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TVICA { Time Varying Independent Component Analysis

and Its Application to Financial Data�

Ray-Bing Cheny, Ying Chenzand Wolfgang K. H�ardlex

August 19, 2011

Abstract

Source extraction and dimensionality reduction are important in analyzing

high dimensional and complex �nancial time series that are neither Gaussian

distributed nor stationary. Independent component analysis (ICA) method can

be used to factorize the data into a linear combination of independent compo-

nents, so that the high dimensional problem is converted to a set of univariate

ones. However conventional ICA methods implicitly assume stationarity or

stochastic homogeneity of the analyzed time series, which leads to a low accu-

racy of estimation in case of a changing stochastic structure. A time varying

ICA (TVICA) is proposed here. The key idea is to allow the ICA �lter to

change over time, and to estimate it in so-called local homogeneous intervals.

The question of how to identify these intervals is solved by the LCP (local
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change point) method. Compared to a static ICA, the dynamic TVICA pro-

vides good performance both in simulation and real data analysis. The data

example is concerned with independent signal processing and deals with a port-

folio of highly traded stocks.

JEL code: C14; C58; G17

Keywords: Adaptive Sequential Testing; Independent Component Analysis; Local

Homogeneity; Signal Processing; Realized Volatility.

1 Introduction

Source extraction and dimensionality reduction are among the primary goals of mul-

tivariate �nancial time series analysis, which helps to extract features and to �nd

latent relations of risk drivers from high dimensional and complex portfolios. With

increasing dimension and larger piles of data, attainment of these goals can be chal-

lenging.

Conventional statistical methods based on Gaussianity and stationarity do the

job of simultaneous dimension reduction and stochastic factor identi�cation. Prin-

cipal component analysis and factor analysis are the tools here. The assumption of

stationarity and Gaussianity is questionable though for the stochastic description of

�nancial data. The Gaussian distribution cannot be used to mark tail dependence of

risk factors and it fails in providing the empirical facts like heavy tailedness, volatil-

ity clustering and intertemporal dependence of cross moments of order higher than

2. The practical need to retrieve the main driving stochastic factors is accentuated

though in risk management and many other �elds of applications and must be dealt

with even without distributional assumptions. Although an eigenvalue decomposition
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of returns' covariance yields only uncorrelated factors, see e.g. Jolli�e (2002), H�ardle

and Simar (2012), together with the Gaussian distributional assumption, the factors

are independent. Hence well-developed univariate methods can be applied to each

independent (but actually uncorrelated) factor, without considering the dependence

among the components anymore. This is one of the primary reasons why Gaussianity

has been widely adopted though deviating from the empirical facts.

A recently developed multivariate statistical method, Independent Component

Analysis (ICA), is di�erent from the conventional approaches. ICA extracts Indepen-

dent Components (ICs) using a linear �lter but does not project onto the eigenvectors

of the covariance matrix as PCA does. Instead, the independent factors are estimated

via an optimization problem, in which the statistical cross dependence between the

extracted ICs is minimized. While PCA maximizes the variance of the projected

data under orthogonality constraints, ICA directly attacks the independence of the

projected factor components. For the Gaussian case they coincide of course. A rich

set of ICA algorithms exists e.g. FastICA proposed by Hyv�arinen and Oja (1997)

and other methods in Hyv�arinen, Karhunen and Oja (2001). The dimensionality re-

duction feature of ICA is that it actually converts a high dimensional problem to a

set of univariate ones, and all components are (at least approximately) independent.

This technique has been implemented in stock returns analysis by Back and Weigend

(1998), in risk management by Chen, H�ardle and Spokoiny (2010), in high frequency

analysis by Kouontchou and Maillet (2007), and in an intertemporal GARCH context

by Wu, Yu and Li (2006). All these works demonstrate a nice performance of the

ICA method, with applications to �nancial data that are not Gaussian distributed.

One essential assumption though is common to these papers: the observed series as

well as the ICs are stationary and the linear �lter is the same for the entire time series.

As a consequence, the dynamics of cross dependence is constant over time which in
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light of the ever occurring turbulences in �nancial markets is questionable. In order to

demonstrate how the performance of ICA is a�ected, if the stationarity assumption

is violated, consider three ICs, each normal-inverse Gaussian (NIG) distributed (a

heavy-tailed distribution, see Barndor�-Nielsen (1997) for more details). The NIG

distributional parameters are actually calibrated from the empirical distribution of

three ICs estimated for the log returns of Home Depot (HD), Hewlett-Packard (HPQ)

and IBM. We present more returns later in our real data section. Two ICA �lters,

A1 and A2 are used for generating a realistic example series, corresponding to two

di�erent time periods: 3rd September 2008 to 31th August 2009 (a period with market

turbulence), and 30th July 2004 to 29th December 2006 (a relatively quiet period):

A1 = 10�3

0BBB@
0:6 13:0 6:2

3:8 2:7 13:0

7:9 5:9 4:8

1CCCA ; and A2 = 10�3

0BBB@
�0:1 0:8 5:3

7:0 1:9 1:6

0:1 4:2 1:1

1CCCA :

The three NIG distributed ICs, Zt 2 IR3 produce the observed series Xt = AtZt, in

which At = A1 for the �rst 300 observations and At = A2 for the rest. Figure 1

displays the theoretical values of the ICs and the errors of the estimated ICs using

either a Time Varying ICA method or a static ICA method. The static ICA assumes

that the �lter is constant over the whole time period, while the Time Varying ICA

(TVICA) reacts to the change point of the �lter and respectively estimates ICs based

on separated locally homogenous samples. Apparently, the TVICA method bene�ts

from adapting to local inhomogeneity and its error process therefore has a much

narrower spread than that of the static ICA. The RMSE (root mean square errors)

of the estimated ICs also indicates a good performance of the TVICA in terms of

accuracy, with values of 0:886 (static) and 0:201 (time varying) respectively. When

considering only the time period after change, the di�erence becomes even larger,
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Figure 1: Demonstration based on three simulated series Xt = AtICt, where At = A1

for t = 1; : : : ; 300 and changes to A2 after then. From left to right it displays the
theoretical values of the ICs, the errors of the recovered ICs that are estimated over
the separated locally homogeneous samples (TVICA) or over the whole sample (static
ICA). The TVICA has a much narrower error spread than the static ICA.

with values of 1:196 (static) and 0:160 (time varying).

The above (reality driven) example makes it clear that one not only needs a

non-Gaussian low dimensional factor extraction but also a technique that locally (in

time) identi�es a \trust interval" over which one can safely do ICA. The importance

of identifying such an interval of approximate stationarity is often under-evaluated.

Improving the quality of IC extraction for varying intervals, when dynamics changes

over time, is the aim here. The little demonstration above indicates that the TVICA

method is preferred in the case. The question is of course how to identify the locally

homogeneous intervals in practice! Matteson and Tsay (2009) gave an answer by al-

lowing the mixing matrix to vary over time via a smooth function of some transition

variables. This idea is similar to time-varying models proposed in the volatility and
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co-volatility literature, see e.g. Baillie and Morana (2009), Scharth and Medeiros

(2009). Also it resembles time variation models incorporating changes via Markov-

Switching or mixture multiplicative error speci�cations that have been proposed by

e.g. Hamilton and Susmel (1994), So, Lam and Li (1998), Lanne (2006). These tech-

niques though take a globally given mechanism for this time variation, in contrast

to e.g. Mercurio and Spokoiny (2004) using a local change point approach. The

approach is di�erent from the existing ones in the sense that it is data-driven and

applicable for various kinds of breaks (macroeconomic or political changes) with dif-

ferent magnitudes and abrupt or smooth types. Neither prior information (on say

states of the market) nor distributional assumption is required. It motivates us to

develop a local estimation approach for ICA.

Here a time varying ICA (TVICA) framework is put into action, where the mixing

matrix (linear �lter) is allowed to change over time without imposement of a global

structure. For each time point we determine a \trust interval" by conducting a

sequence of tests on a structural change. The selection is controlled by a set of

critical values. In this selected trust interval one performs ICA. The TVICA method

is completely a data driven approach for �lter and homogeneity determination.

The remainder of the paper is structured as follows. The next section presents

in detail the time varying (constrained) ICA approach and the estimation procedure.

Section 3 investigates the performance of the proposed approach along with a simula-

tion study, and the real data analysis is reported in Section 4. Section 5 summarizes

our �ndings and discusses an outlook to future work.
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2 How TVICA works

Suppose that there are p assets with log returns Xt = fx1(t); : : : ; xp(t)g
> : The aim is

to factorize the �nancial returns into a linear combination of independent components

Zt = fz1(t); : : : ; zp(t)g
>. The TVICA approach is based on:

Xt = AtZt (1)

where At is a p � p (time varying) matrix. In the static ICA approach, Xt in (1) is

assumed to be stationary and At = A = const. i.e. to be time homogeneous. In the

TVICA approach, the linear �lter At is time dependent and the estimation of ICs is

customized under Local Homogeneity for any time point of interest.

Local homogeneity means that, for any particular time point t there exists a past

time interval It = [t�mt; t], over which the linear �lter At is approximately constant,

i.e. As � A, 8 s 2 It. Given t and its past information, the challenge is of course

to determine It (or mt) { the \trust interval of local homogeneity". In order to rise

to this challenge, the Local Change Point (LCP) detection approach of Mercurio and

Spokoiny (2004) is applied. Note that the LCP approach is data-driven and nests

the above mentioned \smooth transition" and \regime switching" techniques used in

earlier literature. Based on the identi�ed trust interval, TVICA can provide more

accurate performance than using a constant ICA �lter.

2.1 The LCP method

In this section, we present the LCP detection procedure to identify the interval of

local homogeneity at time point t. The estimation of the TVICA is carried out via

the (quasi) maximum likelihood method by treating the linear �lter or its inverse
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as unknown parameter. Suppose for a moment that an interval of a constant �lter

(homogeneity) It = [t�mt; t] is given at time point t, where mt indicates the length

of the interval. Then with pdf fj(zj) of IC zj, j = 1; : : : ; p, the pdf of X, according

to Jacobian transformation, is:

fX(x1; : : : ; xpjBt) =

(
pY

i=1

fj(zj)

)
� jdet Btj;

where Bt is the inverse of At. With Bt = (b1t; : : : ; bpt)
>, this gives:

fX(x1; : : : ; xpjBt) =

pY
j=1

fj(b
>
jtX)� jdet Btj: (2)

The log-likelihood function on the interval It is:

L(It; Bt) =
tX

s=t�mt

pX
j=1

logffj(b
>
jtXs)g+ (mt + 1) log jdet Btj; (3)

and the MLE is denoted as eBt.

Relaxing this situation of a constant (static) �lter to local homogeneity on It

means that Bt (or At) does not deviate too much from being constant in It. The

deviation of this constant parameter is measured by a small modeling bias (SMB).

The SMB quanti�es the divergence of a time varying model relative to a static model,

for details see Spokoiny (2011), H�ardle, Panov, Spokoiny and Wang (2012). Take now

a family of nested intervals, I0 � I1 � � � � � IK�1 � IK (the subscript t is omitted

here for simpli�cation of notation), the longer the length of intervals, the smaller the

variance of the estimator but the higher the bias. The LCP approach selects the

longest interval of local homogeneity that has the smallest variance (a trust interval)

given an SMB bound.
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The identi�cation of the trust interval at time t is done via a sequential algorithm.

At the �rst step, the interval I0 is accepted as a trust interval. Next for an interval Ik,

k = 1; : : : ; K, the procedure is to sequentially screen a subinterval Jk = Ik n Ik�1 =

[t � mk; t � mk�1) and check for a possible change point { an indication of non-

homogeneity { in the interval with \new" information. The interval Ik is accepted

if every point in Jk is tested to be insigni�cant as a location of change point. One

continues this way until a change point is detected or the longest interval IK is reached.

More speci�cally in the k-th step, given Jk as the testing interval we choose I =

[t0; t00] to be a superset of Jk that includes some neighboring observations of Jk. Then

for each point t 2 Jk, we split the interval I into two sub-intervals, with I
0 = [t0; t) and

I 00 = [t; t00]. Note that I = I 0
S
I 00 and I 0

T
I 00 = ;. Figure 2 demonstrates the relation

of the intervals used in the testing procedure. Let LI(B) denote the log-likelihood

Interval //I  Interval /I  

Interval 1/ −= kkk IIJ  

                 
/t                                                        

//t  

 

   Kmt −          kmt −                                 1−− kmt            2mt −    1mt −   t  

Figure 2: Local change point detection procedure.

function for the observations in I. The LCP method employs a likelihood ratio test

at all t 2 Jk to examine \a possible change point" over the whole interval Jk:

TI;t = max
B00;B0

fLI00(B
00) + LI0(B

0)g �max
B

LI(B): (4)

The maximum (over t) of (4) is the proper statistic:

Tk = max
t2Jk

TI;t (5)
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If Tk is greater than a critical value �k, the null hypothesis of local homogeneity on

Ik is rejected. The critical values f�kg for k = 1; : : : ; K are computed via Monte

Carlo simulation, since the distributional properties of (5) are (even asymptotically)

unknown. The details are described in Section 2.3.

The formal de�nition of the LCP algorithm is as follows:

1. Initialization: The null shouldn't be rejected on I0. Denote the initial homoge-

neous estimate by bB(0)
t = eB(0)

t .

2. Set k = 1. While Tk � �k and k � K,

update the present homogeneous estimate by bB(k)
t = eB(k)

t and set k = k + 1.

3. Final Estimate: bBt = bBk
t ; which is actually the MLE over the longest interval

of local homogeneity.

It is worth mentioning that the numerical complexity of the LCP algorithm is not

high. In the computation for a simulation data including 10 time series, with 610

sample points for each and a family of 6 nested intervals (Section 3), it takes about

10 minutes on a PC with 2.67GHz Intel(R) Core(TM) i7 CPU.

2.2 Finding ICs in a selected interval

Given an identi�ed interval of local homogeneity, i.e. Bt = B, (quasi) maximum

likelihood estimation (MLE) is used to obtain ICs. For the MLE approach, the

Kullback-Leibler (KL) divergence measures the di�erence between two joint density

functions of X, fX(x1; : : : ; xpjBt) under independence assumption, see (2), and pX
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given the observations:

KL fpXkfX(x1; : : : ; xpjBt)g =

Z
pX log

pX
fX(x1; : : : ; xpjBt)

dX

= HX �

Z
pX log fX(x1; : : : ; xpjBt) dX;

where HX =
R
pX log pXdX. The ICs are obtained via minimizing the KL divergence

with respect to Bt. Note that H(X) doesn't depend on Bt. Hence minimizing the

KL divergence is equivalent to maximizing
R
pX log fX(x1; : : : ; xpjBt) dX, where the

latter is proportional to the log-likelihood function in (3).

Given that �nancial time series have heavy-tailed marginal distributions, one con-

siders:

log fj(zj) = �� 2 log cosh(zj) = �� 2 log

�
1

2
fexp(zj) + exp(�zj)g

�
; (6)

where � is a normalizing constant. Take the logarithmic derivative gj(zj) =
@
@zj

log fj(zj) :

gj(zj) = �2 tanh(zj) = �
2fexp(2zj)� 1g

exp(2zj) + 1
; 8 j = 1; : : : ; p; (7)

For the Gaussian case gj(x) = �x'(x)='(x) = �x , is a linear function. From (7)

one see that gj 
attens out and thus models heavy tails. Hyv�arinen and Oja (1999)

claim that a small misspeci�cation of the density (6) doesn't a�ect the consistency of

the ML estimator, and therefore we adopt the particular selection.

It is worth mentioning that a pre-whitening process is normally conducted before

implementing ICA. The variances of ICs are not identi�able according to the de�nition

of ICA. Without loss of generality, the variances of ICs are set to be one by whitening

the observations. It is easy to show that the linear �lter of the pre-whitened series
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will be an orthonormal matrix. This feature will help to select parameters of the

TVICA method.

2.3 Selection of Hyperparameters

The TVICA method is driven by a small set of \adjustable screws" or hyperparame-

ters that we present here.

Set of intervals: The family of intervals fIkg
K
k=0 is either given or selected as:

Ik = [t�mk; t];

where mk = m0a
k with a pre-speci�ed initial length m0 and a multiplier a > 1.

The coe�cient a controls the increasing length of the trust intervals. The starting

value m0 should be su�ciently small to ensure very brief local homogeneous intervals.

A practicable choice of a and m0 is discussed later in the simulation section of this

paper. We may however already state here that the proposed algorithm is only weakly

sensitive to the choice of this interval sequence.

Critical values: The critical values f�kg are calculated under the null, i.e. a ho-

mogeneous constant �lter B�. They are calculated from a stability condition, to be

described below. This involves an additional parameter � that controls the error of

�rst kind, i.e. a false alarm see (8) below.

Under the null (constant �lter), one generates independent series and mixes them

with a constant �lter matrix A� or its inverse B� = A��1. The MLE of �lter over

the shortest interval I0 of the sample is used here, as the interval is a priori assumed

to be time homogeneous. It is interesting to mention that ICA conducts a pre-

whitening process to avoid non-uniqueness of ICs, which makes the �lter's scaling
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free but doesn't change the underlying pattern of homogeneity or non-homogeneity.

Therefore, the selection of the constant �lter is not crucial for detecting change point.

Later we will demonstrate that the method is stable with respect to the selection

of A�. Under the produced globally homogeneous situation, every interval is locally

homogeneous and the longest interval IK is the optimal choice. The aim here is to

compute the critical values so that the adaptive estimate bBt that is driven by the

computed critical values doesn't deviate much from the constant �lter, or simply, the

SMB condition is satis�ed.

For any r > 0, the �tted log likelihood with Bt = B� can be used to measure the

divergence of the MLE eB(k)
t for t 2 Ik:

EB�jL(Ik; eB(k)
t ; B�)jr = EB�jL(Ik; eB(k)

t )� L(Ik; B
�)jr;

and the largest divergence among all the intervals is denoted as:

Rr(B
�) = max

k�K
EB� jL(Ik; eB(k)

t ; B�)jr:

The parameter r speci�es the loss function under the null. A choice of r = 0:5 for

example corresponds to the `1 loss and it provides a stable and robust performance

in the monte carlo simulation. For a given value r, Rr(B
�) can be computed straight-

forwardly.

The constant is in practice unknown. We here mimic the situation by replacing

it with the adaptive estimate bBt. Under the null of local homogeneity, the modeling

bias is required to be bounded:

EB�jL(IK ; eB(K)
t ; bBt)j

r � �Rr(B
�); t 2 IK ; (8)
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where bBt depends on the critical values �1; : : : ; �K : The parameter � > 0 is the test

level parameter. Its selection re
ects the expectation and preference of users. A

small value of � indicates that one expects a small divergence of the estimate to a

constant �lter (the null), which leads to relatively large critical values and a rather

conservative procedure for possible time variation. Increasing � would result in a

decrease of the critical values and an increase of the sensitivity of the method to the

changes of �lter in the underlying process. It might therefore be interpreted as a

\false alarm" indicator.

To calculate the critical values, we do the calibration in a sequential way. Notice

that the sequential homogeneity tests accumulate uncertainty in estimation due to

the increase in the degrees of freedom and therefore the probability of an interval

being homogeneous decreases. To take this into account, it is suggested to adjust the

hyperparameter � for an individual level of test at each step k = 1; : : : ; K, by e.g.

assigning increasing weights k=K to increase the sensitivity to changes. In particular,

the kth-step adaptive estimate bB(k)
t on the interval Ik satis�es:

EB�jL(Ik; eB(k)
t ; bB(k)

t )jr �
k

K
�Rr(B

�); t 2 Ik: (9)

where bB(k)
k depends on the critical values �1; : : : ; �k:

How does it work in detail? At the initial step k = 0, we set �0 =1 by accepting

the shortest interval. To specify the next critical value �1, we set the values of

�2; : : : ; �K to be in�nity. Then �1 is selected as the minimum value to satisfy (9):

EB�

���L(Ik;n eB(k)
t ; bB(k)

t (�1; �2)
o���r � 1

K
�Rr(B

�); t 2 Ik; k = 1; : : : ; K:

We then continue to select �k given �1; : : : ; �k�1 and set �k+1 = � � � = �K = 1,
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k = 2; : : : ; K. The value of �k is determined such that:

EB�

���L(I`;n eB(`)
t ; bB(`)

t (�1; : : : ; �k)
o���r � k�Rr(B

�)

K
; t 2 I`; ` = k; : : : ; K:

It is worth mentioning here that the LCP procedure is robust w.r.t. variation of

these hyperparameters. In the simulation study of Section 3, we give evidence for

this claim.

3 Simulation

This section investigates the performance of the TVICA method in various scenarios.

In particular, we assess its detection power under homogeneity and non-homogeneity

(nonstationarity) with di�erent kinds of change point. As long as the underlying

processes are stationary without change point, LCP should select the longest interval

in the estimation of ICs. If at least one change point exists, LCP must detect the

change point. It is worth emphasizing that the proposed method is not to identify

the exact location of all possible change points. Instead, it is to select, for any

particular time point, the longest interval before the occurrence of the most recent

change point. The ICs are then safely estimated over the identi�ed interval of local

homogeneity. Since the LCP procedure relies on hyperparameters (r; �), that have to

be pre-determined, we also analyze the impact of the hyperparameters with various

values. It turns out that they have little in
uence on the performance of TVICA.

The setup of the simulation scenarios is practical. We use 10 components of

the DJ30 index to generate the simulation processes. The 10 stocks are The Home

Depot (HD), Hewlett-Packard (HPQ), IBM, Intel (INTC), Johnson & Johnson (JNJ),

JPMorgan Chase (JPM), Kraft Foods (KFT), Coca-Cola (KO), McDonald's (MCD)
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and 3M (MMM). The data spans from 14th January 2010 to 28th October 2010,

over which ICA is conducted for the daily log returns as described in Sec 2.2. The

obtained ICs are taken to be NIG distributed since this type of distribution works

well in �nancial applications. Accordingly, 10 independent NIG distributed series are

generated, with 610 sample points for each. The simulation processes are obtained

by mixing these independent sources with time dependent linear �lters At in di�erent

scenarios. There are 1000 repetitions for each scenario.

{ Scenario HOMO is a homogeneous case, where the linear �lter is set to be an

identity matrix for all the points. In this simplest case, where the simulated

series are independent and homogeneous, the longest interval is the optimal

selection.

{ Scenario JPLF includes a sudden change, with At jumping from �A to an identity

matrix at t = 251. The matrix �A is estimated based on the above mentioned

real data with 10 stocks.

{ Scenario JPEM also includes a sudden change at t = 251. Instead of a change of

the whole �lter matrix, only one element of the �lter changes. More speci�cally,

the (2,1){element of the linear �lter changes from 3 to 0 such that the linear

�lter becomes an identity matrix.

{ Scenario SLEM refers to the type of smooth changes. As an illustration, the

(2; 1)-component of the linear �lter is de�ned as:

A
(2;1)
t =

8>>><>>>:
3; t � 220;

3(1� (t� 220))=160; 220 < t < 380;

0; t � 380.

(10)
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The set of the time intervals is de�ned with m0 = 200, a = 1:25 and K = 5:

I0 = 200; I1 = 250; I2 = 313; I3 = 391; I4 = 488; I5 = 610;

which corresponds to investment horizons from one year to 2.5 years. The parameters

r and � in the LCP procedure are assigned to be either 0:1; 0:5 or 1. Totally there are

9 combinations of (r; �). The computation of critical values are based on generated

homogeneous series, with 610 sample points for each. We repeat the generation 5000

times. Moreover, when screening a possible change point in the interval Jk = Ik=Ik�1,

a superset is set to be an interval that also includes the neighboring 25 observations

of Jk. The critical values for di�erent sets of hyperparameters are displayed in Figure

3. For any set of (r; �), The critical values are decreasing w.r.t. interval length,

corresponding to the fact that for long intervals, the null of local homogeneity tends

to be rejected. Moreover, the set of critical values shifts downside for a large value of

�, which re
ects an expectation of non-homogeneity and the method is hence sensitive

to change point.

The TVICA is conducted for di�erent sets of (r; �) in di�erent scenarios. The

detection power is measured by the ratio of rejecting the null of local homogeneity

over 1000 replications. We summarize how much and where the null is rejected. In

particular, a value of 0 means the null is not rejected at all, which indicates a perfect

local homogeneity. On the contrary, a ratio of 100% means the null is completely

rejected. In the latter case, we are curious where the most recent change point is

and respectively report the ratio at each interval. The results are reported in Table

1. Under the scenario of homogeneity (Scenario HOMO), the ratios are lower than

10%, if � < 1. For � = 1, the error of �rst kind is up to 26:8%, underlining our earlier

comment on the role of �. This false alarm will encourage a selection of a relatively

short interval, in which the variance of estimators may be large but the modeling bias
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Figure 3: Critical values with parameters r = 1; 0:5; 0:1 and � = 1; 0:5; 0:1: The set
of intervals is de�ned with m0 = 200, a = 1:25 and K = 5. The length of intervals is
listed in the parentheses. The computations are based on the generated independent
series, with 610 sample points for each series and with 5000 replications.

is still small { the main concern of our study. Therefore the impact of false alarm is

not serious. Under a scenario with change point(s), the ratios are 100% for all sets

of (r; �). The location of the change point is nicely detected. For Scenario JPLF and

JPEM with just one change point at t = 251, that is t 2 J3 = I3=I2 = [219; 298), the

ratios in I3 are above 99%. For Scenario SLEM with the (2,1){element of the �lter

matrix slowly changing over J3, J2 = I2=I1 and part of I1, see (10), the total ratios in

I3 and I2 is above 99%. For variation of �; the ratios have been reallocated between the

intervals, however it doesn't a�ect much the selection of intervals. It just re
ect the

users' expectation and preference on homogeneity vs non-homogeneity. In general, the

TVICA method works well and can select the interval of local homogeneity reasonably.

Moreover, the performance of the TVICA method is very stable across r, given � is

�xed.
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r = 0:1 r = 0:5 r = 1:0

� @ I1 I2 I3 I4 I1 I2 I3 I4 I1 I2 I3 I4

0:1

HOMO | 0.6 | | 0.6 | | 0.7 |

JPLF { { 100 { { { 100 { { { 100 {

JPEM { { 99.2 0.8 { { 99.4 0.6 { { 99.4 0.6

SLEM { 5.9 93.1 1.0 { 6.8 92.4 0.8 { 7.9 91.3 0.8

0:5

HOMO | 4.9 | | 5.9 | | 8.3 |

JPLF 0.1 { 99.9 { 0.1 0.1 99.8 { 0.1 0.1 99.8 {

JPEM { 0.1 99.5 0.4 { 0.2 99.5 0.3 { 0.2 99.6 0.2

SLEM 0.2 32.4 67.4 { 0.2 34.4 65.4 { 0.2 36.1 63.7 {

1:0

HOMO | 15.3 | | 20.3 | | 26.8 |

JPLF 0.2 0.4 99.4 { 0.2 0.4 99.4 { 0.2 0.7 99.1 {

JPEM { 0.4 99.5 0.1 { 0.6 99.4 { { 0.8 99.2 {

SLEM 0.2 49.5 50.3 { 0.2 52.6 47.2 { 0.4 56.4 43.2 {

Table 1: The ratio of rejection (in percentage) of the LCP detection tests over 1000
replications. The de�nition of the scenarios is given in the text. Scenario HOMO
is a homogeneous case, while the other scenarios include change points occurring at
either the 3rd interval for Scenario JPLF and JPEM, or over part of I1, J2 = I2=I1 and
J3 = I3=I2: The results show the TVICA method works well with a strong detection
power.

4 Real Data Analysis

In this section, we implement TVICA to the log returns of a portfolio with 10 stocks

traded at NYSE: HD, HPQ, IBM, INTC, JNJ, JPM, KFT, KO, MCD, and MMM.

Recall that the objective of our study is to safely retrieve independent signals out of

complex time series that are neither Gaussian distributed nor stationary. We here

attack the following questions. Does the proposed method detect a reasonable interval

of local homogeneity given a particular time point? Are the signals that are estimated

over the identi�ed interval (approximately) independent? We consider here two time

points, 1st August 2007 and 28th October 2010, which are respectively before and

after the recent global �nancial crisis from 2008 to 2010. Using the same set of

intervals in the simulation study, that is, m0 = 200, a = 1:25 and K = 5, the task is

to detect the most recent change point, if exists, over two periods [1st March 2005,
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1st August 2007] and [30th May 2008, 28th October 2010], with 610 observations for

each.

The �rst period corresponds to a relatively stationary (stochastically homogenous)

period, during which no in
uential economic or �nancial events are observed. To

justify, we assign a set of equal weights to the 10 stocks and recursively compute

realized volatility for the point 1st August 2007:

e�t =
vuut 1

m

TX
t=T�m+1

r2t ; 200 � m � 610;

where rt denotes the return of the equally weighted portfolio. We start with 200

historical observations { the shortest interval, and continuously including one more,

up to all the 610 observations { the longest interval in the computation. Figure 4

displays the realized volatility (dashed line) w.r.t. m, the length of the sample. The

values are quite stable around 0:030, which indicates a stationarity over the whole

period. Hence, the longest interval could be a reasonable selection.

The second period [30th May 2008, 28th October 2010] instead involves the stock

market crash in 2008. Again, we recursively compute the realized volatility of the

equally weighted portfolio over the period, see Figure 4. Apparently, the volatility

process is not constant. It shifts from about 0:045, around the interval I3, or when

more than 391 historical observations are considered. It is interesting to see whether

the TVICA method can detect the possible change and identify a reasonable interval

of local homogeneity.

In our study, the hyperparameters (r; �) are set to be (0:5; 0:5) and (0:1; 0:1) as

both provided good power for the scenario of homogeneity in the simulation study.

In the computation of critical values, the hypothetically homogeneous B� is set to be
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Figure 4: Realized volatility recursively computed for two days 1st August 2007 and
28th October 2010. The set of intervals with m0 = 200, a = 1:25 and K = 5 is
marked in the plot to highlight the underlying pattern across the intervals.

either the MLE in the shortest interval or an identity matrix. Table 2 reports the

critical values as well as test statistics for every interval. For the 1st August 2007,

the test statistics are insigni�cant so the null of local homogeneity is not rejected

over the whole time period of [1st March 2005, 1st August 2007]. In other words, one

can safely implement ICA in the time period. On the contrary, for the 28th October

2010, the null is rejected at the interval I3, and the interval [2009=08=05; 2010=10=28]

is identi�ed to be homogenous. The result is consistent to the above volatility analysis,

in which a structure change initiates around the interval I3.

For the two cases, the sets of critical values are close for di�erent B�, which

justi�es the selection of B� is not crucial for detecting change point. Moreover, the

critical values vary a little across the hyperparameters. However, the testing results

are identical. It supports our claim that the proposed method is stable to variation

of the hyperparameters.
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2005/03/01-2007/08/01 2008/05/30-2010/10/28
CV TI CV TI

(r; �) (0:5; 0:5) (0:1; 0:1) (0:5; 0:5) (0:1; 0:1)
B� MLE Identity MLE Identity MLE Identity MLE Identity
I1 107.23 102.84 122.37 120.89 74.36 108.87 105.85 126.51 123.74 69.81
I2 98.40 98.45 117.43 113.21 76.62 101.71 98.67 116.86 113.95 81.97
I3 93.15 92.35 112.30 108.44 66.86 96.32 94.92 113.91 110.05 265.35

I4 89.64 88.81 109.53 105.57 77.52 92.59 91.57 111.18 107.80 469.99

I5 86.28 85.74 106.82 103.01 72.79 88.72 88.21 108.99 105.85 205.60

Table 2: The critical values and the test statistic for two experiments. The set of
intervals for testing is de�ned as m0 = 200, a = 1:25 and K = 5. The CVs are
computed with respect to B� equals the MLE in the shortest interval or an identity
matrix. The hyperparameters are set to be (r; �) = (0:5; 0:5) and (r; �) = (0:1; 0:1).
The critical value computations are based on the generate 10 independent series, with
610 sample points for each series and with 5000 replications.

Moreover, we use higher-order (4th order) cross-cumulants as a measure of statis-

tical independence:

cum(zi; zj; zk; zl) = E(zizjzkzl)� E(zizj)E(zkzl)� E(zizk)E(zjzl)� E(zizl)E(zjzk);

where z� denotes the obtained (independent) signal process. If the signals are inde-

pendent, the cross-cumulants are zero when i; j; k; l are not equal simultaneously. As

a comparison, we also implement a static ICA over the longest interval (610 observa-

tions) and a dynamic PCA over the interval of local homogeneity that is identi�ed in

the TVICA method for the two points. The cross-cumulants are computed. Figure 5

displays the boxplots of all the cross-cumulants of the signals by using the TVICA,

the static ICA and the dynamic PCA. For both the stationary and nonstationary

cases, all the cross-cumulants balance around zero, with means closing to 0. But

the dynamic PCs and the static ICs have wider spreads and more outliers, which

attributes to either the gaussianity assumption or the stationarity assumption.
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Figure 5: Boxplots of the fourth order cross-cumulants of the time varying ICs, the
dynamic PCs and the static ICs (applicable for nonstationary case 2010/10/28).

5 Conclusion and discussion

We proposed the TVICA method to extract independent sources of high dimensional

and complex �nancial time series that are neither Gaussian distributed nor stationary.

We allow the ICA linear �lter to change over time, and estimate it in more precisely

intervals of homogeneity. These \trust" intervals with an approximately constant

linear �lter are identi�ed via a local change point detection approach. This technique

doesn't require the speci�cation of the type, magnitude or stochastic models of change.

Several hyperparameters need to be adjusted. In our simulation study based on

real data scenarios, however, we demonstrate that the procedure is robust w.r.t. the

choice of the parameters. The TVICA method is easy to implement both under ho-

mogeneity and in a situation with di�erent kinds of changes. The obtained ratio of

rejecting the null of homogeneity is reasonable and the location of change(s) has been

nicely detected. We also conducted the real data analysis. The proposed method de-
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tected the intervals of homogeneity that consist of the facts in real life. It is interesting

that the method indicates an access of a new homogenous state of �nancial markets

after the recent global �nancial crisis, though with a possibly di�erent perspective on

structure.

Although our study pays attention to just extracting independent sources, exten-

sions of the TVICA method to explicitly account for other important data character-

istics and other applications such as risk management and forecasting, are straight-

forward. Due to independence of the linear �ltered sources, univariate models can be

adopted for each series of the independent sources.
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