
Three-group ROC analysis:

A nonparametric predictive approach

Tahani Coolen-Maturia, Faiza F. Elkhafifib, Frank P.A. Coolenc,∗

aDurham University Business School, Durham University, Durham, DH1 3LB, UK
bDepartment of Statistics, Benghazi University, Benghazi, LIBYA

cDepartment of Mathematical Sciences, Durham University, Durham, DH1 3LE, UK

Abstract

Measuring the accuracy of diagnostic tests is crucial in many application
areas, in particular medicine and health care. The receiver operating char-
acteristic (ROC) surface is a useful tool to assess the ability of a diagnostic
test to discriminate among three ordered classes or groups. In this paper,
nonparametric predictive inference (NPI) for three-group ROC analysis is
presented. NPI is a frequentist statistical method that is explicitly aimed at
using few modelling assumptions in addition to data, enabled through the
use of lower and upper probabilities to quantify uncertainty. It focuses ex-
clusively on a future observation, which may be particularly relevant if one
considers decisions about a diagnostic test to be applied to a future patient.
This paper presents the NPI approach to three-group ROC analysis, includ-
ing results on the volumes under the ROC surfaces and choice of decision
thresholds for the diagnosis.
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1. Introduction

Measuring the accuracy of diagnostic tests is crucial in many applica-
tion areas, in particular medicine and health care (Wians et al., 2001; Pepe,
2003; Xiong et al., 2007; Lopez-de Ullibarri et al., 2008; Tian et al., 2011;
Rodriguez-Alvarez et al., 2011a,b; Chen et al., 2012), the same statistical
methods are used in other fields such as credit scoring (Xanthopoulos and
Nakas, 2007). Good methods for determining diagnostic accuracy provide
useful guidance on selection of patient treatment according to the severity of
their health status. The receiver operating characteristic (ROC) surface is
a useful tool to assess the ability of a diagnostic test to discriminate among
three ordered classes or groups. The construction of the ROC surface based
on the probabilities of correct classification for three classes has been intro-
duced by Mossman (1999), Nakas and Yiannoutsos (2004) and Nakas and
Alonzo (2007). They also considered the volume under the ROC surface
(VUS) and its relation to the probability of correctly ordered observations
from the three groups. The three-group ROC surface generalizes the popular
two-group ROC curve, which in recent years has attracted much theoretical
attention and has been widely applied for analysis of accuracy of diagnostic
tests (Zhou et al., 2011; Zou et al., 2011).

Statistical inference for accuracy of diagnostic tests using ROC curves
or surfaces has mostly focused on estimating the relevant probabilities of
correct classification for the different groups, with these probabilities being
considered as properties of assumed underlying populations. While this is
a well-established approach, with methods presented for fully parametric
models as well as semiparametric and nonparametric methods (Heckerling,
2001; Li and Zhou, 2009), the practical importance of diagnostic tests is in
their use for future patients. As such, it is of interest to study a predictive
statistical approach to such inferences on accuracy of diagnostic tests. The
importance of prediction is well understood, e.g. Airola et al. (2011) and van
Calster et al. (2012) explicitly mention ‘predictive models’ and ‘prediction
models’, but thus far the statistical approaches used in this field have mostly
been based on estimation, with their predictive performance investigated via
numerical studies.

Nonparametric predictive inference (NPI) is a frequentist method using
few modelling assumptions, and hence is strongly data-driven, which is en-
abled by the use of lower and upper probabilities to quantify uncertainty
(Augustin and Coolen, 2004; Coolen, 2006, 2011). Lower and upper proba-
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bilities generalize the classical theory of (precise) probability (Coolen et al.,
2011), with the difference between the upper and lower probabilities for an
event typically reflecting the amount of information available. In NPI, the
lower and upper probabilities always provide bounds for empirical probabil-
ities, hence the NPI-based statistical conclusions are never contradictory to
those based on empirical probabilities (Coolen, 2006). Due to the impor-
tance of prediction of the accuracy of diagnostic tests for a future patient,
NPI provides an attractive alternative approach to the established methods
in this field. NPI has recently been introduced for assessing the accuracy
of a classifier’s ability to discriminate between two groups for binary data
(Coolen-Maturi et al., 2012a), ordinal data (Elkhafifi and Coolen, 2012) and
real-valued data (Coolen-Maturi et al., 2012b).

This paper introduces NPI for three-group ROC analysis for real-valued
data. Section 2 presents an introduction to three-group ROC analysis, fol-
lowed in Section 3 by a brief introduction to NPI. NPI for three-group ROC
analysis is presented in Section 4 and illustrated by an example in Section
5. The paper ends with concluding remarks in Section 6 and two appendices
containing proofs.

2. Three-group ROC analysis

In this section we introduce the concepts and notation of three-group
ROC analysis (Mossman, 1999; Nakas and Yiannoutsos, 2004; Nakas and
Alonzo, 2007). Consider three groups, denoted by Gx, Gy and Gz. Through-
out this paper, we assume that these groups are fully independent, in the
sense that any information about one of the groups does not hold any infor-
mation about another group. Let real-valued observed test results be denoted
by x1, x2, ..., xnx for group Gx, y1, y2, ..., yny for group Gy and z1, z2, ..., znz for
group Gz. Suppose that a diagnostic test is used to discriminate the subjects
from these groups. We assume that the three groups are ordered in the sense
that observations from group Gx tend to be lower than those from group
Gy, which in turn tend to be lower than those from group Gz. There will
typically be overlap of observations from different groups, but the practical
diagnostic setting is assumed to be such that observations from the three
groups tend to be ordered in this way. The cumulative distribution function
(CDF) for the test outcomes of group G· is denoted by F·.

Two decision thresholds c1 < c2 are required to classify a subject into
one of the three groups, using the following rule, with Tj the test result
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for subject j: Subject j is classified into group Gx if Tj ≤ c1, group Gy if
c1 < Tj ≤ c2 and group Gz if Tj > c2. The test data are assumed to consist
of measurements for individuals known to belong to specific groups, while
the goal of the inferences is to develop a diagnostic classification method for
individuals for who the group is unknown. We assume throughout the paper
that the test data do not contain errors.

Denoting the classification measurement random quantity for a subject
from group Gx, Gy, Gz by X, Y , Z, respectively, the corresponding proba-
bilities of correct classification with thresholds (c1, c2) are p1 = P (X ≤ c1) =
Fx(c1), p2 = P (c1 < Y ≤ c2) = Fy(c2) − Fy(c1) and p3 = P (Z > c2) =
1− Fz(c2). The ROC surface, denoted by ROCs, is constructed by plotting
the triples (p1, p2, p3) for all real-valued c1 < c2. A convenient way to define
this ROC surface is as follows, for p1, p3 ∈ [0, 1] (Inacio et al., 2011; Nakas
and Yiannoutsos, 2004; Tian et al., 2011),

ROCs(p1, p3) =

{
Fy(F

−1
z (1− p3))− Fy(F

−1
x (p1)) if F−1x (p1) ≤ F−1z (1− p3)

0 otherwise
(1)

where F−1· (p) is the inverse function of the CDF F·.
The empirical estimator of the ROC surface can be obtained by replacing

the CDFs in (1) with their empirical counterparts (Beck, 2005; Inacio et al.,
2011), so for p1, p3 ∈ [0, 1],

R̂OCs(p1, p3) =

{
F̂y(F̂

−1
z (1− p3))− F̂y(F̂

−1
x (p1)) if F̂−1x (p1) ≤ F̂−1z (1− p3)

0 otherwise
(2)

where F̂−1x (p) = xi if p ∈ ( i−1
nx

, i
nx

], i = 1, . . . , nx, and F̂−1x (p) = −∞ if p = 0,

with F̂−1z (p) defined similarly.
The volume under the ROC surface (VUS) is a global measure of the

test’s ability to discriminate between the three groups. The VUS is equal to
the probability that three independent randomly selected measurements, one
from each group, are correctly ordered, so that the observation from Gx is
less than the observation from Gy and the latter is less than the observation
from Gz (Mossman, 1999; Nakas and Yiannoutsos, 2010). An unbiased non-
parametric estimator of the VUS is given by (Nakas and Yiannoutsos, 2004,
2010)

V̂ US =
1

nxnynz

nx∑
i=1

ny∑
j=1

nz∑
l=1

I(xi < yj < zl) (3)
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with I(A) equal to 1 if A is true and 0 else. Equation (3) gives the proportion
of all possible triple combinations from the data that are correctly ordered, it
is the empirical probability for this event based on the information from the
data. It is (about) equal to 1/6 if the diagnostic test outcomes for the three
groups completely overlap, in which case the data suggest that the test is not
useful for the diagnosis. Perfect separation of the test results for the three

groups, that is xi < yj < zl for all i,j and l, leads to V̂ US = 1. In practice,
ties between measurements may occur, in this case a modified version of (3)
should be used (Nakas and Yiannoutsos, 2004, 2010). In this paper, for ease
of presentation we assume that no ties occur in the data.

Several approaches for choosing the thresholds c1 and c2 have been pro-
posed in the literature (Greiner et al., 2000; Schafer, 1989; Yousef et al., 2009;
Lai et al., 2012). We consider maximisation of Youden’s index (Youden,
1950), which for three-group diagnostic tests was introduced by Nakas et al.
(2010),

J(c1, c2) = P (X ≤ c1) + P (c1 < Y ≤ c2)− P (Z ≤ c2) + 1

= Fx(c1) + Fy(c2)− Fy(c1)− Fz(c2) + 1 (4)

J(c1, c2) is equal to 1 if Fx, Fy and Fz are identical, perfect separation of the
groups, P (X < Y < Z) = 1, leads to J(c1, c2) = 3.

3. Nonparametric predictive inference

Nonparametric predictive inference (NPI) (Augustin and Coolen, 2004;
Coolen, 2006, 2011) is based on the assumption A(n) proposed by Hill (1968).
Let X1, . . . , Xn, Xn+1 be real-valued absolutely continuous and exchangeable
random quantities. Let the ordered observed values of X1, X2, . . . , Xn be
denoted by x1 < x2 < . . . < xn and let x0 = −∞ and xn+1 = ∞ for
ease of notation. We assume that no ties occur; ties can be dealt with in
NPI by assuming that tied observations differ by small amounts which tend
to zero (Coolen, 2006). For Xn+1, representing a future observation, A(n)

partially specifies a probability distribution by P (Xn+1 ∈ (xi−1, xi)) = 1
n+1

for i = 1, . . . , n + 1. A(n) does not assume anything else, it is a post-data
assumption related to exchangeability (De Finetti, 1974). It is convenient
to introduce the set of precise probability distributions which correspond to
the partial specification by A(n), so which have probability 1

n+1
in each of the

n + 1 intervals (xi−1, xi). This set is called a ‘structure’ by Weichselberger
(2000, 2001), we denote it by Px.
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Inferences based on A(n) are predictive and nonparametric, and can be
considered suitable if there is hardly any knowledge about the random quan-
tity of interest, other than the n observations, or if one does not want to
use any such further information in order to derive at inferences that are
strongly based on the data. The assumption A(n) is not sufficient to derive
precise probabilities for many events of interest, but it provides bounds for
probabilities via the ‘fundamental theorem of probability’ (De Finetti, 1974),
which are lower and upper probabilities in interval probability theory (Au-
gustin and Coolen, 2004; Walley, 1991; Weichselberger, 2000, 2001; Coolen
et al., 2011).

In NPI, uncertainty about the future observation Xn+1 is quantified by
lower and upper probabilities for events of interest. Lower and upper prob-
abilities generalize classical (‘precise’) probabilities. A lower (upper) proba-
bility for event A, denoted by P (A) (P (A)), can be interpreted as supremum
buying (infimum selling) price for a gamble on the event A (Walley, 1991),
or just as the maximum lower (minimum upper) bound for the probability
of A that follows from the assumptions made. This latter interpretation is
used in NPI (Coolen, 2006, 2011). We wish to explore application of A(n)

for inference without making further assumptions. So, NPI lower and upper
probabilities are the sharpest bounds on a probability for an event of interest
when only A(n) is assumed. Using the A(n)-based structure, the NPI lower
and upper probabilities for event A are

P (A) = inf
P∈Px

P (A) and P (A) = sup
P∈Px

P (A)

P (A) (P (A)) can be considered to reflect the evidence in favour of (against)
event A (Coolen et al., 2011). Augustin and Coolen (2004) proved that
NPI has strong consistency properties in the theory of interval probability
(Walley, 1991; Weichselberger, 2000, 2001; Coolen et al., 2011), it is also ex-
actly calibrated from frequentist statistics perspective (Lawless and Fredette,
2005), which allows interpretation of the NPI lower and upper probabilities as
bounds on the long-term ratio with which the event A occurs upon repeated
application of this statistical procedure.

4. NPI for three-group ROC analysis

In this section, NPI for three-group ROC analysis is presented. Notation
is introduced in Section 4.1, which includes the introduction of the NPI-based
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structures for the next observation from each of the three groups. In Section
4.2 the lower and upper envelopes of the set of all ROC surfaces corresponding
to probability distributions in these NPI-based structures are derived by
pointwise optimisation. These envelopes represent this set well, but they
are too wide in the sense that the volumes under their surfaces are not
generally the infimum and supremum of the volumes under the ROC surfaces
in this set. To define NPI lower and upper ROC surfaces such that the
volumes under them are equal to this infimum and supremum, respectively,
we consider the relation between the volume under an ROC surface and the
probability of correctly ordered observations from the three groups. The
NPI lower and upper probabilities for this event are presented in Section
4.3, with the corresponding NPI lower and upper ROC surfaces presented in
Section 4.4. In Section 4.5 the choice of decision threshold for the diagnosis
is considered. As computation of the NPI lower and upper ROC surfaces is
not straightforward, it may be attractive to quickly derive bounds for them.
The envelopes presented in Section 4.2 provide a lower bound for the NPI
lower ROC surface and an upper bound for the NPI upper ROC surface. In
Section 4.6 we present a quick way to derive an upper bound for the NPI
lower ROC surface and a lower bound for the NPI upper ROC surface.

4.1. Notation
To develop the NPI approach for three-group ROC analysis, let Xnx+1,

Yny+1 and Znz+1 be the next observations from groups Gx, Gy and Gz, re-
spectively. We apply A(n) for each group. Let the nx ordered observations
from group Gx be denoted by x1 < x2 < . . . < xnx and let x0 = −∞ and
xnx+1 = ∞ for ease of notation. For Xnx+1, representing a future obser-
vation from group Gx, A(nx) partially specifies a probability distribution by
P (Xnx+1 ∈ (xi−1, xi)) = 1

nx+1
for i = 1, . . . , nx+1. For groups Gy and Gz the

same concepts are introduced, with the obvious changes to notation. The sets
of all probability distributions that correspond to these partial specifications
for Xnx+1, Yny+1 and Znz+1, are the NPI-based structures and are denoted by
Px, Py and Pz, respectively. For x ∈ [xi−1, xi) the NPI lower CDF for Xnx+1

is F x(x) = i−1
nx+1

, i = 1, . . . , nx + 1, and for x ∈ (xi−1, xi] the NPI upper CDF

for Xnx+1 is F x(x) = i
nx+1

, i = 1, . . . , nx + 1. Note that there is no impre-

cision at the xi, as F x(xi) = F x(xi) = i
nx+1

for i = 0, 1, . . . , nx + 1. These
lower and upper CDFs are derived as the pointwise infima and suprema over
all corresponding CDFs in the structure Px. The NPI lower and upper CDFs
for Yny+1 and Znz+1 are similarly defined.
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Figure 1: Construction of lower and upper envelopes of the set of NPI-based ROC surfaces

4.2. Lower and upper envelopes of the set of NPI-based ROC surfaces

For each combination of probability distributions for Xnx+1, Yny+1 and
Znz+1 in Px, Py and Pz, respectively, the corresponding ROC surface as
presented in Equation (1) can be created, leading to a set of NPI-based ROC
surfaces, which we denote by Sroc. The lower and upper envelopes of this set,
which consist of the pointwise infima and suprema, are presented in Theorem
4.1. First their construction is explained using Figure 1.

To derive the lower and upper envelopes of the set Sroc, we need to derive
the infima and suprema of the values ROCs(p1, p3) for ROC surfaces in the
set Sroc. Consider a value for p1 ∈ (0, 1) that is not equal to a value i/(nx+1)
for any i ∈ {1, . . . , nx}. There is a unique i ∈ {1, . . . , nx+1} such that xi−1 <
F−1x (p1) < xi for every CDF Fx corresponding to all probability distributions
in Px. As indicated in Figure 1, we denote these xi−1 and xi by x(p1)

and
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x(p1), respectively, so F x(x(p1)
) < p1 < F x(x(p1)) for the CDFs corresponding

to all probability distributions in Px. For p1 = i
nx+1

, for any i ∈ {1, . . . , nx},
we would have xi−1 < F−1x (p1) < xi+1, for ease of presentation we neglect this
as it only describes the envelopes at a finite number of observations. For the
volumes under these lower and upper envelopes of all the ROC surfaces in
Sroc, which we consider later, it is also irrelevant what happens at this finite
number of points. Similarly, consider a value p3 ∈ (0, 1) which is not equal
to a value l/(nz + 1) for any l ∈ {1, . . . , nz}. We now consider all the inverse
CDFs F−1z , corresponding to all probability distributions in Pz, and we are
interested in their value at 1 − p3. There are two consecutive observations,
which we denote by z(1−p3) and z(1−p3), with z(1−p3) < F−1z (1− p3) < z(1−p3)
and therefore F z(z(1−p3)) < 1 − p3 < F z(z(1−p3)). We can again neglect

values of p3 such that 1 − p3 = l
nz+1

for any l ∈ {1, . . . , nz}, for which

zl−1 < F−1z (1− p3) < zl+1.
For any (p1, p3) as described above, the infimum of the values ROCs(p1, p3),

as given by Equation (1), for all ROC surfaces in the set Sroc, can be de-
rived as follows (see Figure 1). We must find the infimum for the NPI-based
probability for the event Yny+1 ∈ (x(p1), z(1−p3)), this interval corresponding
to the inverse CDFs is as small as possible. This is achieved by counting the
number of intervals (yj−1, yj) that are totally included in (x(p1), z(1−p3)). We

denote the resulting lower envelope at the point (p1, p3) by ROCL
s (p1, p3), it

is presented in Theorem 4.1. To derive the upper envelope, the interval cor-
responding to the inverse CDFs is taken as large as possible, (x(p1)

, z(1−p3)),
and the NPI upper probability for the event that Yny+1 will be in this in-
terval is calculated by counting the number of intervals (yj−1, yj) that have
non-empty intersection with (x(p1)

, z(1−p3)). We denote the resulting upper

envelope at the point (p1, p3) by ROC
U

s (p1, p3), it is also presented in The-
orem 4.1. No formal proof of this theorem is included, the steps follow the
explanation just given, the theorem applies formally to the values of (p1, p3)
as described above.

Theorem 4.1. The lower envelope of all NPI-based ROC surfaces in Sroc is

ROCL
s (p1, p3) =

{
F y(z(1−p3))− F y(x(p1)) if F y(z(1−p3)) ≥ F y(x(p1))

0 otherwise
(5)
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The upper envelope of all NPI-based ROC surfaces in Sroc is

ROC
U

s (p1, p3) =

{
F y(z(1−p3))− F y(x(p1)

) if x(p1)
≤ z(1−p3)

0 otherwise
(6)

It is interesting to consider the volumes under these lower and upper

envelopes, which we denote by V USL and V US
U

, respectively. These are
given in Theorem 4.2, see Appendix A for the proofs.

Theorem 4.2. The volumes under the lower and upper envelopes of all NPI-
based ROC surfaces in Sroc are

V USL = A
nx+1∑
i=1

ny+1∑
j=1

nz+1∑
l=1

I(xi < yj−1 ∧ yj < zl−1) (7)

V US
U

= A
nx+1∑
i=1

ny+1∑
j=1

nz+1∑
l=1

I(xi−1 < yj ∧ xi−1 < zl ∧ yj−1 < zl) (8)

where A = 1
(nx+1)(ny+1)(nz+1)

.

These lower and upper envelopes of all NPI-based ROC surfaces in Sroc
are themselves not elements of Sroc. The minimisation performed to find the
lower envelope at (p1, p3) involves putting the minimum possible NPI-based
probability mass for Yny+1 in the interval (x(p1), z(1−p3)). This pointwise opti-
misation gives, for all such points (p1, p3), solutions that cannot be obtained
simultaneously, particularly because it always minimizes probability mass
for Yny+1 and hence, when all the solutions are taken together, not a total
probability of 1 is used for Yny+1. With regard to Xnx+1 and Znz+1 this
problem does not occur, as all optimisations with regard to the probability
distributions for these random quantities have solutions that can be obtained
simultaneously by either putting all probability masses to the left-end points
or all to the right-end points of their intervals. These envelopes adequately
describe the whole set of all NPI-based ROC surfaces in Sroc, but are in

some sense too wide as the volumes under them, V USL and V US
U

, are not
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generally equal to the infimum and supremum of the volumes under all the
NPI-based ROC surfaces in Sroc.

We wish to identify ROC surfaces corresponding to Sroc such that their
VUS values are equal to the infimum and supremum of the VUS values for
all the ROC surfaces in Sroc. We present this in Section 4.4, by focusing
on the volumes under the ROC surfaces and their relations to NPI lower
and upper probabilities for correctly ordered observations, so for the event
Xnx+1 < Yny+1 < Znz+1. However, as the NPI lower and upper probabilities
for such correctly ordered observations have not yet been presented in the
literature, they are first derived in Section 4.3.

4.3. NPI lower and upper probabilities for the event Xnx+1 < Yny+1 < Znz+1

We present the NPI lower and upper probabilities for the event Xnx+1 <
Yny+1 < Znz+1, with notation as introduced in Section 4.1. These NPI lower
and upper probabilities for a specific ordering of three such future observa-
tions have not yet been presented in the literature and can be applied to a
variety of problems beyond their use in Section 4.4. They are not expressable
in closed form, but are derived as follows.

Theorem 4.3. The NPI lower and upper probabilities for the event Xnx+1 <
Yny+1 < Znz+1 are

P (Xnx+1 < Yny+1 < Znz+1) = A
nx+1∑
i=1

ny+1∑
j=1

nz+1∑
l=1

I(xi < tjmin < zl−1) (9)

P (Xnx+1 < Yny+1 < Znz+1) = A

nx+1∑
i=1

ny+1∑
j=1

nz+1∑
l=1

I(xi−1 < tjmax < zl) (10)

where A = 1
(nx+1)(ny+1)(nz+1)

and tjmin (tjmax ) is any value belonging to a sub-

interval of (yj−1, yj), for j = 1, . . . , ny +1, where the sub-intervals are created
by the observations from groups Gx and Gz within this interval (yj−1, yj),
such that the probability for the event Xnx+1 < Yny+1 < Znz+1 is minimal
(maximal).

These NPI lower and upper probabilities are the infimum and supremum,
respectively, over all precise probabilities for this event, corresponding to
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precise probability distributions for Xnx+1 in Px, Yny+1 in Py and Znz+1 in
Pz. The proof of this theorem, given in Appendix B, contains explanation
of the remaining optimisations required to derive these NPI lower and upper
probabilities, so to determine tjmin and tjmax.

In the following section we define NPI lower and upper ROC surfaces, for
which we introduce some further notation. Let F ∗y and F ∗∗y denote the CDFs
of the probability distributions created in the optimisation procedure in the
proof of Theorem 4.3, as presented in Appendix B. These CDFs are step-
function with probability 1/(ny + 1) at the values tjmin and tjmax, respectively,
for j = 1, . . . , ny + 1.

4.4. NPI lower and upper ROC surfaces

In Section 4.2 we presented the lower and upper envelopes of the set Sroc
of all ROC surfaces created by combining probability distributions for Xnx+1,
Yny+1 and Znz+1 in the respective NPI-based structures Px, Py and Pz. How-
ever, as these lower and upper envelopes result from pointwise optimisation
they are too wide with regard to the set Sroc when the VUS values are con-
sidered. These envelopes are of interest, e.g. to graphically present the set
Sroc, as will be done in the example in Section 5. But it is also important to
identify surfaces that provide tight bounds to the VUS values for all ROC
surfaces in the set Sroc, as these values play an important role for summariz-
ing the quality of the diagnostic test and for interpreting the ROC surfaces.
Next we define ROC surfaces with VUS values equal to the infimum and
supremum of the VUS values for all ROC surfaces in Sroc. The equality of
the VUS and the probability of correctly ordered observations enables us to
define lower and upper ROC surfaces in line with the optimisation procedures
in Section 4.3, we call these the NPI lower and upper ROC surfaces.

Definition 4.1. The NPI lower ROC surface is defined by, for p1, p3 ∈ [0, 1],

ROCs(p1, p3) =

{
F ∗y (z(1−p3))− F ∗y (x(p1)) if F ∗y (z(1−p3)) ≥ F ∗y (x(p1))

0 otherwise
(11)

The NPI upper ROC surface is defined by, for p1, p3 ∈ [0, 1],

ROCs(p1, p3) =

{
F ∗∗y (z(1−p3))− F ∗∗y (x(p1)

) if x(p1)
≤ z(1−p3)

0 otherwise
(12)
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Theorem 4.4. Let the volume under the NPI lower ROC surface ROCs(p1, p3)
be denoted by V US, then

V US = P (Xnx+1 < Yny+1 < Znz+1)

Similarly, let the volume under the NPI upper ROC surface ROCs(p1, p3) be
denoted by V US, then

V US = P (Xnx+1 < Yny+1 < Znz+1)

The NPI lower and upper probabilities for correctly ordered observations,
on the right-hand sides of the equations in Theorem 4.4, are as presented in
Theorem 4.3. Due to the fact that the NPI lower and upper ROC surfaces
follow precisely the construction of the NPI lower and upper probabilities
in Section 4.3, the results in Theorem 4.4 are logical. For a proof of this
theorem directly from Definition 4.1 we refer to Coolen-Maturi et al. (2013).

From the construction of these NPI lower and upper ROC surfaces, it
follows easily that, for all 0 ≤ p1, p3 ≤ 1,

ROCL
s (p1, p3) ≤ ROCs(p1, p3) ≤ R̂OCs(p1, p3) ≤ ROCs(p1, p3) ≤ ROC

U

s (p1, p3)
(13)

and hence
V USL ≤ V US ≤ V̂ US ≤ V US ≤ V US

U
(14)

If the data from groups Gx and Gz are fully separated, with xnx < z1, and
there is at least one yj ∈ (xnx , z1), then the NPI lower and upper ROC sur-
faces introduced in Definition 4.1 are equal to the lower and upper envelopes
of Sroc in Theorem 4.1, of course also the corresponding volumes under these
surfaces are then equal.

4.5. The NPI-based optimal decision thresholds

The choice of the decision thresholds c1 and c2 is an important aspect of
designing the diagnostic method for the three groups case. One method is
by maximisation of Youden’s index as given in Equation (4). The NPI lower
and upper CDFs can be used to get the NPI lower and upper probabilities
of correct classifications, which can be combined into NPI lower and upper
bounds for Youden’s index. These are the sharpest possible bounds for all
Youden’s indices corresponding to probability distributions for Xnx+1, Yny+1
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and Znz+1 in their respective NPI-based structures Px, Py and Pz. The NPI
lower bound for Youden’s index is

J(c1, c2) = P (Xnx+1 ≤ c1) + P (c1 < Yny+1 ≤ c2) + P (Znz+1 > c2)

= F x(c1) +
{
F y(c2)− F y(c1)

}+
+ 1− F z(c2)

where {A}+ = max{A, 0}, and the corresponding NPI upper bound for
Youden’s index is

J(c1, c2) = P (Xnx+1 ≤ c1) + P (c1 < Yny+1 ≤ c2) + P (Znz+1 > c2)

= F x(c1) + F y(c2)− F y(c1) + 1− F z(c2)

If c1 and c2 do not coincide with any data observations, then it is straight-
forward to show that

J(c1, c2) = J(c1, c2) +
1

nx + 1
+

2

ny + 1
+

1

nz + 1
(15)

If either or both of c1 and c2 are equal to some data observations, then a
similar relation but with fewer terms on the right-hand side is easily derived,
but this is of little practical relevance. This constant difference between the
NPI upper and lower Youden’s indices implies that both will be maximised
at the same values of c1 and c2. It is further easy to show that, for all c1 and
c2,

J(c1, c2) ≤ Ĵ(c1, c2) ≤ J(c1, c2)

where Ĵ(c1, c2) is the empirical estimate of Youden’s index, obtained by using
the empirical CDFs in Equation (4). These inequalities do not imply that
the empirical estimate of Youden’s index is maximal for the same values of c1
and c2 as the NPI lower and upper Youden’s indices. We expect that in many
situations the maxima will be attained at the same values, in particular for
large data sets due to Equation (15).

4.6. Upper (lower) bound for the NPI lower (upper) ROC surface

Obtaining the NPI lower and upper ROC surfaces, as introduced in Sec-
tion 4.4, is not problematic for small data sets, but deriving the values tjmin

and tjmax for each interval (yj−1, yj) may require much computational effort
for large data sets, in particular if there is much overlap between the obser-
vations from the three groups. To avoid the numerical optimisation required
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to derive the NPI lower and upper ROC surfaces, the envelopes presented
in Section 4.2 can be used as approximations, these are available in simple
expressions as given in Theorem 4.1. The lower envelope is a lower bound
for the NPI lower ROC surface, the upper envelope is an upper bound for
the NPI upper ROC surface. We now present an upper bound for the NPI
lower ROC surface and a lower bound for the NPI upper ROC surface, both
of which are also easy to compute. Having both a lower and upper bound
for the NPI lower ROC surface as well as for the NPI upper ROC surface,
without requiring numerical optimisation procedures, is useful, to get insight
into the actual NPI lower and upper ROC surfaces and the corresponding
VUS values.

We present these further bounds in Definition 4.2. They are derived by
putting the probability masses for Xnx+1 and Znz+1 at the same end points
per interval as for the lower and upper envelopes presented in Section 4.2,
while for Yny+1 we use the probability distribution corresponding to the NPI
lower CDF F y (any probability distribution in Py could be taken; for a more
detailed presentation see Coolen-Maturi et al. (2013)).

Definition 4.2. An upper bound for the NPI lower ROC surface can be
defined by

ROCU
s (p1, p3) =

{
F y(z(1−p3))− F y(x(p1)) if F y(z(1−p3)) ≥ F y(x(p1))

0 otherwise
(16)

A lower bound for the NPI upper ROC surface can be defined by

ROC
L

s (p1, p3) =

{
F y(z(1−p3))− F y(x(p1)

) if x(p1)
≤ z(1−p3)

0 otherwise
(17)

The volumes under these bounding surfaces are given in Theorem 4.5. Its
proof follows the same steps as the proof in Appendix A, and is presented in
detail by Coolen-Maturi et al. (2013).

Theorem 4.5. The volume under the bounding surface ROCU
s (p1, p3) is

V USU = A

nx+1∑
i=1

ny+1∑
j=1

nz+1∑
l=1

I(xi < yj < zl−1) (18)
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and the volume under the bounding surface ROC
L

s (p1, p3) is

V US
L

= A
nx+1∑
i=1

ny+1∑
j=1

nz+1∑
l=1

I(xi−1 < yj < zl) (19)

where A = 1
(nx+1)(ny+1)(nz+1)

.

From their constructions it is easy to see that, for all p1, p3 ∈ [0, 1],

ROCL
s (p1, p3) ≤ ROCs(p1, p3) ≤ ROCU

s (p1, p3)

ROC
L

s (p1, p3) ≤ ROCs(p1, p3) ≤ ROC
U

s (p1, p3)

V USL ≤ V US ≤ V USU and V US
L ≤ V US ≤ V US

U

5. Example

We illustrate the NPI approach presented in this paper via an example,
using data from the literature concerning the diagnostic test NAA/Cr which
is used to discriminate between different levels of HIV among patients (Chang
et al., 2004; Yiannoutsos et al., 2008; Nakas et al., 2010). The data consist
of observations for 135 patients, of whom 59 were HIV-positive with AIDS
dementia complex (ADC), 39 were HIV-positive non-symptomatic subjects
(NAS), and 37 were HIV-negative individuals (NEG) (Nakas et al., 2010;
Inacio et al., 2011). The NAA/Cr levels are expected to be lowest among the
ADC group and highest among the NEG group, with the NAS group being
the intermediate group (Chang et al., 2004) (in relation to the presentation
in this paper, these are groups Gx, Gz and Gy, respectively). Figure 2 shows
the boxplots of these data, which overlap considerably, particularly the NAS
and NEG groups.

The lower and upper envelopes ROCL
s (p1, p3) and ROC

U

s (p1, p3) for the
set Sroc of all NPI-based ROC surfaces are presented in Figure 3, together
with the empirical ROC surface. In these plots, p1 and p3 increase from
0 to 1 in the directions indicated by arrows. The empirical ROC surface
is everywhere between the two envelopes but the differences are small. The
NPI lower and upper ROC surfaces, presented in Section 4.4, are not plotted,
they are contained within the envelopes and differ only very little from them.

The VUS values of the seven surfaces presented in this paper, so also in-
cluding the further bounds in Section 4.6, are given in Table 1. They reflect
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Figure 2: Boxplots of NAA/Cr levels for the ADC, NAS and NEG groups

indeed that the differences between these surfaces are small. To interpret
these values, it is important to remember that a VUS of about 1/6 occurs
if the observations from the three groups fully overlap, in such a way that
the diagnostic method would perform no better than a random allocation
of patients to the three groups. As all VUS values are clearly greater than
1/6, this indicates that the diagnostic method is better than a random allo-
cation. However, the VUS values are far away from 1, which would indicate
perfect diagnostic performance. It is clear from Figure 2 that particularly
the data from the NAS and NEG groups overlap substantially. These VUS
values also imply that the NPI lower and upper ROC surfaces are close to
the corresponding envelopes and that the upper bound for the NPI lower
ROC surface and the lower bound for the NPI upper ROC surface are a bit
further from the NPI lower and upper ROC surfaces than the corresponding
envelopes. All bounds together could be useful if one would not have gone
through the efforts of calculating the NPI lower and upper ROC surfaces
exactly, as they would provide ranges within which the exact surfaces are.

The maximum value of Youden’s index corresponding to the empirical
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Figure 3: Upper and lower envelopes and empirical ROC surface
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Table 1: Volumes under ROC surfaces

V̂ US 0.2879

(V USL, V US
U

) (0.2524,0.3131)
(V US, V US) (0.2548,0.3087)

(V USU , V US
L
) (0.2688,0.2951)

ROC surface is equal to 1.4362, which occurs for (c1, c2) = (1.76, 2.05). The
maximum values for the Youden’s indices corresponding to the NPI lower
and upper ROC surfaces are J(c1, c2) = 1.3803 and J(c1, c2) = 1.4732, which
both occur for the same values of c1 and c2 as for the empirical ROC surface.
These maximum values for the Youden’s indices indicate that the diagnostic
performance of this test for the next patient is likely to be better than random
classification, but it is not very good. With these optimal decision thresholds
for diagnosis of the next patient, a test result less than or equal to 1.76 leads
to classification into the ADC group, a test result greater than 2.05 leads
to classification into the NEG group, and a rest result in between these two
values leads to classification into the NAS group. The corresponding NPI
lower and upper probabilities for correct classification are 0.6000 and 0.6167
for the next patient if from the ADC group, 0.6750 and 0.7250 if from the
NAS group, and 0.1053 and 0.1316 if from the NEG group. The substantial
overlap between the data from the NAS and NEG groups has resulted in an
optimal classification method where nearly the entire range of values of this
overlap leads to classification in the NAS group, which explains the small
values of the NPI lower and upper probabilities for correct classification if
the next patient is from the NEG group.

Coolen-Maturi et al. (2013) present two further examples, with smaller
data sets and with less overlap between the data from the three groups.
They illustrate some further aspects of this NPI approach, including that the
difference between corresponding NPI upper and lower probabilities tends to
be greater if there are fewer data observations and thus reflects the amount
of information on which the inferences are based. Of course, if there is less
overlap between the data from the three groups, the classification methods
perform substantially better than in the example presented here.
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6. Concluding remarks

In this paper we introduced the NPI approach for three-group diagnostic
tests using the ROC surface. This can be used to asses the accuracy of a
diagnostic test, with the NPI setting ensuring, due to its predictive nature,
specific focus on the next patient. NPI lower probabilities reflect the evi-
dence in favour of the event of interest, while NPI upper probabilities reflect
the evidence against the event of interest. When making decisions about
diagnosis for a specific future patient, it seems useful to have the amount of
information and the evidence it provides clearly reflected in this way.

Attention has been restricted to real-valued data, developing the related
NPI theory for ROC surfaces in case of ordinal data is an interesting topic for
future research (Elkhafifi and Coolen, 2012; Coolen et al., 2013). The con-
cepts and ideas presented can be generalized to classification into more than
three categories (Waegeman et al., 2008), but the computation of NPI lower
and upper ROC hypersurfaces, in line with Section 4.4, will require numerical
optimisation which will be complicated for larger data sets with substantial
overlap between observations from different groups. Generalization of the
lower and upper envelopes of the set of all NPI-based ROC hypersurfaces is
likely to remain feasible with more categories, but it has not yet been stud-
ied in detail. Heuristic methods to approximate the NPI lower and upper
ROC hypersurfaces may be required, the quality of such approximations, in
relation to the computational complexity for their implementation, requires
detailed study.

Development of NPI methods for ROC analysis including covariates is
an important challenge (Lopez-de Ullibarri et al., 2008; Rodriguez-Alvarez
et al., 2011a,b). Research of a general NPI approach for regression-type
models is currently in progress. It is also possible to assume semi-parametric
models in ROC analysis (Zhang, 2006; Wan and Zhang, 2008; Li and Zhou,
2009). Combining the NPI approach with partial parametric model assump-
tions, which would also enable application to ROC problems, is an important
topic for future research. Increasingly, statistical data are high-dimensional,
which sets new challenges for analysis of diagnostic accuracy including ROC
methods (Adler and Lausen, 2009). NPI has not yet been developed for
multi-dimensional data, it is an important research challenge and may require
additional structural model assumptions due to the curse of dimensionality
that generally affects nonparametric methods.

As the NPI approach does not aim at estimating characteristics for an
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assumed underlying population, but instead explicitly focuses on a future
observation, it is quite different in nature to the established statistical ap-
proaches, but in practice a predictive formulation may often be natural. NPI
for real-valued observations is also available for multiple future observations
(Arts et al., 2004; Coolen, 2011), where the inter-dependence of these future
observations is explicitly taken into account. Development of NPI-based
methods for diagnostic accuracy with explicit focus on m ≥ 2 future ob-
servations is an interesting topic for future research, where particularly the
strength of the inferences as function of m should be studied carefully, see
Coolen and Coolen-Schrijner (2007) for a similar study with focus on the role
of m for comparison of groups of Bernoulli data. Typically, for increasing
m the imprecision in inferences increases, which is likely to imply that, on
the basis of the limited information in available data, a specific choice of di-
agnostic method including the important decision thresholds can be inferred
to be good for a number of future patients up to a specific value of m, but
for larger values of m the evidence in the data would be too weak to make
decisions that are strongly supported by the data without further modelling
assumptions.

We should emphasize that we do not advocate the NPI approach pre-
sented here as a replacement of more established methods, but as an inter-
esting alternative approach to important problems which we recommend to
be used alongside other methods. If the results of different methods are quite
close that provides a strong argument in favour of them, while substantial
differences might suggest that further investigation would be beneficial. In
particular, as most established statistical methods make stronger modelling
assumptions, it would be logical in such cases to consider whether or not
such assumptions are supported by the data.

There is a wide range of related topics which are of practical relevance but
require further research. This includes dealing with continuous disease states
which also need to be classified into groups (Shiu and Gatsonis, 2012), and
the use of alternatives to the VUS (van Calster et al., 2012) or Youden’s index
in such ROC-based analyses (Greiner et al., 2000; Schafer, 1989; Yousef et al.,
2009; Lai et al., 2012). The possibility that the data may contain errors is also
of great practical importance. All such topics provide interesting challenges
for the further development and application of the NPI approach.
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Appendix A

In this paper, several volumes under surfaces have been presented. They
are all proven following similar steps, which we present for Equation (7); they
are all presented in detail by Coolen-Maturi et al. (2013). We use the notation
{A}+ = max{A, 0} and

∑
p1

∑
p3

to indicate the sum over pairs of values for p1

and p3 such that one value for p1 is taken from each interval ( i−1
nx+1

, i
nx+1

)

for i = 1, . . . , nx + 1, and one value for p3 from each interval ( l−1
nz+1

, l
nz+1

)
for l = 1, . . . , nz + 1. As the considered ROC surfaces are constant for all
values p1 ∈ ( i−1

nx+1
, i
nx+1

) and p3 ∈ ( l−1
nz+1

, l
nz+1

), it does not matter which
specific values for p1 and p3 within these intervals are actually used in the
calculations (e.g. mid-points of the intervals). Equation (7) is derived as
follows.

V USL =
1

(nx + 1)(nz + 1)

∑
p1

∑
p3

ROCL
s (p1, p3)

=
1

(nx + 1)(nz + 1)

∑
p1

∑
p3

{
F y(z(1−p3))− F y(x(p1))

}+
=

1

(nx + 1)(nz + 1)

nx+1∑
i=1

nz+1∑
l=1

{
F y(zl−1)− F y(xi)

}+
= A

nx+1∑
i=1

nz+1∑
l=1

{
ny+1∑
j=1

I(yj ≤ zl−1)−
ny+1∑
j=1

I(yj−1 ≤ xi)

}+

= A
nx+1∑
i=1

ny+1∑
j=1

nz+1∑
l=1

I (yj ≤ zl−1 ∧ yj−1 > xi)
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Appendix B

We present a proof for Theorem 4.3. For known probability distributions
for the random quantities Xnx+1, Yny+1 and Znz+1,

P (Xnx+1 < Yny+1 < Znz+1)

=
nx+1∑
i=1

ny+1∑
j=1

nz+1∑
l=1

P
{
Xnx+1 < Yny+1 < Znz+1|Xnx+1 ∈ (xi−1, xi), Yny+1 ∈ (yj−1, yj) ,

Znz+1 ∈ (zl−1, zl)} × P (Xnx+1 ∈ (xi−1, xi))P (Yny+1 ∈ (yj−1, yj))P (Znz+1 ∈ (zl−1, zl))

This holds for all combinations of probability distributions for Xnx+1 in Px,
Yny+1 in Py and Znz+1 in Pz. We need to find the infimum and supremum
for this probability over all these combinations.

To derive the NPI lower probability for this event, the probability 1/(nx+
1) for Xnx+1, as assigned to each interval in the partition of the real-line
created by the observations from group Gx, is put at the right-end point of
each interval. Simultaneously, the probability 1/(nz+1) for Znz+1, as assigned
to each interval in the partition of the real-line created by the observations
from group Gz, is put at the left-end point of each interval. This leads to

inf
Px,Py ,Pz

P (Xnx+1 < Yny+1 < Znz+1) =
1

(nx + 1)(nz + 1)
×

inf
Py

nx+1∑
i=1

ny+1∑
j=1

nz+1∑
l=1

P (xi < Yny+1 < zl−1|Yny+1 ∈ (yj−1, yj))P (Yny+1 ∈ (yj−1, yj))

(20)

Here the infima are with regard to all probability distributions in the respec-
tive structures.

By similar reasoning, the corresponding NPI upper probability requires
the probability masses for Xnx+1 and Znz+1 to be put at the opposite end
points of the respective intervals. This leads to

sup
Px,Py ,Pz

P (Xnx+1 < Yny+1 < Znz+1) =
1

(nx + 1)(nz + 1)
×

sup
Py

nx+1∑
i=1

ny+1∑
j=1

nz+1∑
l=1

P (xi−1 < Yny+1 < zl|Yny+1 ∈ (yj−1, yj))P (Yny+1 ∈ (yj−1, yj))

(21)
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The remaining optimisation problems are how to assign the probability
masses 1/(ny + 1) for Yny+1 within each interval (yj−1, yj), j = 1, . . . , ny + 1,
for the NPI lower probability and for the NPI upper probability. Let the
number of observations from groups Gx and Gz between yj−1 and yj be
denoted by nj

x and nj
z, respectively. These observations partition the interval

(yj−1, yj) into nj
x +nj

z +1 sub-intervals, the assumption that the data contain
no ties simplifies notation but can be relaxed without affecting the approach.
If there are no observations from groups Gx and Gz in the interval (yj−1, yj),
then the following reasoning still applies with this whole interval being the
only ‘sub-interval’.

It is easy to see that this optimisation with regard to the probability
distribution for Yny+1 can be achieved by putting the probability mass 1/(ny+

1) within an interval (yj−1, yj) in a single point, say tjmi related to the infimum
and tjma related to the supremum. Doing this for all j = 1, . . . , ny + 1, and
using the NPI lower and upper CDFs for Xnx+1 and Znz+1, the optimisation
problem (20) is equivalent to

inf
1

ny + 1

ny+1∑
j=1

F x(tjmi)(1− F z(t
j
mi))

and the optimisation problem (21) is equivalent to

sup
1

ny + 1

ny+1∑
j=1

F x(tjma)(1− F z(t
j
ma))

where the infimum and supremum are with regard to the values tjmi and tjma

over all possible sub-intervals of (yj−1, yj) for each j ∈ {1, . . . , ny +1}. These
optimisations can be solved by minimising and maximising, respectively, the
products within the sums on the right-hand sides. As these lower and upper
CDFs are step-functions, these optimisations can be quite easily performed.
However, these products are not monotone over the intervals (yj−1, yj), so
careful searches are required. This can be simplified using the knowledge
that the CDFs are non-decreasing step-functions, and the fact that it is
irrelevant which specific point within a sub-interval (as created by the x
and z observations) is chosen. It is quite straightforward to implement an
algorithm for these optimisations, one can take e.g. the mid-point of each
sub-interval as candidate point to be tjmi or tjma.
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Once these optimisations have been performed, we denote the points to
which the probability masses for Yny+1 in the intervals (yj−1, yj) are assigned

by tjmin and tjmax, j = 1, . . . , ny + 1, these are the points used in Theorem 4.3.
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