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Abstract

We develop efficient simulation techniques for Bayesian inference on switching GARCH

models. Our contribution to existing literature is manifold. First, we discuss different

multi-move sampling techniques for Markov Switching (MS) state space models with

particular attention to MS-GARCH models. Our multi-move sampling strategy is based

on the Forward Filtering Backward Sampling (FFBS) applied to an approximation of

MS-GARCH. Another important contribution is the use of multi-point samplers, such

as the Multiple-Try Metropolis (MTM) and the Multiple trial Metropolize Indepen-

dent Sampler, in combination with FFBS for the MS-GARCH process. In this sense

we extend to the MS state space models the work of So [2006] on efficient MTM sam-

pler for continuous state space models. Finally, we suggest to further improve the

sampler efficiency by introducing the antithetic sampling of Craiu and Meng [2005]

and Craiu and Lemieux [2007] within the FFBS. Our simulation experiments on MS-

GARCH model show that our multi-point and multi-move strategies allow the sampler

to gain efficiency when compared with single-move Gibbs sampling.
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1 Introduction

The study of financial markets volatility has remained a prominent area of research in fi-

nance given the important role it plays in a variety of financial problems (e.g. asset pric-

ing and risk management) challenging both investors and fund managers. A remarkable

amount of work, ranging from model specification in discrete and continuous time to esti-

mation techniques and finally to applications, have been proposed in the literature. Among

volatility models, Bollerslev [1986] Generalized Autoregressive Conditional Heteroskedastic

(GARCH) model and its variants ranks as the most popular class of models among practi-

tioners. However, from empirical studies, this class of models have been well documented

to exhibit high persistence of conditional variance, i.e. the process is close to being non-

stationary (nearly integrated). Lamoureux and Lastrapes [1990], among others, argue that

the presence of structural changes in the variance process, for which the standard GARCH

process cannot account for, may be responsible for this phenomenon. To buttress this point,

Mikosch and Starica [2004] estimate a GARCH model on a sample that exhibits structural

changes in its conditional variance and obtained a nearly integrated GARCH effect from the

estimate. Based on this observation, Hamilton and Susmel [1994] and Cai [1994] propose a

Markov Switching-Autoregressive Conditional Heteroskedastic (MS-ARCH) model, governed

by a state variable that follows a first order Markov chain to capture the high volatility per-

sistence, while Gray [1996] considers a Markov Switching GARCH (MS-GARCH) model

since it can be written as an infinite order ARCH model and may be more parsimonious

than the MS-ARCH model for financial data.

The class of MS-GARCH models is gradually becoming a work house among economics

and financial practitioners for analysing financial markets data (e.g., see Marcucci [2005]).

For practical implementation of this class of theoretical models, it is crucial to have reliable

parameter estimators. Maximum Likelihood (ML) approach is a natural route to parameter

estimation in Econometrics. However, the ML technique is not computationally feasible

for MS-GARCH models because of the path dependence problem (see Gray [1996]). To

this end, Henneke et al. [2011] and Bauwens et al. [2010] propose Bayesian approach based

on Markov Chain Monte Carlo (MCMC) Gibbs technique for estimating the parameters of

Markov Switching-Autoregressive Moving Average-Generalized Autoregressive Conditional

Heteroskedastic (MS-ARMA-GARCH) and MS-GARCH models respectively. Their pro-

posed algorithm samples each state variable given others individually (single-move Gibbs

sampler). This sampler is slowly converging and computationally demanding. Great at-

tention have been paid in the literature at improving such inefficiencies in the context of
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continuous and possibly non-Gaussian and nonlinear state space models. See, for example,

Frühwirth-Schnatter [1994], Koopman and Durbin [2000], De Jong and Shephard [1995] and

Carter and Kohn [1994] for multi-move Gibbs sampler and So [2006] for multi-points and

multi-move Gibbs sampling schemes for continuous and nonlinear state space models. To

the best of our knowledge there are few works on efficient multi-move sampling scheme for

discrete or mixed state space models. See Kim and Nelson [1999] for a review on multi-move

Gibbs for conditionally linear models, Billio et al. [1999] for global Metropolis Hastings al-

gorithm for sampling the hidden states of MS-ARMA models and Fiorentini et al. [2012] for

multi-move sampling in dynamic mixture models. As regards MS-GARCH models, Ardia

[2008] develops a Gibbs sampling scheme for the joint sampling of the state variables for

the Haas et al. [2004] model, which is a particular approximation of a MS-GARCH model,

He and Maheu [2010] propose a Sequential Monte Carlo (SMC) algorithm for GARCH mod-

els subject to structural breaks, while Bauwens et al. [2011] propose a Particle MCMC (PM-

CMC) algorithm for estimating GARCH models subject to either structural breaks and

regime switching. Dufays [2012], on the other hand, propose a Metropolis Hastings algo-

rithm for block sampling of the hidden state of infinite state MS-GARCH models. See also

Elliott et al. [2012] for an alternative approach, i.e. Viterbi-Based technique, for sampling

the state variables of MS-GARCH models.

In this paper, we develop an efficient simulation based estimation approach for MS-

GARCH models characterized by a finite number of regimes wherein the conditional mean

and conditional variance may change over time from one GARCH process to another. We

follow a data augmentation framework by including the state variables into the parameter

vector. In particular, we propose a Bayesian approach based on MCMC algorithm which

allows to circumvent the problem of path dependence by simultaneously generating the

states (multi-move Gibbs sampler) from their joint distribution. Our strategy for sampling

the state variables is based on Forward Filtering Backward Sampling (FFBS) techniques.

As for mixed hidden state models, FFBS algorithm cannot be applied directly on switching

GARCH models, we suggest the use of a Metropolis algorithm with an FFBS proposal

generated using an auxiliary model. We propose and discuss different auxiliary models

obtained by alternative approximations of the MS-GARCH conditional variance equation.

Another original contribution of the paper relates to the Metropolis step for the hid-

den states. To efficiently estimate MS-GARCH models we consider the class of generalized

(multipoint) Metropolis algorithms (see Liu [2002], Chapter 5) which extends the standard

Metropolis-Hastings (MH) approach (Hastings [1970] and Metropolis et al. [1953]). See Liu
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[2002] and Robert and Casella [2007] for an introduction to MH algorithms and a review of

various extensions. Multipoint samplers have been proved, both theoretically and compu-

tationally, to be effective in improving the mixing rate of the MH chain and the efficiency

of the Monte Carlo estimates based on the output of the chain. The main feature of the

multipoint samplers is that at each iteration of the MCMC chain the new value of the chain

is selected among multiple proposals, while in the MH algorithm one accepts or rejects a

single proposal. In this paper we apply the Multiple-Try Metropolis (MTM) (see [Liu et al.,

2000]) and some modified MTM algorithms. The superiority of the MTM over standard MH

algorithm has been proved in Craiu and Lemieux [2007], which also propose to apply anti-

thetic and quasi-Monte Carlo techniques to obtain good proposal distributions in the MTM.

So [2006] applies MTM to the estimation of latent-variable models and finds evidence of

superiority of the MTM over standard MH samplers for the latent variable estimation. The

author also finds that the efficiency of MTM can further be increased by the use of multi-

move sampling. Casarin et al. [2012] apply the MTM transition to the context of interacting

chains. They provide a comparison with standard interacting MH and also estimate the gain

of efficiency when using interacting MTM combined with block-sampling for the estimation

of stochastic volatility models. We thus combine the MTM sampling strategies with the

approximated FFBS techniques for the Markov switching process. In this sense, we extend

the work of So [2006] to the more complex case of Markov-switching nonlinear state space

models. In fact, the use of multiple proposals is particularly suited in this context where

the forward filter is used at each iteration to generate only one proposal with a large com-

putational cost. The use of multiple proposals based on the same run of the forward filter is

thus discussed. We also apply to this context the antithetic sampling technique proposed by

Craiu and Lemieux [2007] to generate correlated proposal within the Multiple-try algorithm,

and suggest a Forward Filtering Backward Antithetic Sampling (FFBAS) algorithm which

combines the permuted displacement algorithm of Craiu and Meng [2005] with FFBS and

possibly produces pairwise negative association among the trajectories of the hidden states.

Note that our approach could easily extended to other discrete or mixed state space models.

The paper is organized as follows. Section 2 introduces the MS-GARCH model and

discuss inference issues related to existing methods in the literature. In Section 3, we present

the Bayesian inference approach and explain the multi-move multipoint sampling strategies.

In Section 4, we study the efficiency of our estimation procedure through some simulation

experiments. In Section 5, we conclude and discuss possible extensions.
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2 Markov Switching GARCH models

2.1 The model

A Markov Switching GARCH model is a nonlinear specification of the evolution of a time

series assessed to be affected by different states of the world and for which the conditional

variance in each state follows a GARCH process. More specifically, let yt be the observed

variable (e.g. the return on some financial asset) and st a discrete, unobserved, state variable

which could be interpreted as the state of the world at time t. Define (ys, . . . , yt) and

(ss, . . . , st) as ys:t and ss:t respectively whenever s ≤ t and 0 otherwise. Then

yt = µt(y1:t−1, θµ(st)) + σt(y1:t−1, θσ(st))ηt, ηt
iid
∼ N(0, 1), (1)

σ2
t (y1:t−1, θσ(st)) = γ(st) + α(st)ǫ

2
t−1 + β(st)σ

2
t−1(y1:t−2, θσ(st−1)), (2)

where, ǫt = σt(y1:t−1, θσ(st))ηt, θσ(st) = (γ(st), α(st), β(st)), γ(st) > 0, α(st) ≥ 0, β(st) ≥

0, and st ∈ {1, . . . ,M}, t = 1, . . . , T , is assumed to follow a M -state first order Markov

chain with transition probabilities {πij,t}i,j=1,2,...,M :

πij,t = p(st = i|st−1 = j, y1:t−1, θπ),

M
∑

i=1

πij,t = 1 ∀ j = 1, 2, . . . ,M.

The parameter shift functions γ(st), α(st) and β(st), describe the dependence of parameters

on the realized regime st i.e.

γ(st) =

M
∑

m=1

γmIst=m, α(st) =

M
∑

m=1

αmIst=m, and β(st) =

M
∑

m=1

βmIst=m,

where,

Ist=m =















1, if st = m

0, otherwise

,

By defining the allocation variable, st, as aM -dimensional discrete vector, ξt = (ξ1t, . . . , ξMt)
′,

where ξmt = Ist=m, m = 1, . . . ,M, the system of equations in (1)-(2) can be written com-

pactly as

yt = µt(y1:t−1, ξ
′
tθµ) + σt(y1:t−1, ξ

′
tθσ)ηt, ηt ∼

iid N(0, 1), (3)

σ2
t (y1:t−1, ξ

′
tθσ) = (ξ′tγ) + (ξ′tα)ǫ

2
t−1 + (ξ′tβ)σ

2
t−1(y1:t−2, ξ

′
t−1θσ), (4)
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where ǫt = σt(y1:t−1, ξ
′
tθσ)ηt, γ = (γ1, . . . , γM )′, α = (α1, . . . , αM )′, β = (β1, . . . , βM )′,

θµ = (θ1µ, . . . , θMµ)
′ and θσ = (θ1σ, . . . , θMσ)

′ with θmσ = (γm, αm, βm)′ for m = 1, . . . ,M .

for t = 1, . . . , T . Let πt = (π1t, . . . , πMt), with πit = (πi1,t, . . . , πiM,t) for i = 1, 2, . . . ,M and

∑M
i=1 πij,t = 1 for all j = 1, 2, . . . ,M . Since ξt follows a M−state first order Markov chain,

we define the transition probabilities {πij,t}i,j=1,2,...,M by

πij,t = p(ξ′t = e′i|ξ
′
t−1 = e′j, y1:t−1, θπ),

where ei is the i−th column of a M-by-M identity matrix. The conditional probability of ξt

given ξt−1, θπ and y1:t−1 is given by

p(ξ′t|ξ
′
t−1, y1:t−1, θπ) =

M
∏

m=1

(πmtξt−1)
ξmt , (5)

which implies that the probability with which event m occurs at time t is πmtξt−1.

2.2 Inference Issues

Estimating Markov switching GARCH models is a challenging problem since the likelihood

of yt depends on the entire sequence of past states up to time t due to the recursive structure

of its volatility. To elaborate on this, the likelihood function of the switching GARCH model

is given by

L(θ|y1:T ) ≡ f(y1:T |θ) =
M
∑

i=1

· · ·
M
∑

j=1

f(y1:T , ξ
′
1 = e′i, . . . , ξ

′
T = e′j |θ) (6)

where θ = ({θmµ, θmσ}m=1,...,M , θπ). Setting ξs:t = (ξ′s, . . . , ξ
′
t) whenever s ≤ t, the joint

density function of y1:t and ξ1:t on the right hand side of equation (6) is

f(y1:T , ξ1:T |θ) = f(y1|ξ1:1, θµ, θσ)
T
∏

t=2

f(yt|y1:t−1, ξ1:t, θµ, θσ)p(ξt|y1:t−1, ξ1:t−1, θπ)

= f(y1|ξ1:1, θµ, θσ)
T
∏

t=2

f(yt|y1:t−1, ξ1:t, θµ, θσ)

(

M
∏

i=1

(πitξt−1)
ξit

)

,

(7)

with,

f(yt|y1:t−1, ξ1:t, θµ, θσ) ∝
1

σt(y1:t−1, ξ′tθσ)
exp

(

−
1

2

(

yt − µt(y1:t−1, ξ
′
tθµ)

σt(y1:t−1, ξ′tθσ)

)2
)

.
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Given σ1, recursive substitution in equation (4) yields

σ2
t =

t−2
∑

i=0

[

ξ′t−iγ + (ξ′t−iα)ǫ
2
t−1−i

]

i−1
∏

j=0

ξ′t−jβ + σ2
1

t−2
∏

i=0

ξ′t−iβ. (8)

Equation (8) clearly shows the dependence of conditional variance at time t on the entire

history of the regimes and by inference the dependence of the likelihood function on the

entire history of the regimes. The evaluation of the likelihood function over a sample of

length T , as can be seen in equation (6), involves integration (summation) over all MT

unobserved states i.e. integration over all MT possible (unobserved) regime paths. This

requirement makes the maximum likelihood estimation of equation (6) infeasible in practice.

Two major approaches have been developed in the literature in order to circumvent this

path dependence problem. One approach involves the use of model approximation while the

other is simulation based.

As regards to the model approximation approach, Cai [1994] and Hamilton and Susmel

[1994] approximated the MS-GARCH model by an MS-ARCH model. This approach effec-

tively makes the model tractable because the lagged conditional variance that makes the con-

ditional variance dependent on the history of regime has been dropped. Kaufman and Frühwirth-Schnatter

[2002] employed the algorithm developed by Chib [1996] for a Markov mixture models to

compute the marginal likelihood of the MS-ARCH model but noted that this methodology

cannot be carried over to the MS-GARCH model because of the path dependence problem.

Another approximation approach can be credited to Gray [1996] who noted that the condi-

tional density of the return is essentially a mixture of distributions with time-varying mixing

parameter and in particular under normality assumption he suggested the use of aggregate

conditional variances over all regimes as the lagged conditional variance when constructing

the conditional variance at each time step. Extensions of Gray [1996] model can be found in

Dueker [1997], Klaassen [2002] and Haas et al. [2004] among others. Abramson and Cohen

[2007] provide stationarity conditions for some of these approximations. The problem with

this approach is that these approximations cannot be verified.

Among the simulation based approaches proposed in the literature there is the Bayesian

estimation technique by Bauwens et al. [2010]. In particular, they develop a single-move

MCMC Gibbs sampler for a Markov switching GARCH model with a fixed number of

regimes. The authors also provide sufficient conditions for geometric ergodicity and ex-

istence of moments of the process. Their estimation approach, though quite promising, has

one main limitation that has rendered it unattractive. The single-move Gibbs sampler is
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inefficient i.e. draws from the single-move scheme are noted to be highly correlated and thus

slow down the convergence of the Markov chain. An alternative simulation based approach

is the particle filter approach proposed by He and Maheu [2010]. They develop a sequen-

tial Monte Carlo method for estimating GARCH models subject to an unknown number of

structural breaks.

In the next section, we propose an efficient Bayesian estimation procedure for estimating

the parameters of MS-GARCH models by simultaneously generating the whole state vector.

3 Bayesian Inference

Based on the aforementioned inference issues associated with MS-GARCHmodels, we present

a Bayesian approach based on MCMC Gibbs algorithm which allows us to circumvent the

path dependence problem and efficiently sample the state trajectory. The purpose of this

algorithm is to generate samples from the posterior distribution which are then used for its

characterization. We follow a data augmentation framework by treating the state variables

as parameters of the model and construct the likelihood function assuming the states known.

Before proceeding with the elicitation of our proposed Bayesian technique, it is important

that we make explicit the parametric specification of the conditional mean, µt(y1:t−1, ξ
′
tθµ),

of the return process yt in equation (3) and the transition probabilities p(ξ′t|ξ
′
t−1, y1:t−1, θπ).

Since our major aim is to define a technique for sampling the state variables efficiently, which

in turn will affect other parameter estimates, we assume for expository purposes a conditional

mean defined by a constant switching parameter given by ξ′tµ where µ = (µ1, . . . , µM )′

and constant transition probabilities. Alternative specification such as switching ARMA

process could be thought of for the conditional mean and time varying transition probabilities

may be defined by following Gray [1996] approach, i.e. specifying transition probabilities

as a function of past observables. Under this specification, the augmented parameter set

of our model consists of ξ1:T , θ = (θµ, θσ, θπ) where θµ = µ, θπ = ({πm}m=1,...,M ) and

θσ = ({θmσ}m=1,...,M ) with θmσ = (γm, αm, βm), πm = (πm1, . . . , πmM ) and
∑M

m=1 πmm∗ =

1 ∀ m∗ = 1, . . . ,M . The prior distributions of the parameter vector are assumed to be
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independent and chosen as follows

θπ ∼
M
∏

m=1

Dirichlet(ν1m, . . . , νMm)

θµ ∼
M
∏

m=1

U[amµ,bmµ]

θσ ∼
M
∏

m=1

U[amγ ,bmγ ]U[amα,bmα]U[amβ,bmβ ].

where ν1m, . . . , νMm, amµ, bmµ, amγ , bmγ , amα, bmα, amβ , bmβ ∀ m = 1, . . . ,M are hyperpa-

rameters to be defined. The supports of the prior distribution of θµ and θσ will be chosen to

avoid label switching (identifiability restriction). See Frühwirth-Schnatter [2006] for an intro-

duction to label switching problem for dynamic mixtures and MS models andBauwens et al.

[2010] for illustration of the identification constraint for MS-GARCH models. The choice of

the prior supports also helps in preventing regime degeneration. The joint prior distribution

is thus proportional to

f(θ) ∝
M
∏

m=1

Dirichlet(ν1m, . . . , νMm). (9)

The posterior density of the augmented parameter vector given by

f(θ, ξ1:T |y1:T ) ∝ f(y1:T , ξ1:T , θ)

= f(y1:T |ξ1:T , θ)f(ξ1:T |θ)f(θ).

(10)

cannot be identified with any standard distribution, hence we cannot sample directly from

it. Using Gibbs sampler, we can generate samples from this high-dimensional posterior

density. This will be done by iteratively sampling from the following three full conditional

distributions

• p(ξ1:T |θ, y1:T ),

• f(θπ|θµ, θσ, ξ1:T , y1:T ) = f(θπ|ξ1:T ), and

• f(θσ, θµ|θπ, ξ1:T , y1:T ) = f(θσ, θµ|ξ1:T , y1:T ).

These full conditional distributions are easier to manage and sample from because they can

either be associated with a known distribution or simulated by a lower dimensional auxiliary

sampler. In the following subsections we present in details our sampling procedure.

9



3.1 Sampling the state variables ξ1:T .

To sample ξ1:T using the single move algorithm, one relies on computing

p(ξt|ξ1:t−1, ξt+1:T , θ, y1:T ) ∝
M
∏

m=1

(πmξt−1)
ξmt (πmξt)

ξm,t+1

T
∏

j=t

f(yj|ξj , θ, y1:j−1) (11)

for each value ξt in {em : m = 1, . . . ,M} and dividing each evaluation by the sum of the

M points to get the normalized discrete distribution of ξt from which to sample. Sampling

from such a distribution once the probabilities are known is similar to sampling from a

Multinomial distribution. On the other hand, the full joint conditional distribution of the

state variables, ξ1:T , given the parameter values and return series

p(ξ1:T |θ, y1:T ) ∝ f(y1:T |ξ1:T , θ)p(ξ1:T |θ) (12)

is a non-standard distribution. Therefore multi-move sampling is not feasible. For this

reason, we consider a generalization of MH (i.e. multipoint Metropolis-Hastings) strategy

for generating proposals for the state variables. Multipoint samplers are designed to consider

multiple proposals at each iteration of an MH and to choose the new value of the chain from

this trial set. The multi-move and multipoint sampling procedures are of interest because

of their potentials at addressing issues associated with multi-modality of the target function

(i.e. in the event that the target distribution is multi-modal in nature the MCMC chain

runs the risk of getting trapped in local modes) and autocorrelation of samples from the

Metropolis-Hasting’s chain. Our scheme generally involves running a FFBS on the auxiliary

sampler to generate several proposals at each iteration step. Let the proposal distribution

be denoted by

q(ξ1:T |θ, y1:T ) = q(ξ′T |θ, y1:T )
T−1
∏

t=1

q(ξ′t|ξ
′
t+1, θ, y1:t), (13)

where q(ξ′t|ξ
′
t+1, θ, y1:t) ∝ q(ξ′t|y1:t, θ)q(x

′
t+1|x

′
t, θ) with q(ξ′t|y1:t, θ) representing filtered prob-

ability. A discussion on the proposal distribution is presented in section 3.2. In the following,

we discuss the three multipoint algorithms considered in this paper.

3.1.1 Multiple-Try Metropolis Sampler

Liu et al. [2000] suggest the Multiple-Try Metropolis (MTM) sampler scheme. As in the

general case of multipoint samplers, their idea is to consider several points generated by a

proposal distribution so that possibly a larger region from which the new value for the chain
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is chosen can be investigated. By using the multiple-try strategy, it is easier for the iterates to

jump from one local maximum to another and thus speed up the convergence to the desired

target distribution. Samples from the proposal distribution will be generated by FFBS

algorithm. We present below a sketch of the main ingredients needed in Forward Filter (FF)

and Backward Sampling (BS) algorithm and refer the reader to Frühwirth-Schnatter [2006]

for detailed presentation of this procedure. At time t, given θ and y1:t the FF probabilities

are obtained by first computing the one-step ahead prediction

q(ξ′t|, θ, y1:t−1) =

M
∑

i=1





M
∏

j=1

(πjei)
ξj,t



 q(ξ′t−1 = e′i|θ, y1:t−1),

then, the FF is

q(ξ′t|θ, y1:t) =
g(yt|ξ′t, θ, y1:t−1)q(ξ

′
t|θ, y1:t−1)

∑M
i=1 g(yt|ξ

′
t = e′i, θ, y1:t−1)q(ξ′t = e′i|θ, y1:t−1)

, (14)

where g(yt|ξ′t, θ, y1:t−1) is the conditional density of the return process under the auxiliary

model. Using the output of the FF, we compute q(ξ′T |θ, y1:T ) and

q(ξ′t|ξ
′
t+1, θ, y1:t) =

∏M
j=1 (πjξt)

ξj,t+1 q(ξ′t|θ, y1:t)

q(ξ′t+1|θ, y1:t)
, (15)

for t = T − 1, T − 2, . . . , 2, 1. Then at each time step we sample ξ′T from q(ξ′T |θ, y1:T ) and

ξ′t from q(ξ′t|ξ
′
t+1, θ, y1:t) iteratively for t = T − 1, T − 2, . . . , 2, 1. This is the BS step. The

BS procedure is implemented by first noting that ξt+1 is the most recent value sampled for

the hidden Markov chain at t + 1 and since ξt can take one of e1, . . . , eM , we compute the

expression in equation (15) for each of these values. Then sampling ξ′t from q(ξ′t|ξ
′
t+1, θ, y1:t)

once the corresponding probabilities for ξ′i = e′i for i = 1, . . . ,M are known may be compared

to sampling from a multinomial distribution. Note that at each iteration step of the MCMC

procedure we only need a single run of the Forward Filter (FF) for generating generating

multiple proposals using Backward Sampling (BS).

A summary of our MTM algorithm is given in algorithm 1.

Algorithm 1 MTM Sampler

i. Choose a starting value ξ01:T .

ii. Let ξ
(r−1)
1:T be the value of the MTM at the (r − 1)-th iteration.
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iii. Construct a trial set {ξ1:T,1, ξ1:T,2, . . . , ξ1:T,K} containingK state variable paths drawn

from the proposal distribution q(ξ1:T |θ(r−1), y1:T ).

iv. Evaluate

Wk(ξ1:T,k, ξ
(r−1)
1:T ) =

p(ξ1:T,k|θ(r−1), y1:T )

q(ξ1:T,k|θ(r−1), y1:T )
, ∀k = 1, . . . ,K.

v. Select ξ̃1:T from {ξ1:T,1, ξ1:T,2 . . . , ξ1:T,K} according to the probability

pk =
Wk(ξ1:T,k, ξ

(r−1)
1:T )

∑K
k=1 Wk(ξ1:T,k, ξ

(r−1)
1:T )

, ∀k = 1, . . . ,K.

vi. Construct a reference set {ξ∗1:T,1, ξ
∗
1:T,2, . . . , ξ

∗
1:T,K} by setting the first K − 1 elements

to a new set of samples drawn from the proposal distribution q(ξ1:T |θ(r−1), y1:T ) and

the K−th element ξ∗1:T,K to ξ
(r−1)
1:T .

vii. Draw u ∼ U[0,1].

viii. Set

ξ
(r)
1:T =















ξ̃1:T if u ≤ α(ξ̃1:T , ξ
(r−1)
1:T )

ξ
(r−1)
1:T otherwise

where,

α(ξ̃1:T , ξ
(r−1)
1:T ) = min

(

1,

∑K
k=1 Wk(ξ1:T,k, ξ

(r−1)
1:T )

∑K
k=1 Wk(ξ∗1:T,k, ξ̃1:T )

)

.

Observe that the MTM algorithm reduces to standard Metropolis-Hasting algorithm

when K = 1. We also note that alternative weight function other than the importance

weight function assumed in the MTM algorithm presented above could be defined.

3.1.2 Multiple-trial Metropolized Independent Sampler (MTMIS)

As we are using independent proposal distributions in the MTM algorithm, the generation

of the set of reference points is not needed to have a possibly more efficient generalized

MH algorithm. Thus, following the suggestion of Liu [2002] we combine the MTM with the

metropolized indpendent sampler and obtain Algorithm 2. The main advantage is that one

can use multiple proposals without generating the reference points, obtaining thus a decrease

of the computational complexity of the algorithm.
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Algorithm 2 Multiple-trial Metropolized independent Sampler (MTMIS)

i. Choose a starting value ξ01:T .

ii. Let ξ
(r−1)
1:T be the value of the MTM at the (r − 1)-th iteration.

iii. Construct a trial set {ξ1:T,1, ξ1:T,2, . . . , ξ1:T,K} containingK state variable paths drawn

from the proposal distribution.

iv. Evaluate

Wk(ξ1:T,k) =
p(ξ1:T,k|, θ(r−1), y1:T )

q(ξ1:T,k|θ(r−1), y1:T )
, ∀ k = 1, . . . ,K, and define W =

K
∑

k=1

Wk(ξ1:T,k)

v. Select ξ̃1:T from {ξ1:T,1, ξ1:T,2 . . . , ξ1:T,K} according to the probability

pk =
Wk(ξ1:T,k)

∑K
k=1 Wk(ξ1:T,k)

, ∀k = 1, . . . ,K.

vi. Draw u ∼ U[0,1].

vii. Set

ξ
(r)
1:T =















ξ̃1:T if u ≤ α(ξ̃1:T , ξ
(r−1)
1:T )

ξ
(r−1)
1:T otherwise

where,

α(ξ̃1:T , ξ
(r−1)
1:T ) = min

(

1,
W

W −W (ξ̃1:T ) +W (ξ
(r−1)
1:T )

)

.

3.1.3 Multiple Correlated-Try Metropolis (MCTM) Sampler

To further improve the efficiency the MTM algorithm and to ensure that a larger portion

of the sample space is explored for better mixing and shorter running time, we propose

the use of correlated proposals. There are various ways of introducing correlation among

proposals e.g. antithetic and stratified approaches. In this paper, we study the antithetic

approach. The use of antithetic sampling in a Gibbs sampling context allows for a gain of

efficiency. Pitt and Shephard [1996] propose a blocking method with antithetic approach

13



for non-Gaussian state space models, Holmes and Jasra [2009] propose a scheme for re-

ducing the variance of estimates from the standard Metropolis-within-Gibbs sampler by

introducing antithetic samples while Bizjajeva and Olsson [2008] propose a forward filter-

ing backward smoothing particle filter algorithm with antithetic proposal. Here we follow

Craiu and Lemieux [2007] which use antithetic proposals within a multi-point sampler and

apply their idea to the context of discrete state space models. We propose a correlated

proposal MTM sampler based on a combination of the FFBS and antithetic sampling tech-

niques. To the best of our knowledge, antithetic proposals of this kind have not been used

in the context of Markov switching nonlinear state space models. The idea is to choose,

at each step of the MCMC algorithm, a new hidden state trajectory from negatively corre-

lated proposals instead of independent proposals. Following the suggestion of Liu [2002], we

obtain Algorithm 3.

Algorithm 3 Multiple Correlated-Try Metropolis (MCTM) Sampler

i. Choose a starting value ξ01:T .

ii. Let ξ
(r−1)
1:T be the value of the MTM at the (r − 1)-th iteration.

iii. Construct a trial set {ξ1:T,1, ξ1:T,2, . . . , ξ1:T,K} containing K correlated state variable

paths drawn from the proposal distribution.

iv. Evaluate

W1(ξ1:T,1) =
p(ξ1:T,1|θ

(r−1), y1:T )

q(ξ1:T,1|θ(r−1), y1:T )
,

Wk(ξ1:T,1:k) = Wk−1(ξ1:T,1:k−1)
p(ξ1:T,k−1|θ(r−1), y1:T )

q(ξ1:T,k−1|θ(r−1), y1:T )
∀ k = 2, . . . ,K,

v. Select ξ̃1:T from {ξ1:T,1, ξ1:T,2 . . . , ξ1:T,K} according to the probability

pk =
Wk(ξ1:T,1:k, ξ

(r−1)
1:T )

∑K
k=1 Wk(ξ1:T,1:k, ξ

(r−1)
1:T )

, ∀k = 1, . . . ,K.

vi. Supposing ξ̃1:T = ξ1:T,l is chosen in item (v) above, create a reference set

{ξ∗1:T,1, ξ
∗
1:T,2, . . . , ξ

∗
1:T,K} by letting

ξ∗1:T,j = ξ1:T,l−1 ∀ j = 1, . . . , l − 1

ξ∗1:T,l = ξ
(r−1)
1:T
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and drawing ξ∗1:T,j for j = l + 1, . . . ,K from the proposal distribution.

vii. Draw u ∼ U[0,1].

viii. Set

ξ
(r)
1:T =















ξ̃1:T if u ≤ α(ξ̃1:T , ξ
(r−1)
1:T )

ξ
(r−1)
1:T otherwise

where,

α(ξ̃1:T , ξ
(r−1)
1:T ) = min

(

1,

∑K
k=1 Wk(ξ1:T,1:k, ξ

(r−1)
1:T )

∑K
k=1 Wk(ξ∗1:T,1:k, ξ̃1:T )

)

.

The simplest way to introduce negative correlation between the trajectories generated

with the FFBS algorithm is to use, at a given iteration r of the sampler and for the t-th

hidden state, a set of K uniform random numbers U
(r)
t,k , k = 1, . . . ,K generated following

the permuted displacement method (see Arvidsen and Johnsson [1982] and Craiu and Meng

[2005]) given in Algorithm 4. The uniform random numbers are then use within the BS

procedure to generate correlated proposals.

Algorithm 4 Permuted displacement method

• Draw r1 ∼ U[0,1]

• For k = 2, . . . ,K − 1, set rk = ⌊2k−2r1 +1/2⌋ where ⌊x⌋ denotes the fractional part of

x

• Set rK = 1− {2K−2r1}

• Pick at random σ ∈ SK , where SK is the set of all possible permutation of the integers

{1, . . . ,K}

• For k = 1, . . . ,K, set Uk = rσ(k)

For K = 3, Craiu and Meng [2005] show that the random numbers generated with the

permuted displacement method are pairwise negatively associated (PNA). The definition of

PNA given in the following is adopted from Craiu and Meng [2005].
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Definition 3.1 (pairwise negative association). The random variables ξt,1,ξt,2.. . . ,ξt,K are

said to be pairwise negatively associated (PNA) if, for any nondecreasing functions f1, f2

and (i, j) ∈ {1, . . . ,K}2 such that i 6= j

Cov(f1(ξt,i), f2(ξt,j)) ≤ 0

whenever this covariance is well defined.

The proof for the case K ≥ 4 is still an open issue. For this reason we consider in our

algorithm K ≤ 3. The presence of PNA in the case of K ≥ 4 proposals depends on the

degrees of uniformity of the filtering probability and the gain of efficiency should be proved

computationally in each applications.

We use the permuted sampler to generate K = 2 multi-move and correlated proposals

in the backward sampling step of the FFBS. In order to show how the antithetic sampler

works, we consider the case where the hidden Markov switching process has two states,

i.e. ξt = (ξ1t, ξ2t)
′ and for notational convenience let {q

(r)
t }t=1:T be the sequence of filtered

probabilities of being in state 1 at the r-th iteration of the sampler, then we define the

backward antithetic samples ξt,1 and ξt,2 as follows

ξt,1 =







I
U

(r)
t <q

(r)
t

I
U

(r)
t ≥q

(r)
t






, ξt,2 =







I
V

(r)
t <q

(r)
t

I
V

(r)
t ≥q

(r)
t







where V
(r)
t = 1− U

(r)
t . It is possible to show that

Cov(ξ
(r)
t,1 , ξ

(r)
t,2 ) =







(2q
(r)
t − 1)I

q
(r)
t > 1

2

−
(

q
(r)
t

)2 (

q
(r)
t (1− q

(r)
t )
)2

(

q
(r)
t (1− q

(r)
t )
)2

(1− 2q
(r)
t )I

q
(r)
t < 1

2

−
(

1− q
(r)
t

)2






.

Using the expected value of the square of the Euclidean distance, d(ξt,1, ξt,2), between this

two antithetic samples to investigate the nature of the antithetic samples, extremely anti-

thetic proposals is obtained when the distance on average is optimal.

E[d2(ξt,1, ξt,2)] = 2− 2
(

(2q
(r)
t − 1)I

q
(r)
t > 1

2

+ (1 − 2q
(r)
t )I

q
(r)
t < 1

2

)

. (16)

From equation (16) extreme antithetic is attained when q
(r)
t is equal to 0.5, which can be

easily found in applications where regimes exhibit similar persistence level..
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3.2 Auxiliary models for defining the proposal distribution

In order to built proposal distributions for the state variables, we will exploit all the knowl-

edge we have about the full conditional distribution. The first step is to approximate the

MS-GARCH model by eliminating the problem of path dependence and then deriving a

proposal distribution for state variables from the auxiliary model does obtained. A possible

way of circumventing the path dependence problem inherent in the MS-GARCH model is

to replace the lagged conditional variance appearing in the definition of the GARCH model

with a proxy. A look into the literature shows different auxiliary models which differs only

by the content of the information used in defining the proxy used in each case. In general,

various MS-GARCH (as available in the literature) can be obtained by approximating the

conditional variance

σ2
t (y1:t−1, θσ(st)) = V [yt|y1:t−1, s1:t] = V [ǫt|y1:t−1, s1:t]

of the GARCH process as follow

σt
2(y1:t−1, ξ

′
tθσ) ≈ ξ′tγ + (ξ′tα)ǫ

2
(X)t−1 + (ξ′tβ)σ

2
(X)t−1. (17)

In the subsection we present alternative specifications of ǫ(X)t−1 and σ2
(X)t−1 that define

different approximations of the MS-GARCH model. The variable X can take on any of

B,G,D, SK,K with each notation representing, respectively, the Basic approximation, Gray

[1996] approximation, Dueker [1997] approximation, Simplified version of Klaassen [2002]

approximation and Klaassen [2002] approximation.

3.2.1 Model 1

As a first attempt at eliminating the path dependent problem, we note that the conditional

density of ǫt is a mixture of normal distribution with zero mean and time varying variance.

Hence, we approximate the switching GARCH model by replacing the lagged conditional
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variance, σ2
t−1, with the variance σ2

(B)t−1 of the conditional density of ǫt i.e.

ǫ(B)t−1 = yt−1 − µ(B)t−1

µ(B)t−1 = E[µt−1(y1:t−2, ξ
′
t−1θµ)|y1:t−2] = E[yt−1|y1:t−2]

=
M
∑

m=1

µt−1(y1:t−2, e
′
mθµ)q(ξ

′
t−1 = e′m|y1:t−2),

σ2
(B)t−1 = E[σ2

t−1(y1:t−2, ξ
′
t−1θσ)|y1:t−2] = E[ǫ2t−1|y1:t−2] = V (ǫt−1|y1:t−2)

=

M
∑

m=1

σ2
t−1(y1:t−2, e

′
mθσ)q(ξ

′
t−1 = e′m|y1:t−2).

Observe that in this approximation scheme µ(B)t−1 and σ2
(B)t−1 are functions of y1:t−2

and the information coming from yt−1 is lost. With q(ξ′t−1 = e′m|y1:t−2) known for m =

1, . . . ,M , µ(B)t−1 can easily be computed while σ2
(B)t−1 can be computed recursively since

σ2
t−1(y1:t−2, e

′
mθσ) depends on σ2

(B)t−2. Note that in this approximation the conditioning is

on y1:t−2. This approach represents a starting point for other approximations hence we tag

it Basic Approximation.

3.2.2 Model 2

Gray [1996] notes that the conditional density of the return process, yt, of the switching

GARCH model is a mixture of normal distribution with time-varying parameters. Hence,

he suggests the use of the variance of the conditional density σ2
(G)t−1 of yt as a proxy for the

lagged of the conditional variance σ2
t−1 switching GARCH process i.e.

ǫ(G)t−1 = yt−1 − µ(G)t−1

µ(G)t−1 = µ(B)t−1

σ2
(G)t−1 = V (yt−1|y1:t−2) = V

(

E[yt−1|y1:t−2, ξ
′
t−1]|y1:t−2

)

+ E[V
(

yt−1|y1:t−2, ξ
′
t−1

)

|y1:t−2]

= V (µt−1(y1:t−2, ξ
′
t−1θµ)|y1:t−2) + E[σ2

t−1(y1:t−2, ξ
′
t−1θσ)|y1:t−2]

= E[(µt−1(y1:t−2, ξ
′
t−1θµ))

2|y1:t−2]− (E[µt−1(y1:t−2, ξ
′
t−1θµ)|y1:t−2])

2 + σ2
(B)t−1

=

M
∑

m=1

(µt−1(y1:t−2, e
′
mθµ))

2q(ξ′t−1 = e′m|y1:t−2)− (µ(B)t−1)
2 + σ2

(B)t−1.

Similarly, as in model 1, information on yt−1 is lost in this approximation scheme as µ(G)t−1

and σ2
(G)t−1 are functions of y1:t−2. By recursion, σ2

(G)t−1 can be computed since σ2
(B)t−1

depends on σ2
(G)t−2 through σ2

t−1(y1:t−2, e
′
mθσ). Within this framework the conditioning is

also on y1:t−2. The major difference between Model 1 and 2 can be seen from the development
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of the proxy i.e V (ǫt−1|y1:t−2) is replaced with V (yt−1|y1:t−2) in model 2.

3.2.3 Model 3

In the previous approximation schemes, the information coming from yt−1 is not used.

Dueker [1997] suggests that yt−1 should be included in the conditioning set of the proxy

while assuming that µt−1 and σ2
t−1 are functions of (y1:t−2, ξ

′
t−2). The following relation can

thus be credited to him

ǫ(D)t−1 = yt−1 − µ(D)t−1

µ(D)t−1 = E[µt−1(y1:t−2, ξ
′
t−2θµ)|y1:t−1] =

M
∑

m=1

µt−1(y1:t−2, e
′
mθµ)q(ξ

′
t−2 = e′m|y1:t−1)

σ2
(D)t−1 = E[σ2

t−1(y1:t−2, ξ
′
t−2θσ)|y1:t−1] =

M
∑

m=1

σ2
t−1(y1:t−2, e

′
mθσ)q(ξ

′
t−2 = e′m|y1:t−1).

The probability q(ξ′t−1 = e′m|y1:t) is a one period ahead smoothed probability which can be

computed as:

q(ξ′t−1 = e′m|y1:t) =
M
∑

i=1

q(ξ′t−1 = e′m, ξ′t = e′i|y1:t)

=

M
∑

i=1

q(ξ′t−1 = e′m|ξ′t = e′i, y1:t)q(ξ
′
i = e′i|y1:t)

=

M
∑

i=1

q(ξ′t−1 = e′m|ξ′t = e′i, y1:t−1)q(ξ
′
i = e′i|y1:t)

=

M
∑

i=1

q(ξ′t−1 = e′m, ξ′t = e′i|y1:t−1)q(ξ
′
i = e′i|y1:t)

q(ξ′t = e′i|y1:t−1)

= q(ξ′t−1 = e′m|y1:t−1)
M
∑

i=1

q(ξ′t = e′i|ξ
′
t−1 = e′m, y1:t−1)q(ξ

′
i = e′i|y1:t)

q(ξ′t = e′i|y1:t−1)

Within this framework we note that the conditioning is on y1:t−1 while the functional form

depends on (y1:t−2, ξ
′
t−2). We equally note that at every time step t the value of q(ξ′t−2 =

e′m|y1:t−1) for all m is required for computation.

3.2.4 Model 4

The following approximation is similar to model 3. As opposed to model 3, we assume

that µt−1 and σ2
t−1 are functions of (y1:t−2, ξ

′
t−1). This modification leads to the following
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approximation Klaassen [2002] model.

ǫ(SK)t−1 = yt−1 − µ(SK)t−1

µ(SK)t−1 = E[µt−1(y1:t−2, ξ
′
t−1θµ)|y1:t−1] =

M
∑

m=1

µt−1(y1:t−2, e
′
mθµ)q(ξ

′
t−1 = e′m|y1:t−1)

σ2
(SK)t−1 = E[σ2

t−1(y1:t−2, ξ
′
t−1θσ)|y1:t−1] =

M
∑

m=1

σ2
t−1(y1:t−2, e

′
mθσ)q(ξ

′
t−1 = e′m|y1:t−1).

In the next approximation, the current regime will be added to the conditioning set of this

version of the auxiliary model. Hence, this approximation will be identified as the simplified

version of Klaassen [2002] model. In order to implement this approximation scheme the

value of q(ξ′t−1 = e′m|y1:t−1) for all m is required at each point in time t.

3.2.5 Model 5

In each of the approximations described above, information relating to the current regime

is ignored in the conditioning set. On observing this, Klaassen [2002] suggests the following

approximation

ǫ(K)t−1 = yt−1 − µi,(K)t−1

µi,(K)t−1 = E[µt−1(y1:t−2, ξ
′
t−1θµ)|y1:t−1, ξ

′
t = e′i]

=

M
∑

m=1

µt−1(y1:t−2, e
′
mθµ)q(ξ

′
t−1 = e′m|y1:t−1, ξ

′
t = e′i)

σ2
i,(K)t−1 = E[σ2

t−1(y1:t−2, ξ
′
t−1θσ)|y1:t−1]

=
M
∑

m=1

(

µt−1(y1:t−2, e
′
mθµ) + σ2

t−1(y1:t−2, e
′
mθσ)

)

q(ξ′t−1 = e′m|y1:t−1, ξ
′
t = e′i)

−

(

M
∑

m=1

µt−1(y1:t−2, e
′
mθµ)q(ξ

′
t−1 = e′m|y1:t−1, ξ

′
t = e′i)

)2

,

where

q(ξ′t−1 = e′m|y1:t−1, ξ
′
t = e′i) =

q(ξ′t−1 = e′m, ξ′t = e′i|y1:t−1)

q(ξ′t = e′i|y1:t−1)

=
q(ξ′t = e′i|y1:t−1, ξ

′
t−1 = e′m)q(ξ′t−1 = e′m|y1:t−1)

q(ξ′t = e′i|y1:t−1)

Note that this approximation requires the computation of q(ξ′t−1 = e′m|y1:t−1, ξ
′
t = e′i) for

all m and i at time t.
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3.3 Sampling the θ

Sampling θ from the full conditional distribution will be done by separating the parameters

of the transition matrix from the GARCH parameters. We assume that the parameters of

the transition probabilities are independent of GARCH parameters.

3.3.1 Sampling transition probability parameters

The posterior distribution of θπ is given by

f(θπ|ξ1:T , θµ, θσ, y1:T ) ∝ f(ξ1:T , θµ, θσ, y1:T |θπ)f(θπ)

∝ f(ξ1:T , y1:T |θ)f(θπ)

∝ f(θπ)

T
∏

t=2

(

M
∏

i=1

(πiξt−1)
ξit

)

= f(θπ)

T
∏

t=2







M
∏

i=1





M
∑

j=1

πijξjt−1





ξit






= f(θπ)
M
∏

j=1

M
∏

i=1

π
nij

ij

(18)

where nij is the number of times ξit = ξjt−1 = 1 for i, j = 1, . . . ,M . It is easy to show that by

substituting, as defined earlier, the conjugate Dirichlet prior for the transition probabilities,

θπ, in (18) we obtain

f(θπ|ξ1:T , θµ, θσ, y1:T ) =
M
∏

m=1

Dirichlet(n1m + η1m, . . . , nMm + ηMm). (19)

3.3.2 Sampling GARCH parameters

Given a prior density f(θµ, θσ), the posterior density of (θµ, θσ) can be expressed as

f(θµ, θσ|ξ1:T , θπ, y1:T ) ∝ f(θµ, θσ)

T
∏

t=1

N (µt(y1:t−1, ξ
′
tθµ), σ

2
t (y1:t−1, ξ

′
tθσ)) (20)

For this step of the Gibbs sampler, we apply adaptive Metropolis-Hastings (MH) sampling

technique since the full conditional distribution is known to be non-standard. Details can

be found, as required, in the appendix.
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4 Illustration with simulated data set

We generated a time series of length 1500 from the data generating process corresponding to

the model defined by equations (3) and (4) for two regimes (M = 2), time invariant transition

probabilities and constant parameter switching conditional mean. The parameter values for

the simulation exercise are set at: µ = (µ1, µ2) = (0.06,−0.09), γ = (γ1, γ2) = (0.30, 2.00),

α = (α1, α2) = (0.35, 0.10), β = (β1, β2) = (0.20, 0.60), π11 = 0.98, π22 = 0.96. These

parameter values corresponds to the choices made by Bauwens et al. [2010] in a similar Monte

Carlo exercise. A relatively higher and more persistent conditional variance as compared to

the first GARCH equation is implied by the second GARCH equation. Also, the transition

probabilities of remaining in each regime is close to one. A summary statistics of a typical

series of length 1500 simulated from this DGP is reported in Table 1 , and in Figure 1

we display, respectively, the time series, kernel density estimate and the autocorrelation

function (ACF) of the square of the same series. The mean of the series is close to zero

and the excess kurtosis is estimated to be 3.57. For each hidden state sampling algorithm

Table 1: Descriptive statistics for simulated data.
Min. max. Mean Std. Skewness Kurtosis

−6.9540 10.7600 −0.0042 1.5740 0.04120 6.5659.

described in Section 3.1 and the auxiliary models presented in Section 3.2, we perform 10000

Gibbs iterations and compare estimates from these schemes with estimates obtained using

the single-move sampling scheme for the hidden states. To carry out the MCMC exercise, we

set the initial parameters of the algorithm to the maximum likelihood estimates of one of the

MS-GARCH approximations described in Section 3.1 and randomly generated initial state

trajectory. The hyperparameters of the prior distributions of the transition probabilities

νij for i, j = 1, 2 are set to 1 while the support for other parameters are given in the table

reporting their parameter estimates. The case of two trials, (K = 2), is considered within the

different multi-point sampling strategies discussed earlier. Table from 2 to 6 highlights the

posterior means and standard deviation of the parameters and the transition probabilities

of the MS-GARCH under each of the auxiliary models used in constructing proposals for

the hidden states. Column 4 of each of these tables reports the parameter estimates and

transition probabilities obtained by using the single move technique for sampling the state

variables within the Gibbs algorithm while in columns 5 to 7 we present the result obtained

using the different multi-move multipoint sampling techniques within the Gibbs algorithm.

With the exception of a few, the posterior means under the multi-move multi-

point sampling schemes relative to the single-move technique have more values within one
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Figure 1: Graphs for the simulated data for DGP defined in Table 1.
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Table 2: Estimated parameter value and posterior statistics using Model 1.
Multi move

DGP Values Prior supports Single Move MTM MTMIS MCTM
π11 0.980 (0.00 1.00) 0.968 0.972 0.974 0.977

(0.014) (0.005) (0.006) (0.005)
π22 0.960 (0.00 1.00) 0.995 0.952 0.955 0.957

(0.002) (0.011) (0.011) (0.009)
µ1 0.060 (0.02 0.15) 0.099 0.045 0.049 0.046

(0.031) (0.017) (0.019) (0.0173)
µ2 −0.090 (−0.35 0.18) −0.013 −0.109 −0.107 −0.110

(0.035) (0.106) (0.108) (0.107)
γ1 0.300 (0.15 0.45) 0.290 0.345 0.365 0.350

(0.053) (0.046) (0.046) (0.047)
γ2 2.000 (0.50 4.00) 0.508 1.682 2.042 2.533

(0.010) (0.432) (0.599) (0.650)
α1 0.350 (0.10 0.50) 0.227 0.141 0.181 0.180

(0.099) (0.037) (0.049) (0.044)
α2 0.100 (0.02 0.35) 0.331 0.042 0.047 0.047

(0.016) (0.019) (0.023) (0.024)
β1 0.200 (0.05 0.40) 0.190 0.248 0.196 0.227

(0.097) (0.082) (0.076) (0.079)
β2 0.600 (0.35 0.85) 0.510 0.683 0.612 0.534

(0.019) (0.084) (0.109) (0.111)

Table 3: Estimated parameter value and posterior statistics using Model 2.
Multi move

DGP Values Prior supports Single Move MTM MTMIS MCTM
π11 0.980 (0.00 1.00) 0.968 0.973 0.9753 0.9771

(0.014) (0.006) (0.006) (0.006)
π22 0.960 (0.00 1.00) 0.995 0.952 0.952 0.957

(0.002) (0.011) (0.011) (0.010)
µ1 0.060 (0.02 0.15) 0.099 0.045 0.047 0.048

(0.031) (0.017) (0.018) (0.018)
µ2 −0.090 (−0.35 0.18) −0.013 −0.108 −0.111 −0.120

(0.035) (0.107) (0.111) (0.109)
γ1 0.300 (0.15 0.45) 0.290 0.344 0.328 0.347

(0.052) (0.046) (0.052) (0.052)
γ2 2.000 (0.50 4.00) 0.508 1.701 1.923 1.968

(0.009) (0.442) (0.626) (0.673)
α1 0.350 (0.10 0.50) 0.228 0.142 0.181 0.186

(0.098) (0.039) (0.042) (0.044)
α2 0.100 (0.02 0.35) 0.331 0.042 0.043 0.044

(0.016) (0.019) (0.021) (0.022)
β1 0.200 (0.05 0.40) 0.190 0.250 0.275 0.237

(0.096) (0.079) (0.084) (0.086)
β2 0.600 (0.35 0.85) 0.511 0.681 0.645 0.631

(0.019) (0.085) (0.117) (0.1216)

posterior standard deviation away from the DGP values. In Figure from 2 to 5 we report

the posterior densities of the parameters using single-move, MTM, MTMIS, and MTCM

sampling strategies respectively. The multi-move sampler are constructed using model 5.

The shapes of the posterior densities are unimodal, thus ruling out label switching problem.

We also examine the performance of our multi-move multipoint algorithms relative to the
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Table 4: Estimated parameter value and posterior statistics using Model 3.
Multi move

DGP Values Prior supports Single Move MTM MTMIS MCTM
π11 0.980 (0.00 1.00) 0.968 0.975 0.976 0.977

(0.014) (0.005) (0.006) (0.006)
π22 0.960 (0.00 1.00) 0.995 0.956 0.956 0.956

(0.002) (0.009) (0.011) (0.011)
µ1 0.060 (0.02 0.15) 0.099 0.050 0.050 0.049

(0.031) (0.018) (0.019) (0.018)
µ2 −0.090 (−0.35 0.18) −0.013 −0.128 −0.122 −0.116

(0.034) (0.104) (0.106) (0.108)
γ1 0.300 (0.15 0.45) 0.290 0.382 0.371 0.354

(0.052) (0.043) (0.046) (0.051)
γ2 2.000 (0.50 4.00) 0.508 2.107 2.059 2.448

(0.009) (0.641) (0.648) (0.712)
α1 0.350 (0.10 0.50) 0.227 0.168 0.174 0.167

(0.098) (0.042) (0.047) (0.047)
α2 0.100 (0.02 0.35) 0.331 0.046 0.046 0.048

(0.016) (0.023) (0.022) (0.025)
β1 0.200 (0.05 0.40) 0.190 0.173 0.199 0.237

(0.096) (0.076) (0.081) (0.089)
β2 0.600 (0.35 0.85) 0.510 0.603 0.613 0.547

(0.019) (0.114) (0.117) (0.119)

Table 5: Estimated parameter value and posterior statistics using Model 4.
Multi move

DGP Values Prior supports Single Move MTM MTMIS MCTM
π11 0.980 (0.00 1.00) 0.968 0.978 0.977 0.977

(0.014) (0.005) (0.006) (0.005)
π22 0.960 (0.00 1.00) 0.995 0.959 0.958 0.957

(0.002) (0.010) (0.010) (0.011)
µ1 0.060 (0.02 0.15) 0.099 0.049 0.048 0.050

(0.031) (0.019) (0.018) (0.019)
µ2 −0.090 (−0.35 0.18) −0.013 −0.121 −0.117 −0.134

(0.034) (0.109) (0.108) (0.108)
γ1 0.300 (0.15 0.45) 0.290 0.362 0.366 0.370

(0.052) (0.045) (0.046) (0.0469)
γ2 2.000 (0.50 4.00) 0.508 2.519 1.931 2.173

(0.009) (0.683) (0.648) (0.665)
α1 0.350 (0.10 0.50) 0.227 0.170 0.179 0.172

(0.098) (0.041) (0.050) (0.044)
α2 0.100 (0.02 0.35) 0.331 0.046 0.046 0.046

(0.016) (0.023) (0.022) (0.023)
β1 0.200 (0.05 0.40) 0.190 0.230 0.204 0.205

(0.096) (0.082) (0.077) (0.082)
β2 0.600 (0.35 0.85) 0.510 0.539 0.633 0.594

(0.019) (0.113) (0.116) 0.1157

single-move strategy by computing the percentage of correctly specified regimes. To do this,

we first calculate the average of the Gibbs output on the state variables and then assign

mean states greater than one-half to regime 2 (and regime 1 otherwise). We find out that

the single-move technique is able to classify 43% of the data correctly while the multi-move

multipoint samplers classified between 93% and 96% of the data correctly. The acceptance
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Table 6: Estimated parameter value and posterior statistics using Model 5.
Multi move

DGP Values Prior supports Single Move MTM MTMIS MCTM
π11 0.980 (0.00 1.00) 0.968 0.974 0.976 0.976

(0.015) (0.006) (0.006) (0.006)
π22 0.960 (0.00 1.00) 0.995 0.954 0.957 0.957

(0.002) (0.012) (0.011) (0.011)
µ1 0.060 (0.02 0.15) 0.099 0.050 0.049 0.050

(0.031) (0.019) (0.018) (0.019)
µ2 −0.090 (−0.35 0.18) −0.013 −0.127 −0.124 −0.123

(0.035) (0.107) (0.108) (0.105)
γ1 0.300 (0.15 0.45) 0.290 0.368 0.373 0.378

(0.053) (0.045) (0.046) (0.045)
γ2 2.000 (0.50 4.00) 0.508 1.869 1.864 2.069

(0.010) (0.694) (0.679) (0.629)
α1 0.350 (0.10 0.50) 0.227 0.172 0.171 0.177

(0.098) (0.044) (0.044) (0.046)
α2 0.100 (0.02 0.35) 0.331 0.045 0.045 0.047

(0.016) (0.022) (0.022) (0.024)
β1 0.200 (0.05 0.40) 0.190 0.200 0.194 0.183

(0.096) (0.079) (0.079) (0.079)
β2 0.600 (0.35 0.85) 0.510 0.648 0.648 0.608

(0.019) (0.126) (0.123) (0.116)

rate of the the multi-move multipoint proposals varies between 1% and 20% with the highest

arising from multipoint sampling schemes proposal distribution constructed using model 5.

We compute the mean squared error (MSE) of the posterior means of parameter relative to

the true parameter to further quantify our estimators i.e.

MSE =
1

n

n
∑

i=1

(θ̂i − θi)
2 (21)

where n is the number of parameters, θ̂i is the parameter estimate of the i-th element, θi,

of the DGP parameter set. The result of this exercise is reported in Table 7. From Table 7,

the low MSE of our multipoint sampling schemes further confirms their superiority over the

single-move procedures. The inefficiency of the various multi-move multiple-try Metropolis

Table 7: Mean Squared Error (MSE).
Single move MTM MTMIS MCTM

Model 1 0.2310 0.0160 0.0038 0.0324
Model 2 0.2310 0.0147 0.0047 0.0036
Model 3 0.2310 0.0056 0.0044 0.0245
Model 4 0.2310 0.0315 0.0043 0.0071
Model 5 0.2310 0.0060 0.0062 0.0045

samplers relative to the single-move sampler are further assessed by examining how much the

variance of the parameters are increased due to autocorrelation coming from the sampler.

Let z(1), . . . , z(G) denote a sample from the posterior distribution of a random variable Z.
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Figure 2: Posterior densities of the MS-GARCH parameters using single-move Scheme

Then inefficiency factor (IF ) is evaluated by

IF = 1 + 2

L
∑

l=1

wlρl (22)

where ρl, l = 1, 2, . . . is the autocorrelation function of z(1), . . . , z(G) at lag l and wl is

the associated weight. If the samples are independent then IF = 1. If A and B are two

competing algorithm with inefficient factor IFA and IFB respectively then we define the

relative inefficiency (RI) as:

RI =
T imeA
T imeB

×
IFA

IFB

(23)

where T imeA and T imeB corresponds to the computing times of each algorithm. RI mea-

sures the factor by which the run-time of algorithm Amust be increased to achieve algorithm

B’s precision; values greater than one suggests that algorithm B is more efficient. We pro-

vide in Table from to 12 the RI for various multi-move multipoint algorithms relative to the

single-move sampling strategy. The number of lags over which we calculate the RI is fixed

at L = 500. From these tables our multi-move multipoint algorithms are more efficient than

the single-move sampling technique for the state variable. This is despite the low accep-

tance rate of the of the multipoint proposals. Finally we shall notice that, as discussed in

Craiu and Lemieux [2007], a larger number of proposals is required to observe an appreciable
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Figure 3: Posterior densities of the MS-GARCH parameters using MTM with model 5

difference in the efficiency of the MCTM over the standard MTM.

Table 8: Relative inefficiency factor using Model 1
MTM MTMIS MCTM

maxt=1:T (σ
2
t ) 68.16 95.79 92.48

π11 64.31 60.37 139.11
π22 53.93 65.52 115.91
µ1 119.42 105.59 153.58
µ2 78.08 62.13 107.04
γ1 45.96 77.43 66.18
γ2 14.69 17.57 15.29
α1 77.54 136.39 206.11
α2 42.54 64.04 71.15
β1 44.76 89.79 76.29
β2 26.05 32.98 29.96
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Figure 4: Posterior densities of the MS-GARCH parameters using MTMIS with model 5

Table 9: Relative inefficiency factor using Model 2
MTM MTMIS MCTM

maxt=1:T (σ
2
t ) 72.08 93.97 95.35

π11 54.26 71.36 82.63
π22 53.43 60.85 86.16
µ1 125.27 124.69 156.10
µ2 81.05 78.37 66.96
γ1 50.08 53.53 55.99
γ2 15.11 16.20 14.21
α1 76.74 238.36 202.02
α2 45.30 58.35 60.34
β1 49.03 62.00 63.08
β2 26.94 28.97 26.60

Table 10: Relative inefficiency factor using Model 3
MTM MTMIS MCTM

maxt=1:T (σ
2
t ) 66.64 94.80 90.29

π11 55.04 51.68 58.42
π22 63.59 62.76 49.31
µ1 96.03 107.90 147.03
µ2 50.53 71.94 84.67
γ1 49.08 72.63 55.65
γ2 10.64 15.14 13.64
α1 129.17 142.76 114.75
α2 39.85 60.02 61.12
β1 50.69 75.29 59.40
β2 19.97 28.55 26.43
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Figure 5: Posterior densities of the MS-GARCH parameters using MCTM with model 5

Table 11: Relative inefficiency factor using Model 4
MTM MTMIS MCTM

maxt=1:T (σ
2
t ) 74.01 96.79 94.01

π11 44.37 62.01 77.53
π22 68.24 76.50 59.64
µ1 97.07 156.67 142.73
µ2 60.36 71.65 50.81
γ1 58.35 75.87 65.73
γ2 11.15 15.45 15.35
α1 174.85 129.64 180.54
α2 50.28 59.96 63.24
β1 53.23 83.88 68.51
β2 22.25 28.95 29.81

Table 12: Relative inefficiency factor using Model 5
MTM MTMIS MCTM

maxt=1:T (σ
2
t ) 69.05 92.88 114.51

π11 41.02 71.41 64.78
π22 47.10 73.47 69.97
µ1 96.93 135.98 157.25
µ2 46.60 67.22 81.80
γ1 55.87 75.55 80.21
γ2 9.39 14.55 16.68
α1 125.95 185.58 179.61
α2 41.49 57.63 56.37
β1 57.95 83.33 85.43
β2 17.35 26.76 30.32
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5 Conclusion

In this paper we deal with the challenging issue of efficient sampling algorithm for Bayesian

inference on Markov-switching GARCH models. We provide some new algorithms based on

the combination of multi-move and multi-points strategies.

More specifically, we apply the multiple-try sampler of Craiu and Lemieux [2007] com-

bined with multi-move Gibbs sampler to Markov-switching GARCH models. For generating

correlated proposal, we introduce antithetic Forward Filtering Backward Sampling (FFBS)

algorithm for MS-GARCH based on the permuted displacement method of Craiu and Meng

[2005]. Our algorithms also extend to Markov-switching state space models the algorithms

of So [2006] for continuous state space models.

From the results of our computational exercise, we observed a substantial gain in the

efficiency of our Gibbs samplers over the usual single-move sampling algorithm for estimating

the parameters of the MS-GARCH model. We also observed low acceptance rate (1%−20%)

for the multipoint proposals. Despite the low acceptance rate for the multipoint proposals,

we still have good results considering the length of the time series (1500) used. We expect

that using the blocking scheme (as in So [2006]) the efficiency and the acceptance rate of

can our sampling procedure may increase. The issues of the choice of block length and of

the application of the inference procedure to real data could be a matter of future research.
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Appendix

Constructing proposal distribution for θµ, θσ

Sample θ
(r)
µ , θ

(r)
σ from f(θµ, θσ|ξ

(r)
1:T , π

(r), y1:T ). Given a prior density f(θµ, θσ), the posterior

density of θθµ,θσ can be expressed as follows

f(θµ, θσ|ξ
(r)
1:T , π, y1:T ) ∝ f(θµ, θσ)

T
∏

t=1

N (yt; ξ
(r)
t

′

µ, σ2
t ) (24)

where,

σ2
t = ξ

(r)
t

′

γ + (ξ
(r)
t

′

α)(yt−1 − ξ
(r)
t−1

′

µ)2 + (ξ
(r)
t

′

β)σ2
t−1.

In order to generate θµ, θσ from the joint distribution we apply a further blocking of

the Gibbs sampler. First, in the spirits of Frühwirth-Schnatter [2006] we consider the full

conditional distributions of the regime-specific parameters, and secondly, we split the regime-

dependent parameters in two subvectors, the parameter of the observation equation and

the parameters of the volatility process. As regards the parameters of the return process

equation,

f(µk|ξ
(r)
1:T , µ

(r−1)
−k , γ(r−1), β(r−1), α(r−1), y1:T ) ∝

∏

t∈Tk

N (yt;µk, σ
2
t )
∏

t∈T
−

k

N (yt; ξ
(r)
t

′

µ, σ2
t )

where µ−k = (µ1, . . . , µk−1, µk+1, . . . , µM )′, Tk = {t = 1, . . . , T |ξ
(r)
k,t = 1}, T −

k = {t =

1, . . . , T |ξ
(r)
k,t = 0, ξ

(r)
k,t−1 = 1}. It is not possible to simulate exactly from the full conditional

distribution of µk, k = 1, . . . ,M given the other parameters and the allocation variables,

thus we apply a MTM step with independent normal proposal distribution. Focusing on the

first term of the full conditional

∏

t∈Tk

1
√

2πσ2
t

exp

{

−
1

2

(

µ2
k

∑

t∈Tk

σ−2
t − 2µk

∑

t∈Tk

ytσ
−2
t +

∑

t∈Tk

y2t σ
−2
t

)}

and if an approximation σ∗2
t of σ2

t is available, then it is possible to approximate this part

of the full conditional with a normal distribution with mean and variance

mk = s2k

(

∑

t∈Tk

yt/σ
∗2
t

)

, s2k =

(

∑

t∈Tk

1/σ∗2
t

)−1
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respectively, where

σ∗2
t = (ξ

(r)
t

′

γ(r−1)) + (ξ
(r)
t

′

α(r−1))(yt−1 − ξ
(r)
t−1

′

µ∗)2 + (ξ
(r)
t

′

β(r−1))σ∗2
t−1

with µ∗ = (µ∗
1, . . . , µ

∗
M ), µ∗

j = T−1
j

∑

t∈Tj
yt and Tj =

∑

t∈Tj
ξj,t. This normal can be used

as proposal in the MH step.

As regards the parameters of the volatility process the full conditional is

f(γk, βk, αk|ξ
(r)
1:T , γ−k, β−k, α−k, µ

(r), y1:T ) ∝
∏

t

N (yt; ξ
(r)
t

′

µ(r), σ2
t ) (25)

where γ−k = (γ1, . . . , γk−1, γk+1, . . . , γM ), β−k = (β1, . . . , βk−1, βk+1, . . . , βM ) and α−k =

(α1, . . . , αk−1, αk+1, . . . , αM ). We now follow the ARMA approximation of regime specific

GARCH process i.e.

σ2
t = ξ′tγ + (ξ′tα)ǫ

2
t−1 + (ξ′tβ)σ

2
t−1

ǫ2t = ξ′tγ + (ξ′tα+ ξ′tβ)ǫ
2
t−1 − (ξ′tβ)(ǫ

2
t−1 − σ2

t−1) + (ǫ2t − σ2
t ).

Let

wt = ǫ2t − σ2
t =

(

ǫ2t
σ2
t

− 1

)

σ2
t = (χ2(1)− 1)σ2

t

with

Et−1[wt] = 0; and V art−1[wt] = 2σ4
t .

Subject to the above and following Nakatsuma [1998] suggestion, we assume that wt ≈ w∗
t ∼

N (0, 2σ4
t ). Then we have an “auxiliary”ARMA model for the squared error ǫ2t .

ǫ2t = ξ′tγ + (ξ′tα+ ξ′tβ)ǫ
2
t−1 − (ξ′tβ)w

∗
t−1 + w∗

t , w∗
t ∼ N (0, 2σ4

t )

i.e. w∗
t = ǫ2t − ξ′tγ − (ξ′tα)ǫ

2
t−1 − (ξ′tβ)(ǫ

2
t−1 − w∗

t−1)

(26)

Following Ardia [2008] we further express w∗
t as a linear function of (3 × 1) vector of

(γk, αk, βk)
′. To do this, we approximate the function w∗

t by first order Taylor’s expan-

sion about (γ
(r−1)
k , α

(r−1)
k , β

(r−1)
k )′.

w∗
t ≈ w∗∗

t = w∗
t (θ

(r−1)
−π )− ((γk, αk, βk)− (γ

(r−1)
k , α

(r−1)
k , β

(r−1)
k ))∇t
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where
∂w∗

t

∂γk
= −ξtk + (ξ′tβ)

∂w∗
t−1

∂γk
∂w∗

t

∂αk

= −ξtkǫ
2
t−1 + (ξ′tβ)

∂w∗
t−1

∂αk

∂w∗
t

∂βk

= −ξtk(ǫ
2
t−1 − w∗

t−1) + (ξ′tβ)
∂w∗

t−1

∂βk

∇t = −

(

∂w∗
t

∂γk
,
∂w∗

t

∂αk

,
∂w∗

t

∂βk

)′

|
(γk=γ

(r−1)
k

,αk=α
(r−1)
k

,βk=β
(r−1)
k

)
.

Upon defining r∗t = w∗
t (θ

(r−1)
−π ) + (γ

(r−1)
k , α

(r−1)
k , β

(r−1)
k )∇t, it turns out that

w∗∗
t = r∗t − (γ, α, β)∇t. Furthermore, by defining the T × 1 vectors

w = (w∗∗
1 , . . . , w∗∗

T )′, r∗ = (r∗1 , . . . , r
∗
T )

′ and ∇ = (∇1, . . . ,∇T )
′ as well as a T × T matrix

V = 2













σ∗∗4
1 · · · 0

...
. . .

...

0 · · · σ∗∗4
T













with σ∗∗2
t = (ξ

(r)
t

′

γ(r−1)) + (ξ
(r)
t

′

α(r−1))(yt−1 − ξ
(r)
t−1

′

µ(r))2 + (ξ
(r)
t

′

β(r−1))σ∗∗2
t−1,

we can approximate the full conditional probability of the regime specific volatility param-

eters as

f(γk, βk, αk|ξ
(r)
1:T , γ−k, β−k, α−k, µ

(r), y1:T ) ∝
1

|V|
1
2

exp

(

−
w′V−1w

2

)

= N3(µ,Σ)|γk>0,αk>0,βk>0

(27)

where

Σ = (∇′V−1∇)−1

µ = Σ∇′V−1r∗.

To sample for the truncated multivariate Normal distribution given in equation (27), we

implement the Gibbs sampling technique by Wilhelm [2012] for sampling from a truncated

multivariate Normal distribution.
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