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Abstract

A new non-randomized response (NRR) model (called a variant of the parallel model) is pro-
posed. The survey design and corresponding statistical inferences including likelihood-based
methods, Bayesian methods and bootstrap methods are provided. Theoretical and numeri-
cal comparisons showed that the proposed variant of the parallel model over-performs two
existing NRR crosswise and triangular models for most of the possible parameter ranges. An
outline for handling the possible non-compliance behavior in the proposed model is provided.
An illustrative example from an existing survey on ‘sexual practices’ in San Francisco, Las
Vegas and Portland is used to demonstrate the proposed statistical analysis methods. Two
real surveys on the cheating behavior in examinations at the University of Hong Kong are
conducted and are used to illustrate the proposed design and analysis methods.
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1. Introduction

Consider a target population which can be divided into two mutually exclusive groups:

one with a sensitive attribute and the other without. Statistically, let Y be a sensitive

binary variable, {Y = 1} denote the population group that has the sensitive attribute and

{Y = 0} denote the complementary group. Usually, a well-designed survey is conducted

for collecting sensitive data, which are used to estimate the proportion (denoted by π =

Pr(Y = 1)) of persons with the sensitive characteristic. Several techniques are developed

to encourage truthful responses while protecting the privacy of respondents (or minimizing

the interviewee’s feeling of jeopardy). The first one is the randomized response technique
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(RRT), which includes Warner’s design (Warner, 1965) and its improvement versions such

as the unrelated question RR design (Horvitz et al., 1967; Greenberg et al., 1969). For a

comprehensive review on RR designs, one is referred to Fox and Tracy (1986), Chaudhuri

and Mukerjee (1988), and Chaudhuri (2011). One difficulty in implementing the RRT is

the choice of an appropriate randomizing device in a self-administered setting. Another

challenge in using RR models is the possible non-compliance behavior because of respondents’

mistrust. A complicated or novel randomizing device may lead the interviewee to doubt

the method itself or, even worst, to feel that they are being tricked by the interviewer into

providing information under false pretenses. To handle non-compliance to RRT instructions,

many developments on RR models were proposed by some researchers, e.g., Lakshmi and

Raghavarao (1992), Clark and Desharnais (1998), Böckenholt and van der Heijden (2007),

Van Den Hout and Klugkist (2009), Ostapczuk et al. (2009a), Ostapczuk et al. (2009b,

2011), Moshagen (2010), Van Den Hout et al. (2010), Moshagen et al. (2012), and so on.

The second one is called the unmatched count technique (UCT), which provides absolute

anonymity and confidentiality. Under UCT, two forms are needed: Form 1 contains a number

of innocuous or neutral questions with answer ‘yes’ or ‘no’ and Form 2 is identical to Form

1, except for the addition of one embarrassing question of interest (Dalton et al., 1994, 1997;

Coutts and Jann, 2011). The respondents of the survey are randomly assigned to one of

two groups. Participants in group 1 (or group 2) are asked to reveal only the number of

‘yes’-answer to all items listed in Form 1 (or Form 2). Since the interviewer does not know

how they arrived at that number, it is safe to answer the sensitive question truthfully. One

advantage of the UCT over the RRT is that no randomized device is required. The UCT

is also called the item count technique (Droitcour et al., 1991; Tsuchiya et al., 2007), the

unmatched block design, or block total response (Raghavarao et al., 1979). For more detailed

description on the UCT, see Dalton et al. (1994).

The third one is called the non-randomized response (NRR) technique, which utilizes one

or two independent non-sensitive random variates (e.g., respondent’s birth date/month or

the last digit of a respondent’s ID card/phone number) combined with one or two sensitive

random variables to form an incomplete contingency table and to indirectly obtain respon-
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dents’ sensitive answers (Takahasi and Sakasegawa, 1977; Tian et al., 2007b, 2011; Yu et al.,

2008; Tan et al., 2009; Tang et al., 2009). Like the UCT, the NRR designs don’t require any

randomizing devices.

One basic distinction between a randomized response model and a non-randomized re-

sponse model is that the former usually requires a randomization device such as a coin or a

die which is related to a random variable without reproducibility, while the latter requires

an independent non-sensitive variate such as birth date combined with the sensitive response

variable to form an incomplete contingency table, resulting in a reproducibility. That is, the

same respondent may yield different answers depending on the outcome of the randomization

device in repeated experiments (e.g., repeatedly flip a coin). For example, in the unrelated

question design with a coin as the randomization device, if the outcome is head, the first

question is answered; if the outcome is tail, the second question is answered. Suppose that

the result of the first (second) flip is a tail (head), the answer is a ‘yes’ (‘no’). As a result,

interviewers do not know which answer should be collected.

It is not true that any randomized response model can be easily transformed to a non-

randomized response model. Up to now, only the Warner model and the unrelated question

model were successfully transformed to the non-randomized crosswise model (Yu et al.,

2008) and the non-randomized parallel model (Tian, 2012), respectively. Next, although

some randomized response models can be transformed to non-randomized versions, the re-

sulting statistical analysis methods are totaly different. For example, for the randomized

unrelated question model with an unknown θ = Pr(U = 1), two independent samples of

sizes n1 and n2 and two randomization devices are required, while for its non-randomized

version, i.e., the proposed variant of the parallel model in this paper, only one sample is

needed without using any randomization devices and the corresponding statistical analysis

methods are developed based on a trinomial distribution with two complete observations

and one incomplete observation. The second example is as follows. To assess the association

of two sensitive questions with binary outcomes, a randomized response model in general

requires two randomization devices (Christofides, 2005), while in the non-randomized hidden

sensitivity model (Tian et al., 2007b), respondents only need to answer a non-sensitive ques-

3



tion instead of the original two sensitive questions and the corresponding analysis methods

are developed based on an incomplete 4×4 contingency table. Finally, for other randomized

response models (e.g., Kuk, 1990), the corresponding non-randomized partners are not yet

available up to now.

Recently, Tian (2012) proposed a new NRR model, called the parallel model, to esti-

mate the unknown proportion, π = Pr(Y = 1), of individuals with a sensitive characteristic.

By introducing two non-sensitive dichotomous variates U and W such that Y , U and W

are mutually independent, Tian (2012) developed a general framework of design and anal-

ysis for the NRR parallel model. Theoretical comparison showed that the parallel model

over-performs two existing NRR crosswise and triangular models for most of the possible

parameter ranges. It was noted that all these findings are based on the assumption of

known proportions θ = Pr(U = 1) and p = Pr(W = 1). However, in survey practice, it is

usually difficult to choose an appropriate non-sensitive dichotomous variate U with known

θ = Pr(U = 1). Even such a binary variable U can be found and a constant θ0 is assumed

to be equal to the true value of the θ, how to test the hypothesis H0: θ = θ0 is still not

available for the parallel design. The main goal of this paper is to propose a variant of the

parallel model with unknown θ = Pr(U = 1).

The rest of the paper is organized as follows. In Section 2, we propose the survey design

for the variant of the parallel model, and discuss the estimation of the parameters, relative

efficiency and the degree of privacy protection. In Section 3, three asymptotic confidence

intervals (CIs) and the exact CI of π are derived. In addition, a modified maximum likelihood

estimate (MLE) of π is provided and the corresponding asymptotic property is investigated.

Statistical inferences on θ and two bootstrap CIs of the parameters are given in Sections 4

and 5, respectively. Bayesian inferences are discussed in Section 6. Comparisons with the

NRR crosswise and triangular models are conducted theoretically and numerically in Section

7. An outline for handling the possible non-compliance behavior in the proposed model is

presented in Section 8. In Section 9, an illustrative example from an existing survey on ‘sexual

practices’ in San Francisco, Las Vegas and Portland is used to demonstrate the proposed

statistical analysis methods. Two real surveys on the cheating behavior in examinations at
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the University of Hong Kong are conducted and are used to illustrate the proposed design

and analysis methods. A discussion is given in Section 10. The exact inversion Bayesian

formulae (IBF) sampling is provided in Appendix A.

2. A new non-randomized response model: A variant of the parallel model

2.1. The survey design for the variant of the parallel model

Let {Y = 1} denote the population class with a sensitive characteristic and {Y = 0}
denote the complementary class. The objective is to estimate the proportion π = Pr(Y = 1).

Suppose that U and W are two non-sensitive dichotomous variates, and Y , U and W are

mutually independent with unknown θ = Pr(U = 1) and known p = Pr(W = 1). For

example, we may define U = 1 if the respondent lives in Hong Kong Island (or likes watching

football/soccer on TV, or likes fishing/singing/shopping/traveling, or is educated above the

level of high school) and U = 0 otherwise. Similarly, we could define W = 1 if the last

digit of the respondent’s ID/cell phone number is odd (or the respondent’s birthday is in the

second half of a year/month) and W = 0 otherwise. Hence, it is reasonable to assume that

p ≈ 0.5.

The interviewer may design the questionnaire in the format as shown at the left-hand

side of Table 1 and ask the interviewee to truthfully put a tick in the circle if he/she belongs

to {U = 0,W = 0} or put a tick in the triangle if he/she belongs to {Y = 0,W = 1} or put

a tick in the upper square if he/she belongs to {U = 1,W = 0} ∪ {Y = 1,W = 1}. Note

that all {W = 0}, {W = 1}, {U = 0}, {U = 1} and {Y = 0} are non-sensitive classes, thus

{U = 1, W = 0} ∪ {Y = 1, W = 1} is also a non-sensitive subclass. Therefore, whether

the interviewee belongs to the sensitive class {Y = 1, W = 1} is not on record. Since θ is

unknown, we call this a variant of the parallel model. The corresponding cell probabilities are

displayed at the right-hand side of Table 1. Since the three binary variables U, Y and W are

independent, the joint probability is the product of two corresponding marginal probabilities.
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Table 1. The survey design for the variant of parallel model with unknown θ = Pr(U = 1)

Category W = 0 W = 1 Category W = 0 W = 1 Marginal

U = 0 © U = 0 (1 − θ)(1 − p) 1 − θ

U = 1 � U = 1 θ(1 − p) θ

Y = 0 4 Y = 0 (1 − π)p 1 − π

Y = 1 � Y = 1 πp π

Marginal 1 − p p 1

Note:

• Please truthfully put a tick in the circle if you belong to {U = 0,W = 0} or put a tick in the
triangle if you belong to {Y = 0,W = 1} or put a tick in the upper square if you belong to
{U = 1,W = 0} ∪ {Y = 1,W = 1}.

• For those respondents not completely understanding the questionnaire shown in Table 1,
investigators can formulate the questionnaire of the variant of the parallel model as follows:

Let Y = 1 if a respondent is a drug user and Y = 0 otherwise.

(1) If your birthday is in the first half of a year (i.e., W = 0), please answer ‘0’ (i.e., U = 0),
or ‘2’ (i.e., U = 1) to the question: Do you like shopping?

(2) If your birthday is in the second half of a year (i.e., W = 1), please answer ‘1’ (i.e.,
Y = 0), or ‘2’ (i.e., Y = 1) to the question: Are you a drug user?

Answering ‘0’ is equivalent to putting a tick in the circle in Table 1, answering ‘1’ is equivalent
to putting a tick in the triangle in Table 1 and answering ‘2’ is equivalent to putting a tick
in the upper square in Table 1.

2.2. Estimation

Suppose that a sample survey with n questionnaires is conducted. Let Yobs = {n; n1, n2, n3}
denote the observed data, where n =

∑3
i=1 ni, n1 represents the number of respondents

putting a tick in the circle, n2 represents the number of respondents putting a tick in the

triangle, and n3 represents the number of individuals who put a tick in the upper square (see

Table 1). The likelihood function of the two unknown parameters π and θ for the observed

data Yobs is

L
V
(π, θ|Yobs) =

(
n

n1, n2, n3

)
[(1 − θ)(1 − p)]n1[(1 − π)p]n2[θ(1 − p) + πp]n3 , (2.1)
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where the subscript ‘V’ refers to the ‘variant’ of the parallel model. Hence, the corresponding

log-likelihood function is given by

`
V
(π, θ|Yobs) = c+ n1 log(1 − θ) + n2 log(1 − π) + n3 log{θ(1 − p) + πp},

where c is a constant not depending on π and θ. Let

∂`
V
(π, θ|Yobs)

∂π
= 0 and

∂`
V
(π, θ|Yobs)

∂θ
= 0,

we obtain

−n2

1 − π
+

n3p

θ(1 − p) + πp
= 0 and

−n1

1 − θ
+

n3(1 − p)

θ(1 − p) + πp
= 0.

Hence, the MLEs of π and θ are given by

π̂
V

= 1 − n2

np
and θ̂ = 1 − n1

n(1 − p)
. (2.2)

To derive the expectation and variance of the π̂
V
, we define

λ1 = Pr{U = 0,W = 0} = (1 − θ)(1 − p),

λ2 = Pr{Y = 0,W = 1} = (1 − π)p and (2.3)

λ3 = Pr{U = 1,W = 0} + Pr{Y = 1,W = 1} = θ(1 − p) + πp.

Obviously, we have (n1, n2, n3)
>∼ Multinomial(n;λ1, λ2, λ3). Note that the MLEs of {λi}3

i=1

are given by λ̂i = ni/n and E(ni) = nλi, i = 1, 2, 3. It is easy to verify that π̂
V

is an unbiased

estimator of π and the variance of π̂
V

is given by

Var(π̂
V
) =

λ2(1 − λ2)

np2

(2.3)
= Var(π̂

D
) +

(1 − p)(1 − π)

np
, (2.4)

where Var(π̂
D
) =̂π(1−π)/n denotes the variance of π̂

D
in design of direct questioning (DDQ).

It is clear that when p = 1 the variant of the parallel design will reduce to the DDQ.

Furthermore, we observed that the Var(π̂
V
) does not depend on the unknown parameter θ.

Hence, for any fixed π,

nVar(π̂
V
) = π(1 − π) +

(1 − p)(1 − π)

p
(2.5)

is a decreasing function of p as shown in Figure 1. We can see that nVar(π̂
V
) → ∞ as p→ 0.
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Figure 1 Plot of nVar(π̂
V
) defined by (2.5) against p with π = 0.3 for the variant of the parallel

model.

2.3. Relative efficiency

The relative efficiency (RE) is a useful tool to compare two survey designs. The RE of

the the variant of the parallel design to the DDQ is defined by

REV→D(π, p) =
Var(π̂

V
)

Var(π̂
D
)

= 1 +
1 − p

πp
.

It is noted that REV→D(π, p) does not depend on the unknown parameter θ and the sample

size n. When p is fixed, REV→D(π, p) is a decreasing function of π. Similarly, when π is

fixed, REV→D(π, p) is also a decreasing function of p. Table 2 lists the values of REV→D(π, p)

for various combinations of π and p. For example, when π = 0.10 and p = 2/3, we have

REV→D(0.10, 2/3) = 6, which implies that the sample size needed for the variant of the

parallel design is about 6 times of that needed for the DDQ in order to achieve the same

estimation precision. When π = 0.10 and p = 0.50, we have REV→D(0.10, 0.50) = 11.

This might be a drawback for a social researcher who is willing to investigate a sensitive
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topic being forced to interview 1100 respondents via the proposed model instead of only 100

respondents using a direct questioning technique. Although a direct questioning technique

requires a relatively smaller sample size, the respondents are, in general, not willing to

cooperate because of highly sensitive topics. Therefore, in order to smooth the research,

some acceptable sacrifice is worthwhile. In other words, with a larger sample size is the

cost when an investigator uses an RRT/UCT or an NRR model to implement a survey with

sensitive questions.

Table 2. Relative efficiency REV→D(π, p) for various combinations of π and p

p
π

1/3 0.40 0.50 0.60 2/3

0.05 41.000 31.000 21.000 14.333 11.000

0.10 21.000 16.000 11.000 7.6667 6.0000

0.20 11.000 8.5000 6.0000 4.3333 3.5000

0.30 7.6667 6.0000 4.3333 3.2222 2.6667

0.40 6.0000 4.7500 3.5000 2.6667 2.2500

0.50 5.0000 4.0000 3.0000 2.3333 2.0000

0.60 4.3333 3.5000 2.6667 2.1111 1.8333

0.70 3.8571 3.1429 2.4286 1.9524 1.7143

0.80 3.5000 2.8750 2.2500 1.8333 1.6250

0.90 3.2222 2.6667 2.1111 1.7407 1.5556

0.95 3.1053 2.5789 2.0526 1.7018 1.5263

2.4. Degree of privacy protection

To evaluate how the respondent’s privacy is protected, we investigate the degree of privacy

protection (DDP) for the variant of the parallel model. Define

Y V =

{−1, if a tick is put in the circle,
0, if a tick is put in the triangle,
1, if a tick is put in the upper square.

Let DPP©(π, θ, p) (or DPP4(π, θ, p)) denote the conditional probability of a respondent

belonging to the sensitive class {Y = 1} given that a tick is put in the circle (or triangle) in
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Figure 2 Plots of DPP�(π, θ, p) defined by (2.6) against p for the variant of the parallel model
with a fixed π and three different values of θ, where the solid line is corresponding to θ = 1/3;
the dashed line is corresponding to θ = 0.5; and the dotted line is corresponding to θ = 2/3. (i)
π = 0.05; (ii) π = 0.20; (iii) π = 0.50; (iv) π = 0.95.

Table 1. Clearly, we have

DPP©(π, θ, p) = Pr(Y = 1|Y V = −1) = 0 and

DPP4(π, θ, p) = Pr(Y = 1|Y V = 0) = 0.

Similarly, let DPP�(π, θ, p) represent the conditional probability of a respondent belonging

to the sensitive class when a tick is put in the upper square in Table 1, we obtain

DPP�(π, θ, p) = Pr(Y = 1|Y V = 1) =
πp

πp+ θ(1 − p)
. (2.6)

In particular, when p = 1, we have DPP�(π, θ, 1) = 1, which equals to the DPP for the

DDQ. For any fixed π and θ, DPP�(π, θ, p) is a monotonically increasing function of p. Each

plot in Figure 2 shows three curves (corresponding to θ = 1/3, 0.5 and 2/3) of DPP�(π, θ, p)

against p with a fixed π, where π = 0.05, 0.20, 0.50 and 0.95, respectively.
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Figure 3 Plots of DPP�(π, θ, p) defined by (2.6) against θ for the variant of the parallel model
with a fixed π and three different values of p, where the solid line is corresponding to p = 1/3;
the dashed line is corresponding to p = 0.5; and the dotted line is corresponding to p = 2/3. (i)
π = 0.05; (ii) π = 0.20; (iii) π = 0.50; (iv) π = 0.95.

In addition, for any fixed π and p, DPP�(π, θ, p) is a monotonically decreasing function

of θ. Each plot in Figure 3 shows three curves (corresponding to p = 1/3, 0.5 and 2/3) of

DPP�(π, θ, p) against θ with a fixed π, where π = 0.05, 0.20, 0.50 and 0.95, respectively.

3. Statistical inferences on π

First, we provide an unbiased estimator of the variance of π̂
V

in Theorem 1 below. Second,

we construct three asymptotic confidence intervals (i.e., Wald, Wilson and likelihood ratio

CIs) of π by using this unbiased estimator. Third, the exact or Clopper–Pearson CI of π is

also derived. Finally, a modified MLE of π is presented and the corresponding asymptotic

property is investigated.
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3.1. An unbiased estimator of the variance of π̂
V

Theorem 1. Let V̂ar(π̂
V
) = λ̂2(1 − λ̂2)/[(n− 1)p2]. Then, we have

V̂ar(π̂
V
) =

π̂
V
(1 − π̂

V
)

n− 1
+

(1 − π̂
V
)(1 − p)

(n− 1)p
(3.1)

and it is an unbiased estimator of Var(π̂
V
) = λ2(1 − λ2)/(np

2). ¶

Proof. From (2.3), we know that λ̂2 = p(1 − π̂
V
), where π̂

V
is given by (2.2). Hence,

V̂ar(π̂
V
) =

λ̂2(1 − λ̂2)

(n− 1)p2

=
p(1 − π̂

V
)(1 − p+ pπ̂

V
)

(n− 1)p2

=
π̂

V
(1 − π̂

V
)

n− 1
+

(1 − π̂
V
)(1 − p)

(n− 1)p
,

which implies (3.1). Next, we prove the second part. Since n2 ∼ Binomial(n;λ2), we have

E(λ̂2) = E(n2/n) = λ2 and Var(λ̂2) =
Var(n2)

n2
=
λ2(1 − λ2)

n
,

so that

E[λ̂2(1 − λ̂2)] = E(λ̂2) − [E(λ̂2)]
2 − Var(λ̂2) =

(n− 1)λ2(1 − λ2)

n
.

Thus, we obtain

E
[
V̂ar(π̂

V
)
]

=
E[λ̂2(1 − λ̂2)]

(n− 1)p2
=
λ2(1 − λ2)

np2
,

i.e., V̂ar(π̂
V
) is an unbiased estimator of Var(π̂

V
). �

3.2. Three asymptotic confidence intervals of π for large sample sizes

Let zα denote the upper α-th quantile of the standard normal distribution. From the

Central Limit Theorem, as n → ∞, the (1 − α)100% Wald CI of π based on the unbiased

estimate V̂ar(π̂
V
) is given by

[π̂
V,WL

, π̂
V,WU

] =

[
π̂

V
− zα/2

√
V̂ar(π̂

V
), π̂

V
+ zα/2

√
V̂ar(π̂

V
)

]
. (3.2)

One drawback for the Wald CI (3.2) is that the lower bound may be less than zero when

the true value of π is close to zero while the upper bound may be beyond one when the true
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value of π is near to one. For this situation, we can construct the (1−α)100% Wilson CI of

π based on

1 − α = Pr

{∣∣∣∣∣
π̂

V
− π√

Var(π̂
V
)

∣∣∣∣∣ 6 zα/2

}

= Pr{(π̂
V
− π)2 6 z2

α/2Var(π̂
V
)}

(2.4)
= Pr

{
(π̂

V
− π)2 6

z2
α/2

n

[
π(1 − π) +

(1 − p)(1 − π)

p

]}

= Pr

{
π̂2

V
− 2π̂

V
π + π2 6

z2
α/2(−π2 + ρ1π + ρ2)

n

}

= Pr
{

(1 + z∗)π
2 − (2π̂

V
+ z∗ρ1)π + π̂2

V
− z∗ρ2 6 0

}
, (3.3)

where z∗ =̂ z2
α/2/n, ρ1 =̂ 1 − ρ2 and

ρ2 =̂
1 − p

p
. (3.4)

Solving the quadratic inequality inside the probability in (3.3), we obtain the Wilson (or

score) CI of π as follows:

[π̂
V,WSL

, π̂
V,WSU

] =
2π̂

V
+ z∗ρ1 ±

√
(2π̂

V
+ z∗ρ1)2 − 4(1 + z∗)(π̂2

V
− z∗ρ2)

2(1 + z∗)
, (3.5)

which is, in general, within [0, 1]. The Wilson CI has been shown to have better performance

than the Wald CI and the exact (Clopper–Pearson) CI. See Agresti and Coull (1998), Brown

et al. (2001), and Newcombe (1998) for more detail.

When the true value of π is small, the likelihood ratio confidence interval (LRCI) could

provide better performance than other alternatives. To construct the LRCI of π, we consider

the null hypothesis H0: π = π0 against the alternative hypothesis H1: π 6= π0. Let θ̂R denote

the restricted MLE of θ under H0. Then θ̂R = [n3(1− p)− n1π0p]/[(n1 + n3)(1− p)]. When

n→ ∞, it is well known that

Λ(π0) = −2{`
V
(π0, θ̂

R|Yobs) − `
V
(π̂

V
, θ̂|Yobs)} ·∼ χ2(1),

where π̂
V

and θ̂ denote the unrestricted MLEs of π and θ specified by (2.2), respectively.

Since

Λ(π0) = −2

{
n1 log(1 − θ̂R) + n2 log(1 − π0) + n3 log[θ̂R(1 − p) + π0p]

13



−n1 log(1 − θ̂) − n2 log(1 − π̂
V
) − n3 log[θ̂(1 − p) + π̂

V
p]

}
, (3.6)

it is easy to verify that Λ(π0) is a increasing function of π0 when π0 ∈
[
0, 1 − n2

np

]
and an

decreasing function of π0 when π0 ∈
[
1 − n2

np
, 1

]
. Therefore, for a given significance level α,

the (1 − α)100% LRCI for π is given by

[π̂
V,LRL

, π̂
V,LRU

], (3.7)

where π̂
V,LRL

and π̂
V,LRU

are two roots of π0 to the following equation

Λ(π0) = χ2(α, 1), (3.8)

where χ2(α, 1) denotes the upper α-th quantile of χ2 distribution with one degree of freedom.

The asymptotic CIs (3.2), (3.5) and (3.7) are appropriate for the cases of large sample

sizes. When n is small to moderate, we could use the bootstrap CIs (5.2) and/or (5.3).

3.3. The exact or Clopper–Pearson confidence interval

When the sample size is small to moderate, Clopper and Pearson (1934) proposed a

method to calculate the exact confidence limits for the binomial proportion by inverting

the equal-tailed test based on the binomial distribution. In this subsection, we employ this

method to compute the CI of π = 1 − λ2/p, see (2.3). Note that n2 ∼ Binomial(n;λ2), the

(1−α)100% exact (or Clopper–Pearson) CI [λ̂
2,EL

, λ̂
2,EU

] of λ2 satisfy the following equations:

λ̂
2,EL

= 0, when n2 = 0,
n∑

x=n2

(n
x

)
λ̂x

2,EL
(1 − λ̂

2,EL
)n−x =

α

2
, n2 = 1, . . . , n− 1, (3.9)

n2∑

x=0

(
n
x

)
λ̂x

2,EU
(1 − λ̂

2,EU
)n−x =

α

2
, n2 = 1, . . . , n− 1 and (3.10)

λ̂
2,EU

= 1, when n2 = n.

By solving (3.9) and (3.10), we obtain

λ̂
2,EL

=

[
1 +

n− n2 + 1

n2F (1 − α/2; 2n2, 2(n− n2 + 1))

]−1

and

λ̂
2,EU

=

[
1 +

n− n2

(n2 + 1)F (α/2; 2(n2 + 1), 2(n− n2))

]−1

,

14



where F (α; k1, k2) denotes the upper α-th quantile of the F distribution F (k1, k2). Thus,

the (1 − α)100% exact CI of π is given by

π̂
V,EL

= 1 −
λ̂

2,EU

p
and π̂

V,EU
= 1 −

λ̂
2,EL

p
. (3.11)

Because this is a discrete problem, the confidence coefficient (or coverage probability) of the

exact CI is not exactly 1 − α but is at least 1 − α. Thus, this exact CI is conservative.

3.4. A modified MLE of π and its asymptotic property

The MLE of π specified by (2.2) may be beyond the unit interval [0, 1]. For example,

let (n1, n2, n3)
> = (15, 20, 35)> and p = 1/4. From (2.2), we obtain π̂

V
= −0.1429 < 0 and

θ̂ = 0.7143. For such cases, we can apply an expectation and maximization (EM) algorithm

(Dempster, Laird and Rubin, 1977) to calculate the MLEs of π and θ. In Section 6.2, we

introduced an EM algorithm to find the posterior modes for both π and θ by using two inde-

pendent beta prior distributions. Especially, when two independent uniform distributions on

[0, 1] are adopted as the priors, the posterior modes of π and θ are identical to their MLEs.

In (6.7) and (6.8) let a1 = b1 = a2 = b2 = 1, and let π(0) = θ(0) = 0.5 be the initial values of

π and θ, the EM algorithm converged to π̂
V

= 2.22 × 10−17 ≈ 0 and θ̂ = 0.70 (< 0.7143) in

197 iterations.

From (2.2), it can be seen that 0 6 π̂
V

6 1 if and only if 0 6 n2 6 np. Therefore, a

modified MLE of π is

π̂
VM

= max{0, π̂
V
} =

{
0, if n2 > np,

π̂
V
, if n2 6 np.

(3.12)

The following result shows that the π̂
VM

and π̂
V

are asymptotically equivalent.

Theorem 2. If 0 < π < 1, then
√
n (π̂

VM
− π) and

√
n (π̂

V
− π) have the same asymptotic

distribution as n→ ∞ . ¶

Proof. It suffices to show that
√
n (π̂

VM
−π)−√

n (π̂
V
−π) converges to zero in probability

as n→ ∞, i.e.,

Pr{|
√
n (π̂

VM
− π̂

V
)| > 0} → 0, as n→ ∞. (3.13)

When n2 6 np, from (3.12), we have π̂
VM

= π̂
V
. Hence, (3.13) follows immediately.
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Now, we consider the case of n2 > np, i.e.,

λ̂2 > p. (3.14)

Note that λ̂2 is the MLE of λ2 = (1 − π)p, it is natural to have Pr{|λ̂2 − λ2| > ε} → 0 for

any given ε > 0 as n→ ∞. Thus, we need only to prove

Pr{|
√
n (π̂

VM
− π̂

V
)| > 0} 6 Pr{|λ̂2 − λ2| > ε} (3.15)

for any ε < πp = p− λ2. Since π̂
VM

= 0, we have

|
√
n (π̂

VM
− π̂

V
)| > 0 ⇒ |

√
n [0 − (1 − λ̂2/p)]| > 0 ⇒ |λ̂2 − p| > 0

⇒ 0 < |λ̂2 − p| (3.14)
= λ̂2 − p = (λ̂2 − λ2) − (p− λ2)

⇒ |λ̂2 − λ2| > λ̂2 − λ2 > p− λ2 > ε.

Consequently, (3.15) follows immediately. �

4. Statistical inferences on θ

4.1. Three asymptotic confidence intervals of θ for large sample sizes

From (2.2), the variance of θ̂ is

Var(θ̂) =
Var(n1)

n2(1 − p)2
=
λ1(1 − λ1)

n(1 − p)2
. (4.1)

Similar to Theorem 1, it is easy to verify that

V̂ar(θ̂) =
λ̂1(1 − λ̂1)

(n− 1)(1 − p)2

is an unbiased estimator of Var(θ̂). Based on this unbiased estimator, the (1−α)100% Wald

CI of θ is

[θ̂
WL
, θ̂

WU
] =

[
θ̂ − zα/2

√
V̂ar(θ̂), θ̂ + zα/2

√
V̂ar(θ̂)

]
. (4.2)

The (1 − α)100% Wilson CI of θ can be constructed based on

1 − α = Pr





∣∣∣∣∣∣
θ̂ − θ√
Var(θ̂)

∣∣∣∣∣∣
6 zα/2





(4.1)
= Pr

{
(θ̂ − θ)2

6
z2

α/2(1 − θ)(1 − p)[1 − (1 − θ)(1 − p)]

n(1 − p)2

}

= Pr
{

(1 + z∗)θ
2 − (2θ̂ + 2z∗ − z∗ρ3)θ + θ̂2 + z∗ − z∗ρ3 6 0

}
, (4.3)
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where z∗ =̂ z2
α/2/n and ρ3 =̂ 1/(1− p). Solving the quadratic inequality inside the probability

in (4.3), we obtain the Wilson (or score) CI of π as follows:

[θ̂
WSL

, θ̂
WSU

] =
2θ̂ + 2z∗ − z∗ρ3 ±

√
(2θ̂ + 2z∗ − z∗ρ3)2 − 4(1 + z∗)(θ̂2 + z∗ − z∗ρ3)

2(1 + z∗)
. (4.4)

which is, in general, within [0, 1].

To construct the LRCI of θ, we consider the null hypothesis H0: θ = θ0 against the

alternative hypothesis H1: θ 6= θ0. Let π̂R denote the restricted MLE of π under H0. Then

π̂R = [n3p− n2θ0(1 − p)]/[(n2 + n3)p]. When n→ ∞, it is well known that

Λ(θ0) = −2{`
V
(π̂R, θ0|Yobs) − `

V
(π̂

V
, θ̂|Yobs)} ·∼ χ2(1),

where π̂
V

and θ̂ denote the unrestricted MLEs of π and θ specified by (2.2). Since

Λ(θ0) = −2

{
n1 log(1 − θ0) + n2 log(1 − π̂R) + n3 log[θ0(1 − p) + π̂Rp]

−n1 log(1 − θ̂) − n2 log(1 − π̂
V
) − n3 log[θ̂(1 − p) + π̂

V
p]

}
, (4.5)

it is easy to verify that Λ(θ0) is a increasing function of θ0 when θ0 ∈
[
0, 1 − n1

n(1−p)

]
and an

decreasing function of θ0 when θ0 ∈
[
1 − n1

n(1−p)
, 1

]
. Therefore, for a given significance level

α, the (1 − α)100% LRCI for θ is given by

[θ̂LRL, θ̂LRU], (4.6)

where θ̂LRL and θ̂LRU are two roots of θ0 to the following equation

Λ(θ0) = χ2(α, 1). (4.7)

4.2. The exact or Clopper–Pearson confidence interval

Similar to Section 3.3, the (1 − α)100% exact (or Clopper–Pearson) CI of θ is given by

θ̂
EL

= 1 − λ̂
1,EU

1 − p
and θ̂

EU
= 1 − λ̂

1,EL

1 − p
, (4.8)

where

λ̂
1,EL

=

[
1 +

n− n1 + 1

n1F (1 − α/2; 2n1, 2(n− n1 + 1))

]−1

and

λ̂
1,EU

=

[
1 +

n− n1

(n1 + 1)F (α/2; 2(n1 + 1), 2(n− n1))

]−1

.
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4.3. Testing Hypotheses

Sometimes, we may have a certain knowledge on the unknown parameter θ = Pr(U = 1)

before our investigation. For example, we may define U = 1 if the respondent’s birthday

is in the second half of a month and U = 0 otherwise. Usually, we assume that θ ≈ 0.5.

To test whether or not this assumption is valid, in this subsection, we focus on testing the

following hypotheses:

H0: θ = θ0 against H1: θ 6= θ0. (4.9)

4.3.1. Hypothesis test for large sample sizes

Let n1 represent the number of respondents putting a tick in the circle in Table 1 and X

be the corresponding random variable, then X ∼ Binomial(n;λ1). Since λ1 = (1− θ)(1− p),

the null and alternative hypotheses in (4.9) are reduced to

H∗
0 : λ1 = λ10 against H∗

1 : λ1 6= λ10,

where λ10 = (1 − θ0)(1 − p). For large sample sizes, we can use the normal distribution to

approximate the binomial distribution. The test statistic and the corresponding z value are

given by

Z =
X − nλ10√
nλ10(1 − λ10)

and z =
n1 − nλ10√
nλ10(1 − λ10)

.

Under H∗
0 , we have Z

.∼ N(0, 1). Hence, the corresponding p-value is given by

pv1 = 2 Pr{Z > |z|} = Pr{Z2 > z2} = Pr{χ2(1) > z2}, (4.10)

where χ2(ν) denotes the chi-square distribution with ν degrees of freedom. When pv1 ≥ α,

we cannot reject the null hypothesis H∗
0 (equivalently, H0) at the α level of significance.

4.3.2. Hypothesis test for small to moderate sample sizes

When the sample size is not too large, we need to compute the exact p-value for testing

H0 against H1. Note that X|H∗
0 ∼ Binomial(n;λ10), we define

βx =̂ Pr(X = x|H∗
0 ) =

(n
x

)
λx

10(1 − λ10)
n−x, x = 0, 1, . . . , n.
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Thus, the exact two-sided p-value is calculated by

pv2 =

n∑

x=0

βxI(βx6βn1
), (4.11)

where I(·) denote the indicate function.

5. Bootstrap confidence intervals of the parameters

In Section 3.2, we provided two asymptotic CIs (3.2) and (3.5) of π, which are available

only for large sample sizes. Although the exact CI (3.11) is available for small to moderate

sample sizes, its performance was shown (Agresti and Coull, 1998) to be even inferior to that

of the Wilson CI specified by (3.5). Alternatively, we could employ the bootstrap method

to find bootstrap CIs of π for the cases of small to moderate sample sizes. Next, in the

beginning of Section 3.4, we mentioned that if the MLE of π calculated by (2.2) is less than

zero, then the EM algorithm (6.7) and (6.8) with a1 = b1 = a2 = b2 = 1 can be used to

compute the MLEs of π and θ. For such situations, the bootstrap method is also a useful

tool to find CIs for an arbitrary function of π and θ, say, ϑ = h(π, θ).

Let ϑ̂ = h(π̂
V
, θ̂) denote the MLE of ϑ, where π̂

V
and θ̂ represent the respective MLEs

of π and θ calculated by means of either (2.2) or the EM algorithm (6.7) and (6.8) with

a1 = b1 = a2 = b2 = 1. Based on the obtained MLEs π̂
V

and θ̂, we can generate

(n∗
1, n

∗
2, n

∗
3)
>∼ Multinomial(n; (1 − θ̂)(1 − p), (1 − π̂

V
)p, θ̂(1 − p) + π̂

V
p).

Having obtained Y ∗
obs = {n; n∗

1, n
∗
2, n

∗
3}, we can calculate a bootstrap replication π̂∗

V
and

θ̂∗ and calculate ϑ̂∗ = h(π̂∗
V
, θ̂∗). Independently repeating this process G times, we obtain

G bootstrap replications {ϑ̂∗g}G
g=1. Consequently, the standard error, se(ϑ̂), of ϑ̂ can be

estimated by the sample standard deviation of the G replications, i.e.

ŝe(ϑ̂) =

{
1

G− 1

G∑

g=1

[ϑ̂∗g − (ϑ̂∗1 + · · ·+ ϑ̂∗G)/G]2

}1/2

. (5.1)

If {ϑ̂∗g}G
g=1 is approximately normally distributed, a (1 − α)100% bootstrap CI for ϑ is

[
ϑ̂− zα/2 · ŝe(ϑ̂), ϑ̂ + zα/2 · ŝe(ϑ̂)

]
. (5.2)
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Alternatively, if {ϑ̂∗g}G
g=1 is non-normally distributed, a (1 − α)100% bootstrap CI of ϑ can

be obtained as

[ϑ̂
L
, ϑ̂

U
], (5.3)

where ϑ̂
L

and ϑ̂
U

are the 100(α/2) and 100(1 − α/2) percentiles of {ϑ̂∗g}G
g=1, respectively.

6. Bayesian inferences

In this section, we first derive the joint posterior distribution of π and θ when a certain

prior information is available and obtain their posterior moments which have explicit ex-

pressions. Second, we utilize the EM algorithm to calculate the posterior modes of π and

θ when their posterior distributions are highly skewed. Finally, we generate i.i.d. posterior

samples of π and θ via the exact IBF sampling.

6.1. Posterior moments with explicit expressions

By ignoring the normalizing constant and the known factor (1− p)n1pn2+n3, we write the

kernel of (2.1) as

L
V
(π, θ|Yobs) = (1 − θ)n1(1 − π)n2(θρ2 + π)n3 , (6.1)

where 0 < π < 1, 0 < θ < 1 and ρ2 is defined in (3.4). If two independent beta distributions

Beta(a1, b1) and Beta(a2, b2) are adopted as the prior distributions of π and θ, respectively,

then the joint posterior distribution of π and θ is

f(π, θ|Yobs) =
πa1−1(1 − π)b1−1θa2−1(1 − θ)b2−1 · l

V
(π, θ|Yobs)

c
V
(a1, b1, a2, b2;n1, n2, n3)

, (6.2)

where the normalizing constant is given by

c
V
(a1, b1, a2, b2;n1, n2, n3)

=

∫ 1

0

∫ 1

0

πa1−1(1 − π)b1−1θa2−1(1 − θ)b2−1 · l
V
(θ, π|Yobs) dπdθ

=

n3∑

i=0

(
n3

i

)
ρi

2

∫ 1

0

πa1+n3−i−1(1 − π)b1+n2−1dπ

∫ 1

0

θa2+i−1(1 − θ)b2+n1−1dθ

=

n3∑

i=0

(
n3

i

)
ρi

2B(a1 + n3 − i, b1 + n2)B(a2 + i, b2 + n1). (6.3)
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Therefore, the r-th posterior moments of π and θ are given by

E(πr|Yobs) =
c

V
(a1 + r, b1, a2, b2;n1, n2, n3)

c
V
(a1, b1, a2, b2;n1, n2, n3)

and

E(θr|Yobs) =
c

V
(a1, b1, a2 + r, b2;n1, n2, n3)

c
V
(a1, b1, a2, b2;n1, n2, n3)

, (6.4)

respectively.

6.2. Calculation of the posterior modes via the EM algorithm

The EM algorithm is a useful tool for computing MLEs in the presence of missing or

latent data. Let Z denote the number of respondents belonging to the sensitive subclass

{Y = 1,W = 1} in Table 1. Since Z is unobservable, it is natural to treat Z as the latent

variable. Thus, the likelihood function of π and θ for the complete data {Yobs, Z} is

L
V
(π, θ|Yobs, Z) =

(
n

n1, n2, n3 − Z,Z

)
[(1 − θ)(1 − p)]n1[(1 − π)p]n2[θ(1 − p)]n3−Z(πp)Z,

∝ πZ(1 − π)n2θn3−Z(1 − θ)n1 .

Again, the product of two independent beta densities Beta(π|a1, b1) and Beta(θ|a2, b2) is

adopted as the joint prior density of π and θ. Hence, the complete-data posterior distribution

and the conditional predictive distribution are

f(π, θ|Yobs, Z) = Beta(π|a1 + Z, b1 + n2) × Beta(θ|a2 + n3 − Z, b2 + n1) and (6.5)

f(Z|Yobs, π, θ) = Binomial

(
Z

∣∣∣n3,
πp

θ(1 − p) + πp

)
, (6.6)

respectively. The M-step of the EM algorithm is to calculate the complete-data posterior

modes of π and θ as

π̃
V

=
a1 + Z − 1

a1 + b1 + n2 + Z − 2
and θ̃

V
=

a2 + n3 − Z − 1

a2 + b2 + n1 + n3 − Z − 2
, (6.7)

and the E-step is to replace Z in (6.7) by its conditional expectation

E(Z|Yobs, π, θ) =
n3πp

θ(1 − p) + πp
. (6.8)

21



6.3. Generation of i.i.d. posterior samples via the exact IBF sampling

In this subsection, we use the exact IBF sampling (Tian et al., 2007a) to generate

i.i.d. posterior samples of π and θ. We simply need to identify the conditional support

of Z|(Yobs, π, θ), denoted by S(Z|Yobs,π,θ), and calculate the weights {ωk}K
k=1 (see Appendix

A). From (6.6), we have

S(Z|Yobs) = S(Z|Yobs,π,θ) = {z1, . . . , zK} = {0, 1, . . . , n3},

where K = n3 + 1. Setting π0 = θ0 = 0.5, from (A.2) and (A.3), we obtain

qk(π0, θ0) =
f(Z = zk|Yobs, π0, θ0)

f(π0, θ0|Yobs, zk)
, (6.9)

and ωk = qk(0.5, 0.5)/
∑K

k′=1 qk′(0.5, 0.5) for k = 1, . . . , K.

7. Comparison with the non-randomized crosswise and triangular models

In this section, we will compare the variant of the parallel model with the non-randomized

crosswise and triangular models. The criteria of the difference of variances and the ratio of

variances are considered. Theoretical and numerical results are provided.

7.1. Comparison with the crosswise model

7.1.1. The difference of variances

Let π̂
C

denote the MLE of π = Pr(Y = 1) under the crosswise model with p = Pr(W =

1) 6= 0.5. From (3.7) of Yu et al. (2008) and (2.4), we have

Var(π̂
C
) − Var(π̂

V
) =

p(1 − p)

n(2p− 1)2
− (1 − p)(1 − π)

np

=
1 − p

np(2p− 1)2
h

CV
(p|π), p 6= 0.5, (7.1)

where h
CV

(p|π) =̂ (4π − 3)p2 + 4(1− π)p+ π − 1 is a quadratic function of p for any fixed π

(π 6= 3/4). The discriminant of the h
CV

(p|π) is given by

D(h
CV

) = 16(1 − π)2 − 4(4π − 3)(π − 1) = 4(1 − π) > 0.

We then have the following results.
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Theorem 3. Let π ∈ (0, 1) and p ∈ (0, 1).

(i) When π = 3/4, the variant of the parallel model is always more efficient than the

crosswise model for any p > 1/4.

(ii) When π > 3/4, the variant of the parallel model is more efficient than the crosswise

model for any p ∈ (pπ, 1), where

pπ =
−2(1 − π) +

√
1 − π

4π − 3
(7.2)

is a monotonic decreasing function of π ∈ (3/4, 1) and 0 < pπ < 0.25.

(iii) When π < 3/4, the variant of the parallel model is always more efficient than the

crosswise model for any p ∈ (pπ, 1), where pπ defined by (7.2) is a monotonic decreasing

function of π ∈ (0, 3/4) and 0.25 < pπ < 1/3. ¶

Proof. (i) When π = 3/4, we have h
CV

(p|π) = p− 1/4. Hence, h
CV

(p|π) > 0 if and only if

p > 1/4. From (7.1), we obtain Var(π̂
C
) > Var(π̂

V
) for p > 1/4.

(ii) When 3/4 < π < 1, it can be shown that the equation h
CV

(p|π) = 0 has two roots

p
L

=
−2(1 − π) −

√
1 − π

4π − 3

and pπ, which is defined by (7.2). It is clear that p
L
< 0. Since

dpπ

dπ
=

−(2
√

1 − π − 1)2

2
√

1 − π (4π − 3)2
< 0, (7.3)

pπ is a monotonic decreasing function of π. The infimum of pπ equals to limπ→1 pπ = 0 and

the supremum of pπ is equal to

lim
π→0.75

pπ = lim
π→0.75

2 − 1
2
√

1−π

4
=

1

4
,

so that 0 < pπ < 0.25. Thus, h
CV

(p|π) > 0 if and only if pπ < p < 1.

(iii) When 0 < π < 3/4, it can see that the equation h
CV

(p|π) = 0 has two roots pπ

defined by (7.2) and

p
U
(π) =

−2(1 − π) −
√

1 − π

4π − 3
=

2(1 − π) +
√

1 − π

3 − 4π
.
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Note that
dp

U
(π)

dπ
=

(2
√

1 − π + 1)2

2
√

1 − π (4π − 3)2
> 0,

then p
U
(π) is a monotonic increasing function of π ∈ (0, 3/4), so that p

U
(π) > p

U
(0) = 1.

From (7.3), we know that pπ is also a monotonic decreasing function of π ∈ (0, 3/4). The

infimum of pπ is limπ→0.75 pπ = 0.25 and the supremum of pπ is limπ→0 pπ = 1/3. In other

words, we have 0.25 < pπ < 1/3. Thus, h
CV

(p|π) > 0 if and only if pπ < p < 1. �

From Theorem 3, we have immediately the following result.

Corollary 1. The variant of the parallel model is always more efficient than the non-

randomized crosswise model for any π ∈ (0, 1) and p > 1/3. ¶

7.1.2. Relative efficiency of the crosswise model to the variant of the parallel model

The RE of the crosswise model (p 6= 0.5) to the variant of the parallel model is

REC→V(π, p) =
Var(π̂

C
)

Var(π̂
V
)

=
π(1 − π) + p(1 − p)/(2p− 1)2

π(1 − π) + (1 − π)(1 − p)/p
,

which is independent of the sample size n.

Table 3. Relative efficiency REC→V(π, p) for various combinations of π and p

p
π

1/3 0.40 0.45 0.55 0.60 2/3

0.05 1.0513 4.1070 20.5174 30.0659 8.8825 3.9187

0.10 1.1058 4.2292 20.8739 30.0594 8.8261 3.8704

0.20 1.2273 4.5294 21.8936 30.5815 8.8846 3.8571

0.30 1.3727 4.9286 23.4244 31.8885 9.1773 3.9464

0.40 1.5556 5.4737 25.6747 34.1903 9.7500 4.1481

0.50 1.8000 6.2500 29.0320 37.9310 10.714 4.5000

0.60 2.1538 7.4286 34.2851 44.0529 12.316 5.0909

0.70 2.7284 9.4091 43.2832 54.8024 15.146 6.1389

0.80 3.8571 13.391 61.5907 76.9691 21.000 8.3077

0.90 7.2069 25.375 117.047 144.571 38.872 14.929

0.95 13.881 49.367 228.315 280.486 74.814 28.241
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Table 3 reports some values of REC→V(π, p) for various combinations of π and p. For

example, when π = 0.95 and p = 0.55, we have REC→V(0.95, 0.55) = 280.486, which implies

that the efficiency of the variant of the parallel model greatly outweighs that of the crosswise

model. When π = 0.80 and p = 0.60, we have REC→V(0.80, 0.60) = 21.000, implying that

the efficiency of the variant of the parallel model is 21 times of that of the crosswise model.

7.2. Comparison with the triangular model

7.2.1. The difference of variances

Let π̂
T

denote the MLE of π = Pr(Y = 1) under the triangular model with p = Pr(W =

1). From (3.2) of Tan, Tian and Tang (2009) and (2.4), we have

Var(π̂
T
) − Var(π̂

V
) =

(1 − π)p

n(1 − p)
− (1 − π)(1 − p)

np
=

(1 − π)(2p− 1)

np(1 − p)
, p ∈ (0, 1). (7.4)

Theorem 4. For any π ∈ (0, 1) and p ∈ (0.5, 1), the variant of the parallel model is always

more efficient than the triangular model, i.e., Var(π̂
T
) > Var(π̂

V
). ¶

7.2.2. Relative efficiency of the triangular model to the variant of the parallel model

The RE of the triangular model to the variant of the parallel model is

RET→V(π, p) =
Var(π̂

T
)

Var(π̂
V
)

=
π + p/(1 − p)

π + (1 − p)/p
,

which is independent with the sample size n.

Table 4. Relative efficiency RET→V(π, p) for various combinations of π and p

p
π

1/3 0.40 0.45 0.5 0.55 0.60 2/3
0.05 0.2683 0.4624 0.6824 1 1.4654 2.1628 3.7273
0.10 0.2857 0.4792 0.6944 1 1.4400 2.0870 3.5000
0.20 0.3182 0.5098 0.7159 1 1.3968 1.9615 3.1429
0.30 0.3478 0.5370 0.7346 1 1.3613 1.8621 2.8750
0.40 0.3750 0.5614 0.7509 1 1.3317 1.7813 2.6667
0.50 0.4000 0.5833 0.7654 1 1.3065 1.7143 2.5000
0.60 0.4231 0.6032 0.7783 1 1.2849 1.6579 2.3636
0.70 0.4444 0.6212 0.7898 1 1.2661 1.6098 2.2500
0.80 0.4643 0.6377 0.8002 1 1.2497 1.5682 2.1538
0.90 0.4828 0.6528 0.8096 1 1.2352 1.5319 2.0714
0.95 0.4915 0.6599 0.8140 1 1.2285 1.5155 2.0345
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Table 4 reports some values of RET→V(π, p) for various combinations of π and p. We

have observed from Table 4 that, for any π ∈ (0, 1), RET→V(π, p) > 1 if p > 0.5, while

RET→V(π, p) < 1 if p < 0.5. In other words, when p > 0.5, the efficiency of the variant of

the parallel model is superior to that of the triangular model and when p < 0.5 the efficiency

of the variant of the parallel model is inferior to that of the triangular model. In particular,

when p = 0.5, the efficiency of the two models is equivalent.

8. The non-compliance behavior

The non-compliance behavior encountered in randomized response practice is that some

respondents are not willing to follow the design instructions even if interviewers provide

them with secret answer sheets, sealed envelopes, and sincere promises of confidentiality

Mangat (1994). However, in our opinion, a possible/partial reason for such non-compliance

behaviors may be caused by the use of randomizing devices which are, in general, controlled

by interviewers. One aim for developing non-randomized response techniques is trying to

alleviate the non-compliance behavior. For example, for the crosswise model and the parallel

model with two sensitive categories (i.e., both {Y = 0} and {Y = 1} are sensitive), we in

general believe that for those respondents not refusing, they are willing to follow the design

instruction since their privacy is well protected. However, for the triangular model, a tick put

in the triangle indicates that the respondent may belong to the sensitive class. Thus, the non-

compliance behavior may occur in the triangular model. Tang and Wu (2013) proposed two

design techniques which incorporate the non-compliance into the non-randomized triangular

model.

And actually, the non-compliance behavior can also occur in the proposed variant of the

parallel model. We note that only the sub-category {Y = 1,W = 1} (i.e. the lower square

in Table 1) contains sensitive information. Respondents belonging to this sub-category

and having no sufficient confidence on such a survey may put a tick in the triangle in

Table 1, resulting in the non-compliance. Taking the non-compliance into consideration, we

denote the probability of the respondents who have the sensitive characteristic and belong

to {W = 1} following the design instruction in Table 1 by ω. Because the new parameter
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ω is added, the respondents need be randomly assigned into one of two groups. For the

first group, we utilize the variant of parallel model with two non-sensitive binary variates

W and U and the sensitive binary variate Y . However, for the second group, we employ the

parallel model (Tian, 2012) with the same W , U and Y to estimate the sensitive proportion

π = Pr{Y = 1}.
Suppose that in the first group, we observed n11, n12 and n13 (n1 = n11 + n12 + n13)

respondents put ticks in the circle, triangle and upper square, respectively. Thus, the cell

probabilities for the three categories are given by

λ∗1 = Pr{U = 0,W = 0} = (1 − θ)(1 − p),

λ∗2 = Pr{Y = 0,W = 1} = (1 − πω)p and

λ∗3 = Pr{U = 1,W = 0} + Pr{Y = 1,W = 1} = θ(1 − p) + πωp.

From the first equation, the MLE of θ is

θ̂ = 1 − n11

(1 − p)n1
. (8.1)

From the second/third equation, it is clear that only πω is estimable. The corresponding

estimate is 1−n12/(pn1). This is why we need the second group. Assume that in the second

group, we observed n21 and n22 (n2 = n21 +n22) individuals put ticks in the upper circle and

upper square, respectively. Then, the MLEs of π and ω are given by

π̂
P

=
n22/n2 − θ̂(1 − p)

p
and ω̂ =

1

π̂
P

(
1 − n12

pn1

)
, (8.2)

respectively. If at least one of the values of θ̂, π̂
P

and ω̂ are beyond the unit interval [0, 1],

we need employ the EM algorithm to calculate the corresponding MLEs.

9. Illustrative and real examples

9.1. An illustrative example of sexual practices

As a sensitive topic, talking about individual sexual practices is still embarrassing even in

countries with open minds. Consequently, it is very difficult to estimate the average numbers

of sexual partners or the cell probabilities of having x (x 6 1 or x > 2) sexual partners in a
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targeting population based on survey data from direct questionnaires. However, gathering

information from this kind of sensitive topic plays a crucial role in assisting researchers to

investigate the relationship between sexual behaviors and some diseases such as cervical

cancer or AIDS. Consider a subset of the sexual practice data from the study of Monto

(2001), in which participants were all men arrested for trying to hire prostitutes in three

Western cities (San Francisco, Las Vegas and Portland, Oregon) of the United States. From

participants’ background characteristics shown in Table 1 of Monto (2001), we can see that

343 individuals graduated at most from some high school and 927 individuals received at

least some college training. Also, there are 593 respondents having no more than one sexual

partner and 668 respondents having no less than two sexual partners.

Table 5. Survey data from Monto (2001)

Level of The number of sexual partners

education Y = 0 (6 1) Y = 1 (> 2)
Total

U = 0 160 (m1) 180 (m2) 340

U = 1 433 (m3) 488 (m4) 921

Total 593 668 1261

To demonstrate the proposed design for the variant of the parallel model presented in

Table 1, we define Y = 1 if the respondent has at least two sexual partners and Y = 0

otherwise. To estimate the unknown proportion π = Pr{Y = 1}, we employ two non-

sensitive binary variables U and W , where U = 1 if the respondent received at least some

college training and U = 0 otherwise; and W = 1 if the respondent’s birthday is from

September to December and W = 0 otherwise. Thus, it is reasonable to assume that

p = Pr{W = 1} ≈ 1
3
.

First, we need to verify the independence between the level of education and the number

of sexual partners. Table 5 displays the survey data of Monto (2001). The MLE of the odds

ratio is given by

ψ̂ =
m1m4

m2m3
= 1.001796.
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We would like to test the null hypothesis H0: ψ = 1 against the alternative hypothesis

H1: ψ 6= 1. The corresponding p-value is

p-value = 2 Pr

(
Z <

−|L|
se

)
= 0.9887377,

where Z denote the standard normal random variable, L = log[m1m4/(m2m3)] and se =
√

1/m1 + 1/m2 + 1/m3 + 1/m4. Since the p-value = 0.9887377 � 0.05, we strongly believe

that there is no association between the level of education and the number of sexual partners.

As a result, the observed data can be constructed as

(n1, n2, n3)
> = (343 × (1 − p), 593 × p, 927 × (1 − p) + 668 × p)>

≈ (229, 198, 841)>,

where n = n1 + n2 + n3 = 1268.

Table 6. Six 95% confidence intervals of π

Type of CIs 95% CI Width

Wald CI (3.2) [0.4715823, 0.5915091] 0.1199268

Wilson CI (3.5) [0.4684999, 0.5883603] 0.1198604

Likelihood ratio CI (3.7) [0.4695520, 0.5893770] 0.1198250

Exact CI (3.11) [0.4680426, 0.5902233] 0.1221806

Normal-based bootstrap CI (5.2) [0.4716088, 0.5914962] 0.1198874

Nonnormal-based bootstrap CI (5.3) [0.4700315, 0.5906940] 0.1206625

Table 7. Six 95% confidence intervals of θ

Type of CIs 95% CI Width

Wald CI (4.2) [0.6973280, 0.7608739] 0.06354587

Wilson CI (4.4) [0.6959085, 0.7593993] 0.06349080

Likelihood ratio CI (4.6) [0.6963906, 0.7598780] 0.06348745

Exact CI (4.8) [0.6956505, 0.7603133] 0.06466284

Normal-based bootstrap CI (5.2) [0.6972551, 0.7609398] 0.06368466

Nonnormal-based bootstrap CI (5.3) [0.6971609, 0.7610410] 0.06388013
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According to (2.2), the MLEs of π and θ are given by π̂
V

= 0.5315 and θ̂ = 0.7291. Six

95% confidence intervals of π based on (3.2), (3.5), (3.7), (3.11), (5.2) and (5.3) are shown in

Table 6. Similarly, six 95% confidence intervals of θ based on (4.2), (4.4), (4.6), (4.8), (5.2)

and (5.3) are shown in Table 7.

Suppose that we want to test the null hypothesis H0: θ = θ0 = 0.73 against the alternative

hypothesis H1: θ 6= 0.73. Let α = 0.05, from (4.10) and (4.11), we have pv1 = 0.9557 and

pv2 = 0.9418. Since both p-values are larger than 0.05, we cannot reject H0. If we set

θ0 = 0.69, then pv1 = 0.0219 and pv2 = 0.0220. As a result, the H0 should be rejected at the

level of α = 0.025.

In the setting of Bayesian analysis, we adopt two independent uniform distributions

(i.e., a1 = b1 = a2 = b2 = 1) as the prior distributions of π and θ, respectively. Using

π(0) = θ(0) = 0.5 as the initial values, the EM algorithm specified by (6.7) and (6.8) converged

to the posterior modes π̃ = 0.5315 and θ̃ = 0.7291 in 19 iterations.

Based on (6.9), we employ the IBF sampling to generate L = 20,000 i.i.d. posterior

samples of π and θ. The posterior means, the posterior standard deviations and 95% Bayesian

credible intervals of π and θ are given in the third, fourth and fifth columns of Table 8. Figure

4 shows the posterior densities of π and θ and their histograms.

Table 8. Posterior estimates of parameters for the data of sexual practices

Posterior Posterior Posterior 95% Bayesian
Parameter

mode mean std credible interval

π 0.5315 0.5302 0.0303 [0.4688, 0.5881]

θ 0.7291 0.7285 0.0163 [0.6959, 0.7596]

9.2. A real example of cheat in examinations at HKU

9.2.1. Design and analysis under the assumption of complete compliance

Cheating behavior in examinations in universities and colleges around the world definitely

result in unfairness and it has been considered as a sensitive issue in which we can hardly

obtain reliable answer via direct asking. To investigate the proportion of undergraduates

who have ever cheated in examinations, we used the variant of parallel model to conduct a
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Figure 4 Posterior densities of π and θ via a kernel density smoother based on L = 20, 000
i.i.d. posterior samples generated by the IBF sampling with two independent uniform distributions
on (0, 1) as the prior distributions of π and θ. (i) The posterior density of π; (ii) the histogram of
π; (iii) the posterior density of θ; (iv) the histogram of θ.

survey in March 2013 among 150 undergraduates at the University of Hong Kong (HKU) in

Hong Kong, P. R. China. The questions in the questionnaire are as follows:

• If your birthday is in the first half of the year and you are not a Hong Kong permanent

resident, please circle 1;

• If your birthday is in the second half of the year and you had never cheated in exami-

nations at HKU, please circle 2;

• If your birthday is in the first half of the year and you are a Hong Kong permanent

resident OR if your birthday is in the second half of the year and you had ever cheated

in examinations at HKU, please circle 3.
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At the end of the data collection, 115 students (52 female and 63 male) returned the

completed questionnaire, where 1 student was from the Faculty of Arts, 22 were from the

Faculty of Business and Economics, 2 were from the Faculty of Engineering, 89 are from the

Faculty of Science and 1 student did not tell us the name of his/her faculty. Among these

students, 99 were Year 1 students, 2 were Year 2 student, 13 were Year 3 students and 1 was

Year 4 student. It was observed that 22 circles on 1, 54 circles on 2 and 39 circles on 3. Let

π = Pr(Y = 1) denote the unknown proportion of undergraduates with cheating behavior in

examinations at HKU and θ = Pr(U = 1) denote the unknown proportion of undergraduates

with Hong Kong permanent residents. The observed data can be represented by

Yobs = {n; n1, n2, n3} = {115; 22, 54, 39}.

According to (2.2), the MLEs of π and θ are given by π̂
V

= 0.0609 and θ̂ = 0.6174. Six

95% confidence intervals of π based on (3.2), (3.5), (3.7), (3.11), (5.2) and (5.3) are shown in

Table 9. Similarly, six 95% confidence intervals of θ based on (4.2), (4.4), (4.6), (4.8), (5.2)

and (5.3) are shown in Table 10.

Table 9. Six 95% confidence intervals of π

Type of CIs 95% CI Width

Wald CI (3.2) [−0.1223575, 0.2440966] 0.3664541

Wilson CI (3.5) [−0.1205648, 0.2383688] 0.3589336

Likelihood ratio CI (3.7) [−0.1213907, 0.2404458] 0.3618365

Exact CI (3.11) [−0.1297411, 0.2482693] 0.3780104

Normal-based bootstrap CI (5.2) [−0.0676406, 0.2186684] 0.2863091

Nonnormal-based bootstrap CI (5.3) [6.832142×10−18, 0.2347826] 0.2347826

Table 10. Six 95% confidence intervals of θ

Type of CIs 95% CI Width
Wald CI (4.2) [0.4729868, 0.7617958] 0.2888089
Wilson CI (4.4) [0.4546011, 0.7402681] 0.2856670
Likelihood ratio CI (4.6) [0.4608817, 0.7467020] 0.2858203
Exact CI (4.8) [0.4496279, 0.7521093] 0.3024814
Normal-based bootstrap CI (5.2) [0.4725176, 0.7512286] 0.2787111
Nonnormal-based bootstrap CI (5.3) [0.4608696, 0.7407407] 0.2798712
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Suppose that we want to test the null hypothesis H0: θ = θ0 = 0.35 against the alternative

hypothesis H1: θ 6= 0.35. Let α = 0.05, from (4.10) and (4.11), we have pv1 = 0.0022 and

pv2 = 0.0019. As a result, the H0 should be rejected at the level of α = 0.01. If we set

θ0 = 0.60, then pv1 = 0.8157 and pv2 = 0.9073. Since both p-values are larger than 0.05, we

cannot reject H0.

For the Bayesian analysis, we adopt two independent uniform distributions (i.e., a1 =

b1 = a2 = b2 = 1) as the prior distributions of π and θ, respectively. Using π(0) = θ(0) = 0.5

as the initial values, the EM algorithm specified by (6.7) and (6.8) converged to the posterior

modes π̃ = 0.0609 and θ̃ = 0.6174 in 133 iterations.

Based on (6.9), we employ the IBF sampling to generate L = 20,000 i.i.d. posterior

samples of π and θ. The posterior means, the posterior standard deviations and 95% Bayesian

credible intervals of π and θ are given in the third, fourth and fifth columns of Table 11.

Figure 5 shows the posterior densities of π and θ and their histograms.

Table 11. Posterior estimates of parameters for the data of cheating behaviors

Posterior Posterior Posterior 95% Bayesian
Parameter

mode mean std credible interval

π 0.0609 0.1040 0.0678 [0.0061, 0.2256]

θ 0.6174 0.5977 0.0704 [0.4503, 0.7261]

9.2.2. Design and analysis under the consideration of non-compliance

To account for the non-compliance behavior in the questionnaire, we conducted the sec-

ond survey by using the parallel model in March 2013 among 100 undergraduates at HKU.

The questions in the questionnaire are as follows:

• If your birthday is in the first half of the year and you are not a Hong Kong permanent

resident OR if your birthday is in the second half of the year and you had NEVER

cheated in examinations at HKU, please circle ‘No’;

• If your birthday is in the first half of the year and you are a Hong Kong permanent

resident OR if your birthday is in the second half of the year and you had EVER

cheated in examinations at HKU, please circle ‘Yes’.
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Figure 5 Posterior densities of π and θ via a kernel density smoother based on L = 20, 000
i.i.d. posterior samples generated by the IBF sampling with two independent uniform distributions
on (0, 1) as the prior distributions of π and θ. (i) The posterior density of π; (ii) the histogram of
π; (iii) the posterior density of θ; (iv) the histogram of θ.

At the end of the data collection, 77 students (27 female and 50 male) returned the

completed questionnaire, where 2 were from the Faculty of Law, 7 were from the Faculty of

Business and Economics, 67 are from the Faculty of Science and 1 was from an unknown

faculty. Among these students, 43 were Year 1 students, 10 were Year 2 students, 20 were

Year 3 students, and 4 were Year 4 students. It was observed that 40 circles on ‘No’ and 37

circles on ‘Yes’. Let π = Pr(Y = 1) denote the unknown proportion of undergraduates with

cheating behavior in examinations at HKU, θ = Pr(U = 1) denote the unknown proportion of

undergraduates being Hong Kong permanent resident, and ω denote the unknown proportion

of undergraduates with cheating behavior following the design instruction in Table 1. The

observed data can be denoted by

Yobs = {n2; n21, n22} = {77; 40, 37}.
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Then, according to (8.1) and (8.2), we have π̂ = 0.3436, θ̂ = 0.6174 and ω̂ = 0.1771. The

MLE of π obtained from the combined data of two groups is significantly higher than that

obtained only from the first sample. Since ω̂ = 0.1771, we can see that about π̂(1 − ω̂)p =

0.3436 ∗ (1− 0.1771) ∗ 0.5 = 14.14% students did not follow the instruction of the design for

the variant of parallel model in our surveys.

10. Discussion

The paper presents a new development for the parallel model originally proposed by Tian

(2012) in sample surveys with sensitive questions. The basic idea is to use two additional

non-sensitive binary variates in conjunction with the sensitive binary response variable to

create a scenario under which confidentiality of the respondent is preserved and partial

information on the sensitive response variable is also obtained. The proposed model assumes

that the population mean (proportion) of one of the non-sensitive variates is known but the

other one is unknown. This last fact is new and provides certain flexibility in chosen the

non-sensitive binary variate. Point and variance estimates of the population proportion of

the sensitive response are derived, and several asymptotic confidence intervals are provided.

Theoretical and numerical comparisons showed that the proposed variant of the parallel

model over-performs two existing NRR crosswise and triangular models for most of the

possible parameter ranges as shown in Corollary 1, Theorem 4, Table 3 and Table 4. A

possible reason for these conclusions is that the variant of the parallel design can gather exact

information (instead of mixing information) for two cells (i.e., the circle and the triangle in

Table 1) because of the introduction of an additional non-sensitive binary variate U when

comparing with the crosswise and triangular models. Finally, we provide a simple way to

handle the possible non-compliance behavior in the proposed model.

One referee pointed out that from the analysis viewpoint (rather than the design view-

point), the proposed model in this paper is a member of the family of multinomial processing

tree models (see, e.g., Erdfelder et al., 2009). Hu and Batchelder (1994) obtained point esti-

mates of parameters by using the EM algorithm and the corresponding standard errors from

the Fisher information matrix in multinomial processing tree models. However, we noted

35



that the resulting interval estimates (based on derivatives from Hu and Batchelder, 1994)

in the form of point estimate plus/minus 1.96 times standard error may be beyond the unit

interval [0, 1] when the true value of the proportion with the sensitive characteristic is close

to zero or one. In fact, in Section 6.2 of this paper we have given the EM algorithm to cal-

culate the posterior modes which are identical to the MLEs of the corresponding parameters

π and θ if two independent uniform priors are adopted. In addition, our bootstrap CIs for

π and θ in the form of (5.3) are always within the unit interval [0,1].
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Appendix A: The exact IBF sampling

Suppose that both the complete-data posterior distribution f(π, θ|Yobs, Z) and the con-

ditional predictive distribution f(Z|Yobs, π, θ) are available. The fundamental conditional

sampling principle states that: If we could obtain independent samples {Z (l)}L
l=1 from

f(Z|Yobs) and generate (π(l), θ(l)) ∼ f(π, θ|Yobs, Z
(l)) for l = 1, . . . , L, then {π(l), θ(l)}L

l=1

are i.i.d. sammples from the observed posterior distribution f(π, θ|Yobs). In other words, the

key issue is to generate independent samples from f(Z|Yobs).

Let S(π,θ|Yobs) and S(Z|Yobs) denote the conditional supports of π, θ|Yobs and Z|Yobs, respec-

tively. The sampling-wise IBF states that

f(Z|Yobs) ∝
f(Z|Yobs, π0, θ0)

f(π0, θ0|Yobs, Z)
, (A.1)

for any arbitrary (π0, θ0) ∈ S(π,θ|Yobs) and all Z ∈ S(Z|Yobs). When Z is a discrete ran-

dom variable/vector taking finite values on the domain, we denote the conditional support

of Z|(Yobs, π, θ) by S(Z|Yobs,π,θ) = {z1, . . . , zK}. Since f(Z|Yobs, π) is available, we can first

directly identify {zk}K
k=1 from the model specification and all {zk}K

k=1 become known. Not-

ing that {zk}K
k=1 generally do not depend on π and θ, we have S(Z|Yobs) = S(Z|Yobs,π,θ) =

{z1, . . . , zK}. Due to the discreteness of Z, the notation f(zk|Yobs) will be used to denote
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the probability mass function, i.e., f(zk|Yobs) = Pr{Z = zk|Yobs}. Therefore, it suffices to

find ωk = f(zk|Yobs) for k = 1, . . . , K. For any (π0, θ0) ∈ S(π,θ|Yobs), let

qk(π0, θ0) =
Pr{Z = zk|Yobs, π0, θ0}

f(π0, θ0|Yobs, zk)
, k = 1, . . . , K. (A.2)

From the sampling-wise IBF (A.1), we immediately obtain

ωk =
qk(π0, θ0)∑K

k′=1 qk′(π0, θ0)
, k = 1, . . . , K. (A.3)

and {ωk}K
k=1 are independent of π0 and θ0. Thus, it is easy to sample from f(Z|Yobs) since

it is a discrete distribution with probability ωk on zk for k = 1, . . . , K. We summarize the

algorithm as follows

The exact ibf sampling:

Step 1. Identify S(Z|Yobs) = S(Z|Yobs,π,θ) = {z1, . . . , zK} from f(Z|Yobs,π,θ) and calculate

{ωk}K
k=1 according to (A.2) and (A.3).

Step 2. Generate i.i.d. samples {Z(l)}L
l=1 of Z from the probability mass function f(Z|Yobs)

with probabilities {ωk}K
k=1 on {zk}K

k=1.

Step 3. Generate (π(l), θ(l)) ∼ f(π, θ|Yobs, Z
(l)) for l = 1, . . . , L, then {π(l), θ(l)}L

l=1 are

i.i.d. samples from the observed posterior distribution f(π, θ|Yobs).
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