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Abstract

A fast mean field variational Bayes (MFVB) approach to nonparametric regression when
the predictors are subject to classical measurement error is investigated. It is shown
that the use of such technology to the measurement error setting achieves reasonable
accuracy. In tandem with the methodological development, a customized Markov chain
Monte Carlo method is developed to facilitate the evaluation of accuracy of the MFVB
method.

Keywords: Penalized splines, classical measurement error, Markov chain Monte Carlo,
variational approximations.

1. Introduction

Flexible regression where the predictors are subject to measurement error continues
to be an active area of research in the 2000s (Mallick et al., 2002; Liang et al., 2003; Carroll
et al., 2004; Ganguli et al., 2005; Carroll et al., 2008) and is likely to be so in the 2010s.
Carroll et al. (2006) offers a recent and comprehensive summary of the area.

Fitting and inference in such models is notoriously challenging. Berry et al. (2002)
devised an elegant hierarchical Bayes approach to the simplest version of the problem
and described Markov chain Monte Carlo (MCMC) based inference. Extensions have
been considered by Carroll et al. (2004) and Ganguli et al. (2005). However, inference
based on MCMC can be very slow for such models and may take hours if using BUGS
(Lunn et al., 2000).

In this paper we investigate a faster mean field variational Bayes (MFVB) alternative
to the problem. For an introduction to such techniques see Bishop (2006), Ormerod and
Wand (2010) or Wand et al. (2011). We show that the transference of such technology
to the measurement error setting achieves reasonable accuracy while being hundreds of
times faster than MCMC. MFVB approximations to nonparametric regression problems
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with measurement error in the predictors is challenging due to spline basis functions
entering the approximate posterior densities of the unobserved predictor. A streamlined
discretization of these approximate posterior densities on a grid across the domain of
the predictor is utilized to achieve computational efficiency.

In tandem with the methodological development a customized MCMC is developed
to facilitate the evaluation of accuracy of the MFVB method. Both MCMC and MFVB
are straightforward for all components of nonparametric regression measurement er-
ror model, with the exception of the unobserved predictors. Approximate sampling
from the full conditionals for the unobserved predictors can be performed efficiently
using griddy-Gibbs sampling steps (Ritter and Tanner, 1992). Note that our MCMC and
MFVB methods use an analogous approximation to the posterior distributions of the
unobserved predictors.

After a brief introduction to MFVB methods (Section 2) we will develop these meth-
ods from the simplest case, simple linear regression (Section 3), and then extend these
ideas to the more complex case of nonparametric regression with measurement error
(Section 4) which could lay the foundation for more elaborate models such as additive
models (see for example, Richardson and Green, 2002; Ganguli et al., 2005). The method-
ology will be illustrated using a mix of simulated and real world examples (Section 5)
and conclusions will be drawn (Section 6).

1.1. Notation
Throughout this paper i.i.d. is an abbreviation for independent and identically dis-

tributed. The notation x ∼ N(µ,Σ) means that x has a Multivariate Normal density with
mean µ and covariance Σ. If x has an Inverse Gamma distribution, denoted x ∼ IG(A, B),
if and only if it has density p(x) = BAΓ(A)−1x−A−1 exp(−B/x), x, A, B > 0.

2. Elements of Mean Field Variational Bayes

Let D be a vector of observed data, θ be a parameter vector with joint distribution
p(D, θ). In the Bayesian inferential paradigm decisions are made based on the poste-
rior distribution p(θ|D) ≡ p(D, θ)/p(D) where p(D) ≡

∫
p(D, θ)dθ. Let {θ1, . . . , θM} be a

partition of the parameter vector θ. Then mean field variational Bayes approximates
p(θ|D) by q(θ) =

∏M
j=1 q(θ j). It can be shown (see for example, Bishop, 2006; Ormerod

and Wand, 2010) that the q(θ j)s, often called q-densities, which minimize the Kullback-
Leibler distance between q(θ) and p(θ|D) defined by

KL(q, p) =

∫
q(θ) log

{
q(θ)

p(θ|D)

}
dθ (1)

are given by
q∗(θ j) ∝ exp

[
E−q(θ j)

{
p(θ j|rest)

}]
, 1 ≤ j ≤ M, (2)

where E−q(θ j) denotes expectation with respect to
∏

k, j q(θk). Note that only when (2)
holds for each q∗(θ j), 1 ≤ j ≤ M, is optimality obtained. Furthermore, a lower bound on
the marginal log-likelihood is given by

log p(D) ≥ log p(D; q) =

∫
q(θ) log

{
p(D, θ)

q(θ)

}
dθ. (3)
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It can be shown that the calculation of q∗(θ j) in (2) for fixed {q∗(θk)}k, j guarantees a
monotonic increase in the lower bound (3) or equivalently a monotonic decrease in the
Kullback-Leibler distance (1). Thus, an at least locally optimal {q(θ j)}1≤ j≤M can be found
by updating the q∗(θ j) in (2) sequentially until the lower bound (3) is judged to cease
increasing.

To avoid notational clutter for a generic random variable v and density function q(v)
let

µq(v) ≡ Eq(v) and σ2
v ≡ Varq(v).

Also, in the special case that q(v) is an Inverse Gamma density function we let Aq(v) and
Bq(v) be the shape and rate parameters of q(v) respectively, i.e. v ∼ IG(Aq(v), Bq(v)). Note
µq(1/v) = Aq(v)/Bq(v). For a generic random vector v and density function q(v) let

µq(v) ≡ Eq(v) and Σq(v) ≡ Covq(v) = covariance matrix of v under density q(v).

3. Simple Linear Regression with Measurement Error

We start with the simplest example of a measurement error model, where we want
to perform a simple linear regression and the predictor is observed with error. Let

yi = β0 + β1xi + εi, 1 ≤ i ≤ n, (4)

where εi are i.i.d. N(0, σ2
ε). Here the responses, the yis, are observed, but instead of

observing xi ∼ N(µx, σ
2
x) we observe a corrupted version of xi, wi such that wi = xi + vi,

where vi are i.i.d. N(0, σ2
v) random variables with σ2

v known.
For convenience we use independent priors with

β0, β1
ind.
∼ N(0, σ2

β), µx ∼ N(0, σ2
µx

), σ2
x ∼ IG(Ax, Bx), σ2

ε ∼ IG(Aε, Bε),

where σ2
β, Aε, Bε, Ax, Bx and σ2

µx
are positive hyperparameters.

Let X be the n× 2 matrix with 1 in the first column and xi in the ith row of the second
column. It can be shown via standard algebraic manipulations that the full conditionals
for this model are given by

β|rest ∼ N
((
σ−2
ε XT X + σ−2

β I
)−1

XT yσ−2
ε ,

(
σ−2
ε XT X + σ−2

β I
)−1

)
,

σ2
ε |rest ∼ IG

(
Aε + n

2 , Bε + 1
2 ‖y − Xβ‖2

)
,

µx|rest ∼ N
 1T x/σ2

x

nσ−2
x + σ−2

µx

,
1

nσ−2
x + σ−2

µx

 ,
σ2

x|rest ∼ IG
(
Ax + n

2 , Bx + 1
2 ‖x − µx1‖2

)
and

xi|rest ind.
∼ N

β1(yi − β0)/σ2
ε + wi/σ

2
v + µx/σ

2
x

β2
1/σ

2
ε + 1/σ2

v + 1/σ2
x

,
1

β2
1/σ

2
ε + 1/σ2

v + 1/σ2
x

 , 1 ≤ i ≤ n,

(5)

from which Gibbs sampling can be easily implemented.
We now consider a MFVB approximation based on the following factorization

q(β, µx, σ
2
x, σ

2
ε, x) = q(β, µx)q(σ2

x, σ
2
ε)q(x)
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which leads to the induced factorization q(β)q(µx)q(σ2
x)q(σ2

ε)
∏n

i=1 q(xi) (see Bishop, 2006,
Section 10.2.5 for the notion of induced factorizations). This leads to the following forms
of the optimal q-densities

q∗(β) is the N(µq(β),Σq(β)) density function,

q∗(σ2
ε) is the IG(Aε + n

2 , Bq(σ2
ε )) density function,

q∗(µx) is the N(µq(µx), σ
2
q(µx)) density function,

q∗(σ2
x) is the IG(Ax + n

2 , Bq(σ2
x)) density function, and

q∗(xi) are independent N(µq(xi), σ
2
q(x)) density functions, 1 ≤ i ≤ n,

where the parameters are updated according to Algorithm 1. The variational lower
bound on the marginal log-likelihood at the bottom of the main loop is derived in Ap-
pendix B. The performance of Algorithm 1 will be analyzed empirically in Section 5.

Initialize: µq(1/σ2
ε) > 0, µq(1/σ2

x) > 0, µq(µx), µq(β) (2 × 1) and Σq(β) (2 × 2) positive definite.

Cycle:

σ2
q(xi) ← 1

/ [
µq(1/σ2

ε)

(
µ2

q(β1) + σ2
q(β1)

)
+ 1/σ2

v + µq(1/σ2
x)

]
for i = 1, . . . , n :

µq(xi) ← σ2
q(xi)

[(
yiµq(β1) − µq(β0β1)

)
µq(1/σ2

ε) + wi/σ
2
v + µq(µx)µq(1/σ2

x)

]
Eq(X)←

[
1,µq(x)

]
; Eq

(
XT X

)
←

[
n 1Tµq(x)

1Tµq(x) ‖µq(x)‖
2 + 1Tσ2

q(x)

]
Σq(β) ←

[
µq(1/σ2

ε)Eq

(
XT X

)
+ σ−2

β I
]−1; µq(β) ← Σq(β)µq(1/σ2

ε)Eq(X)T y
σ2

q(µx) ← 1
/[

nµq(1/σ2
x) + 1/σ2

µx

]
; µq(µx) ← σ2

q(µx)µq(1/σ2
x)µ

T
q(x)1

Bq(σ2
ε) ← Bε + 1

2

[
‖y‖2 − 2yT Eq(X)µq(β) + tr

(
Eq(XT X)(Σq(β) + µq(β)µ

T
q(β))

)]
Bq(σ2

x) ← Bx + 1
2

[
‖µq(x) − µq(µx)1‖2 + 1Tσ2

q(x) + nσ2
q(µx)

]
µq(1/σ2

ε) ←
(
Aε + n

2

) /
Bq(σ2

ε) ; µq(1/σ2
x) ←

(
Ax + n

2

) /
Bq(σ2

x)

until the increase in p(y,w; q) is negligible.

Algorithm 1: Iterative scheme for obtaining the parameters in the optimal densities
q∗(β), q∗(σ2

ε), q∗(xi), q∗(µx) and q∗(σ2
x) for the simple linear regression with measurement

error on the predictor data.

4. Nonparametric Regression with Measurement Error

In this section, we consider a nonparametric extension to the previous model via
penalized splines:

yi = f (xi) + εi, 1 ≤ i ≤ n,

where again εi are i.i.d. N(0, σ2
ε). We model f (xi) using a typical random effects based

spline model where

f (xi) = β0 + β1xi +

K∑
k=1

ukzk(xi) with β0, β1
ind.
∼ N(0, σ2

β), uk |σ
2
u

ind.
∼ N(0, σ2

u)
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and use σ2
u ∼ IG(Au, Bu) as a prior for σ2

u. The functions zk(x) are spline basis functions
and can take a variety of forms. We use the mixed model representation of O’Sullivan
splines (or O-splines) described in Wand and Ormerod (2008). For conciseness of forth-
coming expressions we adopt the notation c(x) = [1, x, z1(x), . . . , zK(x)], ν = [βT ,uT ]T and

C =


1 x1 z1(x1) . . . zK(x1)
...

...
...

. . .
...

1 xn z1(xn) . . . zK(xn)

 =


c(x1)
...

c(xn)

 .
The full conditionals for ν, σ2

ε and σ2
u are given by

ν|rest ∼ N
(
σ−2
ε

(
σ−2
ε CT C + blockdiag(σ−2

β I, σ−2
u I)

)−1
CT y,(

σ−2
ε CT C + blockdiag(σ−2

β I, σ−2
u I)

)−1 )
,

σ2
ε |rest ∼ IG

(
Aε + n

2 , Bε + 1
2‖y − Cν‖2

)
and

σ2
u|rest ∼ IG

(
Au + K

2 , Bu + 1
2‖u‖

2
)

while the full conditionals for µx and σ2
x are identical to those in (5). Thus, Gibbs sam-

pling steps can easily be implemented for the model parameters ν, σ2
ε, σ2

u, µx and σ2
x.

The full conditional for xi is

p(xi|rest) ∝ exp
[
−

1
2

{
(c(xi)Tν)2

σ2
ε

+ (σ−2
x + σ−2

v )x2
i −

2xiµx

σ2
x

}
+

{
xiwi

σ2
v

+
yic(xi)Tν

σ2
ε

}]
(6)

which, in general, is not easily sampled from due to the nonlinearity of c(xi) in xi. We
now use the fact that the first braced term in (6) does not depend on the data (y,w)
whereas the second braced term in (6) depends linearly on wi and yi. This observation
allows relatively efficient sampling from (6) via the griddy-Gibbs sampling method (Rit-
ter & Tanner, 1992) by using the same grid g = (g1, . . . , gM) for each xi. See Appendix A
for details.

The MFVB approximation corresponding to the factorization

q(ν, µx, σ
2
x, σ

2
ε, σ

2
u, x) = q(ν, µx)q(σ2

x, σ
2
ε, σ

2
u)q(x)

leads to the induced factorization q(ν)q(µx)q(σ2
x)q(σ2

ε)q(σ2
u)

∏n
i=1 q(xi) and the following

q-densities
q∗(ν) is the N(µq(ν),Σq(ν)) density function,

q∗(σ2
ε) is the IG(Aε + n

2 , Bq(σ2
ε )) density function,

q∗(µx) is the N(µq(µx), σ
2
q(µx)) density function,

q∗(σ2
x) is the IG(Ax + n

2 , Bq(σ2
x)) density function, and

q∗(σ2
u) is the IG(Au + n

2 , Bq(σ2
u)) density function

where the parameters are updated according to Algorithm 2.
The q-density for x satisfies q(x) =

∏n
i=1 q(xi) where

q(xi) ∝ exp
[
− 1

2

{
µq(1/σ2

ε)c(xi)T
(
Σq(ν) + µT

q(ν)µq(ν)

)
c(xi) + (µq(1/σ2

x) + σ−2
v )x2

i

−2µq(1/σ2
x)xiµq(µx)

}
+

{
xiwi

σ2
v

+ µq(1/σ2
ε)yic(xi)Tµq(ν)

} ]
.

(7)
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Efficient calculation of the normalizing constant of the density q(xi) and the various
expectations with respect to q(xi) is given in Appendix A.

Algorithm 2 summarizes the steps for finding each of the q-densities and will be
analyzed empirically in Section 5. The variational lower bound on the marginal log-
likelihood at the bottom of the main loop is derived in Appendix B. In Appendix B ei is
a vector of zeros except for 1 in the ith entry.

Set M, the size of the quadrature grid. Obtain g = (g1, . . . , gM), and then set Cg using (8)
in Appendix A. Initialize: µq(1/σ2

ε), µq(1/σ2
x) > 0, µq(µx), µq(ν) and Σq(ν), where µq(ν) is (K + 2)

vector and Σq(ν) is a (K + 2) × (K + 2) matrix.

Cycle:

b←
g jµq(1/σ2

x)µq(µx) −
µq(1/σ2

ε)c(g j)T (Σq(ν) + µq(ν)µ
T
q(ν))c(g j)

2
−

(µq(1/σ2
x) + σ−2

v )g2
j

2


1≤ j≤M

Qg ← exp
[
1nbT + wgT /σ2

v + µq(1/σ2
ε)yνT CT

g

]
Eq(C)←

[
QgCg

1T ⊗ (Qg1)

]
; Eq(CT C)← CT

g diag

 n∑
i=1

(eT
i Qg) � 1
eT

i Qg1

 Cg

for all 1 ≤ i ≤ n:

µq(xi) ←
eT

i Qgg
eT

i Qg1
, µq(x2

i ) ←
eT

i Qg(g2)

eT
i Qg1

, σ2
q(xi) ← µq(x2

i ) − µ
2
q(xi)

Σq(ν) ←
[
µq(1/σ2

ε)Eq(CT C) + blockdiag(σ−2
β I, µq(1/σ2

u)I)
]−1

µq(ν) ← µq(1/σ2
ε)Σq(ν)Eq(C)T y

σ2
q(µx) ← 1

/ [
nµq(1/σ2

x) + 1/σ2
µx

]
; µq(µx) ← σ2

q(µx)µq(1/σ2
x)µ

T
q(x)1

Bq(σ2
ε) ← Bε + 1

2

[
‖y‖2 − 2yT Eq(C)µq(ν) + tr

(
Eq(CT C)(Σq(ν) + µT

q(ν)µq(ν))
)]

Bq(σ2
u) ← Bu + 1

2

[
‖µq(u)‖

2 + tr(Σq(u))
]

Bq(σ2
x) ← Bx + 1

2

[
‖µq(x) − µq(µx)1‖2 + 1Tσ2

q(x) + nσ2
q(µx)

]
µq(1/σ2

ε) ←
Aε+n/2
Bq(σ2

ε )
; µq(1/σ2

x) ←
Ax+n/2
Bq(σ2

x )
; µq(1/σ2

u) ←
Au+K/2
Bq(σ2

u )

until the increase in p(y,w; q) is negligible.

Algorithm 2: Iterative scheme for obtaining the parameters in the optimal densities
q∗(ν), q∗(σ2

ε), q∗(xi), q∗(µx), q∗(σ2
x) and q∗(σ2

u) for the nonparametric regression with mea-
surement error on the predictor data.

5. Examples

We now focus on an empirical assessment of the accuracy of the MFVB algorithms
presented in Sections 3 and 4. As in Wand et al. (2011) and Faes et al. (2011) we will use
a measure of accuracy based on the L1 loss or integrated absolute error. For a particular
generic parameter θ we use

accuracy(q∗) ≡ 1 − 1
2

∫
|q∗(θ) − p(θ|y,w)|dθ
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which can be shown to satisfy 0 ≤ accuracy(q∗) ≤ 1 and is expressed as a percentage in
our summaries. An approximation of accuracy(q∗) is made by replacing p(θ|y,w) with a
kernel density estimate of p(θ|y,w) based on a large number of MCMC samples via the
R function bkde() in the package KernSmooth (Wand and Ripley, 2010).

For simulated data we also assess the credible interval coverage against the actual
coverage formed from the MFVB q-densities. For this assessment we carry out many
replications of each simulation setting and we report the true parameter coverage for the
95% credible intervals. For the simple linear regression case we report coverage prob-
abilities for {β0, β1, σ

2
ε, µx, σ

2
x, x1, x2, x3} and for the nonparametric regression case we re-

port coverage probabilities for { f (Q1), f (Q2), f (Q3), σ2
ε, µx, σ

2
x, x(75), x(150), x(225)} where Q1,

Q2 and Q3 are the empirical first, second and third quartiles of the xis and x(i) is the ith
order statistic. Furthermore, for the nonparametric regression case, figures will be used
to illustrate 95% credible interval approximations for the mean function for the MFVB
approach against their MCMC counterparts.

A commonly used scale-free measure of measurement error is the reliability ratio
(RR) (Ganguli et al., 2005, see for example,) defined by:

RR =
σ2

x

σ2
x + σ2

v

In our simulations we used the values RR∈ {0.9, 0.8, 0.7, 0.6}where RR = 0.9 corresponds
to a small amount or measurement error and RR = 0.6 corresponds to a substantial
corruption of the predictors. In our examples we use the reliability ratio to determine
σ2

v . For the simulations where σ2
x is known we use the known value of σ2

x, otherwise we
set σ2

x to be the variance of the predictor.
For the simple linear regression simulations we use the prior hyperparameter values

σ2
β = σ2

µx
= 108 and Aε = Bε = Ax = Bx = 0.01. We use the same prior hyperparameter

values for the nonparametric regression examples and also use Au = Bu = 0.01. Lastly
we use K = 30 interior knots when using O-splines with spacing as described in Wand
and Ormerod (2008).

5.1. Simple Linear Regression Simulations
We conducted a simulation study for the simple linear regression model with true

parameter values

β0 = −1, β1 = 1, σ2
ε = 0.35, µx = 1

2 , σ2
x = 1

36 and n ∈ {50, 500}

where σ2
v is determined using reliability ratios defined in Section 5 above.

Accuracies based on 300 simulated datasets and coverage probabilities based on
10000 simulated datasets for each simulation setting are summarized in Table 1 and
Figure 1 below respectively. Table 2 summarizes the means and standard deviations of
MFVB and MCMC for 300 simulated datasets. MCMC summaries are based on 10000
MCMC samples (after a 5000 sample burn-in and without thinning).

From Table 1 we can see that coverage probabilities are a little below the 95% level
for RR=0.9. For lower values of RR coverage probabilities drop but are reasonable for
most parameters. For larger n coverage estimates seem to improve for most parameters.
Similarly in Figure 1 we see that parameter accuracies tend to degrade as RR becomes
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Figure 1: Boxplots of parameter accuracies for the MFVB approximation applied to the simple linear regression case
corresponding to the simulation setting described in Section 5.1.

●

●

●

●

●

●
●●●

●

●●●●
●

µx σx
2 σε

2
x100 x200

0
20

40
60

80
10

0

RR=0.9  n=300

ac
cu

ra
cy

●

●
●

●
●●●

●●
●

●

µx σx
2 σε

2
x100 x200

0
20

40
60

80
10

0

RR=0.8  n=300

ac
cu

ra
cy

●
●

●●

●

●
●
●

●

●

●
●

µx σx
2 σε

2
x100 x200

0
20

40
60

80
10

0

RR=0.7  n=300

ac
cu

ra
cy

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

µx σx
2 σε

2
x100 x200

0
20

40
60

80
10

0

RR=0.6  n=300

ac
cu

ra
cy

●

● ●●

µx σx
2 σε

2
x100 x200

0
20

40
60

80
10

0

RR=0.9  n=3000

ac
cu

ra
cy

●

●

●

●●●
●

µx σx
2 σε

2
x100 x200

0
20

40
60

80
10

0

RR=0.8  n=3000

ac
cu

ra
cy

●

●

µx σx
2 σε

2
x100 x200

0
20

40
60

80
10

0

RR=0.7  n=3000

ac
cu

ra
cy

●

●

●

●

●

●
●

µx σx
2 σε

2
x100 x200

0
20

40
60

80
10

0

RR=0.6  n=3000

ac
cu

ra
cy

Figure 2: Boxplots of parameter accuracies for the MFVB approximation applied to the nonparametric regression case
corresponding to the simulation setting described in Section 5.2.
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smaller. We also see that the variances of parameter accuracies tends to reduce for larger
n. Based on Table 2 we see that the MFVB approach is about 1000 times faster than
MCMC.

5.2. Nonparametric Regression Case Simulations
In our simulation for the nonparametric regression case we use

f (xi) = sin(4πxi), σ2
ε = 0.35, µx = 1

2 , σ2
x = 1

36 and n ∈ {300, 3000}

where σ2
v is determined using reliability ratios defined in Section 5 above. Accuracies

based on 300 simulated datasets and coverage probabilities based on 1000 simulated
datasets are summarized in Table 3 and Figure 2 below respectively. Typical MFVB
fits along with 95% credible intervals for the mean function along with corresponding
MCMC fits are illustrated in Figure 3. MCMC summaries are based on 5000 MCMC
samples (after a 1000 sample burn-in and without thinning).

From Figure 2 we see that accuracies for MFVB seem to be quite good for the xis for
all values of RR, good for µx and σ2

x for smaller values of RR. However accuracies are
poor for σ2

ε for all values of RR. These results are consistent with Table 3 where coverage
appears reasonable for f (Q2), µx, σ2

x, x(75), x(75) and x(225) but poor to very poor for f (Q1),
f (Q3) and σ2

ε with performance degrading for smaller values of RR. Furthermore, the
variances of accuracies are smaller and coverage is better for larger n.

We see from Figure 3 that the means of the MFVB fits are quite similar to the fits
obtained by MCMC. However, 95% credible intervals for the mean of the fitted func-
tions become increasingly underestimated for smaller values of RR. However, for larger
values of n the posterior means are nearly indistinguishable (to the eye) when com-
paring MFVB and MCMC methods and 95% credible intervals for the mean are only
slightly underestimated for smaller RR and larger n. Finally, Table 4 shows that the
MFVB method appears between 35 and 144 times faster than MCMC depending on the
value of RR.

5.3. Illustration for Fossil Data
Consider the Fossil data set initially collected and analyzed by Bralower et al. (1997)

and subsequently analyzed in Chaudhuri and Marron (1999). For this example the yis
consist of the strontium isotope levels for various fossils whereas the xis correspond
to fossil dates which are obtained using biostratigraphic methods (see Bralower et al.,
1997, for details). The biostratigraphic process used to date the fossils can be plausibly
envisaged to have some level of measurement error.

Comparative plots of the approximated posterior distributions and the mean fitted
functions with corresponding 95% credible sets illustrated in Figure 4 for RR∈ {0.9, 0.8, 0.7, 0.6}.
Diagnostic plots from the MCMC analysis are illustrated in Figures 5 and 6 using only
the first 1000 MCMC samples.

From Figure 5 and 6 we see strong agreement between MCMC and MFVB for in
posterior density estimates of all parameters except σ2

ε, at least in terms of the posterior
means. Posterior variances are slightly underestimated for MFVB estimates. The MFVB-
approximate posterior density function possess the same multimodality as their MCMC
counterparts. MCMC samples exhibit good convergence.
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n 50 500
RR 0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6
β0 93 91 89 85 93 92 90 87
β1 93 91 88 85 94 92 89 86
σ2
ε 94 94 94 93 95 94 94 94

µx 94 92 89 86 93 92 89 86
σ2

x 92 88 84 78 92 88 82 76
x1 95 95 94 94 95 95 95 95
x2 95 94 94 93 95 95 95 95
x3 95 94 94 94 95 95 95 95

Table 1: Coverage probabilities for the MFVB approximation applied to the simple linear regression case corresponding
to the simulation setting described in Section 5.1.

n 50 500
RR 0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6
MFVB 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01
MCMC 11.89 14.21 14.92 11.14 12.02 13.34 12.37 13.27
Ratio 2050 1319 892 949 1632 1235 959 1037

Table 2: Times in seconds for the MFVB and MCMC methods applied to the simple linear regression simulation settings
described in Section 5.1. The standard errors for all times are less than 0.001 for MFVB times and 0.5 for MCMC times.

n 300 3000
RR 0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6
f (Q1) 89 65 37 15 92 84 79 74
f (Q2) 91 86 82 76 86 84 79 67
f (Q3) 88 66 39 18 89 85 76 70
σ2
ε 69 37 20 11 75 53 42 37

µx 95 93 91 89 94 93 92 90
σ2

x 91 88 82 74 89 87 83 75
x(75) 97 98 99 99 95 94 92 91
x(150) 95 95 96 98 94 90 89 87
x(225) 97 99 98 98 95 92 91 92

Table 3: Coverage probabilities for the MFVB approximation applied to the simple linear regression case corresponding
to the simulation setting described in Section 5.2

n 300 3000
RR 0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6
MFVB 6.5 9.1 16.6 49.1 63.9 118.5 167.1 229.2

(0.2) (0.4) (3.9) (11.9) (1.3) (2.7) (4.1) (8.2)
MCMC 782.5 782.5 782.3 777.2 9086.8 9101.2 9114.9 9021.6

(8.5) (8.7) (8.7) (10.2) (103.2) (97.0) (98.5) (96.0)
Ratio 122.7 89.3 60.0 35.6 143.6 77.6 55.1 40.5

Table 4: Times (standard errors below) in seconds for the MFVB and MCMC methods applied to the nonparametric
regression simulation settings described in Section 5.2.
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Figure 3: Comparative plots of the approximated posterior distributions and the mean fitted functions with correspond-
ing 95% credible sets for typical MFVB fits for simulated data described in Section 5.2 and for RR∈ {0.9, 0.8, 0.7, 0.6}.
MFVB estimates appear as solid lines whereas MCMC estimates appear as dashed lines.
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Figure 4: Comparative plots of the approximated posterior distributions and the mean fitted functions with correspond-
ing 95% credible sets for the Fossil data set for RR∈ {0.9, 0.8, 0.7, 0.6}. The x-axes correspond to date (in millions of
years) and the y-axes correspond to strontium isotope levels. MFVB estimates appear as solid lines whereas MCMC
estimates appear as dashed lines.

From Figure 4 we observe strong agreement between MCMC and MFVB estimates
of f (·), at least for RR∈ {0.9, 0.8, 0.7}. However, MFVB estimates of the 95% credible
sets for the posterior mean of f (·) appear increasingly underestimated as RR becomes
smaller.

6. Conclusions

In this paper we derived efficient MFVB and MCMC approaches to nonparamet-
ric regression problems with classical measurement error. The MFVB approach was
shown to have reasonable accuracy with great improvements of speed over the MCMC
approach. For the cases involving simple linear regression reasonable coverage prob-
abilities were observed. For the nonparametric regression examples, using the MFVB
approach, the estimated mean function approximated the true posterior mean with high
accuracy and the 95% credible sets for the mean were only slightly underestimated.

Several simple extensions and a few less simple extensions can be envisaged. Sim-
ple extensions include binary response via the probit link, Berkson measurement error,
semiparametric regression, non-Gaussian xi models and models where repeated wi ob-
servations are available to estimate σ2

v . Extensions for various types of non-Gaussian
response are also possible due to Wand et al. (2011), however it is anticipated that these
extensions of the techniques presented here would require a reasonable amount of mod-
ification.

Finally, the methods presented here are streamlined for one-dimensional spline mod-
els. We anticipate that our grid-based MFVB and MCMC approaches would be ex-
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Series  x[[plot.ind]][, j]

−1 −0.5 0 0.5 1 1.5

posterior mean: 0.173

95% credible interval: 

(−0.129,0.595)
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Series  x[[plot.ind]][, j]

−2 −1 0 1 2

posterior mean: 0.0107

95% credible interval: 

(−0.596,0.496)
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Series  x[[plot.ind]][, j]

−0.4 −0.2 0 0.2 0.4

posterior mean: −0.0152

95% credible interval: 

(−0.218,0.203)
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Figure 5: Diagnostic plots for MCMC analysis along with MFVB posterior density estimates for β0, β1, µx, σ2
x and

σ2
ε . The columns are: missing predictor, trace plot of MCMC sample, plot of sample against 1-lagged sample, sample

autocorrelation function, kernel estimates posterior density and basic numerical summaries. For the density column
MCMC estimates appear as solid black lines whereas MFVB estimates appear as dashed lines.
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Series  x[[plot.ind]][, j]

90 100 110 120

posterior mean: 103

95% credible interval: 

(96.8,108)

x79
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Series  x[[plot.ind]][, j]

100 110 120 130

posterior mean: 119

95% credible interval: 

(104,125)

x85
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Series  x[[plot.ind]][, j]

100 110 120 130

posterior mean: 119

95% credible interval: 

(105,125)

x96 ●
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Figure 6: Diagnostic plots for MCMC analysis along with MFVB posterior density estimates for a random sample of
xis (corresponding to indices: 10, 27, 79, 85 and 96). The columns are: missing predictor, trace plot of MCMC sample,
plot of sample against 1-lagged sample, sample autocorrelation function, kernel estimates posterior density and basic
numerical summaries. For the density column MCMC estimates appear as solid black lines whereas MFVB estimates
appear as dashed lines.
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tendible to higher dimensional measurement error models, for example generalized ad-
ditive models, provided they do not contain interaction terms. However, such models
with measurement error in more than one variable and interaction terms would require
more extensive modification or a different approach altogether. Furthermore, factor-
izing q-densities down to one-dimensional distributions in such high dimensional set-
tings is likely to incur a reduction in accuracy of MFVB approximations.
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Appendix A: Approximation of Unobserved Predictor Posterior Densities
We now show how to sample from (6) via griddy-Gibbs sampling. Firstly, let p(xi|rest) =

z−1
i Pi(xi) where

Pi(x) = exp
[
−

1
2

{
(c(x)Tν)2

σ2
ε

+ (σ−2
x + σ−2

v )x2 −
2xµx

σ2
x

}
+

{
xwi

σ2
v

+
yic(x)Tν

σ2
ε

}]
and zi =

∫
Pi(x)dx is the normalizing constant of p(xi|rest). To sample from (6) via

griddy-Gibbs sampling we approximate p(xi|rest) by a probability mass function which
takes the values over a grid g = (g1, . . . , gM) with probabilities {Pi(g j)/(

∑M
j=1 Pi(g j))}1≤ j≤M

which is easily sampled from.
For the examples in Sections 5.2 and 5.3 we choose the grid to be a regular grid of

1000 points between wmin − (wmax − wmin)/10 and wmax + (wmax − wmin)/10 where wmin and wmax

are the minimum and maximum values of w respectively.
Using the same grid g for each predictor allows efficient calculation of Pi(·) over the

grid for each i. Let

Cg =


1 g1 z1(g1) . . . zK(g1)
...

...
...

. . .
...

1 gM z1(gM) . . . zK(gM)

 =


c(g1)
...

c(gM)

 (8)

and a = (a1, . . . , aM) where a j = − 1
2

[
(Cgν)2

j/σ
2
ε + (σ−2

x + σ−2
v )g2

j − 2g jµx/σ
2
x

]
. Then

Pg = [Pi(g j)]1≤i≤n,1≤ j≤M = exp
[
1naT + wgT /σ2

v + yνT CT
g /σ

2
ε

]
can be calculated in O(M(n + K)) operations.

The MFVB calculation of q(xi) defined by (7) and expectations with respect to q(xi)
can be performed analogously to the griddy-Gibbs procedure for sampling from p(xi|rest).
Firstly, let q(xi) = ζ−1

i Qi(xi) where

Qi(x) ∝ exp
[
− 1

2

{
µq(1/σ2

ε)c(x)T
(
Σq(ν) + µT

q(ν)µq(ν)

)
c(x) + (µq(1/σ2

x) + σ−2
v )x2

−2µq(1/σ2
x)xµq(µx)

}
+

{
xwi

σ2
v

+ µq(1/σ2
ε)yic(x)Tµq(ν)

} ]
and ζi =

∫
Qi(x)dx. Then

Qg = [Qi(g j)]1≤i≤n,1≤ j≤M = exp
[
1nbT + wgT /σ2

v + µq(1/σ2
ε)yνT CT

g

]
(9)
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where b = [b1, . . . , bM]T and

b j = − 1
2

[
µq(1/σ2

ε)((Cgµq(ν))
2
j + c(g j)TΣq(ν)c(g j)) + (µq(1/σ2

x) + σ−2
v )g2

j − 2g jµq(1/σ2
x)µq(µx)

]
.

We then approximate q(xi) by a discrete distribution taking the values g = (g1, . . . , gM)
with probabilities {Qi(g j)/(

∑M
j=1 Qi(g j))}1≤ j≤M . Using this approximation the relevant ex-

pectations with respect to q(xi) are given by

µq(xi) ≈
eT

i Qgg
eT

i Qg1
, µq(x2

i ) ≈
eT

i Qg(g2)

eT
i Qg1

, σ2
q(xi) ≈ µq(x2

i ) − µ
2
q(xi), 1 ≤ i ≤ n,

Eq(C) ≈
[

QgCg

1T ⊗ (Qg1)

]
, and Eq(CT C) ≈ CT

g diag

 n∑
i=1

(eT
i Qg) � 1
eT

i Qg1

 Cg.

Appendix B: Lower Bound Derivations
For the linear model case p(y,w; q) = T1 + T2 + T3 + T4 where

T1 = Eq

[
log

{
p(y|β, σ2

ε)p(β)p(σ2
ε)

q(β)q(σ2
ε)

}]
, T2 = Eq

[
log

{
p(x|µx, σ

2
x)p(µx)p(σ2

x)
q(µx)q(σ2

x)

}]
,

T3 = Eq

[
log

{
p(w|x, σ2

v)
}]

and T4 = −Eq
[
log q(x)

]
.

(10)

After minor simplification, T1 can be written as

T1 =
p
2 −

n
2 log(2π) − p

2 log(σ2
β) + 1

2 log |Σq(β)| −
1

2σ2
β

[
‖µq(β)‖

2 + tr
(
Σq(β)

)]
+Aε log(Bε) − log Γ(Aε) −

(
Aε + n

2

)
log(Bq(σ2

ε)) + log Γ
(
Aε + n

2

)
+

[
Bq(σ2

ε) − Bε − 1
2 Eq

[
‖y − Xβ‖2

]]
µq(1/σ2

ε).

If we perform the updates for σ2
ε last then the equality Bq(σ2

ε) = Bε+ 1
2 Eq

[
‖y − Cν‖2

]
holds.

Using this expression for Bq(σ2
ε), the term T1 simplifies to

T1 =
p
2 −

n
2 log(2π) − p

2 log(σ2
β) + 1

2 log |Σq(β)| −
1

2σ2
β

[
‖µq(β)‖

2 + tr
(
Σq(β)

)]
+Aε log(Bε) − log Γ(Aε) −

(
Aε + n

2

)
log

(
Bq(σ2

ε)

)
+ log Γ

(
Aε + n

2

)
.

Similarly for T2 we have

T2 = 1
2 −

n
2 log(2π) + 1

2 log(σ2
q(µx)/σ

2
µx

) −
(µq(µx) − µµ)2 + σ2

q(µx)

2σ2
µx

+Ax log(Bx) − log Γ(Ax) −
(
Ax + n

2

)
log(Bq(σ2

x)) + log Γ(Ax + n/2)
(11)

where we use the update for σ2
x last. Note that T2 is the same expression for the lower

bound in Section 2.2.2 of Ormerod and Wand (2010).
For T3 we obtain

T3 = − n
2 log(2πσ2

v) −
‖µq(x) − w‖2 + 1Tσ2

q(x)

2σ2
v

(12)
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and, since q(x) is a product of univariate Normals, for T4 we obtain

T4 = n
2 + n

2 log(2π) + 1
2 1T log(σ2

q(x)).

For the nonparametric regression model case p(y,w; q) = T2 + T3 + T4 + T5 where

T5 = Eq

[
log

{
p(y|β,u, σ2

ε)p(β)p(u|σ2
u)p(σ2

ε)p(σ2
u)

q(β,u)q(σ2
ε)q(σ2

u)

}]
,

and the expressions for T2, T3 and T4 are the same as in (10).
The calculation of T2, T3 for the nonparametric regression model case are the same

for the simple linear model case and are given by equations (11) and (12) respectively.
The calculation of T4 is different for the nonparametric regression model case since q(x)
is no longer a product of univariate Normals. For T4 we use the approximation

T4 = −

n∑
i=1

Eq
{
log q(xi)

}
≈ −

n∑
i=1

[ eT
i Qg

eT
i Qg1

� log
( eT

i Qg

eT
i Qg1

)]
1

=

n∑
i=1

log(eT
i Qg1) −

{
eT

i Qg � log(eT
i Qg)

}T
1

eT
i Qg1

 .
Finally, the expression for T5 simplifies to

T5 = 1
2 (p + K) − n

2 log(2π) − p
2 log(σ2

β) + 1
2 log |Σq(β,u)| −

1
2σ2

β

[
‖µq(β)‖

2 + tr
(
Σq(β)

)]
+Aε log(Bε) − log Γ(Aε) −

(
Aε + n

2

)
log

(
Bq(σ2

ε)

)
+ log Γ

(
Aε + n

2

)
+Au log(Bu) − log Γ(Au) −

(
Au + K

2

)
log

(
Bq(σ2

u)

)
+ log Γ

(
Au + m

2

)
.

References

Berry, S., Carroll, R. J., Ruppert, D., 2002. Bayesian smoothing and regression splines for measurement error
problems. Journal of the American Statistical Association 97, 160–169.

Bishop, C. M., 2006. Pattern Recognition and Machine Learning. Springer, New York.
Bralower, T. J., Fullager, P. D., Paull, C. K., Dwyer, G. S., Leckie, R. M., 1997. Mid-Cretaceous strontium-isotope

stratigraphy of deep-sea sections. Geological Society of America Bulletin 109, 1421–1442.
Carroll, R. J., Delaigle, A., Hall, P., 2008. Nonparametric regression estimation from data contaminated by a

mixture of Berkson and classical errors. Journal of the Royal Statistical Society, Series B 69, 859–878.
Carroll, R. J., Ruppert, D., Stefanski, L. A., Crainiceanu, C. M., 2006. Measurement Error in Nonlinear Models

(Second Edition). Chapman & Hall/CRC, Boca Raton, Florida.
Carroll, R. J., Ruppert, D., Tosteson, T. D., Crainiceanu, C. M., Karagas, M. R., 2004. Nonlinear and nonpara-

metric regression and instrumental variables. Journal of the American Statistical Association 99, 661–671.
Chaudhuri, P., Marron, J. S., 1999. SiZer for exploration of structures in curves. Journal of the American Sta-

tistical Association 94, 807–823.
Faes, C., Ormerod, J. T., Wand, M. P., 2011. Variational Bayesian inference for parametric and nonparametric

regression with missing data. Journal of the American Statistical Association 106, 959–971.
Ganguli, B., Studenmayer, J., Wand, M. P., 2005. Additive models with predictors subject to measurement

error. Australian and New Zealand Journal of Statistics 47, 193–202.
Liang, H., Wu, H., Carroll, R. J., 2003. The relationship between virologic and immunologic responses in AIDS

clinical research using mixed-effects varying coefficient semiparametric models with measurement error.
Biostatistics 4, 297–312.

Lunn, D. J., Thomas, A., Best, N., Spiegelhalter, D., 2000. WinBUGS – A Bayesian modelling framework:
concepts, structure, and extensibility. Statistics and Computing 10, 325–337.

16



Mallick, B., Hoffman, F. O., Carroll, R. J., 2002. Semiparametric regression modelling with mixtures of Berkson
and classical error, with application to fallout from the Nevada Test Site. Biometrics 58, 13–20.

Ormerod, J. T., Wand, M. P., 2010. Explaining variational approximations. The American Statistician 64, 140–
153.

Richardson, S., Green, P. J., 2002. Mixture models in measurement error problems, with reference to epidemi-
ological studies. Journal of the Royal Statistical Society, Series A 165, 549–566.

Ritter, C., Tanner, M. A., 1992. Facilitating the Gibbs sampler: the Gibbs stopper and the griddy-Gibbs sampler.
Journal of the American Statistical Association 87, 861–868.

Wand, M. P., Ormerod, J. T., 2008. On semiparametric regression with O’Sullivan penalised splines. Australian
and New Zealand Journal of Statistics 50, 179–198.

Wand, M. P., Ormerod, J. T., Padoan, S. A., Fruhwirth, R., 2011. Mean Field Variational Bayes for Elaborate
Distributions. Bayesian Analysis 6, 847–900.

Wand, M. P., Ripley, B. D., 2010. KernSmooth 2.23. R package. Functions for kernel smoothing,
http://cran.r-project.org.

17


