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Abstract

Bayesian model averaging (BMA) is a statistical method for post-processing forecast

ensembles of atmospheric variables, obtained from multiple runs of numerical weather

prediction models, in order to create calibrated predictive probability density functions

(PDFs). The BMA predictive PDF of the future weather quantity is the mixture of the

individual PDFs corresponding to the ensemble members and the weights and model

parameters are estimated using ensemble members and validating observation from a

given training period.

In the present paper we introduce a BMA model for calibrating wind speed fore-

casts, where the components PDFs follow truncated normal distribution with cut-off

at zero, and apply it to the ALADIN-HUNEPS ensemble of the Hungarian Meteoro-

logical Service. Three parameter estimation methods are proposed and each of the

corresponding models outperforms the traditional gamma BMA model both in cali-

bration and in accuracy of predictions. Moreover, since here the maximum likelihood

estimation of the parameters does not require numerical optimization, modelling can

be performed much faster than in case of gamma mixtures.

Key words: Bayesian model averaging, continuous ranked probability score, ensemble

calibration, truncated normal distribution.

1 Introduction

The most important aim of weather forecasting is to give a robust and reliable prediction of

the future state of the atmosphere based on observational data, prior forecasts and mathe-

1

http://arxiv.org/abs/1305.1184v2


2

matical models describing the dynamical and physical behaviour of the atmosphere. These

models consists of sets of hydro-thermodynamic non-linear partial differential equations of

the atmosphere and its coupled systems (like surface or oceans for instance) and have only

numerical solutions. The difficulty with these numerical weather prediction models is that

since the atmosphere has a chaotic character the solutions strongly depend on the initial

conditions and also on other uncertainties related to the numerical weather prediction pro-

cess. Therefore, the results of such models are never fully accurate. A possible solution

is to run the model with different initial conditions (since the uncertainties in the initial

conditions are one of the most important sources of uncertainty) and produce an ensemble

of forecasts. Using a forecast ensemble one can estimate the probability distribution of fu-

ture weather variables which allows probabilistic weather forecasting (Gneiting and Raftery,

2005), where not only the future atmospheric states are predicted, but also the related un-

certainty information. The ensemble prediction method was proposed by Leith (1974) and

since its first operational implementation (Buizza et al., 1993; Toth and Kalnay, 1997) it

has become a widely used technique all over the world and the users understand more and

more its merits and economic value as well. However, although e.g. the ensemble mean

on average yields better forecasts of a meteorological quantity than any of the individual

ensemble members, it is often the case that the ensemble is under-dispersive and in this way,

uncalibrated (Buizza et al., 2005), so that calibration is needed to account for this deficiency.

The Bayesian model averaging (BMA) method for post-processing ensembles in order

to calibrate them was introduced by Raftery et al. (2005). The basic idea of BMA is that

for each member of the ensemble forecast there is a corresponding conditional probability

density function (PDF) that can be interpreted as the conditional PDF of the future weather

quantity provided the considered forecast is the best one. Then the BMA predictive PDF of

the future weather quantity is the weighted sum of the individual PDFs corresponding to the

ensemble members and the weights are based on the relative performance of the ensemble

members during a given training period. In this way BMA is a special, fixed parameter

version of dynamic model averaging method developed by Raftery et al. (2010). The weight

parameters and the parameters of the individual PDFs are estimated using linear regression

and maximum likelihood (ML) method, where the maximum of the likelihood function is

found by EM algorithm. In practice, the performance of the individual ensemble members

should have a clear characteristic (and not a random one) or if it is not the case this fact

should be taken into account at the calibration process (see e.g. Fraley et al., 2010). In

Raftery et al. (2005) the BMA method was successfully applied to obtain 48 hour forecasts

of surface temperature and sea level pressure in the North American Pacific Northwest based

on the 5 members of the University of Washington Mesoscale Ensemble (Grimit and Mass,

2002). These weather quantities can be modeled by normal distributions, so the predictive

PDF is a Gaussian mixture. Later, Sloughter et al. (2007) developed a discrete-continuous

BMA model for precipitation forecasting, where the discrete part corresponds to the event

of no precipitation, while the cubic root of the precipitation amount (if it is positive) is
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modeled by a gamma distribution. In Sloughter et al. (2010) the BMA method was used for

wind speed forecasting and the component PDFs follow gamma distributions, while using

von Mises distribution to model angular data, Bao et al. (2010) introduced a BMA scheme

to predict surface wind direction. Finally, Sloughter et al. (2012) described a BMA model for

wind vector forecasting, where wind vectors are modeled using bivariate normal distribution.

The bivariate normal model for wind vectors is also used in the ensemble model output

statistics (EMOS) method for post-processing ensemble forecasts (Schuhen et al., 2012). The

EMOS, introduced by Gneiting et al. (2005) for calibrating ensemble forecasts following

normal distribution (sea level pressure, temperature), produces a single normal PDF, where

the mean and the variance depends on the ensemble members. However, the method can be

extended to truncated normal distribution (Thorarinsdottir and Gneiting, 2010), too, and

in this way it can be used for calibrating wind speed data.

In the present paper we develop a BMA model for wind speed forecasting where the

component PDFs, similarly to the EMOS PDF of Thorarinsdottir and Gneiting (2010), fol-

low truncated normal distribution. The advantage of this model to the gamma model of

Sloughter et al. (2010) is that for parameter estimation the truncated data EM algorithm

for Gaussian mixture models (Lee and Scott, 2012) can be used which works with closed

formulae both in expectation (E) and in maximization (M) steps. In this way the estimation

of parameters is much faster, which is a key issue in operational applications.

We test our model on the ensemble forecasts of wind speed produced by the operational

Limited Area Model Ensemble Prediction System (LAMEPS) of the Hungarian Meteoro-

logical Service (HMS) called ALADIN-HUNEPS (Hágel, 2010; Horányi et al., 2011) and

compare the results obtained with the corresponding results of Baran et al. (2013a) where

for calibration the BMA gamma model of Sloughter et al. (2010) was used.

2 Data

The ALADIN-HUNEPS system of the HMS covers a large part of Continental Europe with

a horizontal resolution of 12 km and it is obtained by dynamical downscaling (by the AL-

ADIN limited area model) of the global ARPEGE based PEARP system of Météo France

(Horányi et al., 2006; Descamps et al., 2009). The ensemble consists of 11 members, 10 ini-

tialized from perturbed initial conditions and one control member from the unperturbed

analysis, implying that the ensemble contains groups of exchangeable forecasts. The data

base contains 11 member ensembles of 42 hour forecasts for 10 meter wind speed (given

in m/s) for 10 major cities in Hungary (Miskolc, Szombathely, Győr, Budapest, Debrecen,

Nýıregyháza, Nagykanizsa, Pécs, Kecskemét, Szeged) produced by the ALADIN-HUNEPS

system of the HMS, together with the corresponding validating observations for the period

between October 1, 2010 and March 25, 2011 (176 days, or 1760 data points). The forecasts

are initialized at 18 UTC. The data set is fairly complete since there are only two days
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Figure 1: Verification rank histogram of the 11-member ALADIN-HUNEPS ensemble. Pe-

riod: October 1, 2010 – March 25, 2011.

(18.10.2010 and 15.02.2011) where three ensemble members are missing for all sites and one

day (20.11.2010) when no forecasts are available.

Figure 1 shows the verification rank histogram of the raw ensemble. This is the histogram

of ranks of validating observations with respect to the corresponding ensemble forecasts

computed from the ranks at all stations and over the whole verification period (see e.g.

Wilks, 2011, Section 7.7.2). This histogram is far from the desired uniform distribution as

in many cases the ensemble members either underestimate or overestimate the validating

observations (the ensemble range contains the observed wind speed in 61.21% of the cases,

while its nominal value equals 10/12, i.e 83.33%). Hence, the ensemble is under-dispersive

and in this way it is uncalibrated. Therefore, statistical post-processing is required to improve

the forecasted probability density function.

3 Methods

3.1 Bayesian model averaging

Let f1, f2, . . . , fM denote the ensemble forecast of a certain weather quantity X for a given

location and time. In BMA for ensemble forecasting (Raftery et al., 2005) to each ensemble

member fk corresponds a component PDF gk(x|fk, θk), where θk is a parameter to be



5

estimated. The BMA predictive PDF of X is

p(x| f1, . . . , fM ; θ1, . . . , θM) :=

M
∑

k=1

ωkgk(x| fk, θk), (3.1)

where the weight ωk is connected to the relative performance of the ensemble member fk
during the training period. Obviously, the weights form a probability distribution and in

this way they are nonnegative and
∑M

k=1 ωk = 1.

BMA model (3.1) is valid only in the cases when the sources of the ensemble mem-

bers are clearly distinguishable, as for the University of Washington mesoscale ensemble

(Eckel and Mass, 2005). However, most of the currently used ensemble prediction systems

produce ensembles where some ensemble members are statistically indistinguishable. Usu-

ally, these exchangeable ensemble members are obtained with the help of perturbations of the

initial conditions, which is the case for the 51 member European Centre for Medium-Range

Weather Forecasts ensemble (Leutbecher and Palmer, 2008) or for the ALADIN-HUNEPS

ensemble described in Section 2.

Suppose we have M ensemble members divided into m exchangeable groups, where

the kth group contains Mk ≥ 1 ensemble members, so
∑m

k=1Mk = M . Further, denote

by fk,ℓ the ℓth member of the kth group. For this situation Fraley et al. (2010) suggested

to use model

p(x|f1,1, . . . , f1,M1
, . . . , fm,1, . . . , fm,Mm

; θ1, . . . , θm) :=
m
∑

k=1

Mk
∑

ℓ=1

ωkgk(x| fk,ℓ, θk), (3.2)

where ensemble members within a given group have the same weights, PDFs and parameters.

To simplify notations we give the results and formulae of this section for model (3.1),

but their generalization to model (3.2) is rather straightforward.

3.2 Truncated normal model

As it was mentioned in the Introduction, for weather variables such as temperature, pres-

sure or wind vectors BMA models with normal component PDFs can be fit reasonably well.

However, for modeling wind speed, which can take only nonnegative values, a skewed dis-

tribution is required. A popular candidate is the Weibull distribution (see e.g. Justus et al.,

1978), while Sloughter et al. (2010) considers a BMA model based on gamma distribution.

Here we follow the ideas of Gneiting et al. (2006) and Thorarinsdottir and Gneiting (2010)

and for wind speed modeling we employ a truncated normal distribution with a cut-off at

zero N 0
(

µ, σ2
)

with PDF

g(x|µ, σ) :=
1
σ
ϕ
(

(x− µ)/σ
)

Φ
(

µ/σ
) , x ≥ 0, and g(x|µ, σ) := 0, otherwise, (3.3)
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where ϕ and Φ denote the PDF and the cumulative distribution function (CDF) of the

standard normal distribution, respectively. The mean κ and variance ̺2 of N 0
(

µ, σ2
)

are

κ = µ+
σϕ
(

µ/σ
)

Φ
(

µ/σ
) and ̺2 = σ2



1−
µ

σ

ϕ
(

µ/σ
)

Φ
(

µ/σ
) −

(

ϕ
(

µ/σ
)

Φ
(

µ/σ
)

)2


 , (3.4)

respectively.

We assume that location µ is a linear function of the forecasted wind speed that leads

to BMA mixture model

p(x| f1, . . . , fM ;α1, . . . , αM ; β1, . . . , βM ; σ1, . . . , σM ) :=
M
∑

k=1

ωkg(x|αk + βkfk, σk), (3.5)

where g is the PDF defined by (3.3). To simplify the model, in what follows we also assume

σ1 = σ2 = . . . = σM =: σ. This reduces the number of parameters and makes computations

easier. Furthermore, the BMA gamma model of Sloughter et al. (2010), used as a reference,

also operates with this restriction.

3.3 Continuous ranked probability score

Continuous ranked probability score (CRPS) is the most popular scoring rule for evaluating

density forecasts (Gneiting and Raftery, 2007; Wilks, 2011). Given a CDF F (y) and a real

number x, the CRPS is defined as

crps
(

F, x
)

:=

∫ ∞

−∞

(

F (y)− 1{y≥x}

)2
dy = E|X − x| −

1

2
E|X −X ′|, (3.6)

where X and X ′ are independent random variables with CDF F and finite first moment.

CRPS is a proper scoring rule which is negatively oriented, i.e. the smaller the better, and

it can be reported in the same unit as the observation.

Now, if X ∼ N 0
(

µ, σ2
)

then short calculation shows

S1(x, µ, σ) := E|X − x| =
[

Φ
(

µ/σ
)

]−1
[

A
(

x− µ, σ2
)

+ (x− µ)
(

Φ
(

µ/σ
)

− 1
)

− σϕ
(

µ/σ
)

]

,

where A
(

µ, σ2
)

:= E|Y | with Y ∼ N
(

µ, σ2
)

, that is

A
(

µ, σ2
)

= µ
(

2Φ
(

µ/σ
)

− 1
)

+ 2σϕ
(

µ/σ
)

.

Further, if X1 ∼ N 0
(

µ1, σ
2
1

)

and X2 ∼ N 0
(

µ2, σ
2
2

)

are independent, then the PDF of

|X1 −X2| is

f|X1−X2|(x)=

[

σdΦ

(

µ1

σ1

)

Φ

(

µ2

σ2

)

]−1[

ϕ

(

x−µd

σd

)

Φ

(

̺d−
σ2x

σ1σd

)

+ϕ

(

x+µd

σd

)

Φ

(

̺d−
σ1x

σ2σd

)

]

,
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where

µd := µ1 − µ2, σd :=
√

σ2
1 + σ2

2 and ̺d :=
µ1σ

2
2 + µ2σ

2
1

σ1σ2σd

.

Hence,

S2(µ1, µ2, σ1, σ2) := E|X1 −X2| =
[

Φ
(

µ1/σ1

)

Φ
(

µ2/σ2

)

]−1

×
[

A
(

µ1 − µ2, σ
2
1 + σ2

2

)

−
√

σ2
1 + σ2

2 C(µ1, µ2, σ1, σ2)
]

,

where the correction term

C(µ1, µ2, σ1, σ2) :=

∫ ∞

0

x

[

ϕ

(

x−
µd

σd

)

Φ

(

σ2

σ1
x− ̺d

)

+ ϕ

(

x+
µd

σd

)

Φ

(

σ1

σ2
x− ̺d

)]

dx

can only be evaluated numerically. Now, using (3.6) one can easily obtain the CRPS corre-

sponding to the CDF P of mixture model (3.5), namely

crps
(

P, x
)

=

M
∑

k=1

ωkS1(x, αk + βkfk, σk)−
1

2

M
∑

k=1

M
∑

ℓ=1

ωkωℓS2(αk + βkfk, αℓ + βℓfℓ, σk, σℓ).

3.4 Parameter estimation

Parameters αk, βk, ωk, k = 1, 2, . . .M , and σ are estimated using training data consisting

of ensemble members and verification observations from the preceding n days (training

period). In what follows, fk,s,t denotes the kth ensemble member for location s ∈ S and

time t ∈ T and by xs,t we denote the corresponding validating observation. We consider

three approaches which mainly differ in estimation of the parameters αk, βk of location.

3.4.1 Naive approach

Similarly to the normal BMA model of Raftery et al. (2005) we estimate location parameters

αk and βk with a linear regression of xs,t on fk,s,t over the time points in the training

period. We call this approach naive since it does not take into account that for truncated

normal distribution N 0
(

µ, σ2
)

location µ does not equal to the mean κ. However,

one should remark that with the increase of µ the correction term in (3.4) decreases in an

exponential rate.

To estimate weights ωk, k = 1, 2, . . . ,M , and scale parameter σ maximum likelihood

method is applied using again training data. Under the assumption of independence of

forecast errors in space and time the log-likelihood function corresponding to model (3.5)

equals

ℓ(ω1, . . . , ωM ; σ) =
∑

s,t

log

[

M
∑

k=1

ωkg
(

xs,t|αk + βkfk,s,t, σ
)

]

, (3.7)
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where the first summation is over all locations s ∈ S and time points t from the training

period containing N terms (N distinct values of (s, t)).

The log-likelihood function (3.7) is too complicated to be maximized analytically, so we

find its maximum using the truncated data EM algorithm of Lee and Scott (2012). Similarly

to the traditional EM algorithm for mixtures (Dempster et al., 1977; McLachlan and Krishnan,

1997) we introduce latent indicator variables zk,s,t taking values one or zero according as

whether xs,t comes from the kth component PDF or not. The complete data log-likelihood

corresponding to observations and indicator variables equals

ℓC(ω1, . . . , ωM ; σ) =
∑

s,t

M
∑

k=1

zk,s,t

[

log(ωk) + log
(

g
(

xs,t|αk + βkfk,s,t, σ
)

)

]

. (3.8)

The EM algorithm alternates between an expectation (E) step and a maximization (M)

step until convergence. It starts with initial values ω
(0)
k , k = 1, 2, . . . ,M, and σ(0) of

the parameters. In the E step the latent variables are estimated using the conditional

expectation of the complete log-likelihood on the observed data, while in the M step the

parameter estimates are updated by maximizing ℓC with the current values of the latent

variables plugged in.

For the truncated normal mixture model given by (3.3) and (3.5) the E step is,

z
(j+1)
k,s,t :=

ω
(j)
k g
(

xs,t|αk + βkfk,s,t, σ
(j)
)

∑M

i=1 ω
(j)
i g
(

xs,t|αi + βifi,s,t, σ(j)
)
, (3.9)

where the superscript refers to the actual iteration. The first part of the M step is obviously

ω
(j+1)
k :=

1

N

∑

s,t

z
(j+1)
k,s,t , (3.10)

while the second part can be derived from equation ∂ℓC
∂σ

= 0. However, in our case this

equation is nonlinear and since it cannot be solved for σ, we suggest iteration step

σ2(j+1) =
1

N

∑

s,t

M
∑

k=1

z
(j+1)
k,s,t

(

xs,t − αk − βkfk,s,t
)2

(3.11)

+
σ(j)

N

∑

s,t

M
∑

k=1

z
(j+1)
k,s,t

(

αk + βkfk,s,t
)ϕ
(

(αk + βkfk,s,t)/σ
(j)
)

Φ
(

(αk + βkfk,s,t)/σ(j)
) .

Observe that the EM algorithm presented here differs from the corresponding algorithm of

Raftery et al. (2005) only in the second term of (3.11).

3.4.2 Mean corrected approach

In this approach we assume that the means of the component PDFs are also linear functions

of form ak + bkfk,s,t of the forecasted wind speed and the linear regression of xs,t on fk,s,t
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is now used to estimate ak and bk, k = 1, 2, . . . ,M . Instead of (3.8) we consider the

complete data log-likelihood

ℓC(ω1, . . . , ωM , σ) =
∑

s,t

M
∑

k=1

zk,s,t

[

log(ωk) + log
(

g
(

xs,t|µk,s,t, σ
)

)

]

,

where the initial guess for the location parameter µk,s,t of the kth component PDF at (s, t)

is µ
(0)
k,s,t := ak + bkfk,s,t.

Now, E step (3.9) is replaced by

z
(j+1)
k,s,t :=

ω
(j)
k g
(

xs,t|µ
(j)
k,s,t, σ

(j)
)

∑M

i=1 ω
(j)
i g
(

xs,t|µ
(j)
i,s,t, σ

(j)
)
, (3.12)

the first part (3.10) of the M step remains valid, while

µ
(j+1)
k,s,t := µ

(0)
k,s,t − σ(j)

ϕ
(

µ
(j)
k,s,t/σ

(j)
)

Φ
(

µ
(j)
k,s,t/σ

(j)
) (3.13)

and

σ2(j+1) =
1

N

∑

s,t

M
∑

k=1

z
(j+1)
k,s,t

(

xs,t − µ
(j+1)
k,s,t

)2

+
σ(j)

N

∑

s,t

M
∑

k=1

z
(j+1)
k,s,t µ

(j+1)
k,s,t

ϕ
(

µ
(j+1)
k,s,t /σ

(j)
)

Φ
(

µ
(j+1)
k,s,t /σ

(j)
) (3.14)

substitute iteration step (3.11). Observe that (3.13) is responsible for the mean correction

in the first term of (3.4). Finally, after the EM algorithm stops, parameters αk and βk

are estimated with a linear regression of the final value of µk,s,t on fk,s,t.

3.4.3 Full maximum likelihood estimation

In the previous two cases the estimates of location parameters αk and βk, k = 1, 2, . . . ,M ,

are obtained separately from the weights and the scale parameter. Here we present a method

where all parameters are estimated with ML method using the complete data log-likelihood

defined by (3.8). Obviously, in this case ℓC is considered as a function of αk, βk, ωk, k =

1, 2, . . . ,M , and σ. The initial guesses α
(0)
k and β

(0)
k for these parameters are the

corresponding mean coefficients obtained from regressing of xs,t on fk,s,t over the time

points in the training period. In this way the initial value µ
(0)
k,s,t := α

(0)
k + β

(0)
k fk,s,t of the

location parameter is exactly the estimated mean of the kth component PDF.

The E step remains the same as in the mean corrected approach, that is estimate z
(j+1)
k,s,t

of the latent variable zk,s,t is given by (3.12). The first part (3.10) of the M step remains
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valid again, while equations ∂ℓC
∂αk

and ∂ℓC
∂βk

result in iterations

α
(j+1)
k :=

[

∑

s,t

z
(j+1)
k,s,t

]−1




∑

s,t

z
(j+1)
k,s,t





(

xs,t − β
(j)
k fk,s,t

)

− σ(j)
ϕ
(

µ
(j)
k,s,t/σ

(j)
)

Φ
(

µ
(j)
k,s,t/σ

(j)
)







 ,

β
(j+1)
k :=

[

∑

s,t

z
(j+1)
k,s,t f 2

k,s,t

]−1




∑

s,t

z
(j+1)
k,s,t fk,s,t





(

xs,t − α
(j+1)
k

)

− σ(j)
ϕ
(

µ
(j)
k,s,t/σ

(j)
)

Φ
(

µ
(j)
k,s,t/σ

(j)
)







 .

Mean correction (3.13) takes form

µ
(j+1)
k,s,t := µ

(0)
k,s,t − σ(j)

ϕ
(

(

α
(j+1)
k + β

(j+1)
k fk,s,t

)

/σ(j)
)

Φ
(

(

α
(j+1)
k + β

(j+1)
k fk,s,t

)

/σ(j)
) , (3.15)

while the estimate of variance is updated using (3.14).

4 Results

As was mentioned in the Introduction, the performance of BMA model (3.5) is tested on the

ALADIN-HUNEPS ensemble of HMS. We consider all three parameter estimating methods

of Subsection 3.4 and use the same data base as in Baran et al. (2013a), where the authors

calibrated the raw ensemble with the help of the BMA gamma model of Sloughter et al.

(2010) considering a training period of 28 calendar days. Here we apply the same training

period length which allows direct comparison of the two BMA methods. In this way ensemble

members, validating observations and BMA models are available for 146 calendar days (on

20.11.2010 all ensemble members are missing).

4.1 Models and diagnostics

Using the ideas of Baran et al. (2013a) we consider two different groupings of ensemble

members. In the first case we have two exchangeable groups. One contains the control

denoted by fc while in the other are 10 ensemble members corresponding to the different

perturbed initial conditions denoted by fp,1, . . . , fp,10. This leads us to model

p
(

x| fc fp,1, . . . , fp,10;αc, αp; βc, βp; σ
)

=ωg
(

x|αc + βcfc, σ
)

(4.1)

+
1− ω

10

10
∑

ℓ=1

g
(

x|αp + βpfp,ℓ, σ
)

,

where ω ∈ [0, 1], and g is defined by (3.3).
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Figure 2: PIT histograms for BMA post-processed forecasts using two-group (4.1) and three-

group (4.2) models.

In the second case the odd and even numbered exchangeable ensemble members form

two separate groups {fp,1, fp,3, fp,5, fp,7, fp,9} and {fp,2, fp,4, fp,6, fp,8, fp,10}, re-

spectively, which idea is justified by the method their initial conditions are generated. To

get them only five perturbations are calculated and then they are added to (odd numbered

members) and subtracted from (even numbered members) the unperturbed initial conditions

(Horányi et al., 2011; Baran et al., 2013a,b). In this way we obtain the following PDF for

the forecasted wind speed:

q
(

x| fc, fp,1, . . . , fp,10;αc, αo, αe; βc, βo, βe; σ
)

= ωcg
(

x|αc + fcβc, σ
)

(4.2)

+

5
∑

ℓ=1

(

ωog
(

x|αo + βofp,2ℓ−1, σ
)

+ ωeg
(

x|αe + βefp,2ℓ, σ
)

)

,

where for weights ωc, ωo, ωe ∈ [0, 1] we have ωc + 5ωo + 5ωe = 1.

In order to check the overall performance of the probabilistic forecasts (based on models
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Truncated normal BMA Gamma BMA

naive mean corr. full ML

Two groups 2.42× 10−4 1.79× 10−2 0.13 2.22× 10−2

Three groups 1.37× 10−4 5.56× 10−2 0.18 1.87× 10−2

Table 1: Significance levels of Kolmogorov-Smirnov tests for uniformity of PIT values cor-

responding to two- and three-group models.

(4.1) and (4.2)) in terms of a probability distribution function, the mean CRPS (the average

of the CRPS values of the predictive CDFs and corresponding validating observations taken

over all locations and time points considered) and the coverage and average widths of 66.7%

and 90% central prediction intervals are computed and compared for both BMA methods

(truncated normal and gamma) and raw ensemble. In the latter case, the ensemble of

forecasts corresponding to a given location and time is considered as a statistical sample,

the empirical CDF of the ensemble replaces the predictive CDF and the sample quantiles

are calculated according to Hyndman and Fan (1996, Definition 7). We remark that the

coverage of a (1 − α)100%, α ∈ (0, 1) central prediction interval is the proportion of

validating observations located between the lower and upper α/2 quantiles of the predictive

distribution. For a calibrated predictive PDF this value should be around (1 − α)100%.

Additionally, the BMA and ensemble medians are considered as point forecasts, which are

evaluated with the use of mean absolute errors (MAE) and root mean square errors (RMSE).

4.2 Verification results of BMA post-processing

To get a first insight about the calibration of BMA post-processed forecasts we consider

probability integral transform (PIT) histograms. The PIT is the value of the predictive cu-

mulative distribution evaluated at the verifying observations (Raftery et al., 2005), which is

providing a good measure about the possible improvements of the under-dispersive character

of the raw ensemble. The closer the histogram is to the uniform distribution, the better the

calibration is. In Figure 2 the PIT histograms corresponding to all three parameter estimat-

ing methods and to both BMA models (4.1) and (4.2) are displayed. A comparison to the

verification rank histogram of the raw ensemble (see Figure 1) shows that post-processing

significantly improves the statistical calibration of the forecasts. Further, on the basis of

significance levels of Kolmogorov-Smirnov tests given in Table 1, for both models (4.1) and

(4.2) one can accept the uniformity of PIT values corresponding to truncated normal BMA

model with full maximum likelihood parameter estimation method. However, one should

remark that for the three group model mean corrected parameter estimation also yields

acceptable PIT values.

In Table 2 scores for different probabilistic forecasts are given together with the average
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Mean MAE RMSE Average width Coverage (%)

Forecast CRPS 66.7% 90.0% 66.7% 90.0%

Trunc. naive 0.7225 1.0631 1.3800 2.5738 4.2850 67.81 89.79

Two normal mean c. 0.7062 1.0520 1.3784 2.6175 4.3420 69.86 90.55

groups BMA full ML 0.7071 1.0518 1.3786 2.6029 4.3222 69.38 90.14

Gamma BMA 0.7577 1.0678 1.4213 2.6359 4.5297 68.08 90.34

Trunc. naive 0.7213 1.0612 1.3771 2.5645 4.2709 67.26 89.86

Three normal mean c. 0.7042 1.0480 1.3737 2.6043 4.3195 69.38 90.34

groups BMA full ML 0.7044 1.0485 1.3739 2.5948 4.3073 68.84 90.14

Gamma BMA 0.7556 1.0643 1.4153 2.6153 4.4931 68.36 90.21

Raw ensemble 0.8599 1.1215 1.4634 1.4388 2.2001 38.70 55.14

Table 2: Mean CRPS of probabilistic, MAE and RMSE of median forecasts, average width

and coverage of 66.7% and 90.0% central prediction intervals.

width and coverage of 66.7% and 90.0% central prediction intervals. Verification measures

of probabilistic forecasts and point forecasts calculated using truncated normal BMA models

(4.1) and (4.2) are compared to the corresponding measures calculated for the raw ensemble

and applying gamma BMA post-processing (Baran et al., 2013a). Compared to the raw

ensemble all BMA post-processed forecasts show a significant decrease in all there verification

scores considered. Further, as the listed CRPS, MAE and RMSE values show, the accuracy

of the truncated normal BMA probabilistic and point forecasts is better than the accuracy

of the gamma BMA ones.

Concerning calibration, one can observe that the coverage of both BMA central prediction

intervals are rather close to the correct coverage for all models considered, while the coverage

of the central prediction intervals calculated from the raw ensemble are quite poor. This

shows that BMA post-processing greatly improves calibration. Further, the truncated normal

BMA models yields slightly sharper predictions than the gamma BMA forecasts and one can

also observe that the three-group model slightly outperforms the two-group one.

Finally, we remark that mean correction step (3.15) in full ML parameter estimation

method seems essential. Running the algorithm without it (that is µ
(j+1)
k,s,t := α

(j+1)
k +

β
(j+1)
k fk,s,t) e.g. for the three group model yields smaller CRPS (0.7024) but larger MAE

and RMSE values (1.0499 and 1.3900) and wider central prediction intervals. Moreover, in

this case the PIT values do not fit the uniform distribution.
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5 Discussion

We introduced a new BMA model for post-processing ensemble forecasts of wind speed

providing a predictive PDF which is a mixture of normal distributions truncated from below

at zero. The model was tested on the 11 member ALADIN-HUNEPS ensemble of the HMS

using two different BMA models. One assumes two groups of exchangeable members (control

and forecasts from perturbed initial conditions), while the other considers three (control and

forecasts from perturbed initial conditions with positive and negative perturbations). For

both models a 28 day training period was used and three types of parameter estimation: a

naive and two more sophisticated one with mean correction and full maximum likelihood

estimation. The latter resulted PIT values which perfectly fit the uniform distribution both

for the two- and for the three-group model. The comparison of the raw ensemble and of the

truncated normal BMA forecasts shows that the mean CRPS values of BMA post-processed

forecasts are considerably lower than the mean CRPS of the raw ensemble. Furthermore,

the MAE and RMSE values of BMA median forecasts are also lower than the MAEs and

RMSEs of the ensemble median. The calibration of BMA forecasts is nearly perfect as the

coverage of the 66.7% and 90.0% prediction intervals are very close to the nominal levels.

From the three competing parameter estimation methods the overall performance of the full

ML estimation seems to be the best.

Compared to the performance of gamma BMA model of Sloughter et al. (2010) for wind

speed data investigated in Baran et al. (2013a) one can observe that truncated normal BMA

post-processing yields slightly lower CRPS, MAE and RMSE values and narrower central

prediction intervals. However, the great advantage of the model presented here appears in

the speed of parameter estimation. The EM algorithm for estimating the weights and distri-

bution parameters of the truncated normal BMA model uses closed formulae while in case

of the gamma BMA model a numerical optimization is required. Running the ensembleBMA

package of R (Fraley et al., 2009, 2011) on a PC under a 64bit Window 7 operating system

(Intel Core i5-3470 CPU, 3.40 GHz, 4 cores, 8 Gb RAM) the estimation of parameters of

the three-group model e.g. for 25.03.2011 using training period of 28 calendar days, for the

gamma BMA model took 10.23 seconds, while for the truncated normal with naive, mean

corrected and full ML parameter estimation methods, 6.86 s, 6.83 s and 10.41 s, respectively.

The difference is more convincing when we perform modeling for all possible 148 calendar

days. The corresponding running times were 2716.98 s for the gamma BMA and 797.89 s,

918.16 s and 1245.5 s for the truncated normal BMA models. In this way the truncated

normal BMA model outperforms the traditional gamma BMA model both in accuracy and

calibration of forecasts and in computation time.
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