female students are labeled wikhandF, respectively. We give the isodensities of a bivariate radtarnel estimator
as computed by the functidskde2D of the R-packag&ernSmooth (see, e.gl, Wand & Jones, 1995). The plot also
shows the functional dependence of WEIGHT on HEIGHT seplrdbr Gy andGg; the solid lines concern the
linear regression models while the dashed ones arise framady-weighted polynomial regression computed using
thelowess function of the R-packagetats (se€ Clevelan 9, for details). A simple visual conguaribetween
solid and dashed lines justifies the linearity assumptioW&GHT on HEIGHT, underlying the linear CWMs of
the proposed family. Moreover, the regression lines in Féfdiseem to indicate that these models have the same
parameters iy andGg. In these terms note also that:
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Figure 2: Student Data: CW-plot of HEIGHT and WEIGHT for 118lm and 151 female, studentd (lenotes male and female).

1. thet-test for equal slopes providegavalue of 0.147,
2. thet-test for equal intercepts providepavalue of 0.364, and
3. the F-test of homoscedasticity of residuals in the twaigsgrovides g-value of 0.992.

Now, let us ignore the true classification induced by GENDIER fit the data according to the linear CWMs in
Table[d by using the true vali@ = 2. Tabld2 lists the values of the BIC, ICL, and ARI for the tweemodels.

Table 2: Student Data: Values of the BIC, ICL, and ARI£ 2). Bold numbers highlight the best model for each critefiatex.
(a) BIC (b) ICL (c) ARI

VE EV A% VE EV A% VE EV A%

NN -3726.197 -3756.561 -3742.947 NN -3750.466 -3880.260 -3767.213 NN 0.750 0.008 0.750
tN  -3737.394 -3762.160 -3754.144 tN -3761.663 -3885.858 -3778.409 tN 0.750 0.008 0.750
Nt -3731.795 -3766.517 -3749.642 Nt -3756.064 -3869.845 -3773.484 Nt 0.750 0.005 0.776
tt  -3742.992 -3772.115 -3760.839 tt -3767.261 -3875.443 -3784.681 tt 0.750 0.005 0.776

NN-VE (Gaussian marginal and conditional component demsséied equal linear model between clusters) is
the best model according to both BIC (-3726.197) and ICL §8466). The corresponding CW-plot is displayed
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in Figure[3. As for the ARI is concerned, in practice we haveilsir results for all models of type VE and VV.
Thus, the group structure of the data is due tdedént intra-group distributions for the covariates, witile linear

0.08 —f
0.06 —f
=
2
— | ——
% 0.04 S
Iy —sod =~
Ny — ¥
0.02 — .. -
J_F
/‘_ I
L ) ot 1= -
0.00 } —— | 1 e e e e e
FrTTrTTTTT I I T FTTTT
EN VI AN LT WOE DD INDLTWAERBOANDITDONDII NN TGN QDG
S528230B3BBLRRS3 283883 BIRNNRICERERIEEREIILEELES
3333 SE8E 3083308388385 5 2383855000505 S83338333333
96 — x
95 —
94 —
93 —
92 —
91 — x
90 —
89 —
88 — x x
87 — o X X x
86 —| x XX
85 — X X X X X 1~
84 —| x -
83 — x X X- x
82 — X X x X X _ =
81 — X X X X x - %
80 — x ~ X X
79 — X X X % X% x X
78 — o x X X x_- x
7 — ° o ° x % _ - x
76 — o ° o x X - X X X
= 75 — o000 o0 X x
T 74 — ° ° oo o x ~ X X % % x
73 — ° o000 o ~% x x x
(O] 2 — o o o o 0 0 X X X X X x
= 71— 00 0000 -®X X X
w 70 — o o oo _-""o XX x
; 9 — coo_--~ o X x X
8 — o 000 ) 0 x x x
7 — oo o _-x o x
6 — 00 o obo0 x
5 — o o oo.o0 o X X x x
4 — o o P o o0 o x
3 — o oo o o °
2 — oo -~ o o o
1 — 27 o o ° o o x
0 — 9-¢ o oo o
9 — - °
8 — PRy o oo o o o
7 — - oo o
6 — -7 o
5 - o~ °
4 — o o o o
3 — o o
> —
1 -
50 — o
49 —
48 — ° o
47 —

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH

Figure 3: Student Data: CW-plot of HEIGHT and WEIGHT fdN-VE (G = 2).

relationship is homogenous. In other words, this is a casessifjnment dependence that a standard finite mixture
of linear regressions is not able to represent. In order dwshempirically, we have also fitted a mixture Gf= 2
linear Gaussian regressions by means ofttteexmix function of the R-packagelexmix mm) The group-
conditional distribution ofY|X is Gaussian like ilNN-VE. Figure[4 highlights that the mixture model with a fixed
covariate is not able to recognize the group-structure efdidita. This is also confirmed by an ARI value equal to
0.00288.

7.1.2. Second scenario: HEIGHT.F and HEIGHT

Figure[® shows the CW-plot of HEIGHT.F and HEIGHT by considgtthe classification induced by GENDER.
Although, also in this case, linearity between variablgseap to be reasonable, the linear models for the two groups
differ, especially in terms of intercept. Note also that,Fheest of homoscedasticity of the residuals in the two groups
gives ap-value of 0.086 while thé-tests for equal slopes and equal intercepts provide pedistinull p-values.

As in Sectiori Z.1]1, we fit the linear CWMs, wi = 2, ignoring the true classification induced by GENDER.
The values of BIC, ICL, and ARI for the twelve models are giteTable[3. In this case, the best modeN§I-EV
(see also the corresponding CW-plot in Figure 6). The fittedi@halso appears to be a good compromise in terms
of the ARI values of Tablg 3(k). Herently from the first scenario, here the group-structuduis to the dierent
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Table 3: Student Data: Values of the BIC, ICL, and ARI£ 2). Bold numbers highlight the best model for each criteimatex.
(a) BIC (b) ICL (c) ARI

VE EV \AY% VE EV \AY% VE EV \AY%

NN -3726.339 -3594.401 -3601.955 NN -3822.623 -3597.252 -3605.016 NN 0.009 0.898 0.912
tN  -3737.536 -3599.999 -3613.152 tN -3833.820 -3602.850 -3616.212 tN 0.009 0.898 0.912
Nt -3731.937 -3605.598 -3613.152 Nt -3828.221 -3608.449 -3616.212 Nt 0.009 0.898 0.912
tt  -3743.134 -3611.196 -3624.348 tt -3839.418 -3614.047 -3627.409 tt 0.009 0.898 0.912

intra-group linear models, while the distribution of thevadate is homogenous. This is an example of assignment
independence which can be recognized by a simple mixtug&-o® linear (Gaussian) regressions too.

7.2. Tourist data

The second application focuses ln= 180 monthly data (tourism data) concerntogrist overnightgX, data in
millions) andattendance at museums and monuméyitslata in millions) in Italy over the 15-year period spanning
from January 1996 to December 2010. These data have beerilyemealyzed by Cellini & Cuccid (2013) and are
available ahttp://www.robertocellini.it/doc/master_specializzazione/Cellini-Cuccia_ApEc2013_datal996-20
The CW-plot of the labeled data (with respect to months) @shin Figure Y. It is straightforward to note how the
heterogeneity of the data reveals a clear group-struckiggire[8 shows the values of the BIC and the ICL for the
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Figure 5: Student Data: CW-plot of HEIGHT and HEIGHT.F foQIrhale and 151 female, studenks denotes male and female).

models in the proposed family of linear CWMs wiBhranging from 1 to 6. Both criteria (BI€1683.727 and ICk-
1689.386) suggest tHe¢N-VV, with G = 4 components, displayed in Figure 9. Here, it is interedtingnalyze the
relationship between the obtained clusters — charactebyel diferent slopes — and the time-covariate (months; see
Table[4). The four clusters, arising from tReN-VV, are almost perfectly related to the months (exceptiiar tinits

group Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1 15 15 0 0 0 0 0 0 0 0 13 15
2 0 0 0 0 0 15 0 0 15 0 0 0
3 0 0 15 15 15 0 0 0 0 15 2 0
4 0 0 0 0 0 0 15 15 0 0 0 0

Table 4: Tourist data: Relation between e- 4 clusters, obtained with the fittddN-VV, and the variable time identified by month.

in November, which concern years 2006 and 2010). In pagticule have:
Group 1 : units from November to February,
Group 2 : units in June and September,
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Figure 6: Student Data: CW-plot of HEIGHT.F and HEIGHT for NBV (G = 2).

Group 3 : units in March, April, May, and October, and
Group 4 : units in July and August.

This is an example in which the group structure of the dataiestd diferences both in the intra-group marginal
distributions and the linear models.

7.3. Crab data

The third application, based on the very popular crab datafs@ampbell & Mahoh|(1974) on the genusp-
tograpsus has the aim of showing that thébased linear CWMstR-VE, tN-EV, tN-VV, Nt-VE, Nt-EV, Nt-VV,

tt-VE, tt-EV, andtt-VV) can provide more robust classification than the lineanipletely) Gaussian oneN N-VE,
NN-EV, andNN-VV). Attention is focused on the sampleNf= 100 blue crabs, there beityy = 50 males (group 1)
andN, = 50 females (group 2). Each specimen hayirng 2 measurements (in millimeters): the rear width (RW)
and the length along the midline (G X) of the carapace.

Following the scheme of McLachlan & Peel (2000, Section,7s8me outliers were introduced by substituting
the original value of/,s (11.9) with some atypical values (-15, -10, -5, and 0). Té&lk to four dierent “perturbed”
data sets which are displayed in Figlré 10.

TablelB reports the number of misallocated observationsgoh of the twelwe models and each perturbed version
of the original data set. Estimates are obtained by diratlggG = 2. The last two columns report the minimum
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linear Gaussian CWMs (A) t-based linear CWMs (B)
Yos NN-VE NN-EV NN-VV tN-VE tN-EV tN-VV NtVE NtEV NtVV {t-VE t-EV tt-VV min (A) min(B)
-15 40 49 49 40 49 49 40 16 49 40 16 49 40 16
-10 40 49 50 40 49 50 40 16 25 40 16 25 40 16
-5 40 49 50 40 49 50 40 13 24 40 13 24 40 13
0 40 49 50 40 49 50 40 13 21 40 13 21 40 13

Table 5: Crab data: Comparison of the number of misallocatesrvations when fitting the family of linear CWMs on the péaof N = 100
blue crabs. Bold numbers highlight the best results for @acturbed data set.

number of misallocated observations computed over thali@Gaussian CWMs and thebased linear CWMs, re-
spectively. From the bold numbers in Takle 5 follows that s@fthet-based linear CWMs, that Nt-EV andtt-EV,
are systematically more robust than the linear Gaussian G\(gkk also the results fbit-VV andtt-VV). In partic-
ular, since the perturbations are inserted “vertically'tlb@Y-variable, the best performers have thdistribution for

p(y|x, Qg), g=12.

17



—6— NN-VE-*- tN-VE Nt-VE --&- tt-VE —e— NN-VE--*- tN-VE Nt-VE --@-- tt-VE
-4&- NN-EV tN-EV Nt-EV -#- tt-EV -4&- NN-EV tN-EV Nt-EV -#&- tt-EV

+ NN-VV--7- tIN-VW & Nt-VV 8- tt-VV 4+ NN-WW--7- tN-VV & Nt-VV & tt-VV
=
S + IS + &
S ® B ™ ® s @ LB M
=l P i e ZImRT + + — g
[ [T ~a G ® ¢ :
e . [:]
@ +7
e
o g | 2
3 has = ¢
& - i 1
[l i
o i 4 9
@ H Q 8
P T{
§

-1900

®
x
-2000

-2000
I

-
i
>
-2100

-2100
I
&

G G
(a) BIC (b) ICL

Figure 8: Tourist data: Values of the BICand IGE € 1,..., 6).

7.4. f.voles data

The fourth application is based on thevoles data set described @97, Table 5.3.7) and availaithe
R-packagé&lury. This is an example with more than one covariate. Data referdasurements di = 86 female
voles from two speciedd. californicus(N; = 45) andM. ochrogastefN, = 45). Variables used here at®pecies de-
noting the two speciegge measured in days, along with other six measurements ra@gtall (in units of 0.1 mm).
The latter are named as in Airoldi & Hinanh (1984)1, = condylo-incisive length,s = length of incisive foramen,

L7 = alveolar length of upper molar tooth ro®; = zygomatic widthB4 = interorbital width, andH; = skull height.
The scatter plot matrix for grouped-data is shown in Fifie 1

The purpose af Airoldi & Hefmanh (1984) was to study age variability i californicusandM. ochrogaster
and predict age on the basis of the skull measurements.dstiniy, we assume that data are unlabelled with respect
to Species and compare the classification provided by the three appesathe family of linear CWMs, mixtures of
linear Gaussian regressions (estimated by the R-padKagenix), and parsimonious mixtures of Gaussian distribu-
tions (estimated using the R-packagd ust; see Fraley et al., 2012, for details). For the first two @assf models,
Age is the response variab¥and thed = 6 skull measurements are tievariable. For parsimonious mixtures of
Gaussian distributions, the vectof X’) is considered as a whole. All the considered models have fitéeah with
G=2

In the family of linear CWMs, the two models providing thedast values for the BIC and the ICL welktN-EV
andNN-VE (BIC: NN-EV = -3890397,NN-VE = -3895917; ICL: NN-VE = —3896143,NN-EV = —-3902788).

In particular, the two criteria selected ddrent model, although both the BIC and the ICL yielded quitsevalues

for NN-EV andNN-VE. On the contrary, the resulting misclassification esnoere very dierent:NN-VE (selected

by the ICL) yielded a perfect classification, whieN-EV (selected by the BIC) yielded a misclassification error o
38.37%. A closer look to the membership probabilities stibtiratN N-VE led to a sharp classification (the entropy
term in the ICL resulted 0.23), while tHéN-EV led to a quite fuzzy classification (the entropy term tes112.39).

We checked also the AIC for both models, and this agreed with Thus,NN-VE will be the only linear CWM
considered hereafter. In the family of parsimonious miesunf Gaussian distributions, the best model resulted EEE
(homoscedastic group-covariance matrices] see Fraldy80a2 for details). Thus, we compared the performance
of three Gaussian-based models whose classification semaltreported in Tabld 6. The finite mixture of Gaussian
regressions was the worse approach, reporting a misctadiifi rate of 0.40698. On the contrary, and surprisingly,
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CWM . mclust
flexmix
NN-VE model EEE
ARI 1.00000 0.02430 0.90810

misclassification error 0.00000 0.40698 0.02326

Table 6: f.voles data: classification results usinedent mixture-based approach&+ 2).

our modelNN-VE attains a perfect classification of the data (we remagkstime optimal classification performance
was obtained by all the “-VE” models in our family).

In conclusion, this is an example of “strong” assignmenthelence where the group structure only depends by a
different distribution of the covariates between the two grdses also Propositidd 1).

8. Comparing the BIC and the ICL

A simulation study is described for comparing the perforogeof the BIC and the ICL with regard to the proposed
family of models. Five scenarios are presented where datsigulated according to the following model¢$N-EV,
NN-VE, NN-VV, Nt-VE, andtN-EV. In each scenario, 50 data sets of size 400 are simulated withd = 1, G = 2,
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Figure 10: Scatter plots of the sampleMf= 100 blue crabs with dierent values foy,s. The variables are rear width (RW) and length along the
midline (CL) of the carapace, fo¥; = 50 males andN, = 50 females ¢ denotes male anelfemale).

and varying parameters. The choice of consideriffpint parameters is made to avoid particular configurations
which may favor one of the competitive model selection ciate
In each replication, the generating (true) model is spetéd®follows:

o the mixture weightr; is randomly generated by a uniform distribution or2[®.8];
e as the variabl& is concerned, we refer to equatigm (3). Note that, we prefeadve the matrix notation of the
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Figure 11: Scatter plot matrix of f.voles datagndx denote speciellicrotus ochrogasteandM. californicus respectively).

parameterg, andXq even if, beingd = 1, they are indeed scalar values. In particular
— if the model assumegs, # u,, thenu; andu, are randomly generated by a standard normal distribution.
If uy = u, = p, thenu is drawn by a standard normal distribution;

— ifthe model assumes; # X, thenX; andX, are randomly generated by%distribution. IfX; =X, =%,
thenX is drawn by g7 distribution;

— if p(x|Q1) andp (x|Q,) are assumed to kg

* if the model assumes, # v», thenv; andv, are randomly generated by a uniform distribution on
[2,5];
* if the model assumesg = v, = v, thenv is drawn by a uniform distribution on [B];

e as the variabl& is concerned, by referring to equatidn (2), we have that

— if the model assumeBy; # Boz andBi1 # Biz, thenBo; andpBy, are randomly generated by a standard
normal distribution whilgd1; andg;, are drawn from a uniform distribution or-2, 2]. If Bo1 = Bo2 = Bo
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andpi1 = B12 = B1, thenBy is generated by a standard normal distribution gnig drawn from a uniform
distribution on F-2, 2];

— if the model assumas? # o3, thenos ando are randomly generated by distribution. If o3 = o3 =
o?, theno? is generated by g2 distribution;

— if p(ylx, Q1) andp (y|x, Q) are assumed to ke

= if the model assumeg # {», then; and{, are randomly generated by a uniform distribution on
[2,5];
* if the model assumes = ¢ = ¢, then/ is drawn by a uniform distribution on [3].

The defined models guarantee various degrees of overlagéetgroups according to the generated parameters.

In each replication, the true model is adopted to generataléita set; thus, all the 12 models are fitted with
G € {1, 2, 3}, leading to a total of 36 fitted models. Takle 7 and Table 8 shewesults for the BIC and the ICL, respec-
tively. Here, a value in positiofy, j) has to be read as “number of times that the combindtimdel number of groups
on columnj is selected to fit the true model (wi = 2) on rowi”. Bold numbers highlight the number of times that
the pair(true modelG = 2) is selected. Note that: the columns referred to models @& tig’ are missing simply
because they have never been selected, and the sum by raeaterghan 50 because, whén= 1 is selected, there
is not diference between “-VV”, “-VE”, and “-EV” (see Sectidi 3). Bymparing the results in these tables, the
BIC seems to perform better than the ICL. In particular, @Bk $elects models with only one group a larger number
of times than the BIC. This is probably induced by the schefraefinition of the true model that allows for groups
with a strong overlap; thus, the entropy term of the ICL emdut a strong penalization which leads to the choice
G = 1. Figurd I? and Figufe 3 display two examples where thipéap From these examples we understand as
it is difficult to establish the best model selection criterion; imklélee ICL may be seen as better if the user actually
does not want to separate two mixture components that aieflarghat they do not constitute twofierent clusters
in terms of interpretation. So, in general, it depends omikaning of the data which criterion is better.

9. Conclusions and discussion

In this paper, a novel family of twelve linear cluster-weigth models was presented. Such a family represents
a flexible and powerful tool for model-based clustering. Maxm likelihood parameter estimation was performed
according to the EM algorithm and model selection was acdishgd using both the BIC and ICL. Many com-
putational aspects were illustrated and a simple, but v&gctve, hierarchical random initialization method was
introduced. Model-based clustering, using the proposailfawas appreciated on the grounds of some applications
to real data. Here, it is interesting to note how the dataedatad to the survey of students in Secfiod 7.1 justifies and
motivates the search for a model in the proposed family.

Future work will involve the extension of the proposed fand the model-based classification context. Moreover,
the identifiability issue needs to be adequately addressedference point is given By Henhig (2000). Finally,
Sectior 8 presented first results to find out a suitable madetson criterion and motivates further research in this
direction.
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Appendix A. EM-constraints for parsimonious models

In the following we describe how to impose constraints onEMealgorithm, described in Sectigh 4 for the most
general modett-VV, to obtain parameter estimates for all the other model®able[1. To this end, the itemization
given at the beginning of Secti@h 3 will be considered as @h@mrk scheme.

22



€¢

Fitted  NN-EV NN-VE NN-VV Nt-EV Nt-VE Nt-VV tN-EV tN-VE tN-VV
True G 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
NN-EV 8 40 O 8 0 O 8 0 O 2 0 O 2 0 O 2 0 O 0 0 O 0 0 O 0O 0 O
NN-VE 5 0 O 5 40 O 5 0 O 4 0 O 4 0 O 4 0 O 0O 0 O 0 1 0O 0O 0 O
NN-VV 0O 0 O 0O 0 O 0 50 O 0O 0 O 0O 0 O 0O 0 O 0 0 O 0 0 O 0O 0 O
Nt-VE 0 1 O 0O 0 O 0 0 O 5 0 O 543 1 5 0 O 0O 0 O 0O 0 O 0 0 O
tN-EV 0 0 O 0 1 O 0 0 O 0O 0 O 0O 0 O 0O 0 O 247 0 2 0 O 2 0 O

Table 7: Simulation results for the BIC. Values in the tatiievg the number of times, over 50 replications, that the maatel number of groups, on the column are selected to fit tieentiadel
(with two groups) which appears in the corresponding rowddBoimbers highlight the largest number of times that the ehselection criteria selects the true model.



Fitted NN-EV NN-VE NN-VV Nt-EV

True G 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
NN-EV 14 27 O 14 0 O 14 0 O 9 0 O 9 0 O 9 0 0 0 0 O 0 0 O 0 0 O
NN-VE 13 0 O 13 24 0 13 0 O 0 0 O 0O 0 O 0 0 O 12 0 O 12 1 0 12 0 O
NN-VV 0O 0 O 0O 0 O 0 47 O 1 0 O 1 0 O 1 0 0 2 0 0 2 00 2 0 0

Nt-VE 0O 0 O 0O 0 O 0O 0 O 15 0 O 1530 1 15 0 O 2 2 0 2 0 0 2 0 0

tN-EV 0O 0 O 0O 0 O 0O 1 O 0 0 O 0O 0 O 0 0 O 1633 O 16 0 O 16 0 O

Table 8: Simulation results for the ICL. Values in the talilews the number of times, over 50 replications, that the mae number of groups, on the column are selected to fit tieeniadel
(with two groups) which appears in the corresponding rowldBaimbers highlight the number of times that the model sielecriteria selects the true model.
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Figure 12: CW-plot of data randomly generated frobtNaEV model withG = 2.

Appendix A.1. Commont for the component marginal densities

When we constrain all the groups to have a commndistribution forX, we haveu; = --- = yg =, X1 =--- =
Ys =X, andv; = --- = vg = v. Thus, in thgk + 1)th iteration of the EM algorithm, equatiods {16) ahd](18) trhes
replaced by

® +d
u® = L (A.1)
v 4 6(xn,u(k); ):(k))
and ® 4+ d ® 4 d
v 4 v
¥ = Inu® +¢(T)— In( 5 )
respectively. Furthermore, noting theg 7ng = 1, equationd(23) and_(P4) can be rewritten as
N
Qs (#:9%) = > Qun (#:9Y) (A-2)
n=1

and

N
Qs (V; tk(k)) = Z Qsn (V; l/j(k)),
=1
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Figure 13: CW-plot of data randomly generated frofdtaVE model withG = 2.

Qun (9 9Y) = % [~dIn (27) + U ~ I [Z] — und (X, p1: Z)

Maximization of [A.2), with respect td, leads to

and

N N
k+D) _ ® ®
H nz:; Un Xn/nZ:; Un

y(k+D) _ Zu(k) (k+1)) (k+1) Zu(k)

For the updating of, we need to numerically solve the equation

> e

v l/I(k))

26

Qsn (v; t[/(k)) - Inl“(%) + g Ing g{ —Inu® + Z Inu® — u(k)) .




which corresponds to finding“*? as the solution of

N (k) (k)
v v v +d v+ d
- ¢(§)+ In s+1+ nZ:;(Inuﬂ‘) - uﬂ‘)) +¢(T) - In( 5 ) =0. (A.3)
Appendix A.2. Common t for the component conditional diessit
Similarly, when we constrain all the groups to have a combabstribution forY|x, we have8,; = - - - = Big = B1»
Bor="++=Poc =Po, 0% =+ =04 =0c? and{y = --- = {g = {. Thus, in thek + 1)th iteration of the EM algorithm,
equations[(115) an@(17) must be replaced by
(k)
- i (A.4)
Z§ + 6|y (%0 B9) ; 020
and (k) (k)
T = v 4 g (L) g (2R,
2 2
respectively. Also, equations (21) and](22) can be rewriite
N
Q2 (&) = > Qun(&:9Y) (A.5)
n=1

and
3 (¢i9®) = Zan (¢:9®).

respectively, where
1
Qe (£:9%) = 5 {~1n(@0) + W ~ I o® Vo [y, 1 (40: B) 1 o}
and

Qun (¢:9) = - Inl"(g) * g n3+3

£ _invo Z (Inv - 9)|.

Maximization of [A.B), with respect tg, leads to the updates

N N N -1
Z V%, x! Z Vi, Z:vﬂ‘)x;1
ﬂ(k+l) _ n=1 _h=l n=1
1 - N N N
Sw Sw S
n=1 n=1
N

Z yan Z V(k)y Z V(k)xn
S YW

N N
YWy YW,

(k) _ 01 (k+1) n=1

0 - Bl N

=1
S #

n=1 n=1
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and

o2+ Zv(k)[ ( (k+D) ﬂ(k+1)/ ] /Zv(k)

n=1
For the updating of, we need to numerically solve the equation

N

0
— (k)

2,5, (cw®) =0

which corresponds to finding“*? as the solution of
N K) (K
_ £) ¢ 0 _ M1y (V1)
(//(2 +In2+1+nz=;(lnv§1 V) + v 5 n|=——]=0.

Appendix A.3. Normal component marginal densities

The normal case for the component distributionsXofan be obtained, as stated previously, as a limiting case
whenvg — «,g=1,...,G. Then, in K]_'_B)u(k) — 1. Substituting this value int@ (26) arld {27), we obtain

N N
k K K
0= el 3
n=1 n=1
and

Zék+ 1) _ zN: (k) (k+ l)) (k+ l) Z (k)
n=1

Naturally, in this case, we do not compute the additidviadtep maximizingQs (y; x[/(k)) in @24). Accordingly, for the

sub-casgr, = -~ = yg = pandX; = --- = Xg = L, in equation[[AlL) we havel — 1 and the updated estimates of
p andX become

and
1 N
== D (=) (o =)’
n=1
which do not depend on the EM-iterations.

Appendix A.4. Normal component conditional densities
The normal case for the component distribution&/pf can be obtained as a limiting case whgn— co, g =
1,...,G. Then,in K]:5)vng — 1. Substituting this value int@ (28) arld{29), we obtain

IR I PR

(k+1)  _ _ = 1 n=1
B 1g N N N N
K 3 K
DI DI
n=1 n=1 n=1
N
My Z (k)ynz 0y
n=1 _
N N N ’
K K 3
DY IDR -
n=1 n=1 n=1
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N N

Z Wy, Z ¥y

:38;1) ﬂ(k+l)’ =
Z 0 Z 0
n=1 n=1
and
N N
O_S(k+1) — Z Tgk)[ (ﬂ(k+l) ﬂ(k+1)’ )] / Tg(g)-
n=1 n=1

We again do not compute the additiomdistep maX|m|2|ng33( x//(k)) in 22). Accordingly, for the sub-cagh, =

- =Pig = P1,for = -+ = Poc = fo, ando? = - -+ = % = 0, in equation[[AH) we have, ) _, 1 and the updated
estimates of;, B0, ando? become
N 1 N -1 1 N N
B1= _anxﬁ_ﬁzxnzxﬁ] (EZYan ZZYnZXn s
n=1 n=1 n=1 n= n=1 n=1
N N
1 1,
Bo= ﬁzyn_ ﬁﬁlzxn
n=1 n=1
and
N
D yn = (Bo + Bixo)]
n=1

which do not depend on the EM-iterations.
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