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Abstract
With three ordinal diagnostic categories, the most commonly used measures for the overall
diagnostic accuracy are the volume under the ROC surface (VUS) and partial volume under the
ROC surface (PVUS), which are the extensions of the area under the ROC curve (AUC) and
partial area under the ROC curve (PAUC), respectively. A gold standard (GS) test on the true
disease status is required to estimate the VUS and PVUS. However, oftentimes it may be difficult,
inappropriate, or impossible to have a GS because of misclassification error, risk to the subjects or
ethical concerns. Therefore, in many medical research studies, the true disease status may remain
unobservable. Under the normality assumption, a maximum likelihood (ML) based approach using
the expectation–maximization (EM) algorithm for parameter estimation is proposed. Three
methods using the concepts of generalized pivot and parametric/nonparametric bootstrap for
confidence interval estimation of the difference in paired VUSs and PVUSs without a GS are
compared. The coverage probabilities of the investigated approaches are numerically studied. The
proposed approaches are then applied to a real data set of 118 subjects from a cohort study in early
stage Alzheimer’s disease (AD) from the Washington University Knight Alzheimer’s Disease
Research Center to compare the overall diagnostic accuracy of early stage AD between two
different pairs of neuropsychological tests.
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1. Introduction
Diagnostic testing is an extremely important aspect of medical care. Medical diagnosis
involves the classification of patients into two or more categories. These categories may
imply the presence or absence of a particular medical condition. Signs, symptoms or clinical
tests are used to determine the classification. The evaluation of a diagnostic test procedure
involves the estimation of parameters that describe the accuracy of diagnostic test relative to
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true classification and it is of paramount importance to compare the accuracies of diagnostic
tests to decide on the best test for certain disease. For instance, one of the common indices
used for overall diagnostic accuracy on the case when subjects are categorized in a binary
fashion, i.e., non-diseased and diseased, is AUC (Zhou et al., 2002; Pepe, 2003; Shapiro,
1999). The comparison of the overall diagnostic accuracy between two diagnostic tests is
frequently addressed by measuring the difference in the paired AUCs.

In practice, the diagnostic decision is not limited to a binary choice in many situations. For
example, a clinical assessment, NPZ-8, of the presence of HIV-related cognitive dysfunction
(AIDS Dementia Complex—ADC) would discriminate between patients exhibiting clinical
symptoms of ADC (combined stages 1–3), subjects exhibiting minor neurological symptoms
(ADC stage 0.5) and neurologically unimpaired individuals (ADC stage 0) (Nakas and
Yiannoutsos, 2004). Another example provided by Xiong et al. (2006) concerns mild
cognitive impairment (MCI) or early stage Alzheimer’s disease (AD) being a transitional
stage between the cognitive changes from normal aging and the more severe problems
caused by the AD. Thereafter, we refer to the disease status between “non-diseased” and
“diseased” as “intermediate”, in other words, transitional status.

Given that an independent gold standard (GS) test on the disease status is available,
Scurfield (1996) and Xiong et al. (2006) extended binary statistical tools such as the ROC
curve and AUC and developed the volume and partial volume under the ROC surface (VUS
and PVUS) to summarize the diagnostic accuracy with three ordinal diagnostic categories.
Furthermore, Nakas and Yiannoutsos (2004) proposed a nonparametric estimation of a
single VUS; Xiong et al. (2007) proposed a large sample approach for comparing several
VUSs for normally distributed data. Most recently, Tian et al. (2011) addressed exact
confidence interval estimation for the difference in paired VUSs and PVUSs based on the
concepts of generalized pivot and showed that their approach generally can provide
confidence intervals with reasonable coverage probabilities even at small sample sizes.

Notice that all the aforementioned methods assume the existence of a GS test. In other
words, the true disease category is known. For instance, in the diagnosis of early stage AD
(Xiong et al., 2006, 2007), the dementia severity of Alzheimer type was staged by the
Clinical Dementia Rating (CDR) according to published rules (Morris, 1993), which is
considered as a “GS” for evaluating different neuropsychological tests and biomarkers for
early stage AD. The resulting diagnosis by clinical assessments such as CDR, although
expected to be quite accurate, presumably was not totally free of misclassification errors and
thus was not perfect. Such misclassifications are known to produce bias in estimating the
diagnostic accuracy of disease markers, e.g., VUS. Further, such bias may prove to be
detrimental when it comes to compare the diagnostic accuracy of multiple disease markers.
It is therefore important to develop valid statistical methods of diagnostic comparison that
do not rely on the existence of a perfect GS.

Some works involving estimating diagnostic accuracy without a GS have been done for
binary diagnostic tests. For example, Henkelman et al. (1990) considered the estimation of
ROC curves of continuous-scale tests in the absence of a GS test; Beiden et al. (2000)
proposed maximum likelihood (ML) estimates of the ROC curves using the EM algorithm;
Hsieh et al. (2009) proposed a ML based procedure for construction of confidence intervals
for the difference in paired AUCs without a GS; Zhou et al. (2005) also developed a
nonparametric ML method for estimating ROC curves in the absence of a GS test.

In this paper, we will focus on interval estimation for the difference in paired VUSs and
PVUSs with three ordinal diagnostic categories without a GS by proposing a ML based
approach using the EM algorithm in conjunction with the generalized variable approach as
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well as the parametric/nonparametric bootstrap methods. This paper is organized as follows.
We first introduce some preliminaries about VUS and PVUS in Section 2. In Section 3, we
will present the proposed methods. The performance of the proposed approaches including
their robustness will be assessed by a numerical study in Section 4. In Section 5, our
proposed methods will be applied to a real world study of very early stage AD diagnosis.
We close with a broader discussion for evaluating diagnostic tests without a GS.

2. Preliminaries
The ROC surface, analogous to the ROC curve, has been proposed to assess the accuracy of
tests with three ordinal diagnostic categories. Let Y1, Y2 and Y3 denote the scores resulting
from a diagnostic test and let F1, F2 and F3 be the corresponding cumulative distribution
functions for non-diseased, intermediate and diseased subjects, respectively. Assume the
results of a diagnostic test are measured on continuous scale and higher values indicate
greater severity of the disease. Given a pair of threshold values c1 and c3(c1 < c3), let δ1 =
F1(c1), δ3 = 1 – F3(c3) be the true classification rates for non-diseased and diseased
categories, respectively. Then the probability that a randomly selected subject from an
intermediate category has a score between c1 and c3 is

(1)

The triplet (δ1,δ2,δ3), where δ2 = δ2(δ 1,δ3) is a function of (δ1,δ3), would produce an ROC
surface in the three-dimensional space for all possible (c1, c3) ∈ ℝ2. As the ROC curve for a
binary diagnosis represents the trade-off between sensitivity and specificity, which are
correct classification probabilities for the two categories (non-diseased and diseased), the
ROC surface represents the three-way trade-off among the correct classification
probabilities for the three categories.

In order to summarize the overall diagnostic accuracy for the diagnostic test, the volume
under the ROC surface (VUS) has been considered. It is defined as

(2)

This is a generalization of the AUC for a ROC curve under a binary classification. One
could show that VUS is mathematically equivalent to the probability P(Y1 < Y2 < Y3) when
Y1, Y2 and Y3 are randomly selected from each diagnostic category, respectively. For a
useless test (e.g., when Y1, Y2 and Y3 have identical distributions), VUS is 1 /6. Similar to
the PAUC of a ROC curve in which investigators are only interested in a certain lower range
of false positive rate, the partial volume under the ROC surface (PVUS) has also been
considered to measure the diagnostic accuracy with pre-specified minimum classification
rates for the non-diseased and diseased subjects,

(3)

where  with δ10 and δ30 being the
desired minimum classification rates for non-diseased and diseased categories, respectively.
When non-diseased, intermediate and diseased categories can be discriminated perfectly,
PVUS reaches its maximum value PVUSmax = (1 – δ10) (1 – δ30). The better the
discriminating ability of the diagnostic test, the closer the value of PVUS to PVUSmax. Note
that PVUS = VUS if δ10 = δ30 = 0.
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We now use 1, 2, and 3 to represent the non-diseased, intermediate and diseased categories,
respectively. Consider the case with two diagnostic tests A and B. Let YkA and YkB stand for
the measurements for a randomly selected subject from the kth (k = 1, 2, 3) disease category
for test A and test B, respectively. Assume that (YkA, YkB)′ follow a bivariate normal
distribution, i.e.,

(4)

where

(5)

As in Xiong et al. (2006), the VUS and PVUS for diagnostic test A under the above setting
can be further expressed as

(6)

(7)

where aA = σ2At/σ1A, bA = (µ1A – µ2A) / σ1A, cA = σ2A/σ3A, dA = (µ3A – µ2A) /σ3A, Φ(•) is the
standard normal distribution function, and Φ(•) is the standard normal density function. By
replacing A with B in Eqs. (6) and Eqs. (7), we can obtain VUSB and PVUSB. For test A, the
ML estimates of VUSA and PVUSA can be obtained by substituting µkA, σkA (k = 1, 2, 3) in
Eqs. (6) and Eqs. (7) with the corresponding sample mean y̅kA, and sample standard
deviation skA. Similarly, the ML estimates of VUSB and PVUSB can be obtained. To
compare the diagnostic accuracy between test A and test B, ΔVUS and ΔPVUS, defined as
follows

(8)

have to be estimated.

When a GS is available, the ML estimates of ΔVUS and ΔPVUS can be easily obtained.
With a GS, the large sample test for comparing several VUSs by Xiong et al. (2007) can be
extended to confidence interval estimation; and Tian et al. (2011) addressed the exact
confidence interval estimation of ΔVUS and/or ΔPVUS based on the concepts of generalized
pivot. Tian et al. (2011) compared the generalized variable (GV) approach with a parametric
bootstrap approach and the large sample approach (Xiong et al., 2007) and showed the GV
approach usually can provide confidence intervals with better coverage probabilities.
Besides the aforementioned methods, another approach for this purpose is to use
nonparametric bootstrap resampling method to estimate the corresponding variances of
ΔVUS or ΔPVUS instead of using the large sample delta method as in Xiong et al. (2007).
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3. The proposed methods
Our goal is to develop interval estimation for ΔVUS and ΔPVUS without a GS. The
following proposed approach is based on the EM algorithm in conjunction with the
generalized variable (GV) approach as well as parametric bootstrap (PB) and nonparametric
bootstrap (NB) methods. We refer to them as EM-GV, EM-PB and approach, respectively.

Let D = k (k = 1, 2, 3) indicate the unobserved true disease category for the non-diseased,
intermediate and diseased subjects, respectively. We denote the test results of A and B on a
non-diseased, intermediate and diseased individual by YkAand YkB (k = 1, 2, 3), respectively.
Following Eqs. (4) and Eqs. (5), the vector of unknown parameters in this setting is given by

where p1 = P(D = 1), p3 = P(D = 3) denoting the prevalence of non-diseased and diseased
populations. Under this model, the conditional independence structure between diagnostic
tests given disease status is a special case with σkAB = 0 (k = 1, 2, 3).

When a GS is not available, we propose to estimate θ using the EM algorithm. After the
convergent value of θ is obtained via the EM algorithm, the ML estimates of VUSs and
PVUSs, will be obtained by plugging in the ML estimate of θ. Finally, the ML estimate of
the difference in paired VUSs and PVUSs, will be obtained. A similar approach has been
used by Hsieh et al. (2009) to estimate the difference in paired AUCs without a GS.

3.1. EM algorithm
Let tij be the observed result of the test j, j = A, B on the ith individual, Di be the unobserved
true disease category associated with ith individual, and p1 = P(Di = 1), p3 = P(Di = 3). It is
easy to see that p2 = P(Di = 2) = 1 – p1 - p3. Let ti = (tiA, tiB), t = (t1, t2, …, tn) and D = (D1,
D2,…, Dn).

If D has been observed, the complete data likelihood function would be given as follows,

(10)

The complete data log-likelihood function would be

(11)

where fY1 (ti), fY2 (ti), fY3 (ti) are the density functions of non-diseased, intermediate and
diseased category, respectively.

Let θ(m) denote the estimate of θ after m iteration of EM algorithm. The following E-step
and M-step are used to find θ(m+1), an updated estimate of θ.

E-step: The E-step computes the conditional expectation of the complete data log-likelihood
function with observed data t and the current parameter estimate θ(m),
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(12)

Define  one can
show that

(13)

(14)

(15)

Therefore,

(16)

M-step: The M-step finds the updated estimate θ(m+1) by maximizing Q with respect to θ.
For instance, setting

(17)

would give us

(18)

and thus

(19)
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Similarly, we could get the remaining elements of θ(m+1).The results are summarized in the
Appendix A. The convergent value of θ(m+1) in the EM algorithm is the ML estimate of θ.
Due to the invariance property of ML estimator, plugging the ML estimate θ̂ into ΔVUS and
ΔPVUS would give the ML estimates  and .

3.2. Three methods for confidence interval estimation
3.2.1. Generalized Pivots for ΔVUS and ΔPVUS—The generalized pivots for µk and
Σk in Eq. (5) are given as (Tian et al., 2011; Lin et al., 2007)

where µ̂k and Σ̂k are the ML estimates for µk and Σk, Zk ~ N2 (0, I2) with I2 being a 2 by 2
identity matrix and Wk1, Wk2 ~ W2 (nk – 1, I2) where Wp (m, Σ) denotes a p-dimensional
Wishart distribution with degrees of freedom m and scale matrix Σ. Notice that nk is the
sample size for each disease category, which is not obtainable in our case without a GS.
Therefore, we have to estimate nk as well. A naïve estimate for nk is ñk = np̂k, where n is the
total number of patients and p̂k is computed from the EM algorithm. However, our
preliminary simulations indicate this naïve estimate ñk might not perform well. To account
for the randomness brought by no GS test for disease category information, we propose to
estimate nk by n̂k from a multinomial random variate with the total number of observations
being n and the probability for each disease category p̂sk.

Note that

the generalized pivots RVUSA and RPVUSA for VUS and PVUS for diagnostic test A can be
derived as follows,

(20)

(21)

where RaA = Rσ2A/Rσ1A, RbA = (Rµ1A – Rµ2A) / Rσ1A, RcA = Rσ2A / Rσ3A, RdA = (Rµ3A –
Rµ2A) / Rσ3A.

By replacing A with B in Eqs. (20) and Eqs. (21), we can obtain the generalized pivots
RVUSB and R PVUSB. Furthermore, the generalized pivots for ΔVUS and ΔPVUS can be
defined as

(22)

(23)

Kang et al. Page 7

Comput Stat Data Anal. Author manuscript; available in PMC 2014 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



See Tian et al. (2011) for details.

For a given data set containing measurements for test A and test B without a GS, our
proposed EM-GV approach for the confidence intervals for ΔVUS and ΔPVUS can be
carried out through the following steps:

1. Estimate the vector parameter θ using the EM algorithm to obtain the ML estimates
µ̂k, Σ̂k for k = 1, 2, 3, as well as p̂1 and p̂3.

2. Generate n̂k ~ Multinomial (n, p̂k).

3. Generate Zk ~ N2 (0, I2) and Wk1, Wk2 ~ W2 (n̂k – 1, I2). Calculate Rµk and RΣk.

4. Compute RΔVUS and RΔPVUS following Eqs. (22)–Eqs. (23).

5. Repeat Steps 2–5 a total 2000 times and obtain an array of RΔVUS‘s values and an
array of RΔPVUS‘s values.

Denote RΔVUS(α) as the 100αth percentile of RΔVUS’s. A two-sided 100(1 – α)% confidence
interval estimate of ΔVUS is (RΔVUS (α/2), RΔVUS (1 – α/2)). The confidence interval
estimation about ΔPVUS can be done in a similar way.

3.2.2. Parametric bootstrap intervals for ΔVUS and ΔPVUS—Benton and
Krishnamoorthy (2002) investigated the performance of the parametric bootstrap (PB)
method in the interval estimation of parameters in various statistical problems. They
suggested that the PB method is a relatively easy way to obtain good statistical
approximation. See also Indurkhya (1994) and Lee (1994) for a good exposition of
parametric bootstrap and its application. Our proposed EM-PB method for the confidence
intervals for ΔVUS and ΔPVUS can be constructed as follows:

1. Estimate the vector parameter θ using the EM algorithm. Obtain the ML estimates
µ̂k and Σ̂k for k = 1, 2, 3, as well as p̂1 and p̂3.

2. Generate n̂k ~ Multinomial(n, p̂k).

3. Generate n̂k’s yk ~ N2(µ̂k, Σ̂k) for k = 1, 2, 3. Calculate y̅k and Sk, which are the
sample mean vector and sample covariance matrix, respectively.

4. Compute  and  following Eqs. (6)–Eqs. (9).

5. Repeat Steps 2–5 a total 2000 times and obtain an array of  values and an
array of  values.

Denote BΔVUS(α) as the 100αth percentile of parametric bootstrap samples . A two-
sided 100(1 – α)% confidence interval estimate of ΔVUS is (BΔVUS(α/2), BΔVUS (1 – α/2)).
The confidence interval estimation about ΔPVUS can be done also similarly.

3.2.3. Nonparametric bootstrap intervals for ΔVUS and ΔPVUS—Nonparametric
bootstrap resampling is a popular practice to estimate the variance of an estimator and to
give the associated confidence intervals (Efron and Tibshirani, 1993; Efron, 1979). Our
proposed method for the confidence intervals for ΔVUS and ΔPVUS can be constructed as
follows:

1. Estimate the vector parameter θ using the EM algorithm based on the observed
data. Obtain the ML estimates µ̂k and Σ̂k for k = 1, 2, 3.

2. Compute  and  following Eqs. (6)–Eqs. (9).
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3. Generate 2000 bootstrap samples from the observed data with replacement such
that each bootstrap sample is of size n.

4. Use the EM algorithm to obtain  for each bootstrap sample, and

from these 2000 bootstrap estimates of , we could easily form the
bootstrap percentile confidence intervals.

4. Simulation studies
Simulation studies were conducted to compare the coverage probabilities and expected
interval lengths of these three approaches for confidence interval estimation without GS,
namely, EM-GV, EM-PB and EM-NB. Robustness of the proposed approaches for normal
mixture data is also investigated. Data from the bivariate normal distribution N2(µk, Σk) (k =
1, 2, 3) for non-diseased, intermediate and diseased categories, respectively, is generated
with various means and variance-covariance matrices. Four different configurations of
means µk and variance-covariance matrices Σk are set as follows,

Config µ1 µ2 µ3 Σ1 Σ2 Σ3

1 (0,0) (2,3) (5,4)

2 (0,0) (2,3) (5,4)

3 (−2.6, –5.7) (0.3, –0.7 (2.8, 4.0)

4 (−2.6,–1.6 (0.3,–0.8 (2.8,0.6)

The different configurations of means and variance-covariances were chosen to represent
possible distributional structures of two biomarkers for each of the three disease categories.
The last two configurations come from the real data example.

When a GS is available, there exists a generalized variable approach (Tian et al., 2011) and a
large sample approach (Xiong et al., 2007) for interval estimations of ΔVUS and ΔPVUS.
Furthermore, Tian et al. (2011) compared the generalized variable (GV) approach with a
parametric bootstrap approach and the large sample approach (Xiong et al., 2007) and
showed the GV approach usually can provide confidence intervals with satisfactory
coverage probabilities. Besides the aforementioned methods, the nonparametric bootstrap
method can also be used for the same purpose when there is a GS. However, no simulation
study has been done regarding the performance of the nonparametric bootstrap approach.
We performed a simulation study for this purpose. The simulation results show the GV
outperforms the nonparametric bootstrap method in terms of interval coverage probabilities.
For this reason, we will present the results of the GV approach (Tian et al., 2011) for
interval estimations of ΔVUS and ΔPVUS when a GS is available for the purpose of
assessing the possible efficiency loss due to the missing GS for the three methods: EM-GV,
EM-PB and EM-NB.
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Table 1 presents the coverage probabilities and expected lengths of confidence intervals for
ΔVUS at nominal level .95, obtained by the GV (Tian et al, 2011) in comparison with the
EM-GV, M-PB and EM-NB approaches without a GS. The simulation study is based on
2000 random samples. Within each of the 2000 random samples, 2000 RΔVUS‘s and
BΔVUS’s, as well as 2000  from nonparametric bootstrap resamples following
Section 3.2.3 were calculated to estimate the confidence intervals.

Under Config. 1, the coverage probabilities by EM-GV are generally satisfactory while EM-
PB and EM-NB can be slightly liberal for certain scenarios. With Config. 2, EM-GV works
reasonably well while EM-PB tends to be quite liberal and EM-NB tends to be slightly
conservative. With Config. 3 & 4, we observe the poor coverage probabilities for both EM-
GV and EM-PB methods while EM-NB tends to be conservative.

A closer examination of the configurations used in simulation study can explain the findings
stated above to a certain extent. Fig. 1–Fig. 4 present true density contours (assuming GS) vs
estimated density contours (no GS) for Config. 1–4 respectively. Under Config. 1, the
parameter estimate from the EM algorithm is unbiased and accurate and the estimated
density contour resembles true density contour. Similarly for Config. 2, the true density
contour and estimated density contour are still relatively close. On the other hand, for
Config. 3 & 4, as shown in Fig. 3 and 4, due to the fact that the observations from three
disease categories are seriously overlapped, it is hard to perfectly separate the three ordinal
diagnostic categories and hence it is impossible to get consistent estimates for unknown
parameter θ using the EM algorithm. Consequently, the true density contour for Config. 3 &
4 and estimated density contour (Fig. 3 and Fig. 4) are not even close. This phenomenon is
even obvious when the sample sizes are large. Thus it is clear that the performances of EM-
GV and EM-PB strongly depend on how well these three disease categories can be
identified; in other words, it depends on the consistency of ML estimates from the EM
algorithm.

Table 2 presents simulation results for ΔPVUS by the EM-GV, EM-PB and EM-NB
methods without a GS. The desired minimum classification rates δ10 and δ30 for non-
diseased and diseased categories are set as 0.5, i.e., ΔPVUS is obtained for the region with
both the minimum desired specificity and sensitivity for non-disease and diseased categories
as 0.5. In general, a similar phenomenon as in Table 1 was observed here. When
characterization of the three ordinal diagnostic categories is straightforward as with Config 1
or 2, EM-GV works relatively well. On the contrary, when it is troublesome to distinguish
different disease categories, neither EM-GV or EM-PB works, while EM-NB provides
somewhat conservative intervals.

Robustness study: To investigate the robustness of the three interval estimation methods
without GS, a simulation study was conducted for the mixture of multivariate normal data.
Table 3 and Table 4 present simulation results of proposed intervals for ΔVUS and ΔPVUS
with normal mixture data, respectively. The simulation configurations are the same as in
Table 1 and Table 2. The mixture of bivariate normal random samples was generated as
follows,

Note that Yk from such a mixture distribution has mean µk and variance Σk. The coverage
probabilities were similar to the ones with normal data in most cases.
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As suggested by one of the referees, we also investigate the robustness of these interval
estimation methods with skewed data. The bivariate exponential data was generated via
copula. The results were provided in the on-line supplementary document (see Appendix B).
We found that all of EM-GV, EM-PB and EM-NB approaches fail to produce confidence
intervals with nominal levels for exponential data. This is not surprising, however, because
the likelihood function, as well as the generalized variable concept and the parametric
bootstrap approach, is based on multivariate normality assumption and hence it is unfair to
blindly apply our normal-based method to the skewed data directly without careful data
exploration. With a simple log transformation, the coverage probabilities for all three
approaches (EM-GV, EM-PB and EM-NB) were significantly improved as shown in Table 5
in the on-line supplementary document (see Appendix B). Especially, the performance of
EM-NB is quite satisfactory.

In summary, the investigated EM-GV, EM-PB and EM-NB approaches for confidence
interval estimation of ΔVUS and ΔPVUS without a GS are parametric approaches based on
multivariate normality. Overall speaking, when the EM algorithm can provide unbiased and
accurate ML estimates, all of them have reasonably satisfactory coverage probabilities.
When normal assumption is not satisfied, the proposed approaches should be used with
caution and potential failures may be expected. We recommend checking the normality
assumption before using our proposed methods.

Remark
The proposed methods can easily provide P-values for hypothesis testing. For example, the
percentage that RΔVUS’s, BΔVUS’s or bootstrap resampling  from replacement are
less than or equal to ΔVUS0 is a Monte Carlo estimate of the generalized or parametric/
nonparametric bootstrap P-value for testing ΔVUS = ΔVUS0 versus ΔVUS > ΔVUS0.

5. Data application
In this section, we apply all three investigated interval estimation methods to a data set from
the longitudinal cohort study of the Washington University Knight Alzheimer’s Disease
Research Center to compare the diagnostic accuracy of early stage AD between two
different pairs of neuropsychological tests. Each individual was assessed by experienced
clinicians. The severity of dementia was based on the Clinical Dementia Rating (CDR)
according to published rules (Morris, 1993). In Xiong et al. (2006) paper, the CDR was
considered as the GS. Based on the GS information, 45 people were classified as non-
demented (i.e., CDR 0, D = 1), 44 individuals were classified to have very mild AD (i.e.,
CDR 0.5, D = 2), and 29 individuals were classified to be mildly demented (i.e., CDR 1, D =
3).

After the clinical evaluation, each individual also completed psychometric tests (Xiong et
al., 2006). The clinical assessment and psychometric testing were conducted independently
by clinicians and psychometricians. We are interested in the comparison of the diagnostic
accuracy between different diagnostic tests. We focus on two pairs of factor scores derived
from the psychometric tests: the mental control/frontal factor versus the verbal memory/
temporal factor, and the mental control/frontal factor versus the visual retention test (10-s
exposure).

We first examined the bivariate distribution of the tests in the sample through the Shapiro–
Wilk test for multivariate normality and found no significant statistical evidence that these
two pairs of psychometric tests deviate from the normal distributions for each of three
categories based on the CDR.
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The fact that misclassification errors in the CDR are unavoidable makes it reasonable to
apply our methods without a GS. Basically, the input data only consist of two columns with
measurements from test A and test B for each individual. Xiong et al. (2006) reported the
means and standard deviations of these factor scores as well as their estimated VUSs (0.657
for frontal factor, 0.752 for temporal factor, and 0.587 for visual retention test) using the
CDR. They also assessed the pairwise difference on VUSs (95% confidence interval
(−0.206, 0.016) for ΔVUS between frontal factor and temporal factor; 95% confidence
interval (−0.066, 0.206) for ΔVUS between frontal factor and visual retention) (Xiong et al.,
2007). Our proposed EM-GV, EM-PB and EM-NB methods without a GS clinical
evaluation were applied to the same factor scores. The estimated difference in paired VUSs
was −0.374 with a 95% confidence interval (−0.545, −0.250) from EM-GV, (−0.517,
−0.227) from EM-PB and (−0.484,0.270) from EM-NB between frontal factor and temporal
factor; the estimated difference in paired VUSs was 0.124 with a 95% confidence interval
(0.038, 0.198) from EM-GV, (0.042, 0.209) from EM-PB and (−0.297,0.471) from EM-NB
between frontal factor and visual retention.

It is interesting to note that confidence intervals for the difference in paired VUSs from both
EM-GV and EM-PB do not contain zero while the ones from EM-NB contain zero.
Considering the coverage probabilities presented in the simulation studies, it is better
referring to the intervals from EM-NB, although it has been shown that EM-NB in this case
might be conservative. Thus, on the safe side, we may not conclude there is a statistically
significant difference in diagnostic accuracy between the temporal factor and frontal factor,
as well as between the frontal factor and the visual retention test. These results are consistent
with the findings of Xiong et al. (2007).

6. Discussion
This paper addresses the problem of confidence interval estimation of the difference
between paired VUSs (ΔVUS) and between paired PVUSs (ΔPVUS) without a GS. The
combination of the following two components makes this problem unique: (1) diseases with
three ordinal diagnostic categories; (2) with no or questionable GS. The investigated EM-
GV, EM-PB and EM-NB methods are ML based approaches using the EM algorithm in
conjunction with generalized variables and parametric/nonparametric bootstrap approaches.
They provide flexibility when patients’ classification information was contaminated or even
lost.

Based on our simulation studies, both EM-GV and EM-PB approaches perform reasonably
well for finite sample sizes considering the coverage probabilities when the three ordinal
diagnostic categories are easy to separate. When it is really difficult to discriminate three
categories, the EM-NB approach provides confidence intervals with coverage more close to
the nominal level, at the cost of producing the intervals much wider. On the other hand,
when the three ordinal diagnostic categories are relatively easy to be characterized, EM-GV
provides more accurate intervals. Compared to the EM-NB method, in those scenarios,
efficiency can be gained by using the EM-GV method.

We suggest exploratory data visualization to check the separability of three ordinal
diagnostic categories before choosing to use either EM-GV, EM-PB or EM-NB method for
confidence interval estimation of the difference in diagnostic accuracy without GS. Another
method to diagnose category separability is to consider k-means clustering. Whether
clustering result depends on the initial clusters or not may indicate good separability of
different diagnostic categories.
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Programs in R and C for estimating the difference as well as the estimated intervals for the
difference in paired VUSs and PVUSs using the EM-GV, EM-PB and EM-NB are available
upon request.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix A

, hereafter denote

and we obtain

In the similar way, we could have

Also,
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Appendix B. Supplementary data
Supplementary material related to this article can be found online at http://dx.doi.org/
10.1016/j.csda.2013.07.007.
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Fig. 1.
Density contours for Config. 1: (a) with GS (left); (b) without GS (right, estimated from EM
algorithm).
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Fig. 2.
Density contours for Config. 2: (a) with GS (left); (b) without GS (right, estimated from EM
algorithm).
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Fig. 3.
Density contours for Config. 3: (a) with GS (left); (b) without GS (right, estimated from EM
algorithm).
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Fig. 4.
Density contours for Config. 4: (a) with GS (left); (b) without GS (right, estimated from EM
algorithm).
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