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Abstract

A novel family of twelve mixture models with random covariates, nested in the lineart cluster-weighted model
(CWM), is introduced for model-based clustering. The linear t CWM was recently presented as a robust alternative
to the better known linear Gaussian CWM. The proposed familyof models provides a unified framework that also
includes the linear Gaussian CWM as a special case. Maximum likelihood parameter estimation is carried out within
the EM framework, and both the BIC and the ICL are used for model selection. A simple and effective hierarchical
random initialization is also proposed for the EM algorithm. The novel model-based clustering technique is illustrated
in some applications to real data. Finally, a simulation study for evaluating the performance of the BIC and the ICL is
presented.
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1. Introduction

In direct applications of finite mixture models (see Titterington et al., 1985, pp. 2–3), we assume that each mixture-
component represents a group (or cluster) in the original data. The term “model-based clustering” has been used to
describe the adoption of mixture models for clustering or, more often, to describe the use of a family of mixture models
for clustering (see Fraley & Raftery, 1998 and McLachlan & Basford, 1988). An overview of mixture models is given
in Everitt & Hand (1981), Titterington et al. (1985), McLachlan & Peel (2000), and Frühwirth-Schnatter (2006).

This paper focuses on data arising from a real-valued randomvector
(
Y, X′

)′ : Ω → IRd+1, having joint density
p (y, x), whereY is the response variable andX is the vector of covariates. Standard model-based clustering techniques
assume thatΩ can be partitioned intoG groupsΩ1, . . . ,ΩG. As for finite mixtures of linear regressions (see, e.g.,
Leisch, 2004 and Frühwirth-Schnatter, 2006, Chapter 8) weassume that, for eachΩg, the dependence ofY on x can
be modeled by

Y = µ
(
x;βg

)
+ εg = β0g + β

′
1gx + εg,

whereβg =
(
β0g, β

′
1g

)′
, µ

(
x;βg

)
= E

(
Y|X = x,Ωg

)
is the linear regression function andεg is the error variable,

independent with respect toX, with zero mean and finite constant varianceσ2
g, g = 1, . . . ,G. However, as highlighted

in Hennig (2000), finite mixtures of linear regressions are inadequate for most of the applications because they assume
assignment independence: the probability for a point(y, x′)′ to be generated by one of the mixture components has
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to be the same for all covariates valuesx. In other words, the assignment of the data points to the clusters has to be
independent of the covariates.

Here, differently from finite mixtures of linear regressions, we assume random covariates having a parametric
specification. This allows forassignment dependence: the covariate distributions of the mixture components can
also be distinct. In the framework of mixture models with random covariates, the cluster weighted model (CWM;
Gershenfeld, 1997), with equation

p (y, x) =
G∑

g=1

πgp
(
y, x|Ωg

)
=

G∑

g=1

πgp
(
y|x,Ωg

)
p
(
x|Ωg

)
, (1)

also called saturated mixture regression model by Wedel (2002), constitutes a reference approach to model the joint
density. In (1), normality of bothp

(
y|x,Ωg

)
and p

(
x|Ωg

)
is commonly assumed (see, e.g., Gershenfeld, 1997 and

Punzo, 2014). Alternatively, Ingrassia et al. (2012) propose also the use of thet distribution which provides, as other
approaches (Punzo & McNicholas, 2013, 2014a,b), more robust fitting for groups of observations with longer than
normal tails or noise data (see, e.g., Zellner, 1976, Lange et al., 1989, Peel & McLachlan, 2000, McLachlan & Peel,
2000, Chapter 7, Chatzis & Varvarigou, 2008, and Greselin & Ingrassia, 2010). In particular, the authors consider

p
(
y|x,Ωg

)
= ht

(
y|x; ξg, ζg

)
=

Γ

(
ζg + 1

2

)

(
πζgσ2

g

) 1
2
{
1+ δ

[
y, µ

(
x;βg

)
;σ2

g

]} ζg+1
2

(2)

and

p
(
x|Ωg

)
= htd

(
x;ϑg, νg

)
=

Γ

(
νg + d

2

) ∣∣∣Σg

∣∣∣−
1
2

(
πνg

) d
2
[
1+ δ

(
x, µg;Σg

)] νg+d
2

, (3)

with ξg =
{
βg, σ

2
g

}
, ϑg =

{
µg,Σg

}
, δ

[
y, µ(x;βg);σ2

g

]
=

[
y− µ

(
x;βg

)]2 /
σ2

g, andδ
(
x, µg;Σg

)
=

(
x − µg

)′
Σ
−1
g

(
x − µg

)
.

Thus, (2) is the density of a (generalized) univariatet distribution, with location parameterµ
(
x;βg

)
, scale parameter

σ2
g, andζg degrees of freedom, while (3) is the density of a multivariate t distribution with location parameterµg, inner

product matrixΣg, andνg degrees of freedom. By substituting (2) and (3) into (1), we obtain the lineart CWM

p
(
y, x;ψ

˜

)
=

G∑

g=1

πght

(
y|x; ξg, ζg

)
htd

(
x;ϑg, νg

)
, (4)

where the set of all unknown parameters is denoted byψ
˜

=
{
ψ1, . . . ,ψG

}
, with ψg =

{
πg, ξg, ζg,ϑg, νg

}
. Recent

developments in CWMs can be found in Punzo (2014), Punzo & McNicholas (2014a), Punzo & Ingrassia (2015a,b),
Subedi et al. (2013, 2015), and Ingrassia et al. (2015).

In this paper, we introduce a family of twelve linear CWMs obtained from (4) by imposing convenient component
distributional constraints. Ifζg, νg → ∞, the linear Gaussian (normal) CWM is obtained as a special case. The
resulting models are easily interpretable and appropriatefor describing various practical situations. In particular, they
also allow us to infer if the group-structure of the data is due to the contribution ofX, Y|X, or both.

The paper is organized as follows. In Section 2, we recall model-based clustering according to the CW approach,
and give some preliminary results. In Section 3, we introduce the novel family of models. Model fitting in the EM
paradigm is presented in Section 4, related computational aspects are addressed in Section 5, and model selection
is discussed in Section 6. In Section 7 some applications to real data are illustrated. In Section 8 simulations for a
comparison between BIC and ICL are described. Finally, in Section 9, we give a summary of the paper and some
directions for further research.
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2. Preliminary results for model-based clustering

This section recalls some basic ideas on model-based clustering according to the CWM approach and provides
some preliminary results that will be useful for definition and justification of our family of models.

Let
(
y1, x′1

)′
, . . . ,

(
yN, x′N

)′
be a sample of sizeN from (4). Onceψ

˜

is estimated (fixed), the posterior probability

that the generic unit
(
yn, x′n

)′, n = 1, . . . ,N, comes from componentΩg is given by

τng = P
(
Ωg|yn, xn;ψ

˜

)
=
πght

(
yn|xn; ξg, ζg

)
htd

(
xn;ϑg, νg

)

p
(
yn, xn;ψ

˜

) , g = 1, . . . ,G. (5)

These probabilities, which depend on both marginal and conditional densities, represent the basis for clustering and
classification.

The following two propositions, which generalize some results given in Ingrassia et al. (2012), require the prelim-
inary definition of

p
(
y|x; π

˜
, ξ
˜

, ζ
˜

)
=

G∑

g=1

πght

(
y|x; ξg, ζg

)
(6)

and

p
(
x; π

˜
,ϑ
˜
, ν
˜

)
=

G∑

g=1

πghtd

(
x;ϑg, νg

)
, (7)

which correspond to a finite mixture of lineart regressions and a finite mixture of multivariatet distributions (π
˜
=

{π1, . . . , πG−1}, ξ
˜

= {ξ1, . . . , ξG}, ζ
˜

= {ζ1, . . . , ζG}, ϑ
˜
= {ϑ1, . . . , ϑG}, andν

˜
= {ν1, . . . , νG}), respectively .

Proposition 1. Givenπ
˜

, ϑ
˜

, andν
˜

, if ht
(
y|x; ξ1, ζ1

)
= · · · = ht

(
y|x; ξG, ζG

)
= ht (y|x; ξ, ζ), then models(4) and (7)

generate the same posterior probabilities.

Proof. If the component conditional densities do not depend onΩg, then the posterior probabilities for the lineart
CWM in (4) can be written as

τng =
πg✭✭

✭
✭
✭✭ht (yn|xn; ξ, ζ)htd

(
xn;ϑg, νg

)

G∑

j=1

π j✭✭
✭
✭
✭✭ht (yn|xn; ξ, ζ)htd

(
xn;ϑ j , ν j

)
=

πghtd

(
xn;ϑg, νg

)

G∑

j=1

π jhtd

(
xn;ϑ j , ν j

)
,

which correspond to the posterior probabilities for model (7).

Proposition 2. Givenπ
˜

, ξ
˜

, and ζ
˜

, if htd
(
x;ϑ1, ν1

)
= · · · = htd

(
x;ϑG, νG

)
= htd

(
x;ϑ, ν

)
, then models(4) and (6)

generate the same posterior probabilities.

Proof. If the component marginal densities do not depend onΩg, then the posterior probabilities for the lineart CWM
in (4) can be written as

τng =
πght

(
yn|xn; ξg, ζg

)
✘
✘
✘
✘
✘

htd
(
xn;ϑ, ν

)

G∑

j=1

π jht

(
yn|xn; ξ j , ζ j

)
✘
✘
✘
✘
✘

htd
(
xn;ϑ, ν

)
=

πght

(
yn|xn; ξg, ζg

)

G∑

j=1

π jht

(
yn|xn; ξ j , ζ j

)
,

which correspond to the posterior probabilities for model (6).

Note that the results in Proposition 1 and 2 are not restricted to thet distribution; in fact, they can be easily extended
to the general CWM in (1). Further, some results about the relation between linear Gaussian (ort) CWMs and finite
mixture of regressions are given in Ingrassia et al. (2012).Finally, it is important to underline that up to now there are
no theoretical results on the identifiability for linear CWMs; however, since they can be seen as mixture models with
random covariates, the results in Hennig (2000, Section 3, Model 2.a) can apply.
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3. The family of linear CWMs

This section introduces the novel family of mixture models obtained from the lineart CWM. In (4), let us consider:

• component conditional densitiesht having the same parameters for allΩg,

• component marginal densitieshtd having the same parameters for allΩg,

• degrees of freedomζg tending to infinity for eachΩg, and

• degrees of freedomνg tending to infinity for eachΩg.

By combining such constraints, we obtain twelve parsimonious and easily interpretable linear CWMs that are appro-
priate for describing various practical situations; they are schematically presented in Table 1 along with the number of
parameters characterizing each component of the CW decomposition. For instance, ifνg, ζg→ ∞ for eachΩg, we are
assuming a normal distribution for the component conditional and marginal densities; furthermore, we can assume
different linear models (in terms ofβg andσ2

g) in each cluster while keeping the density ofX equal between clusters.
From a notational viewpoint, this leads to a linear CWM that we have simply denoted asNN-EV: the first two letters
represent the distribution ofX|Ωg andY|X,Ωg (N ≡Normal andt ≡t), respectively, while the second two denote the
distribution constraint between clusters (E≡Equal and V≡Variable) forX|Ωg andY|X,Ωg, respectively.

Only two of the models given in Table 1,NN-VV and tt-VV, have been developed previously; the former cor-
responds to the linear Gaussian CWM of Gershenfeld (1997), while the latter coincides with the lineart CWM in
Ingrassia et al. (2012). Furthermore, in principle there are sixteen models arising from the combination of the afore-
mentioned constraints; nevertheless, four of them – those which should be denoted as EE – do not make sense. Indeed,
they lead to a single cluster regardless of the value ofG. Finally, we remark that whenG = 1, it results VV≡ VE ≡ EV
regardless of the chosen distribution.

4. Estimation via the EM algorithm

The EM algorithm (Dempster et al., 1977) is the standard toolfor maximum likelihood (ML) estimation of the
parameters for mixture models. This section describes the EM algorithm for the most general modeltt-VV. Details
for all the other models are given in Appendix A.

In the EM framework, the generic observation
(
yn, x′n

)′ is viewed as being incomplete; its complete counterpart
is given by

(
yn, x′n, z′n, un, vn

)′, wherezn is the component-label vector in whichzng = 1 if
(
yn, x′n

)′ comes from the
gth component (zng = 0 otherwise), whileun andvn arise from the standard theory of the (multivariate)t distribution
according to which

Yn

∣∣∣xn, vn, zng = 1 ind.
∼ N

µ
(
xn;βg

)
,
σ2

g

vn

 (8)

Vn

∣∣∣zng = 1 i.i.d.
∼ Gamma

(
ζg

2
,
ζg

2

)
, (9)

for n = 1, . . . ,N, and

Xn

∣∣∣un, zng = 1 ind.
∼ N

(
µg,
Σg

un

)
(10)

Un

∣∣∣zng = 1 i.i.d.
∼ Gamma

(νg

2
,
νg

2

)
, (11)

for n = 1, . . . ,N. Because of the conditional structure of the complete-datamodel given by distributions (8), (9), (10),
and (11), the complete-data log-likelihood can be decomposed as

lc
(
ψ
˜

)
= l1c

(
π
˜

)
+ l2c

(
ξ
˜

)
+ l3c

(
ζ
˜

)
+ l4c

(
ϑ
˜

)
+ l5c

(
ν
˜

)
, (12)
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Model X|Ωg Y|x,Ωg Number of free parameters

Identifier Density Constraint Density Constraint X Y|x weights

tt-VV t Variable t Variable G
(
d+ d(d+1)

2 + 1
)
+ G (d+ 3) + G− 1

tt-VE t Variable t Equal G
(
d+ d(d+1)

2 + 1
)
+ d+ 3 + G− 1

tt-EV t Equal t Variable d+ d(d+1)
2 + 1 + G (d+ 3) + G− 1

NN-VV Normal Variable Normal Variable G
(
d+ d(d+1)

2

)
+ G (d+ 2) + G− 1

NN-VE Normal Variable Normal Equal G
(
d+ d(d+1)

2

)
+ d+ 2 + G− 1

NN-EV Normal Equal Normal Variable d+ d(d+1)
2 + G (d+ 2) + G− 1

tN-VV t Variable Normal Variable G
(
d+ d(d+1)

2 + 1
)
+ G (d+ 2) + G− 1

tN-VE t Variable Normal Equal G
(
d+ d(d+1)

2 + 1
)
+ d+ 2 + G− 1

tN-EV t Equal Normal Variable d+ d(d+1)
2 + 1 + G (d+ 2) + G− 1

Nt-VV Normal Variable t Variable G
(
d+ d(d+1)

2

)
+ G (d+ 3) + G− 1

Nt-VE Normal Variable t Equal G
(
d+ d(d+1)

2

)
+ d+ 3 + G− 1

Nt-EV Normal Equal t Variable d+ d(d+1)
2 + G (d+ 3) + G− 1

Table 1: Overview of linear CWMs. In “model identifier”, the first and second letters represent, respectively, the density of X|Ωg andY|x,Ωg (hereN ≡Normal), while the third and fourth letters

indicate, respectively, ifhtd

(
x;ϑg, νg

)
andht

(
y|x; ξg, ζg

)
are assumed to be Equal≡E or Variable≡V between groups.
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where

l1c

(
π
˜

)
=

N∑

n=1

G∑

g=1

zng ln πg,

l2c

(
ξ
˜

)
=

1
2

N∑

n=1

G∑

g=1

zng

{
− ln (2π) + ln vn − lnσ2

g − vnδ
[
yn, µ

(
xn;βg

)
;σ2

g

]}
,

l3c

(
ζ
˜

)
=

N∑

n=1

G∑

g=1

zng

[
− lnΓ

(
ζg

2

)
+
ζg

2
ln
ζg

2
+
ζg

2
(ln vn − vn) − ln vn

]
,

l4c

(
ϑ
˜

)
=

1
2

N∑

n=1

G∑

g=1

zng

[
−d ln (2π) + d ln un − ln

∣∣∣Σg

∣∣∣ − unδ
(
xn, µg;Σg

)]

and

l5c

(
ν
˜

)
=

N∑

n=1

G∑

g=1

zng

[
− lnΓ

(νg

2

)
+
νg

2
ln
νg

2
+
νg

2
(ln un − un) − ln un

]
.

4.1. E-step

The E-step, on the(k+ 1)th iteration, requires the calculation of

Q
(
ψ
˜

;ψ
˜

(k)
)
= Eψ

˜

(k)

[
lc

(
ψ
˜

) ∣∣∣(y1, x′1
)′
, . . . ,

(
yn, x′n

)′ ]
. (13)

In order to do this, we need to calculateEψ
˜

(k)

(
Zng |yn, xn

)
, Eψ

˜

(k) (Vn |yn, xn, zn ), Eψ
˜

(k)

(
Ṽn |yn, xn, zn

)
, Eψ

˜

(k) (Un |xn, zn ),

andEψ
˜

(k)

(
Ũn |xn, zn

)
, for n = 1, . . . ,N andg = 1, . . . ,G, whereŨn = ln Un andṼn = ln Vn. It follows that

Eψ
˜

(k)

(
Zng |yn, xn

)
= τ(k)

ng

=
π

(k)
g ht

(
yn|xn; ξ(k)

g , ζ
(k)
g

)
htd

(
xn;ϑ(k)

g , ν
(k)
g

)

p
(
yn, xn;ψ

˜

(k)
) , (14)

Eψ
˜

(k)

(
Vn

∣∣∣yn, xn, zng = 1
)
= v(k)

ng

=
ζ

(k)
g + 1

ζ
(k)
g + δ

[
yn, µ

(
xn;β(k)

g

)
;σ2(r)

g

] (15)

and

Eψ
˜

(k)

(
Un

∣∣∣yn, xn, zng = 1
)
= u(k)

ng

=
ν

(k)
g + d

ν
(k)
g + δ

(
xn, µ

(k)
g ;Σ(k)

g

) , (16)

where the expectations are affected (see the subscript) using the current fitψ
˜

(k) for ψ
˜

(n = 1, . . . ,N andg = 1, . . . ,G).
Regarding the last two expectations, from the standard theory on the gamma distribution, we have that

Eψ
˜

(k)

(
Ṽn

∣∣∣yn, xn, zng = 1
)
= ṽ(k)

ng

= ln v(k)
ng + ψ


ζ

(k)
g + 1

2

 − ln


ζ

(k)
g + 1

2

 (17)

6



and

Eψ
˜

(k)

(
Ũn

∣∣∣xn, zng = 1
)
= ũ(k)

ng

= ln u(k)
ng + ψ


ν

(k)
g + d

2

 − ln


ν

(k)
g + d

2

 , (18)

whereψ (s) = [∂Γ (s) /∂s] /Γ (s) is the Digamma function.
Using the results from (14) to (17) to calculate (13), we havethat

Q
(
ψ
˜

;ψ
˜

(k)
)
= Q1

(
π
˜
;ψ

˜

(k)
)
+ Q2

(
ξ
˜

;ψ
˜

(k)
)
+ Q3

(
ζ
˜

;ψ
˜

(k)
)
+ Q4

(
ϑ
˜
;ψ

˜

(k)
)
+ Q5

(
ν
˜
;ψ

˜

(k)
)
, (19)

where

Q1

(
π
˜
;ψ

˜

(k)
)
=

N∑

n=1

G∑

g=1

τ(k)
ng ln πg, (20)

Q2

(
ξ
˜

;ψ
˜

(k)
)
=

N∑

n=1

G∑

g=1

τ(k)
ngQ2n

(
ξg;ψ

˜

(k)
)
, (21)

Q3

(
ζ
˜

;ψ
˜

(k)
)
=

N∑

n=1

G∑

g=1

τ(k)
ngQ3n

(
ζg;ψ

˜

(k)
)
, (22)

Q4

(
ϑ
˜
;ψ

˜

(k)
)
=

N∑

n=1

G∑

g=1

τ(k)
ngQ4n

(
ϑg;ψ

˜

(k)
)

(23)

and

Q5

(
ν
˜
;ψ

˜

(k)
)
=

N∑

n=1

G∑

g=1

τ(k)
ngQ5n

(
νg;ψ

˜

(k)
)
, (24)

with

Q2n

(
ξg;ψ

˜

(k)
)
=

1
2

{
− ln (2π) + ṽ(k)

ng − lnσ2
g − vngδ

[
yn, µ

(
xn;βg

)
;σ2

g

]}

and

Q4n

(
ϑg;ψ

˜

(k)
)
=

1
2

[
−d ln (2π) + d̃u(k)

ng − ln
∣∣∣Σg

∣∣∣ − ungδ
(
xn, µg;Σg

)]
,

and where, on ignoring terms not involvingζg andνg, respectively,

Q3n

(
ζg;ψ

˜

(k)
)
= − lnΓ

(
ζg

2

)
+
ζg

2
ln
ζg

2
+
ζg

2

̃v(k)
ng − ln v(k)

ng +

N∑

n=1

(
ln v(k)

ng − v(k)
ng

)

and

Q5n

(
νg;ψ

˜

(k)
)
= − lnΓ

(νg

2

)
+
νg

2
ln
νg

2
+
νg

2

̃u(k)
ng − ln u(k)

ng +

N∑

n=1

(
ln u(k)

ng − u(k)
ng

) .

4.2. M-step

On the M-step, at the(k+ 1)th iteration, it follows from (19) thatπ
˜

(k+1), ξ
˜

(k+1), ζ
˜

(k+1), ϑ
˜

(k+1), andν
˜

(k+1) can be
computed independently of each other, by separate consideration of (20), (21), (22), (23), and (24), respectively. The
solutions forπ(k+1)

g , ξ(k+1)
g , andϑ(k+1)

g exist in closed form. Only the updatesζ(k+1)
g andν(k+1)

g need to be computed
iteratively.

The updated estimates of the mixture weights are

π(k+1)
g =

N∑

n=1

τ(k)
ng

/
n, (25)
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while those ofϑg, g = 1, . . . ,G, result

µ(k+1)
g =

N∑

n=1

τ(k)
ngu(k)

ngxn

/ N∑

n=1

τ(k)
ngu(k)

ng (26)

and

Σ
(k+1)
g =

N∑

n=1

τ(k)
ngu(k)

ng

(
xn − µ

(k+1)
g

) (
xn − µ

(k+1)
g

)′ / N∑

n=1

τ(k)
ngu(k)

ng, (27)

where, as motivated for example in Shoham (2002), the true denominator
∑

n τ
(k)
ng of (27) has been changed to yield a

significantly faster convergence for the EM algorithm.
Regarding the updated estimates ofξg, g = 1, . . . ,G, maximization of (21), after some algebra, yields

β
(k+1)
1g =



N∑

n=1

τ(k)
ngv(k)

ngxnx′n

N∑

n=1

τ(k)
ngv(k)

ng

−

N∑

n=1

τ(k)
ngv(k)

ng xn

N∑

n=1

τ(k)
ngv(k)

ng

N∑

n=1

τ(k)
ngv(k)

ng x′n

N∑

n=1

τ(k)
ngv(k)

ng



−1

·

·



N∑

n=1

τ(k)
ngv(k)

ngynxn

N∑

n=1

τ(k)
ngv(k)

ng

−

N∑

n=1

τ(k)
ngv(k)

ngyn

N∑

n=1

τ(k)
ngv(k)

ng

N∑

n=1

τ(k)
ngv(k)

ng xn

N∑

n=1

τ(k)
ngv(k)

ng



, (28)

β
(k+1)
0g =

N∑

n=1

τ(k)
ngv(k)

ngyn

N∑

n=1

τ(k)
ngv(k)

ng

− β
(k+1)′

1g

N∑

n=1

τ(k)
ngv(k)

ngxn

N∑

n=1

τ(k)
ngv(k)

ng

(29)

and

σ2(k+1)
g =

N∑

n=1

τ(k)
ngv(k)

ng

[
yn −

(
β

(k+1)
0g + β

(k+1)′

1g xn

)]2 / N∑

n=1

τ(k)
ngv(k)

ng, (30)

where the denominator of (30) has been modified in line with what was explained for equation (27).
As said before, because we are acting in the most general casein which the degrees of freedomζg andνg are

inferred from the data, we need to numerically solve the equations

N∑

n=1

∂

∂ζg
Q3n

(
ζg;ψ

˜

(k)
)
= 0 (31)

and
N∑

n=1

∂

∂νg
Q5n

(
νg;ψ

˜

(k)
)
= 0, (32)

which correspond to findingζ(k+1)
g andν(k+1)

g as the respective solutions of

−ψ

(
ζg

2

)
+ ln

ζg

2
+ 1+

1

N(k)
g

N∑

n=1

τ(k)
ng

(
ln v(k)

ng − v(k)
ng

)
+

ψ


ζ

(k)
g + 1

2

 − ln


ζ

(k)
g + 1

2

 = 0 (33)
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and

−ψ

(νg

2

)
+ ln

νg

2
+ 1+

1

N(k)
g

N∑

n=1

τ(k)
ng

(
ln u(k)

ng − u(k)
ng

)
+

ψ


ν

(k)
g + d

2

 − ln


ν

(k)
g + d

2

 = 0, (34)

whereN(k)
g =

∑
n τ

(k)
ng, g = 1, . . . ,G.

5. Computational issues and partition evaluation

This section presents some issues concerning practical implementation of the EM algorithm described in Section 4
(see also Appendix A).

5.1. Estimating the degrees of freedom

Code for all of the analyses presented herein was written in the R computing environment (R Development Core Team,
2011) and a numerical search for the estimates of the degreesof freedom was carried out using theuniroot command
in thestats package. This command is based on the Fortran subroutinezeroin described by Brent (1973). In order
to expedite convergence, the range of values forνg, ζg, ν, andζ was restricted to(2, 200]. Previous work in the context
of model-based clustering (see Andrews & McNicholas, 2011)and some experiments whose results are not reported
here suggest that these restrictions do not hamper classification performance and show that the upper limit of 200 does
not thwart the recovery of an underlying normal structure.

5.2. EM initialization

It is well known that the choice of starting values represents an important issue in the EM algorithm. The standard
initialization consists of selecting a value forψ

˜

(0) (see, e.g., Bagnato & Punzo, 2013). An alternative approach, more

natural in the authors’ opinion, is to specify a value forz(0)
n , n = 1, . . . ,N (see McLachlan & Peel, 2000, p. 54). Within

this approach, and due to the structure of our family of linear CWMs, we propose a random-hierarchical initialization
procedure that helps in obtaining the natural ranking amongthe likelihoods.

For a fixedG, we start by consideringNN-VE andNN-EV, because the former is nested in all of the VE-models,
the latter is nested in all of the EV models, and both are nested in all of the VV-models. ForNN-VE and NN-
EV only, a random initialization is repeated 10 times, from different random positions, and the solution maximizing
the likelihood among these 10 runs is selected. Note that, asunderlined by Andrews et al. (2011), mixtures based
on the multivariatet distribution are more sensitive to bad starting values thantheir Gaussian counterparts. Thus,
by considering random initialization only for the above models of typeNN, we prevent the possible failure of the
algorithm due to poor starting values for models of typeNt, tN, andtt. In each run, theN vectorsz(0)

n are randomly
drawn from a multinomial distribution with probabilities(1/G, . . . , 1/G). Once the EM-estimateŝτNN-VE

ng andτ̂NN-EV
ng

of the posterior probabilities have been obtained for thesemodels, we can compute the maximuma posteriori(MAP)
classification, say MAP

(
τ̂NN-VE

ng

)
= ẑNN-VE

ng and MAP
(
τ̂NN-EV

ng

)
= ẑNN-EV

ng , where

MAP
(
τ̂ng

)
= ẑng =


1 if max

j

{
τ̂n j

}
occurs in componentg

0 otherwise.

Then, the hierarchical initialization procedure proceedsaccording to the scheme in Figure 1, where each arrow is
directed from the model used for initialization to the modelto be estimated. Thus,̂zNN-VE

ng is used to initialize the EM
of both tN-VE andNt-VE, obtaininĝztN-VE

ng and̂zNt-VE
ng , respectively, whilêzNN-EV

ng is used to initialize the EM of both
tN-EV andNt-EV, leading tôztN-EV

ng andẑNt-EV
ng , respectively. Also, following the same principle, the model between

NN-VE andNN-EV leading to the maximum likelihood is used to initialize the EM forNN-VV. Without going into
further details on this hierarchical procedure, in the laststep the model betweenNt-VV, tN-VV, tt-VE, and tt-EV
leading to the maximum likelihood is used to initialize the EM of tt-VV.
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NN−VE

NN−EV

NN−VV

tN−VE

tN−EV

tN−VV

Nt−VE

Nt−EV

Nt−VV

tt−VE

tt−EV

tt−VV

Figure 1: Relationships among the models in the hierarchical initialization strategy. Arrows are oriented from the model used for initialization to
the model to be estimated.

5.3. Convergence criterion

The Aitken acceleration procedure (Aitken, 1926) is used toestimate the asymptotic maximum of the log-likelihood
at each iteration of the EM algorithm. Based on this estimate, a decision can be made regarding whether or not the
algorithm has reached convergence; that is, whether or not the log-likelihood is sufficiently close to its estimated
asymptotic value. The Aitken acceleration at iterationk is given by

a(k)
=

l(k+1) − l(k)

l(k) − l(k−1)
,

wherel(k+1), l(k), andl(k−1) are the log-likelihood values from iterationsk + 1, k, andk − 1, respectively. Then, the
asymptotic estimate of the log-likelihood at iterationk+ 1 (Böhning et al., 1994) is given by

l(k+1)
∞ = l(k) +

1
1− a(k)

(
l(k+1) − l(k)

)
.

In the analyses in Section 7, we follow McNicholas (2010) andstop our algorithms whenl(k+1)
∞ −l(k) < ǫ, with ǫ = 0.05.

6. Model selection and clustering performance

In model-based clustering, model selection criteria are commonly used to choice the best model and to select the
number of groups. Among them, we will adopt the Bayesian information criterion (BIC; Schwarz, 1978)

BIC = 2l
(
ψ̂
˜

)
−mln N,
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whereψ̂
˜

is the ML estimate ofψ
˜

, l
(
ψ̂
˜

)
is the maximized observed-data log-likelihood, andm is the overall number

of free parameters in the model (see the last three columns inTable 1), and the integrated completed likelihood (ICL;
Biernacki et al., 2000) in the formulation given by Andrews &McNicholas (2011)

ICL ≈ BIC +
N∑

n=1

G∑

g=1

MAP
(
τ̂ng

)
ln τ̂ng. (35)

A different ICL definition is used by Baek & McLachlan (2011). The two definitions differ on whether or not it is
the MAP of the fuzzy clustering in the first part of the entropy. It is not immediately clear from Biernacki et al.
(2000) which definition is correct. We have chosen the formulation in (35) because it appears more widely adopted in
literature (see, e.g., McNicholas & Murphy, 2008, 2010; McNicholas & Subedi, 2012).

In order to evaluate the clustering performance in cases in which the true classification is known, the adjusted
Rand index (ARI; Hubert & Arabie, 1985), and the misclassification rate will be taken into account. We recall that
the ARI has an expected value of 0 and perfect classification would result in a value equal to 1.

7. Applications to real data

This section illustrates some real data applications of thefamily of linear CWMs defined in Section 3.

7.1. Student data

The first application concerns data coming from a survey ofN = 270 students attending a statistics course at the
Department of Economics and Business of the University of Catania in the academic year 2011/2012. The question-
naire included seven items, but the analysis we present below only concerns the following subset of variables:

GENDER= gender of the respondent;

HEIGHT = height of the respondent, measured in centimeters;

WEIGHT = weight of the respondent, measured in kilograms;

HEIGHT.F= height of respondent’s father, measured in centimeters.

There areG = 2 groups of respondents with respect to the GENDER variable:NM = 119 males andNF = 151
females. The considered data are available athttp://www.economia.unict.it/punzo/. In the following, the two
groups will be simply referred to asGM andGF , respectively. Moreover, we shall focus first on the joint distributions
of WEIGHT and HEIGHT, then on HEIGHT and HEIGHT.F. In both scenarios, data will be assumed unlabeled with
respect to GENDER. However, the true labels will be useful for evaluating the quality of the obtained clustering.

7.1.1. First scenario: HEIGHT and WEIGHT
Figure 2 concerns the observed labeled data. This graphicalrepresentation will be simply referred to as the CW-

plot. The top of Figure 2 displays a bar plot of the HEIGHT variable, including the overall empirical marginal density
as well as the empirical marginal densities, forGM andGF , weighted according to their sizes; bars are color-coded,
using a gray scale, with respect to the GENDER variable. We remark that many students tend to approximate their
height to “classical” values, such as 155, 160, 170, 175, andso on. For classification purposes, the variable HEIGHT
separates the two groups quite well. The bottom of Figure 2 isa scatter plot of HEIGHT and WEIGHT, where male and
female students are labeled withM andF, respectively. We give the isodensities of a bivariate normal kernel estimator
as computed by the functionbkde2D of the R-packageKernSmooth (see, e.g., Wand & Jones, 1995). The plot also
shows the functional dependence of WEIGHT on HEIGHT separately for GM andGF ; the solid lines concern the
linear regression models while the dashed ones arise from a locally-weighted polynomial regression computed using
thelowess function of the R-packagestats (see Cleveland, 1979, for details). A simple visual comparison between
solid and dashed lines justifies the linearity assumption ofWEIGHT on HEIGHT, underlying the linear CWMs of
the proposed family. Moreover, the regression lines in Figure 2 seem to indicate that these models have the same
parameters inGM andGF . In these terms note also that:
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Figure 2: Student Data: CW-plot of HEIGHT and WEIGHT for 119 male, and 151 female, students (M denotes male andF female).

1. thet-test for equal slopes provides ap-value of 0.147,
2. thet-test for equal intercepts provides ap-value of 0.364, and
3. the F-test of homoscedasticity of residuals in the two groups provides ap-value of 0.992.

Now, let us ignore the true classification induced by GENDER and fit the data according to the linear CWMs in
Table 1 by using the true valueG = 2. Table 2 lists the values of the BIC, ICL, and ARI for the twelve models.

Table 2: Student Data: Values of the BIC, ICL, and ARI (G = 2). Bold numbers highlight the best model for each criterion/index.

(a) BIC

VE EV VV

NN -3726.197 -3756.561 -3742.947

tN -3737.394 -3762.160 -3754.144

Nt -3731.795 -3766.517 -3749.642

tt -3742.992 -3772.115 -3760.839

(b) ICL

VE EV VV

NN -3750.466 -3880.260 -3767.213

tN -3761.663 -3885.858 -3778.409

Nt -3756.064 -3869.845 -3773.484

tt -3767.261 -3875.443 -3784.681

(c) ARI

VE EV VV

NN 0.750 0.008 0.750

tN 0.750 0.008 0.750

Nt 0.750 0.005 0.776

tt 0.750 0.005 0.776

NN-VE (Gaussian marginal and conditional component densities and equal linear model between clusters) is
the best model according to both BIC (-3726.197) and ICL (-3750.466). The corresponding CW-plot is displayed
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in Figure 3. As for the ARI is concerned, in practice we have similar results for all models of type VE and VV.
Thus, the group structure of the data is due to different intra-group distributions for the covariates, whilethe linear
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Figure 3: Student Data: CW-plot of HEIGHT and WEIGHT forNN-VE (G = 2).

relationship is homogenous. In other words, this is a case ofassignment dependence that a standard finite mixture
of linear regressions is not able to represent. In order to show it empirically, we have also fitted a mixture ofG = 2
linear Gaussian regressions by means of theflexmix function of the R-packageflexmix (Leisch, 2004). The group-
conditional distribution ofY|X is Gaussian like inNN-VE. Figure 4 highlights that the mixture model with a fixed
covariate is not able to recognize the group-structure of the data. This is also confirmed by an ARI value equal to
0.00288.

7.1.2. Second scenario: HEIGHT.F and HEIGHT
Figure 5 shows the CW-plot of HEIGHT.F and HEIGHT by considering the classification induced by GENDER.

Although, also in this case, linearity between variables appear to be reasonable, the linear models for the two groups
differ, especially in terms of intercept. Note also that, theF-test of homoscedasticity of the residuals in the two groups
gives ap-value of 0.086 while thet-tests for equal slopes and equal intercepts provide practically null p-values.

As in Section 7.1.1, we fit the linear CWMs, withG = 2, ignoring the true classification induced by GENDER.
The values of BIC, ICL, and ARI for the twelve models are givenin Table 3. In this case, the best model isNN-EV
(see also the corresponding CW-plot in Figure 6). The fitted model also appears to be a good compromise in terms
of the ARI values of Table 3(c). Differently from the first scenario, here the group-structure isdue to the different
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Figure 4: Student Data: Scatter plot of WEIGHT versus HEIGHT. The two types of lines and symbols displayed arise from the fit of a mixture of
G = 2 Gaussian regressions.

Table 3: Student Data: Values of the BIC, ICL, and ARI (G = 2). Bold numbers highlight the best model for each criterion/index.

(a) BIC

VE EV VV

NN -3726.339 -3594.401 -3601.955

tN -3737.536 -3599.999 -3613.152

Nt -3731.937 -3605.598 -3613.152

tt -3743.134 -3611.196 -3624.348

(b) ICL

VE EV VV

NN -3822.623 -3597.252 -3605.016

tN -3833.820 -3602.850 -3616.212

Nt -3828.221 -3608.449 -3616.212

tt -3839.418 -3614.047 -3627.409

(c) ARI

VE EV VV

NN 0.009 0.898 0.912

tN 0.009 0.898 0.912

Nt 0.009 0.898 0.912

tt 0.009 0.898 0.912

intra-group linear models, while the distribution of the covariate is homogenous. This is an example of assignment
independence which can be recognized by a simple mixture ofG = 2 linear (Gaussian) regressions too.

7.2. Tourist data

The second application focuses onN = 180 monthly data (tourism data) concerningtourist overnights(X, data in
millions) andattendance at museums and monuments(Y, data in millions) in Italy over the 15-year period spanning
from January 1996 to December 2010. These data have been recently analyzed by Cellini & Cuccia (2013) and are
available athttp://www.robertocellini.it/doc/master_specializzazione/Cellini-Cuccia_ApEc2013_data1996-2010.pdf.
The CW-plot of the labeled data (with respect to months) is shown in Figure 7. It is straightforward to note how the
heterogeneity of the data reveals a clear group-structure.Figure 8 shows the values of the BIC and the ICL for the
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Figure 5: Student Data: CW-plot of HEIGHT and HEIGHT.F for 119 male and 151 female, students (M denotes male andF female).

models in the proposed family of linear CWMs withG ranging from 1 to 6. Both criteria (BIC=-1683.727 and ICL=-
1689.386) suggest theNN-VV, with G = 4 components, displayed in Figure 9. Here, it is interestingto analyze the
relationship between the obtained clusters – characterized by 4 different slopes – and the time-covariate (months; see
Table 4). The four clusters, arising from theNN-VV, are almost perfectly related to the months (except for two units

group Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1 15 15 0 0 0 0 0 0 0 0 13 15

2 0 0 0 0 0 15 0 0 15 0 0 0

3 0 0 15 15 15 0 0 0 0 15 2 0

4 0 0 0 0 0 0 15 15 0 0 0 0

Table 4: Tourist data: Relation between theG = 4 clusters, obtained with the fittedNN-VV, and the variable time identified by month.

in November, which concern years 2006 and 2010). In particular, we have:

Group 1 : units from November to February,

Group 2 : units in June and September,
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Figure 6: Student Data: CW-plot of HEIGHT.F and HEIGHT for NN-EV (G = 2).

Group 3 : units in March, April, May, and October, and

Group 4 : units in July and August.

This is an example in which the group structure of the data is due to differences both in the intra-group marginal
distributions and the linear models.

7.3. Crab data

The third application, based on the very popular crab data set of Campbell & Mahon (1974) on the genusLep-
tograpsus, has the aim of showing that thet-based linear CWMs (tN-VE, tN-EV, tN-VV, Nt-VE, Nt-EV, Nt-VV,
tt-VE, tt-EV, andtt-VV) can provide more robust classification than the linear (completely) Gaussian ones (NN-VE,
NN-EV, andNN-VV). Attention is focused on the sample ofN = 100 blue crabs, there beingN1 = 50 males (group 1)
andN2 = 50 females (group 2). Each specimen havingp = 2 measurements (in millimeters): the rear width (RW= Y)
and the length along the midline (CL= X) of the carapace.

Following the scheme of McLachlan & Peel (2000, Section 7.8), some outliers were introduced by substituting
the original value ofy25 (11.9) with some atypical values (-15, -10, -5, and 0). This leads to four different “perturbed”
data sets which are displayed in Figure 10.

Table 5 reports the number of misallocated observations foreach of the twelwe models and each perturbed version
of the original data set. Estimates are obtained by directlyusingG = 2. The last two columns report the minimum
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Figure 7: Tourist data: CW-plot oftourist overnights(X, in millions) andattendance at museums and monuments(Y, in millions) in Italy over
the period from January 1996 to December 2010 (N = 180). The univariate normal kernel density ofX is superimposed on the histogram. The
isodensities from a bivariate normal kernel density estimator are also visualized on the scatter plot. Month abbreviations are used as labels in the
scatter plot.

linear Gaussian CWMs (A) t-based linear CWMs (B)

y25 NN-VE NN-EV NN-VV tN-VE tN-EV tN-VV Nt-VE Nt-EV Nt-VV tt-VE tt-EV tt-VV min (A) min(B)

-15 40 49 49 40 49 49 40 16 49 40 16 49 40 16

-10 40 49 50 40 49 50 40 16 25 40 16 25 40 16

-5 40 49 50 40 49 50 40 13 24 40 13 24 40 13

0 40 49 50 40 49 50 40 13 21 40 13 21 40 13

Table 5: Crab data: Comparison of the number of misallocatedobservations when fitting the family of linear CWMs on the sample of N = 100
blue crabs. Bold numbers highlight the best results for eachperturbed data set.

number of misallocated observations computed over the linear Gaussian CWMs and thet-based linear CWMs, re-
spectively. From the bold numbers in Table 5 follows that some of thet-based linear CWMs, that isNt-EV andtt-EV,
are systematically more robust than the linear Gaussian CWMs (see also the results forNt-VV and tt-VV). In partic-
ular, since the perturbations are inserted “vertically” ontheY-variable, the best performers have thet distribution for
p
(
y|x,Ωg

)
, g = 1, 2.
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Figure 8: Tourist data: Values of the BIC and ICL (G = 1, . . . , 6).

7.4. f.voles data

The fourth application is based on thef.voles data set described in Flury (1997, Table 5.3.7) and available in the
R-packageFlury. This is an example with more than one covariate. Data refer to measurements onN = 86 female
voles from two species,M. californicus(N1 = 45) andM. ochrogaster(N2 = 45). Variables used here are:Species de-
noting the two species,Age measured in days, along with other six measurements relatedto skull (in units of 0.1 mm).
The latter are named as in Airoldi & Hoffmann (1984):L2 = condylo-incisive length,L9 = length of incisive foramen,
L7 = alveolar length of upper molar tooth row,B3 = zygomatic width,B4 = interorbital width, andH1 = skull height.
The scatter plot matrix for grouped-data is shown in Figure 11.

The purpose of Airoldi & Hoffmann (1984) was to study age variability inM. californicusandM. ochrogaster
and predict age on the basis of the skull measurements. In this study, we assume that data are unlabelled with respect
to Species and compare the classification provided by the three approaches: the family of linear CWMs, mixtures of
linear Gaussian regressions (estimated by the R-packageflexmix), and parsimonious mixtures of Gaussian distribu-
tions (estimated using the R-packagemclust; see Fraley et al., 2012, for details). For the first two classes of models,
Age is the response variableY and thed = 6 skull measurements are theX variable. For parsimonious mixtures of
Gaussian distributions, the vector

(
Y, X′

)′ is considered as a whole. All the considered models have beenfitted with
G = 2.

In the family of linear CWMs, the two models providing the largest values for the BIC and the ICL wereNN-EV
andNN-VE (BIC: NN-EV = −3890.397,NN-VE = −3895.917; ICL: NN-VE = −3896.143,NN-EV = −3902.788).
In particular, the two criteria selected a different model, although both the BIC and the ICL yielded quite close values
for NN-EV andNN-VE. On the contrary, the resulting misclassification errors were very different:NN-VE (selected
by the ICL) yielded a perfect classification, whileNN-EV (selected by the BIC) yielded a misclassification error of
38.37%. A closer look to the membership probabilities showed thatNN-VE led to a sharp classification (the entropy
term in the ICL resulted 0.23), while theNN-EV led to a quite fuzzy classification (the entropy term resulted 12.39).
We checked also the AIC for both models, and this agreed with ICL. Thus,NN-VE will be the only linear CWM
considered hereafter. In the family of parsimonious mixtures of Gaussian distributions, the best model resulted EEE
(homoscedastic group-covariance matrices; see Fraley et al., 2012 for details). Thus, we compared the performance
of three Gaussian-based models whose classification results are reported in Table 6. The finite mixture of Gaussian
regressions was the worse approach, reporting a misclassification rate of 0.40698. On the contrary, and surprisingly,
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Figure 9: Tourist data: CW-plot of modelNN-VV with G = 4 components (X = “tourist overnights”, in millions, andY = “attendance at museums
and monuments”, in millions).

CWM

NN-VE
flexmix

mclust

model EEE

ARI 1.00000 0.02430 0.90810

misclassification error 0.00000 0.40698 0.02326

Table 6: f.voles data: classification results using different mixture-based approaches (G = 2).

our modelNN-VE attains a perfect classification of the data (we remark the same optimal classification performance
was obtained by all the “-VE” models in our family).

In conclusion, this is an example of “strong” assignment dependence where the group structure only depends by a
different distribution of the covariates between the two groups(see also Proposition 1).

8. Comparing the BIC and the ICL

A simulation study is described for comparing the performance of the BIC and the ICL with regard to the proposed
family of models. Five scenarios are presented where data are simulated according to the following models:NN-EV,
NN-VE, NN-VV, Nt-VE, andtN-EV. In each scenario, 50 data sets of sizen = 400 are simulated with:d = 1,G = 2,
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Figure 10: Scatter plots of the sample ofN = 100 blue crabs with different values fory25. The variables are rear width (RW) and length along the
midline (CL) of the carapace, forN1 = 50 males andN2 = 50 females (◦ denotes male and• female).

and varying parameters. The choice of considering different parameters is made to avoid particular configurations
which may favor one of the competitive model selection criteria.

In each replication, the generating (true) model is specified as follows:

• the mixture weightπ1 is randomly generated by a uniform distribution on [0.2, 0.8];

• as the variableX is concerned, we refer to equation (3). Note that, we prefer to leave the matrix notation of the

20



Age

250 270 290 60 70 80 32 36 40

15
0

25
0

35
0

25
0

27
0

29
0

L2.Condylo

L9.Inc.Foramen

40
50

60

60
70

80

L7.Alveolar

B3.Zyg

14
0

16
0

32
36

40

B4.Interorbital

150 250 350 40 50 60 140 160 100 110

10
0

11
0

H1.Skull

Figure 11: Scatter plot matrix of f.voles data (◦ and× denote speciesMicrotus ochrogasterandM. californicus, respectively).

parametersµg andΣg even if, beingd = 1, they are indeed scalar values. In particular

– if the model assumesµ1 , µ2, thenµ1 andµ2 are randomly generated by a standard normal distribution.
If µ1 = µ2 = µ, thenµ is drawn by a standard normal distribution;

– if the model assumesΣ1 , Σ2, thenΣ1 andΣ2 are randomly generated by aχ2
1 distribution. IfΣ1 = Σ2 = Σ,

thenΣ is drawn by aχ2
1 distribution;

– if p (x|Ω1) andp (x|Ω2) are assumed to bet;

* if the model assumesν1 , ν2, thenν1 andν2 are randomly generated by a uniform distribution on
[2, 5];

* if the model assumesν1 = ν2 = ν, thenν is drawn by a uniform distribution on [2, 5];

• as the variableY is concerned, by referring to equation (2), we have that

– if the model assumesβ01 , β02 andβ11 , β12, thenβ01 andβ02 are randomly generated by a standard
normal distribution whileβ11 andβ12 are drawn from a uniform distribution on [−2, 2]. If β01 = β02 = β0
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andβ11 = β12 = β1, thenβ0 is generated by a standard normal distribution andβ1 is drawn from a uniform
distribution on [−2, 2];

– if the model assumesσ2
1 , σ

2
2, thenσ2

1 andσ2
2 are randomly generated by aχ2

1 distribution. Ifσ2
1 = σ

2
2 =

σ2, thenσ2 is generated by aχ2
1 distribution;

– if p (y|x,Ω1) andp (y|x,Ω2) are assumed to bet

* if the model assumesζ1 , ζ2, thenζ1 andζ2 are randomly generated by a uniform distribution on
[2, 5];

* if the model assumesζ1 = ζ2 = ζ, thenζ is drawn by a uniform distribution on [2, 5].

The defined models guarantee various degrees of overlap between groups according to the generated parameters.
In each replication, the true model is adopted to generate the data set; thus, all the 12 models are fitted with

G ∈ {1, 2, 3}, leading to a total of 36 fitted models. Table 7 and Table 8 showthe results for the BIC and the ICL, respec-
tively. Here, a value in position(i, j) has to be read as “number of times that the combination

(
model, number of groups

)

on columnj is selected to fit the true model (withG = 2) on rowi”. Bold numbers highlight the number of times that
the pair(true model,G = 2) is selected. Note that: the columns referred to models of type “tt-” are missing simply
because they have never been selected, and the sum by row is greater than 50 because, whenG = 1 is selected, there
is not difference between “-VV”, “-VE”, and “-EV” (see Section 3). By comparing the results in these tables, the
BIC seems to perform better than the ICL. In particular, the ICL selects models with only one group a larger number
of times than the BIC. This is probably induced by the scheme of definition of the true model that allows for groups
with a strong overlap; thus, the entropy term of the ICL carries out a strong penalization which leads to the choice
G = 1. Figure 12 and Figure 13 display two examples where this happens. From these examples we understand as
it is difficult to establish the best model selection criterion; indeed, the ICL may be seen as better if the user actually
does not want to separate two mixture components that are so similar that they do not constitute two different clusters
in terms of interpretation. So, in general, it depends on themeaning of the data which criterion is better.

9. Conclusions and discussion

In this paper, a novel family of twelve linear cluster-weighted models was presented. Such a family represents
a flexible and powerful tool for model-based clustering. Maximum likelihood parameter estimation was performed
according to the EM algorithm and model selection was accomplished using both the BIC and ICL. Many com-
putational aspects were illustrated and a simple, but very effective, hierarchical random initialization method was
introduced. Model-based clustering, using the proposed family, was appreciated on the grounds of some applications
to real data. Here, it is interesting to note how the data set related to the survey of students in Section 7.1 justifies and
motivates the search for a model in the proposed family.

Future work will involve the extension of the proposed family to the model-based classification context. Moreover,
the identifiability issue needs to be adequately addressed;a reference point is given by Hennig (2000). Finally,
Section 8 presented first results to find out a suitable model selection criterion and motivates further research in this
direction.
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Appendix A. EM-constraints for parsimonious models

In the following we describe how to impose constraints on theEM algorithm, described in Section 4 for the most
general modeltt-VV, to obtain parameter estimates for all the other models in Table 1. To this end, the itemization
given at the beginning of Section 3 will be considered as a benchmark scheme.
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Fitted NN-EV NN-VE NN-VV Nt-EV Nt-VE Nt-VV tN-EV tN-VE tN-VV

True G 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

NN-EV 8 40 0 8 0 0 8 0 0 2 0 0 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0

NN-VE 5 0 0 5 40 0 5 0 0 4 0 0 4 0 0 4 0 0 0 0 0 0 1 0 0 0 0

NN-VV 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Nt-VE 0 1 0 0 0 0 0 0 0 5 0 0 5 43 1 5 0 0 0 0 0 0 0 0 0 0 0

tN-EV 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 247 0 2 0 0 2 0 0

Table 7: Simulation results for the BIC. Values in the table show the number of times, over 50 replications, that the model, and number of groups, on the column are selected to fit the true model
(with two groups) which appears in the corresponding row. Bold numbers highlight the largest number of times that the model selection criteria selects the true model.
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Fitted NN-EV NN-VE NN-VV Nt-EV Nt-VE Nt-VV tN-EV tN-VE tN-VV

True G 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

NN-EV 14 27 0 14 0 0 14 0 0 9 0 0 9 0 0 9 0 0 0 0 0 0 0 0 0 0 0

NN-VE 13 0 0 13 24 0 13 0 0 0 0 0 0 0 0 0 0 0 12 0 0 12 1 0 12 0 0

NN-VV 0 0 0 0 0 0 0 47 0 1 0 0 1 0 0 1 0 0 2 0 0 2 0 0 2 0 0

Nt-VE 0 0 0 0 0 0 0 0 0 15 0 0 15 30 1 15 0 0 2 2 0 2 0 0 2 0 0

tN-EV 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1633 0 16 0 0 16 0 0

Table 8: Simulation results for the ICL. Values in the table show the number of times, over 50 replications, that the model, and number of groups, on the column are selected to fit the true model
(with two groups) which appears in the corresponding row. Bold numbers highlight the number of times that the model selection criteria selects the true model.
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Figure 12: CW-plot of data randomly generated from atN-EV model withG = 2.

Appendix A.1. Common t for the component marginal densities

When we constrain all the groups to have a commont distribution forX, we haveµ1 = · · · = µG = µ, Σ1 = · · · =

ΣG = Σ, andν1 = · · · = νG = ν. Thus, in the(k+ 1)th iteration of the EM algorithm, equations (16) and (18) must be
replaced by

u(k)
n =

ν(k) + d

ν(k) + δ
(
xn, µ(k);Σ(k)

) (A.1)

and

ũ(k)
n = ln u(k)

n + ψ

(
ν(k) + d

2

)
− ln

(
ν(k) + d

2

)
,

respectively. Furthermore, noting that
∑

g τng = 1, equations (23) and (24) can be rewritten as

Q4

(
ϑ;ψ

˜

(k)
)
=

N∑

n=1

Q4n

(
ϑ;ψ

˜

(k)
)

(A.2)

and

Q5

(
ν;ψ

˜

(k)
)
=

N∑

n=1

Q5n

(
ν;ψ

˜

(k)
)
,
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Figure 13: CW-plot of data randomly generated from aNt-VE model withG = 2.

respectively, where

Q4n

(
ϑ;ψ

˜

(k)
)
=

1
2

[
−d ln (2π) + d̃u(k)

n − ln |Σ| − unδ (xn, µ;Σ)
]

and

Q5n

(
ν;ψ

˜

(k)
)
= − lnΓ

(
ν

2

)
+
ν

2
ln
ν

2
+
ν

2

̃u(k)
n − ln u(k)

n +

N∑

n=1

(
ln u(k)

n − u(k)
n

) .

Maximization of (A.2), with respect toϑ, leads to

µ(k+1) =

N∑

n=1

u(k)
n xn

/ N∑

n=1

u(k)
n

and

Σ
(k+1) =

N∑

n=1

u(k)
n

(
xn − µ

(k+1)
) (

xn − µ
(k+1)

)′ / N∑

n=1

u(k)
n .

For the updating ofν, we need to numerically solve the equation

N∑

n=1

∂

∂ν
Q5n

(
ν;ψ

˜

(k)
)
= 0,
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which corresponds to findingν(k+1) as the solution of

− ψ

(
ν

2

)
+ ln

ν

2
+ 1+

N∑

n=1

(
ln u(k)

n − u(k)
n

)
+ ψ

(
ν(k) + d

2

)
− ln

(
ν(k) + d

2

)
= 0. (A.3)

Appendix A.2. Common t for the component conditional densities

Similarly, when we constrain all the groups to have a commont distribution forY|x, we haveβ11 = · · · = β1G = β1,
β01 = · · · = β0G = β0,σ2

1 = · · · = σ
2
G = σ

2, andζ1 = · · · = ζG = ζ. Thus, in the(k+ 1)th iteration of the EM algorithm,
equations (15) and (17) must be replaced by

v(k)
n =

ζ(k) + 1

ζ
(k)
g + δ

[
yn, µ

(
xn;β(k)

)
;σ2(r)

] (A.4)

and

ṽ(k)
n = ln v(k)

n + ψ

(
ζ(k) + 1

2

)
− ln

(
ζ(k) + 1

2

)
,

respectively. Also, equations (21) and (22) can be rewritten as

Q2

(
ξ;ψ

˜

(k)
)
=

N∑

n=1

Q2n

(
ξ;ψ

˜

(k)
)

(A.5)

and

Q3

(
ζ;ψ

˜

(k)
)
=

N∑

n=1

Q3n

(
ζ;ψ

˜

(k)
)
,

respectively, where

Q2n

(
ξ;ψ

˜

(k)
)
=

1
2

{
− ln (2π) + ṽ(k)

n − lnσ2 − vnδ
[
yn, µ (xn;β) ;σ2

]}

and

Q3n

(
ζ;ψ

˜

(k)
)
= − lnΓ

(
ζ

2

)
+
ζ

2
ln
ζ

2
+
ζ

2

̃v(k)
n − ln v(k)

n +

N∑

n=1

(
ln v(k)

n − v(k)
n

) .

Maximization of (A.5), with respect toξ, leads to the updates

β
(k+1)
1 =



N∑

n=1

v(k)
n xnx′n

N∑

n=1

v(k)
n

−

N∑

n=1

v(k)
n xn

N∑

n=1

v(k)
n

N∑

n=1

v(k)
n x′n

N∑

n=1

v(k)
n



−1

·

·



N∑

n=1

v(k)
n ynxn

N∑

n=1

v(k)
n

−

N∑

n=1

v(k)
n yn

N∑

n=1

v(k)
n

N∑

n=1

v(k)
n xn

N∑

n=1

v(k)
n



,

β
(k+1)
0 =

N∑

n=1

v(k)
n yn

N∑

n=1

v(k)
n

− β
(k+1)′

1

N∑

n=1

v(k)
n xn

N∑

n=1

v(k)
n
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and

σ2(k+1) =

N∑

n=1

v(k)
n

[
yn −

(
β

(k+1)
0 + β

(k+1)′

1 xn

)]2 / N∑

n=1

v(k)
n .

For the updating ofζ, we need to numerically solve the equation

N∑

n=1

∂

∂ν
Q3n

(
ζ;ψ

˜

(k)
)
= 0,

which corresponds to findingζ(k+1) as the solution of

−ψ

(
ζ

2

)
+ ln

ζ

2
+ 1+

N∑

n=1

(
ln v(k)

n − v(k)
n

)
+ ψ

(
ζ(k) + 1

2

)
− ln

(
ζ(k) + 1

2

)
= 0.

Appendix A.3. Normal component marginal densities

The normal case for the component distributions ofX can be obtained, as stated previously, as a limiting case
whenνg → ∞, g = 1, . . . ,G. Then, in (16),u(k)

ng → 1. Substituting this value into (26) and (27), we obtain

µ(k+1)
g =

N∑

n=1

τ(k)
ng xn

/ N∑

n=1

τ(k)
ng

and

Σ
(k+1)
g =

N∑

n=1

τ(k)
ng

(
xn − µ

(k+1)
g

) (
xn − µ

(k+1)
g

)′ / N∑

n=1

τ(k)
ng.

Naturally, in this case, we do not compute the additionalM-step maximizingQ5

(
ν
˜
;ψ

˜

(k)
)

in (24). Accordingly, for the

sub-caseµ1 = · · · = µG = µ andΣ1 = · · · = ΣG = Σ, in equation (A.1) we haveu(k)
n → 1 and the updated estimates of

µ andΣ become

µ =
1
n

N∑

n=1

xn

and

Σ =
1
n

N∑

n=1

(xn − µ) (xn − µ)′ ,

which do not depend on the EM-iterations.

Appendix A.4. Normal component conditional densities

The normal case for the component distributions ofY|X can be obtained as a limiting case whenζg → ∞, g =
1, . . . ,G. Then, in (15),v(k)

ng → 1. Substituting this value into (28) and (29), we obtain

β
(k+1)
1g =



N∑

n=1

τ(k)
ng xnx′n

N∑

n=1

τ(k)
ng

−

N∑

n=1

τ(k)
ng xn

N∑

n=1

τ(k)
ng

N∑

n=1

τ(k)
ng x′n

N∑

n=1

τ(k)
ng



−1

·

·
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n=1

τ(k)
ngynxn

N∑
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τ(k)
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ngyn
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n=1

τ(k)
ng

N∑

n=1

τ(k)
ng xn

N∑

n=1

τ(k)
ng



,
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β
(k+1)
0g =

N∑

n=1

τ(k)
ngyn

N∑

n=1

τ(k)
ng

− β
(k+1)′

1g

N∑

n=1

τ(k)
ng xn

N∑

n=1

τ(k)
ng

and

σ2(k+1)
g =

N∑

n=1

τ(k)
ng

[
yn −

(
β

(k+1)
0g + β

(k+1)′

1g xn

)]2 / N∑

n=1

τ(k)
ng.

We again do not compute the additionalM-step maximizingQ3

(
ζ
˜

;ψ
˜

(k)
)

in (22). Accordingly, for the sub-caseβ11 =

· · · = β1G = β1, β01 = · · · = β0G = β0, andσ2
1 = · · · = σ

2
G = σ

2, in equation (A.4) we havev(k)
n → 1 and the updated

estimates ofβ1, β0, andσ2 become

β1 =


1
n

N∑

n=1

xnx′n −
1
n2

N∑

n=1

xn

N∑

n=1

x′n


−1 

1
n

N∑

n=1

ynxn −
1
n2

N∑

n=1

yn

N∑

n=1

xn

 ,

β0 =
1
n

N∑

n=1

yn −
1
n
β′1

N∑

n=1

xn

and

σ2 =
1
n

N∑

n=1

[
yn −

(
β0 + β

′
1xn

)]2
,

which do not depend on the EM-iterations.
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